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Question 1 [5 marks] CS 4232 – Solutions

For a homomorphism h from Σ∗ to Γ∗ and a language L ⊆ Γ∗, the inverse image of
L under h is h−1(L) = {u ∈ Σ∗ : h(u) ∈ L}.

Let Γ = {0, 1, 2} and L = {00}∗ ∪ {11}∗. Determine the maximum number n of
states needed for an nfa of h−1(L) and provide an example homomorphism h where
this number is taken – other homomorphisms might allow lower values for n, so the
worst case n should be determined and the witnessing h provided.

Explain why the corresponding n is optimal.

Solution. The language L itself needs an nfa with five states; it has a start state
and two branches from it which recognise {00}∗ and {11}∗; these two branches need
to be kept different, as mixed words like 0011 are not in the language, therefore the
nfa can also only leave but not come back to the start state. So the set of states is
Q = {s, z, z′, o, o′} with s, z′, o′ being accepting and z, o rejecting. The nfa goes on 0
from s to z and on 1 from s to o. Furthermore, each 1 let the nfa swap between the
states o, o′ and each 0 let the nfa swap between the states z, z′. There are no other
transitions.

Now given the nfa (Q,Γ, δ, {s, z′, o′}, s), a new nfa for h−1(L) can take the same states
Q and the same starting state s, but on a symbol a ∈ Σ and a state q ∈ Q, the nfa
can go to any state p ∈ Q where the original nfa can go on the word h(a) from q
to p; the accepting states remain the same and the alphabet is Σ. This construction
then allows to conclude that every h−1(L) has an nfa with 5 states. In the case that
Σ = Γ and h(a) = a for all a ∈ Σ, this identity homomorhism satisfies h−1(L) = L
and therefore needs as above an nfa with 5 states.

Thus the correct solution is n = 5.
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Question 2 [5 marks] CS 4232 – Solutions

Consider the context-free grammar ({S, T, U}, {0, 1, 2, 3}, P, S) with P containing the
rules S → 0S1S2|TU |3, T → STS, U → U3|3 and write an equivalent context-free
grammar in Chomsky Normal Form without useless non-terminals; that is, every of
its non-terminals can be reached and all non-terminals allow to derive some word.

Solution. As T cannot be terminalised and U can only be derived when a T is
derived, the non-terminals T, U can be omitted from the grammar and also all rules
which contain one of these non-terminals on either side. So the resulting rules are
S → 0S1S2|3.

Now the grammar is put into Chomsky Normal Form and besies the non-terminal S
inherited from above, it also has non-terminals U, V,W, 0′, 1′, 2′. Here 0′, 1′, 2′ stand
for non-terminals for which there are only the derivations 0′ → 0, 1′ → 1 and 2′ → 2
in the grammar. Furthermore, the other non-terminals S, U, V,W have the rules
S → 0′U |3, U → SV , V → 1′W , W → S2′. The symbol S is the start symbol. The
terminals remain unchanged as 0, 1, 2, 3.
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Question 3 [5 marks] CS 4232 – Solutions

Assume that L and H are context-free languages not containing the empty word ε. Is
there a O(n3) algorithm to check the membership of a word of length n in the language
(L−H) · (H − L), where − denotes the set difference and · the concatenation?

Yes, No.

If there is an algorithm, describe how the algorithm works and why it keeps the time-
bound; if there is no such algorithm, explain why it cannot exist. Note that here
the size of the two grammars is taken to be constant and absorbed in the O(n3)-
expression. So if one fixes the grammars, then the resulting algorithm should be in
cubic time.

Solution. Assume that the grammars in Chomsky Normal Form are for L the gram-
mar are (N1,Σ, P1, S1) and for H the grammar (N2,Σ, P2, S2), where N1 and N2 are
disjoint. So one can now run the Cocke Kasami Younger algorithm with the non-
terminals N1 ∪ N2, as the union is also a grammar in Chomsky Normal Form with
the only pathology that there are two start symbols. For input word a1a2 . . . an, one
builds now in time O(n3) the pyramide-shaped table of all sets Ui,j of non-terminals
which can be derived into ai . . . aj. Now the word is in (L−H) · (H − L) iff there is
an m ∈ {1, 2, . . . , n − 1} such that U1,m contains S1 but not S2 and Um+1,n contains
S2 but not S1. This last test can be done with one loop over m and takes time O(n2),
thus the overall running-time of the algorithm is O(n3).
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Question 4 [5 marks] CS 4232 – Solutions

Is there a register machine which can compute the function F given as n 7→ 32n?
Yes, No.

For the answer “yes”, provide the corresponding program; for the answer “no”, pro-
vide a proof why this program does not exist.

Solution. The answer is “yes”. The program can be made as follows.

Line 1: Function F (R1);

Line 2: R2 = 0; R3 = 1;

Line 3: If R1 = R2 Then Goto Line 6;

Line 4: R2 = R2 + 1; R3 = R3 +R3;

Line 5: Goto Line 3;

Line 6: R4 = 0; R5 = 1;

Line 7: If R4 = R3 Then Goto Line 10;

Line 8: R4 = R4 + 1; R5 = R5 +R5 +R5;

Line 9: Goto Line 7;

Line 10: Return(R5).

END OF PAPER
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