Midterm Examination 1
CS 4232: Theory of Computation

Wednesday 20 September 2017, Duration 40 Minutes

Matriculation Number: ____________

Rules: This test carries 20 marks and consists of 4 questions. Each question carries 5 marks; full marks for a correct solution; a partial solution can give a partial credit. Use the backside of the page if the space for a question is insufficient.

Question 1 [5 marks]

Determine all derivatives of the set

\[L = \{0\}^* \cdot \{1\}^* \cdot \{0\}^* \cdot \{1\}^* \]

and convert the set of these derivatives to a minimal and complete deterministic finite automaton with alphabet \{0, 1\}. The derivative of \(L \) at \(x \) is the set \(L_x = \{ y \in \{0, 1\}^* : xy \in L \} \). Recall that a finite automaton is deterministic and complete iff for every state \(q \) and every symbol \(a \) there is exactly one successor state \(\delta(q, a) \) to which the automaton can go.

Solution. The derivatives are the following set:

- \(L_0 = \{0\}^* \cdot \{1\}^* \cdot \{0\}^* \cdot \{1\}^* \)
- \(L_{01} = \{1\}^* \cdot \{0\}^* \cdot \{1\}^* \)
- \(L_{010} = \{0\}^* \cdot \{1\}^* \)
- \(L_{0101} = \{1\}^* \)
- \(L_{01010} = \emptyset \)

A table for the automaton is given as follows:

<table>
<thead>
<tr>
<th>state</th>
<th>succ at 0</th>
<th>succ at 1</th>
<th>acc/rej</th>
<th>start</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>acc</td>
<td>yes</td>
</tr>
<tr>
<td>01</td>
<td>010</td>
<td>01</td>
<td>acc</td>
<td>no</td>
</tr>
<tr>
<td>010</td>
<td>010</td>
<td>0101</td>
<td>acc</td>
<td>no</td>
</tr>
<tr>
<td>0101</td>
<td>01010</td>
<td>0101</td>
<td>acc</td>
<td>no</td>
</tr>
<tr>
<td>01010</td>
<td>01010</td>
<td>01010</td>
<td>rej</td>
<td>no</td>
</tr>
</tbody>
</table>

The finite automaton uses as names for states words \(x \) in the corresponding derivatives \(L_x \); there are many words \(x \) giving the same derivative \(L_x \) and exactly one such word is used for each derivative as state name. The automaton has five states and as each state represents a different derivative, the number of states is minimal by the Theorem of Myhill and Nerode.
Question 2 [5 marks]

Provide a context-free grammar for the set $H = \{0^{2n}1^{3m} : n \text{ is odd}\}$ using as few non-terminals as possible.

Solution. The correct grammar for H is $(\{S\}, \{0, 1\}, \{S \to 000S111111|00111\}, S)$. This grammar is context-free, as there is always only S on the left side of a rule. The number of non-terminals for any grammar has to be at least one, as there must always be the start symbol S and therefore no smaller number of non-terminals is possible.
Question 3 [5 marks]

Construct an nfa with 8 states for the language

\[I = \{ w \in \{0, 1, 2, 3, 4, 5, 6, 7\}^* : w \text{ contains at least two different symbols} \}. \]

Solution. One divides the set of states into six groups

\[Q_{0?} = \{0, 1, 2, 3\}, \quad Q_{1?} = \{4, 5, 6, 7\}, \quad Q_{20?} = \{0, 1, 4, 5\}, \quad Q_{21?} = \{2, 3, 6, 7\}, \quad Q_{30?} = \{0, 2, 4, 6\}, \quad Q_{31?} = \{1, 3, 5, 7\} \]

and makes eight states as follows: start state \(s \), one accepting state \(t \) and a state \(q_u \) for each set \(Q_u \) with \(u \in \{??0, ?0?, 0??, ??1, ?1?, ??1\} \). The state \(s \) and all states \(q_u \) are rejecting.

From the start symbol, the nfa can go to each \(q_u \) on symbols from the set \(Q_u \). Furthermore, assume that the nfa is in \(q_u \); if the next symbol \(a \) is in \(Q_u \) then the nfa goes to \(q_u \) else the nfa goes to \(t \). From \(t \), the nfa goes on all symbols to \(t \). When a word \(w \) comes up, on the first symbol \(a \) of \(w \), the non-deterministic automaton guesses a symbol \(b \) different from \(a \) in \(w \) and selects an \(u \) such that \(a \in Q_u \) and \(b \notin Q_u \); in the case that \(b \) is indeed in the word \(w \) then the automaton will eventually go from \(q_u \) to \(t \) and therefore accept the word \(w \). On the other hand, one can easily see that the nfa cannot accept the empty word and also not any word which consists only of repetitions of one symbol \(a \), as on \(a \), the nfa goes from \(s \) to a state \(q_u \) with \(a \in Q_u \) and then the nfa will remain in \(q_u \) until all \(a \) in the word are processed.

For understanding the principle behind this construction, note that the indices \(u \) indicate which bit is in common to all members of \(Q_u \) when the symbols in \(Q_u \) are written as binary three-digit numbers; the values of bits written as ? are irrelevant for membership in \(Q_u \).
Question 4 [5 marks]
Recall that the weakest form of the Pumping Lemma for regular languages (Corollary 2.16 in the Lecture Notes) states that every regular language J satisfies the following statement ($*$):

\[\text{There is a constant } k \text{ such that every word } x \in J \text{ of length } k \text{ or more can be split into } u, v, w \text{ such that } v \neq \varepsilon \text{ and } x = uvw \text{ and } \{u\} \cdot \{v\}^* \cdot \{w\} \subseteq J. \]

Assume that the language J consisting of all words in $\{0, 1, 2\}^+$ which contain as many 0 as 1. Does J satisfy ($*$)?

If J satisfies ($*$) then determine the smallest constant k which works and explain why k is correct; furthermore, prove that J is not regular.

If J does not satisfy ($*$), then prove that this fact; note that the non-regularity of J follows in this case directly from Corollary 2.16.

Solution. Yes, J satisfies ($*$) with $k = 3$.

To see that $k \leq 2$ is impossible, consider the word 01 and assume that it is pumped down, that is, made shorter. The possible outcomes are 0, 1 and ε which are all not in J.

Now, if a word x of length at least 3 contains 2, one can split x into $u \cdot 2 \cdot w$ and $\{u\} \cdot \{2\}^* \cdot \{w\} \subseteq J$, as pumping the 2 up or down does not change the number of 0 and 1 and as $|uw| \geq 2$.

If a word x of length at least 3 does not contain any 2 and is non-empty, then it contains for some number $n > 0$ exactly n 0s and n 1s. So these are in the same quantity and one 0 must be next to one 1. Thus the word is of the form $x = uvw$ with $v \in \{01, 10\}$. Now $\{u\} \cdot \{v\}^* \cdot \{w\} \subseteq J$, as removing or inserting v into the word x does put in or take out the same quantity of 0 and 1, so that in the resulting word there are as many 0 and 1; furthermore, due to $|uvw| \geq 3$ and $|v| = 2$, $|uw| \geq 1$.

The language is not regular, as it does not satisfy the traditional pumping lemma. If that would be satisfied with constant h then the word 0^h1^h which is in J would be pumped within the first h symbols, that is, 0^h would be split into uvw with $\{u\} \cdot \{v\}^* \cdot \{w\}^h \subseteq J$ where $v \in \{0\}^+$. Thus pumping would change the number of 0 without changing the number of 1, for example, pumping up once gives $0^{h+|v|}1^h$ and this word is not in J as $|v| > 0$.

END OF PAPER