
Midterm Examination 1
CS 4232: Theory of Computation

Wednesday 20 September 2017, Duration 40 Minutes

Matriculation Number:

Rules: This test carries 20 marks and consists of 4 questions. Each questions carries
5 marks; full marks for a correct solution; a partial solution can give a partial credit.
Use the backside of the page if the space for a question is insufficient.

Question 1 [5 marks]

Determine all derivatives of the set L = {0}∗ · {1}∗ · {0}∗ · {1}∗ and convert the set
of these derivatives to a minimal and complete deterministic finite automaton with
alphabet {0, 1}. The derivative of L at x is the set Lx = {y ∈ {0, 1}∗ : xy ∈ L}.
Recall that a finite automaton is deterministic and complete iff for every state q and
every symbol a there is exactly one successor state δ(q, a) to which the automaton
can go.

Solution. The derivatives are the following set: L0 = {0}∗ · {1}∗ · {0}∗ · {1}∗,
L01 = {1}∗ · {0}∗ · {1}∗, L010 = {0}∗ · {1}∗, L0101 = {1}∗, L01010 = ∅. A table for the
automaton is given as follows:

state succ at 0 succ at 1 acc/rej start
0 0 01 acc yes
01 010 01 acc no
010 010 0101 acc no
0101 01010 0101 acc no
01010 01010 01010 rej no

The finite automaton uses as names for states words x in the corresponding derivatives
Lx; there are many words x giving the same derivative Lx and exactly one such word
is used for each derivative as state name. The automaton has five states and as each
state represents a different derivative, the number of states is minimal by the Theorem
of Myhill and Nerode.

1

Question 2 [5 marks] CS 4232 – Solutions

Provide a context-free grammar for the set H = {02n13n : n is odd} using as few
non-terminals as possible.

Solution. The correct grammar for H is ({S}, {0, 1}, {S → 0000S111111|00111}, S).
This grammar is context-free, as there is always only S on the left side of a rule. The
number of non-terminals for any grammar has to be at least one, as there must always
be the start symbol S and therefore no smaller number of non-terminals is possible.

2

Question 3 [5 marks] CS 4232 – Solutions

Construct an nfa with 8 states for the language

I = {w ∈ {0, 1, 2, 3, 4, 5, 6, 7}∗ : w contains at least two different symbols}.

Solution. One divides the set of states into six groups Q0?? = {0, 1, 2, 3}, Q1?? =
{4, 5, 6, 7}, Q?0? = {0, 1, 4, 5}, Q?1? = {2, 3, 6, 7}, Q??0 = {0, 2, 4, 6}, Q??1 = {1, 3, 5, 7}
and makes eight states as follows: start state s, one accepting state t and a state qu
for each set Qu with u ∈ {??0, ?0?, 0??, ??1, ?1?, ??1}. The state s and all states qu
are rejecting.

From the start symbol, the nfa can go to each qu on symbols from the set Qu.
Furthermore, assume that the nfa is in qu; if the next symbol a is in Qu then the nfa
goes to qu else the nfa goes to t. From t, the nfa goes on all symbols to t. When a
word w comes up, on the first symbol a of w, the non-deterministic automaton guesses
a symbol b different from a in w and selects an u such that a ∈ Qu and b /∈ Qu; in
the case that b is indeed in the word w then the automaton will eventually go from
qu to t and therefore accept the word w. On the other hand, one can easily see that
the nfa cannot accept the empty word and also not any word which consists only of
repetitions of one symbol a, as on a, the nfa goes from s to a state qu with a ∈ Qu

and then the nfa will remain in qu until all a in the word are processed.
For understanding the principle behind this construction, note that the indices u

indicate which bit is in common to all members of Qu when the symbols in Qu are
written as binary three-digit numbers; the values of bits written as ? are irrelevant
for membership in Qu.

3

Question 4 [5 marks] CS 4232 – Solutions

Recall that the weakest form of the Pumping Lemma for regular languages (Corollary
2.16 in the Lecture Notes) states that every regular language J satisfies the following
statement (∗):

(∗) There is a constant k such that every word x ∈ J of length k or more can be
split into u, v, w such that v 6= ε and x = uvw and {u} · {v}∗ · {w} ⊆ J .

Assume that the language J consisting of all words in {0, 1, 2}+ which contain as
many 0 as 1. Does J satisfy (∗)?

If J satisfies (∗) then determine the smallest constant k which works and explain
why k is correct; furthermore, prove that J is not regular.

If J does not satisfy (∗), then prove that this fact; note that the non-regularly of
J follows in this case directly from Corollary 2.16.

Solution. Yes, J satisfies (∗) with k = 3.
To see that k ≤ 2 is impossible, consider the word 01 and assume that it is pumped

down, that is, made shorter. The possible outcomes are 0, 1 and ε which are all not
in J .

Now, if a word x of length at least 3 contains 2, one can split x into u · 2 · w and
{u} · {2}∗ · {w} ⊆ J , as pumping the 2 up or down does not change the number of 0
and 1 and as |uw| ≥ 2.

If a word x of length at least 3 does not contain any 2 and is non-empty, then
it contains for some number n > 0 exactly n 0s and n 1s. So these are in the same
quantity and one 0 must be next to one 1. Thus the word is of the form x = uvw
with v ∈ {01, 10}. Now {u} · {v}∗ · {w} ⊆ J , as removing or inserting v into the word
x does put in or take out the same quantity of 0 and 1, so that in the resulting word
there are as many 0 and 1; furthermore, due to |uvw| ≥ 3 and |v| = 2, |uw| ≥ 1.

The language is not regular, as it does not satisfy the traditional pumping lemma.
If that would be satisfied with constant h then the word 0h1h which is in J would
be pumped within the first h symbols, that is, 0h would be split into uvw with
{u} · {v}∗ · {w1h} ⊆ J where v ∈ {0}+. Thus pumping would change the number of 0
without changing the number of 1, for example, pumping up once gives 0h+|v|1h and
this word is not in J as |v| > 0.

END OF PAPER

4

