Rules: This test carries 20 marks and consists of 4 questions. Each questions carries 5 marks; full marks for a correct solution; a partial solution can give a partial credit. Use the backside of the page if the space for a question is insufficient.

Question 1 [5 marks]

Construct a complete deterministic finite automaton with as few states as possible which recognises the set \(((\{00\} \cdot \{0\})^* \cup (\{11\} \cdot \{1\})^* \cup (\{22\} \cdot \{2\})^*)^* \). The alphabet is \(\{0, 1, 2\} \). Recall that a finite automaton is deterministic and complete iff for every state \(q \) and every symbol \(a \) there is exactly one successor state \(\delta(q, a) \) to which it can go.

Solution. The dfa is given as follows: The set of states is \(\{s, q_0, q_1, q_2, r_0, r_1, r_2, p\} \) and the alphabet is \(\{0, 1, 2\} \). The state-transition function \(\delta \) uses in the following definition a symbol \(a \) (if needed) as the index of the state and \(b \) as the input symbol currently processed: \(\delta(s, b) = q_b \); if \(a = b \) then \(\delta(q_a, b) = r_a \) else \(\delta(q_a, b) = p \); if \(a = b \) then \(\delta(r_a, b) = r_a \) else \(\delta(r_a, b) = q_b \); \(\delta(p, b) = p \). Furthermore \(s \) is the starting state and \(\{s, r_a, r_b, r_c\} \) is the set of accepting states. The states \(q_a \) differ from all \(r_b \) as the first are rejecting and the latter are accepting. The start state \(s \) is the unique state from which one can go within two but not within one step into an accepting state. The state \(p \) is the unique state from which one cannot go into an accepting state. Note that if \(a \neq b \) then the states \(q_a \) and \(q_b \) differ as from \(q_a \) one goes on \(a \) into an accepting state but not from \(q_b \); similarly for \(r_a \) and \(r_b \). Furthermore, all states are reachable. Thus the dfa is minimal.
Question 2 [5 marks]

Recall the traditional form of the Pumping Lemma: Let \(L \subseteq \Sigma^* \) be an infinite regular language. Then there is a constant \(k \) such that for every \(u \in L \) of length at least \(k \) there is a representation \(x \cdot y \cdot z = u \) such that \(|xy| \leq k \), \(y \neq \varepsilon \) and \(xy^*z \subseteq L \).

Recall that a word \(w \) is a palindrome iff the mirror image of \(w \) is equal to \(w \); so 00110001100 and 01210 are palindromes while 0001 is not. Let \(H = \{w \in 0^+1^+2^+1^+0^+: w \text{ is a palindrome}\} \). Which of the following three choices is correct?

(a) \(H \) is regular and satisfies the Pumping Lemma;

(b) \(H \) is not regular but still satisfies the Pumping Lemma;

(c) \(H \) does not satisfy the Pumping Lemma and is thus not regular.

Prove your answer.

Solution. The correct choice is (c).

Assume that \(H \) satisfies the Pumping Lemma with constant \(k \) and consider the word \(0^k1^k2^k1^k0^k \) which is in \(H \). If \(H \) would be regular then there are \(x, y, z \) with \(xyz = 0^k1^k2^k1^k0^k \), \(y \neq \varepsilon \), \(|xy| \leq k \) and \(xz \in H \). Due to the length constraints, \(x \in 0^* \) and \(y \in 0^+ \). Now \(xz = 0^h1^k2^k1^k0^k \) for a number \(h < k \) and is not a palindrome, thus \(xz \notin H \) and the Pumping Lemma cannot be satisfied for \(H \). Thus \(H \) cannot be a regular set as well.
Question 3 [5 marks]

Consider the context-free grammar

\[\{S, T\}, \{0, 1, 2\}, \{S \rightarrow T1T1T|T2T2T, T \rightarrow TT|0|1|2|\varepsilon\}, S\].

Is the language \(L\) generated by this grammar regular? If so, provide a non-deterministic finite automaton recognising \(L\); if not, give a proof that the language is not regular.

Solution. The language is regular. A non-deterministic automaton for this language is given as follows:

![Automaton Diagram](https://via.placeholder.com/150)
Question 4 [5 marks]

The following \{0,1,2,3\}-valued function F is defined by structural induction for all regular expressions:

- $F(\emptyset) = 0$, $F(\{\varepsilon\}) = 1$;
- $F(\{w_1, w_2, \ldots, w_n\}) = 2$ in the case that at least one of the w_m is a nonempty word – otherwise the previous case applies;
- $F((\sigma \cup \tau)) = \max\{F(\sigma), F(\tau)\}$;
- If $F(\sigma) = 0$ or $F(\tau) = 0$ then $F((\sigma \cdot \tau)) = 0$ else $F((\sigma \cdot \tau)) = \max\{F(\sigma), F(\tau)\}$;
- If $F(\sigma) \leq 1$ then $F(\sigma^*) = 1$ else $F(\sigma^*) = 3$.

In these definitions, it is always assumed that brackets are used to make the breaking down of expressions unique and that σ, τ are valid regular expressions using as constants \emptyset and lists of finite sets of strings and as connectives \cup, \cdot and \ast. Answer the following questions:

- What is $F(((\{00,11\}^* \cdot \emptyset) \cup \{00,11,22\}))$?
- For which regular expressions does it hold that $F(\sigma) = 3$?
- Are there two different regular expressions σ, τ describing the same set such that $F(\sigma) \neq F(\tau)$?

Give short explanations for your answers.
Solution. $F(((\{00, 11\} \cdot \emptyset) \cup \{00, 11, 22\})) = \max\{F(((\{00, 11\} \cdot \emptyset)), F(\{00, 11, 22\})\}$
$= \max\{F(\emptyset), F(\{00, 11, 22\})\} = \max\{0, 2\} = 2$. In general, the function F of an expression σ for a set L is satisfies the following equation:

$$F(\sigma) = \begin{cases}
0 & \text{if } L = \emptyset; \\
1 & \text{if } L = \{\varepsilon\}; \\
2 & \text{if } L \text{ is finite and contains a nonempty word}; \\
3 & \text{if } L \text{ is infinite.}
\end{cases}$$

In particular, if σ, τ describe the same set then $F(\sigma) = F(\tau)$ and $F(\sigma) = 3$ iff σ describes an infinite set. One can verify above equation on F by induction: The conditions are hard-coded for lists of members of finite sets.

If $\sigma = (\tau \cup \rho)$ then $F(\sigma) = 0$ iff both $F(\tau), F(\rho) = 0$ iff both τ, ρ describe the empty set so that σ also describes the empty set; similarly σ describes $\{\varepsilon\}$ iff one of τ, ρ describes the set $\{\varepsilon\}$ and the other one either the same set or the empty set, so $F(\sigma) = 1$ iff $\max\{F(\tau), F(\rho)\} = 1$; $F(\sigma) = 2$ iff σ describes a finite set containing a non-empty string iff one of ρ, τ does and if both sets are finite iff $\max\{F(\rho), F(\tau)\} = 2$; $F(\sigma) = 3$ iff one of ρ, τ describe an infinite set iff at least one of $F(\rho), F(\tau)$ is 3.

Similarly one can verify the rules for $\sigma = \rho \cdot \tau$ with the special case in mind that the concatenation with an empty set gives the empty set.

Furthermore $F(\tau^*) = 3$ iff τ^* describes an infinite set iff τ contains a nonempty string iff $F(\tau) \geq 2$; $F(\tau^*) = 1$ iff τ^* describes the set $\{\varepsilon\}$ iff τ describes either \emptyset or $\{\varepsilon\}$ iff $F(\tau) \leq 1$.

END OF PAPER