Frank Stephan

February 5, 2014

«<O>» «Fr «=>»

<

i
v

Q>

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
©0000 0000000 000000 0000000000 00000000 0000 o

Introduction

@ JavaScript is a scripting language mostly used in HTML pages
and PDF documents.

@ JavaScript is mostly used to program the client side of an
application and runs in Web browser, on mobile devices, and
in desktop widgets.

@ JavaScript is a prototype-based scripting language that mixes
imperative, object-oriented and functional programming styles.

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures

0e000 0000000 000000 0000000000

Introduction

The World Wide Web

HTTP URL GET

HTML

JavaScr'ft

Browser

Oral Explanation

public_html

Errors Efficiency
00000000 0000

Web Server

Conclusion
o

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00®00 0000000 000000 0000000000 00000000 0000 o

Introduction

ECMAScript

In November 1996, Netscape announced that it had submitted
JavaScript to Ecma International for consideration as an industry
standard, and subsequent work resulted in the standardized version
named ECMAScript. JavaScript was formalized in the ECMAScript
language standard. “JavaScript” is a trademark of Oracle
Corporation.

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
000e0 0000000 000000 0000000000 00000000 0000 o

Introduction

JavaScript in HTML

JavaScript can be directly embedded into an HTML page using the
element <script>.
1| <HTML>
2| <HEAD><TITLE>JavaScript</TITLE></HEAD>
3| <BODY>
41 <HI>Time</H1>
5| <SCRIPT>
6/ //This is a javaScript Program
7| document . write ("<H2>Lord Byron</H2>");
8|</SCRIPT>
9| </BODY>
10| </HTML>

Load this HTML file into a browser ’ Oral Explanation‘

http://www.comp.nus.edu.sg/~gem1501/code/javascript_in_html.html

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency
[eYelole] } 0000000 000000 0000000000 00000000 0000

Introduction

SO W N

oo ~

JavaScript in HTML

There are other ways to embed JavaScript in HTML:
e With the src attribute of the <script> element
@ With the JavaScript hyperlink
o With an HTML event handler

Conclusion
o

<HTML>

<HEAD><TITLE>Button</ TITLE></HEAD>

<BODY>

<SCRIPT SRC=" js.js"> </SCRIPT>

Click Me

<INPUT TYPE="button” VALUE="Click Me” ONCLICK="alert ('

Oooch! ") ;">
</BODY>
< /HTML>

Load this HTML file into a browser | Oral Explanation

http://www.comp.nus.edu.sg/~gem1501/code/button.html

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 ©000000 000000 0000000000 00000000 0000 o

Data and Operations

Literal Values

JavaScript manipulates numbers, strings, Booleans, nulls, objects
and functions. Primitive types are Boolean, numeric, strings.
Complex types are array, object and function. JavaScript is weakly
typed. That means that a variable has a type that is inferred from
its value and that the type can change dynamically.

18

21 —1024

3] —3.1451516

4" Hello World”

5/"Hello World, <i>l know HTML tags</i>!
"
6] true

7| false

8l null

9l undefined

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0®00000 000000 0000000000 00000000 0000 o

Data and Operations

Variables

Variables provide a means to store and manipulate values. A
variable name can be any sequence of letters, digits, underscore
and dollar sign. It cannot start with a digit.

1l var age;

2| var current_year = 2014;

3l var year_of_birth = 1990;

4| age = current_year — year_of_birth;

Javascript 1.5 and Unicode

Since Javascript 1.5, any Unicode letter can be used in a variable
name. While this gives birth to interesting variable names, it is
very impractical to write and maintain the code with most text
editors. Do NOT do it!

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion

00000 00®0000 000000 0000000000 00000000 0000 o
Data and Operations

w N

G W N

Keywords and other Reserved Words

Keywords are special words that are interpreted by the JavaScript
interpreter. Keywords and other reserved words cannot generally
be used as identifiers for variables, functions and so on.

break case continue default delete do else

export false for function if import in new

null return switch this true typeof var void while with
abstract boolean byte catch char class const debugger
double enum extends final finally float goto implement
instanceof int interface long native package private
protected public short static super synchronized throw
throws transient try

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 000®000 000000 0000000000 00000000 0000 o

Data and Operations

Input and Output

O ~NO Ol WN =

10
11
12

JavaScript can input values from different widgets: forms, prompt,
files and read the HTML.

JavaScript can output values in different widgets: the HTML, files,
the console, buttons and canvas.

<HTML>

<HEAD><TITLE>JavaScript</TITLE></HEAD>

<BODY>

<H1 id="title”">To Time</HIl>

<SCRIPT>

document. write ("<H2>Lord Byron</H2>");

alert (" Lord Byron”);

var newname= window.prompt(” Give a new title”, "");
document. getElementByld (" title").innerHTML = newname;
</SCRIPT>

</BODY>

</HTML>

Load this HTML file into a browser ’ Oral Explanation

http://www.comp.nus.edu.sg/~gem1501/code/io.html

Introduction Data and Operations Control Objects and Data Structures Errors
0000®00 000000 0000000000 00000000 0000

00000

Data and Operations

Efficiency

Conclusion
o

Comments explain the code.

~NOoO s wWwN =

/+* Comments open with a slash followed by a
and close with a start followed by a slash.
They can span several lines or be embedded
a line of code x/

// Single line comments open with a double
// and close with the line

start

in

slash

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0000000000 00000000 0000 o

Data and Operations

Arithmetic Operators

Addition: +

Subtraction: -

multiplication: *
Division: /
Modulus: %

Increment: ++

Decrement: --

—

var x = 39;

var y = x * x + x + 41;

document. write ("<H1>Euler said that this number is
prime: " + y +'<HI>");

w N

Load the HTML into a browser ’ Oral Explanation

http://www.comp.nus.edu.sg/~gem1501/code/euler1.html

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 [elelololelel) 000000 0000000000 00000000 0000 o

Data and Operations

The Math Object

Other mathematical constants and functions are available as
properties and methods of the Math object: Euler's number, the
natural logarithm of 2, absolute value, floor and ceiling, power,
random number generation, etc.

=

var x = Math.pow(2,31) —1;
document. write ("<H1>Euler said that this number is
prime: " + x +'<HI>");

N

3| document. write ("<H1>Euler's number is: " 4+ Math.E +"<H1
>");
4l document. write ("<H1>This is a random number: " + Math.

random () +'<H1>");

Load the HTML into a browser ’ Oral Explanation

http://www.comp.nus.edu.sg/~gem1501/code/euler2.html

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 ®00000 0000000000 00000000 0000 o

Control

Conditional Branching

The if statement allows conditional branching based on general

conditions.)
1| if (age <11) {category = 'child ';}
2l else if (age <20) {category = ’'teenager’;}
3l else {category = "adult’';}

Conditional branching

The switch statement allows a conditional branching based on the
value of a variable.

A

1| switch (age)

21 { case 0: {category = ’'baby’; break;}

3 case 1: case 2: {category = ’'toddler’; break;}
4 default: {category = ’'child’'; break;}}

Oral Explanation ‘

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion

00000 6000000 080000 6000000000 60000000 5000 o
Control

o Equality: ==, ===

@ Not equal to: !=

o Greater than: >

@ Lower than: <

o Greater than or equal to: >=

@ lower than or equal to: <=

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 OO®000 0000000000 00000000 0000 o

Control

Boolean Operators

o Conjunction: &&
@ Disjunction: ||

@ Negation: !

var x = Math.random();

var y = Math.random();

if ((x<=10.58&&% y<=20.5) || (0.5 >=x || 0.5 >=1y))
{document.write(" Tail”);}

else {document.write("Face”);}

G W=

Load the HTML into a browser ’ Oral Explanation

http://www.comp.nus.edu.sg/~gem1501/code/conditions.html

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 0OO®00 0000000000 00000000 0000 o

Control

Bounded and Conditional lteration

The for, while and do-while loops iterate on a general
condition. The for loop syntax simplifies the programming of the
simple bounded iteration.
1| var i;
2| for (i=0;i <100; i++)
3| {document. write("<I> | shall write this first line a
hundred times</l>.
"); }
41 i =0;
5/ while (i < 100)
6| {document. write(" | shall write this second line a
hundred times.
"); i=i+1; }
7] i=0;
8| do
9| {document. write("<U> | shall write this third line a
hundred times</U>.
"); i=i+1; }
10| while (i < 100)

Load the HTML into a browser ’ Oral Explanation‘

http://www.comp.nus.edu.sg/~gem1501/code/loops.html

Introduction Data and Operations Control Objects and Data Structures Errors
00000 0000000 000080 0000000000 00000000
Control

Efficiency Conclusion
0000 o

JavaScript also supports break continue statements and labels.
It is generally considered that they should be avoided as much as
possible (bad style, not structured).

’Oral Explanation ‘

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 0000O® 0000000000 00000000 0000 o

Control

Functions

Functions are subroutines that can be called. They have
parameters to take input values when called. They return an
output value. They can call themselves (recursively).

1| function fibonacci(n) {

2| var f;

3 if (n=0){f = 0;}

4 else if (n = 1){f = 1;}

5 else {f = fibonacci(n — 1) + fibonacci(n — 2);}
6 return f;

7}

Load the HTML into a browser | Oral Explanation |

http://www.comp.nus.edu.sg/~gem1501/code/fibonacci1.html

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency
00000 0000000 000000 @000000000 00000000 0000

Objects and Data Structures

Conclusion
o

Objects have properties. The values of these properties can be
accessed using the dot notation.

1| var myComputerScientist = {

2 firstName: " John",

3 lastName: "Von Neumann”,

4 birth: 1903,

5 death: 1957};

6| document. write(myComputerScientist.lastName);
7
8
9

var myOrGate = {
inputl: true,
10 input2: false,
11 output: true};
12| document. write (myOrGate. output);

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 O®0O0000000 00000000 0000 o

Objects and Data Structures

Objects have methods. The methods can be invoked using the dot
notation.

1| var myOrGate = {

2 inputl: true,

3 input2: false,

4| output: function () {return this.inputl || this.
input2;}};

document. write (myOrGate. output());

o1

Oral Explanation ‘

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0O®0000000 00000000 0000 o

Objects and Data Structures

Object of the same kind can be created with constructors.

1| function OrGate(inputl, input2) {

2 this.inputl = inputl;

3 this.input2 = input2;

41 this.output = function () {return this.inputl || this
.input2;}};

5

6| var myOrGate = new OrGate(true, false);

7| document . write (myOrGate. output());

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0OO®000000 00000000 0000 o

Objects and Data Structures

Arrays are data structures that help organize data.

var myOrGatel = [true, true, true];
document. write (myOrGatel [0]) ;
document. write (myOrGatel [1]) ;
document. write (myOrGatel [2]) ;

(

document. write (myOrGatel . length);

var myOrGate2 = new Array(false, true, true);

O ~NO A WN

9] var myOrGate3 = new Array();
10| myOrGate3[inputl] false;
11| myOrGate3[input2] = false;
12| myOrGate3 [output] = false;

Oral Explanation ‘

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0OOO®00000 00000000 0000 o

Objects and Data Structures

Arrays objects in JavaScript have several constructors and methods
to manipulate them.

@ length gives the length of the array.
@ sort() sorts the elements of an array.

@ See also reverse(), slice(), splice() etc.

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 00O0OO®0000 00000000 0000 o

Objects and Data Structures

An array can be manipulated as a stack.

@ pop() removes the last element of an array, and returns that
element.
@ push() adds a new element to the end of an array.

Last In First Out (LIFO)

The resulting list is [1,2,3,4,5]

var A = new Array();

A.push(1); A.push(2); A.push(3);
var x = A.pop(); var y = A.pop();
A.push(x); A.push(y);

A.push(5); A.push(4);

BN =

’Oral Explanation ‘

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 000O0Oe000 00000000 0000 o

Objects and Data Structures

An array can be manipulated as a queue.
@ shift() removes the first element of an array, and returns
that element.
@ push() adds a new element to the end of an array.

@ See also unshift (). |

The resulting list is [1,2,3,4,5]

var A = new Array();

A.push(0); A.push(1l); A.push(2); A.push(3);
A.push(4); A.push(5);

var x = A.shift();

AN =

’Oral Explanation ‘

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion

00000

0000000 000000 0000000e00 00000000 0000 o

Objects and Data Structures

Multidimensional Arrays

O 00 ~NO O WN

Multidimensional arrays are arrays of arrays.

var A = [[1, 2],[4, 5].[7, 8].[7, 8]]:
var B = [[1, 2, 3, 2],[3, 2, 1, 3]I;
var R = new Array();

for (i=0;i<A.length;i++)
{R[i] = new Array();
for (j=0;j<B[0].length;j++)
{R[i][i] = 0;
for (k=0;k<B.length;k++)
{RITI[G] = REETLG] + AL [K]*B[k][5]:}}}

Load the HTML into a browser ’ Oral Explanation‘

http://www.comp.nus.edu.sg/~gem1501/code/matrixmult.html

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 000000000 00000000 0000 o

Objects and Data Structures

References

Objects, arrays and functions are passed by reference (not by
value).

’ Oral Explanation

Conclusion
o

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency
00000 0000000 000000 000000000e 00000000 0000
Objects and Data Structures
1| function input (value) {
2 this.value = value;
3 this.output = function () {return this.value;}};
4
5| function OrGate(inputl, input2) {
6 this.inputl = inputl;
7 this.input2 = input2;
8 this.output = function () {return this.inputl.output
() |l this.input2.output();}};
9
10| var vl = new input(false);
11| var v2 = new input(true);
12| var myOrGate = new OrGate(vl, v2);
13| document. write (myOrGate. output () +'
");
14} v2.value = false;
15| document . write (myOrGate. output ()+'
") ;

Load the HTML into a browser | Oral Explanation

http://www.comp.nus.edu.sg/~gem1501/code/references.html

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0000000000 ®0000000 0000 o

Errors

Syntax Errors

The program must be written according to the rules of the
language (keywords, order etc.).

1| {for (i = 0;i < 5)

2 {document.write (" The number is: "+ i + "
");}}
There must be three parts in the “for” statement.)

1| {for (i = 0;i < 5;i = i+1)

2 {document.write (" The number is: "+ i + "
");}}

’ Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0000000000 O®000000 0000 o

Errors

Type Errors

Discrepancies between the types of variables and the expected
types of functions and operations.

—

var i = "hello”;
i = Math.abs(i);
document. write (" The number is: "+ i + "
");

w N

JavaScript is dynamically and weakly typed. It is flexible but does
not help preventing typing errors.

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0000000000 OO®00000 0000 o

Errors

Semantic Errors

A program with no syntax error may not do what was intended.

1 {for (i = 0;i = i+1;i < 5)
{document.write (" The number is: "+ i + "
");}}

“i = i4+1" returns the value assigned to i also as the value of a
condition. This value is interpreted as “true” if it is positive and as
“false” if it is 0. So “i = i+1" is a syntactical legal condition.
Furthermore, there are no constraints how the third condition
updates i, anything is permitted in JavaScript.

Different programming languages are more or less permissive.

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0000000000 0OO®0000 0000 o

Errors

Bad Style

Bad style does not help track bugs.

1| for (k=10;k=k—1;document.write((10—k)+" "));

The loop above outputs 123456789)

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0000000000 00O0O®000 0000 o

Errors

Infinite Loops

Program execution may not terminate! Sometimes by design.

I {for (i = 0;i >= 0; i = i+1)

2 {document.write (" Wait for me!”);}}
1| {var something;

2| while (true)

3 {something = wait_for ();

4 take_action (something);}}

Note: See JavaScript event handling. J

Oral Explanation ‘

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0000000000 00000e00 0000 o

Errors

Example: Prime Triple

Sometimes not: A Prime Triple is a triple of three prime numbers,
p, p+2and p+ 4.

1l var p=4;

2| while (! (isprime(p) && isprime(p+2) && isprime(p+4)))

3({p = p+1;}

4| document. write (" ("4+p+", "H+(p+2)+", "+(p+4)+") is a
prime triple.
");

(3, 5, 7) is the only prime triple. J

’Oral Explanation ‘

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0000000000 000000®0 0000 o

How to Deal with the Bug?

Most likely, the bug is in your code... J

How to Deal with the Bug?

@ Prevent the bug: follow disciplined, rigorous software
engineering (design and development) approach (software
analysis, software verification, correctness proofs);

@ Track the potential bug: test the software;

e Find the bug: instrument the code (put print statements to
trace the execution; you may have used defensive
programming, design by contract or other software
engineering approaches; use debugging tools, analysis tools
and other software engineering tools);

@ Fix the bug: remove the bugs;

Oral Explanation

Objects and Data Structures Errors Efficiency Conclusion

Introduction Data and Operations Control
o

00000 0000000 000000 O000000000 0O000000e 0000

How to Deal with the Bug?

Techniques for Analyzing Programs

Some techniques can be used by compilers, tools or programmers
to analyze programs and eliminate bugs, such as:

@ Syntax analysis
Type checking
Type inference
Abstract interpretation

Formal methods and code verification)

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0000000000 00000000 @000 o

Efficiency

“In almost every computation a great
variety of arrangements for the
succession of the processes is
possible, and various considerations
must influence the selections amongst
them [...] One essential object is to
choose that arrangement which shall
tend to reduce to a minimum the
time necessary for completing the
calculation.”

attributed to

Ada Lovelace (10 December 1815 -
27 November 1852), who helped
Charles Babbage (26 December 1791
- 18 October 1871) with his
machines.

[Oral Exnlanation |

Introduction Data and Operations Control Objects and Data Structures

00000 0000000 000000 0000000000

Efficiency

Normalizing Scores

The following function normalizes a list of scores, for instance
grades, by dividing every score by the maximum score.

~NOoO O W=

Errors
00000000

Efficiency
[o] lele}

Conclusion
o

function normalize_score (A)

{var max = 0;

for (i=0;i <= A.length—-1; i = i+1)
{if (A[i] > max) {max = A[i]}}

for (i=0;i <= A.length —1; i = i+1)

{A[i] = A[i] / max * 100;}
return A;}

’Oral Explanation ‘

Introduction Data and Operations Control Objects and Data Structures
00000 0000000 000000 0000000000

Efficiency

Normalizing Scores

The following function is (sometimes) faster.

Errors
00000000

Efficiency
[ele] e}

Conclusion
o

function normalize_score(A)

{var max = 0; var factor;
var | = A.length —1;
for (i=0;i <= I; i++)
{if (A[i] > max) {max = A[i]}}
factor = 100/ max;
for (i=0;i <= I; i++)
{A[i] == factor;}
return A;}

’Oral Explanation ‘

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0000000000 00000000 0OO® o

Efficiency

How to Become a Good Programmer

Experience! Experience! Experience! (and Perseverance ...)
@ Choose your language(s);
Program;

o
@ Read manuals, guides, tutorials and other articles;
°

Follow and contribute to developers' forums.

Oral Explanation

Introduction Data and Operations Control Objects and Data Structures Errors Efficiency Conclusion
00000 0000000 000000 0000000000 00000000 0000 .

Attribution

Attribution

The images and media files used in this presentation are either in
the public domain or are licensed under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published
by the Free Software Foundation, the Creative Commons
Attribution-Share Alike 3.0 Unported license or the Creative
Commons Attribution-Share Alike 2.5 Generic, 2.0 Generic and 1.0
Generic license.

Some of the examples are adapted from Stanford’'s " CS101 -
Introduction to Computing Principles”
(http://www.stanford.edu/class/cs101) and W3 Schools
JavaScript tutorial (http://www.w3schools. com).

	Introduction
	Introduction

	Data and Operations
	Data and Operations

	Control
	Control

	Objects and Data Structures
	Objects and Data Structures

	Errors
	Errors
	How to Deal with the Bug?

	Efficiency
	Efficiency

	Conclusion
	Attribution

