
Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

8. Algorithmic Methods

Frank Stephan

March 13, 2014

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Introduction

Al Khawarizmi

In the ninth century Muhammad ibn Musa al-Khawarizmi, a
Persian mathematician, wrote a book, “ Compendious Book on
Calculation by Completion and Balancing”, on Indian numerals and
the decimal positional number system, in which he presented
methods for adding, multiplying, dividing numbers, extracting
square roots and calculating digits of π.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Introduction

Assessing Algorithms

function productsum(ar)

{ var i; var j; var s=0;

for (i in ar)

{ for (j in ar)

{ s = s+ar[i]*ar[j]; } }

return(s); }

Let n be the number of array elements of ar .
Time complexity: O(n2);
Space complexity: O(1).
Space for input does not count towards space complexity.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Introduction

Algorithmic Methods

Brute Force algorithms

Greedy algorithms

Divide and conquer algorithms

Dynamic programming algorithms

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Brute Force

Brute Force Algorithms

Brute force algorithms, also known as näıve algorithms, generate
and test algorithms and exhaustive search algorithms, explore the
entire search space.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Linear Search

Linear Search

Linear search seeks an element in list. It searches the list until it
finds the element. In the worst case it searches the entire list. It is
O(n).

[1, 33, 24, 54, 67, 54, 32, 45, 6, 7, 8, 5, 6, 4, 3, 2]

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Linear Search

1 f u n c t i o n s e a r c h (n , A)
2 { va r i =−1;
3 do { i ++;}
4 wh i l e (A[i] !=n && i < A. l e n g t h)
5 r e t u r n i ; }

”code/linear search.js”

Load the HTML into a browser

http://www.comp.nus.edu.sg/~gem1501/code/linear_search.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Powers

Powers

A brute force algorithm for computing the nth power of a number
multiplies this number by itself n times. It is O(n).

25 = 2× 2× 2× 2× 2

1 f u n c t i o n power (n , m)
2 { va r r =1;
3 f o r (i =0; i<m; i++) { r = r ∗n ; M[0]=M[0]+1 ;}
4 r e t u r n r ;}

”code/power.js”

Load the HTML into a browser — The variable M[0] countes the
number of multiplications.

http://www.comp.nus.edu.sg/~gem1501/code/power.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

All Possible Mariages

Marriages

We have a list of n boys and a list of n girls. We want to print all
possible marriages. The algorithm is Θ(n2)

1 f u n c t i o n mar r i age (B, G)
2 { va r i , j , t , s ; t = ”” ;
3 f o r (i =0; i < B. l e n g t h ; i++)
4 { f o r (j =0; j < G. l e n g t h ; j++)
5 { t = t+A[i] + ” can marry ” + B[j]+”.
” ;

s++}}
6 r e t u r n (s+” p o s s i b l e ma r r i a g e s .
”+t) ;}

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Fibonacci

Fibonacci

The Fibonacci function computes the nth Fibonacci number.

fibonacci(n) = fibonacci(n − 1) + fibonacci(n − 2)

Näıve Fibonacci

Recall the näıve Fibonacci algorithm we implemented in JavaScript.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Fibonacci

1 f u n c t i o n f i b o n a c c i (n)
2 { va r f ;
3 i f (n == 0) { f = 0 ;}
4 e l s e i f (n == 1) { f = 1 ;}
5 e l s e { f = f i b o n a c c i (n − 1) + f i b o n a c c i (n − 2) ;}
6 r e t u r n f ; }

”code/fibonacci1.js”

Load the HTML into a browser

http://www.comp.nus.edu.sg/~gem1501/code/fibonacci1.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Fibonacci

Fibonacci

The algorithm computes the same values many times.

T (n) = T (n − 1) + T (n − 2) + θ(1) = ϕn

ϕ is the Golden Ratio = 1+
√
5

2 = 1.61803398875 · · ·

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Shortest Path

Shortest Path Problems

A shortest path problem could seek a shortest path between a
single source and a single sink, all shortest paths between a single
source and all vertices, or all shortest paths. The weights could be
restricted to be positive, integers or could be bounded. Other
constraints such as a maximum number of hops or a maximum
total weight could be added. We study the single source, all sinks
shortest path problem.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Shortest Path

Brute Force Algorithm

1 Initialize the shortest path distance from the source s to itself
to be d(s) = 0.

2 Initialize the current computed shortest distance from the
source to a vertex v to d(v) =∞ for all other vertices v .

3 Initialize the predecessor of a vertex v in the shortest path
π(v) = nil for all vertices v .

4 Repeat the following until nothing changes.
1 Select an edge (u, v).
2 If d(v) > d(u) + W ((u, v)), then d(v) = d(u) + W ((u, v))

and π(v) = u.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Shortest Path

Contained Force Algorithm

1 Initialize the shortest path distance from the source s to itself
to be d(s) = 0.

2 Initialize the current computed shortest distance from the
source to a vertex v to d(v) =∞ for all other vertices v .

3 Initialize the predecessor of a vertex v in the shortest path
π(v) = nil for all vertices v .

4 mark s as visited.
5 Repeat the following until nothing changes.

1 Select an edge (u, v) where u is visited.
2 If d(v) > d(u) + W ((u, v)), then d(v) = d(u) + W ((u, v))

and π(v) = u and mark v as visited.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Greed

Greedy Algorithms

Greedy algorithm rely on a proof (needed) that the best local
decisions lead to the best global solution.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Finding Peaks

Finding Peaks

A peak in a list of numbers is a number whose predecessor and
successor are both lower than or equal to that number. If the first
element of the list is larger than or equal to the second element,
then it is a pick. If the last element of the list is larger than or
equal to the one before last, then is a peak.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Finding Peaks

Peak Finding

The peak finding algorithm always moves up the slope. In the
worst case it searches the entire list. It is O(n).

1 f u n c t i o n ascend (A, i)
2 { i f (((i −1) i n A) && (A[i −1] > A[i])) { r e t u r n (i −1) ; }
3 i f (((i +1) i n A) && (A[i +1] > A[i])) { r e t u r n (i +1) ; }
4 r e t u r n (i) ; }
5 f u n c t i o n f i n dap eak (A)
6 { va r i =0;
7 wh i l e (ascend (A, i) != i) { i = ascend (A, i) ; }
8 r e t u r n (i) ; }

”code/peak.js”

Load the HTML into a browser

http://www.comp.nus.edu.sg/~gem1501/code/peak.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Shortest Path

Too Greedy Shortest Path

Always take the next shortest edge. Does it work?

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Shortest Path

Optimal Substructure

The solutions to local problems must contribute to a global
solution.
For example, the function findapeak finds a local peak but not
necessary the global peak; it might settle with an intermediate
peak or just an even plain.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

The Art of War

Divide and Conquer

Divide and conquer algorithms decompose the problem into smaller
sub-problems and combines the results. This naturally leads to
recursive algorithms.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

The Art of War

n

n
2

· · ·

O(1)

O(log(n))

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Binary Search

Dichotomic Peak Search

Dichotomic peak iteratively halves the search interval from i to j
and searches in that half to which the slope in the middle points.
It is O(log n).

1 f u n c t i o n ascend (A, i)
2 { i f (((i −1) i n A) && (A[i −1] > A[i])) { r e t u r n (i −1) ; }
3 i f (((i +1) i n A) && (A[i +1] > A[i])) { r e t u r n (i +1) ; }
4 r e t u r n (i) ; }
5 f u n c t i o n f i n d a p e a k f a s t (A)
6 { va r i =0; va r j = A. l eng th −1;
7 i f (ascend (A, i) == i) { r e t u r n (i) ; }
8 i f (ascend (A, j) == j) { r e t u r n (j) ; }
9 va r k = Math . round ((i+j) /2) ;

10 wh i l e (ascend (A, k) != k)
11 { i f (ascend (A, k) < k) { j = k ; } e l s e { i = k ; }
12 k = Math . round ((i+j) /2) ; }
13 r e t u r n (k) ; }

”code/peakfast.js”

Load the HTML into a browser

http://www.comp.nus.edu.sg/~gem1501/code/peakfast.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Binary Search

Binary Search

Binary seeks an element in a sorted list. It recursively searches one
half of the list. In the worst case it has to divide the list until it
contains only one element. It is O(log n).

T (n) = T (
n

2
) + Θ(1)

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Binary Search

Master Theorem

Let a ≥ 1 and b > 1 be constants. Let f (n) be a function. Let
T (n) be a function on the non-negative integers by the following
recurrencea.

T (n) = a× T (
n

b
) + f (n)

T(n) can be bounded asymptotically as follows.

1 If f (n) ∈ O(nlogb(a)−ε) for some constant ε > 0, then
T (n) ∈ Θ(nlogb(a)).

2 If f (n) ∈ Θ(nlogb(a)) , then T (n) ∈ Θ(nlogb(a) × logb(n))

3 If f (n) ∈ Ω(nlogb(a)+ε) for some constant ε > 0, and if
a× f (nb) ≥ c × f (n) for some constant c < 1 and all
sufficiently large n, then T (n) ∈ Θ(f (n)).

a n
b
means either d n

b
e or b n

b
c.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Binary Search

T (n) = T (
n

2
) + Θ(1)

T (n) = Θ(nlog2(1) × log2(n)) = Θ(log n)

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Binary Search

1 f u n c t i o n s e a r c h (n , A)
2 { va r r=bsea r ch (0 , A . l eng th −1, n , A) ;
3 r e t u r n r ;}
4
5 f u n c t i o n b s ea r ch (s , e , n , A)
6 { va r r ;
7 i f (s <= e) {
8 va r p i v o t = Math . f l o o r (s+ ((e − s) /2)) ;
9 i f (A [p i v o t] < n) { r= bsea r ch (p i v o t +1,e , n ,A) ;}

10 e l s e i f (A [p i v o t] > n) { r = bsea r ch (s , p i vo t −1,n ,A) ;}
11 e l s e { r=p i v o t ;}}
12 e l s e { r=−1;}
13 r e t u r n r ;}

”code/binary search.js”

Load the HTML into a browser

http://www.comp.nus.edu.sg/~gem1501/code/binary_search.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Binary Search

Binary Search for Unsorted Lists

Why not sorting a list before searching it?

We can sort a list is O(n log n) and then search it in O(log n).
This is O(n log n). This is still worse than O(n).

If we need to search the list multiple times (say k times). It is
worth the effort if k > log(n).

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Powers

Powers

A naive divide and conquer algorithm for computing the nth power
repeatedly divides the exponent by two. It is O(n).

25 = (2× 2)× (2× 2× 2)

1 f u n c t i o n power (n , m)
2 { i f (m < 1) { r e t u r n (1) ; }
3 i f (m == 1) { r e t u r n (n) ; }
4 M[0] = M[0]+1 ;
5 va r k = Math . f l o o r (m/2) ;
6 r e t u r n (power (n , k) ∗power (n ,m−k)) ; }

”code/power1.js”

Load the HTML into a browser

http://www.comp.nus.edu.sg/~gem1501/code/power1.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Dynamic Programming

Dynamic Programming

Dynamic programming was invented by Richard Bellman working
for the RAND. The name “because it is something that not even a
congressman could object to”.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Dynamic Programming

Dynamic Programming

Dynamic programming combines divide and conquer with
memoization, namely recording and reusing the solutions to
subproblems.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Powers

Powers

A dynamic programming algorithm for computing the nth power
repeatedly divides the exponent by two and uses memoization. It is
O(log n).

1 f u n c t i o n power (n , m, R)
2 { i f (R [m] == unde f i n ed)
3 { i f (m < 2) { R [0] = 1 ; R [1] = n ; }
4 e l s e { va r k = Math . f l o o r (m/2) ;
5 R [k] = power (n , k ,R) ;
6 R [m−k] = power (n ,m−k ,R) ;
7 R [m] = R[k]∗R[m−k] ; M[0]=M[0]+1 ; } }
8 r e t u r n (R [m]) ; }

”code/power2.js”

Load the HTML into a browser

http://www.comp.nus.edu.sg/~gem1501/code/power2.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Powers

Squaring in a function

One can also avoid the multiple evaluation of the argument by
having a square function which multiplies the value with itself
without twice calculating it.

1 f u n c t i o n squa r e (n)
2 { M[0]++; r e t u r n (n∗n) ; }
3 f u n c t i o n power (n , m)
4 { i f (m==0) { r e t u r n (1) ; }
5 i f (m==1) { r e t u r n (n) ; }
6 i f (m%2 == 0)
7 { r e t u r n (squa r e (power (n ,m/2))) ; }
8 i f (m%2 == 1)
9 { M[0]++; r e t u r n (n∗ squa r e (power (n , (m−1)/2))) ; }}

”code/power3.js”

Load the HTML into a browser

http://www.comp.nus.edu.sg/~gem1501/code/power3.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Powers

Comparison

Let us compare the algorithms.

Load the HTML for brute force power into a browser power.js with
input (1.001,1023) computes 21916.681339054456 with 10000
multiplications.
Load the HTML for divide and conquer power into a browser
power1.js with input (1.001,10000) computes 21916.681339042156
with 9999 multiplications.
Load the HTML for dynamic programming power with
memoization into a browser power2.js with input (1.001,10000)
computes 21916.681339042156 with 21 multiplications.
Load the HTML for dynamic programming power with direct reuse
into a browser power3.js with input (1.001,10000) computes
21916.681339053735 with 17 multiplications.

http://www.comp.nus.edu.sg/~gem1501/code/power.html
http://www.comp.nus.edu.sg/~gem1501/code/power1.html
http://www.comp.nus.edu.sg/~gem1501/code/power2.html
http://www.comp.nus.edu.sg/~gem1501/code/power2.html
http://www.comp.nus.edu.sg/~gem1501/code/power3.html
http://www.comp.nus.edu.sg/~gem1501/code/power3.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Fibonacci

Fibonacci

Now we only recurse the first time we compute the kth Fibonacci
number. for the rest we read the value. The algorithm is now
Θ(n).

1 f u n c t i o n f i b o n a c c i (n , F)
2 { i f (F [n]== unde f i n ed) // i f c a l c u l a t i o n s needed
3 { i f (n < 2) { F [n] = n ; } // Cases n==0 and n==1;
4 e l s e { F [n] = f i b o n a c c i (n−1,F)+f i b o n a c c i (n−2,F) ; }}
5 r e t u r n (F [n]) ; } // F [n] i s f i b o n a c c i (n)

”code/fibonacci2.js”

Load the HTML into a browser

http://www.comp.nus.edu.sg/~gem1501/code/fibonacci2.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Fibonacci

Fibonacci

Every recursive program can be transformed into an iterative
program. The iterative Fibonacci function computes the values
bottom-up instead of top-down.

1 f u n c t i o n f i b o n a c c i (n)
2 { va r i ;
3 va r F = new Array (0 , 1 , 1) ; // Base Case
4 f o r (i =3; i<=n ; i++) // I n d u c t i v e D e f i n i t i o n
5 { F [i] = F [i − 1] + F [i − 2] ; }
6 r e t u r n F [n] ; }

”code/fibonacci3.js”

Load the HTML into a browser

http://www.comp.nus.edu.sg/~gem1501/code/fibonacci3.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Fibonacci

Fibonacci

The iterative Fibonacci function can be computed in constant
space. It only requires remembering the last three values.

1 f u n c t i o n f i b o n a c c i (n)
2 { va r i ; v a r F = new Array (0 , 1 , 1) ;
3 f o r (i =0; i<n ; i++)
4 { F [0] = F [1] ; F [1] = F [2] ; F [2] = F[0]+F [1] ; }
5 r e t u r n F [0] ; }

”code/fibonacci4.js”

Load the HTML into a browser

http://www.comp.nus.edu.sg/~gem1501/code/fibonacci4.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Shortest Path

Dijkstra Algorithm

1 Initialize the shortest path distance from the source s to itself
to be d(s) = 0.

2 Initialize the current computed shortest distance from the
source to a vertex v to d(v) =∞ for all other vertices v .

3 Mark all vertices as unvisted.
4 While there are unvisted vertices do

1 Select among the unvisited vertices the current vertex c such
that d(c) is as small as possible.

2 For every edge of the form (c , v) do

1 If d(v) > d(c) +W ((c, v)), then d(v) = d(c) +W ((c, v)).

3 Mark the current vertex c as visited.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Game Strategies

Project on a Computer Game

The task is to implement the game of Hexa Reversi and to make a
good strategy for the computer to play the game.

Read the Project Description with your browser

Presentation: Thursday 17 April 2014 in Lecture

Deadline for all material: Wednesday 16 April 2014 24:00 hrs

Send email to Thomas Kister (kister@comp.nus.edu.sg) with name
of team members and urls of material and game and player

http://www.comp.nus.edu.sg/~gem1501/year1314sem2/project/

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Game Strategies

Overview

The project has the goal to write the environment for an
interactive game of Hexagonal Reversi (Hexareversi for short).

Players play on a hexagonal board having 61 fields.

Each field has six neighbours.

The players move alternately.

A player can put a new piece iff it captures pieces of the
opponent between the new position and some old piece of the
player; all the captured pieces are turned into pieces of the
player.

A player can also pass; if there is no possible move, a player
has to pass.

When both players pass one after the other, the game ends.
The player with the most pieces wins.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Game Strategies

Player X puts new piece ”x”
_ _ _ _ _

_ _ _ _ _ _

_ _ X X X Y _

_ _ X X X y _ _

_ _ Y Y Y Y y _ _

_ _ Y X Y Y y _

_ _ X X y y x

_ _ _ _ _ _

_ _ _ _ _

When putting the piece "x" the player will capture

five pieces "y" (all new and changed pieces in

lower case).

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Game Strategies

Situations and Scoring

In the following, some general ideas on how to implement strategies
are given. These strategies use the following assumptions:

A situation in the game consists of the current board, the
number of passes just before (0–2) and the player who has to
move (X or Y).

The starting situation has 10 random pieces on the board and
player X is to move and no passes before the current.

Every situation in the game has a score which is Number(X
Pieces) - Number(Y Pieces).

When both players pass or have to pass, the game ends and
the score determines the winner: positive number means
Player X wins; negative number means Player Y wins; zero
score means Draw.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Game Strategies

Sample Situation

X X X X X

X X X X X X

X X X X X X _

X X X X X X _ _

Y Y Y Y Y Y Y _ _

Y Y Y Y Y Y Y _

Y Y Y Y Y Y Y

X X Y Y Y Y

X X Y Y Y

Number of Passes: 2; Player to Move: X

In this situation, both players passed (had to pass) and the game
ended. X has 27 pieces and Y has 28 pieces, so the score is -1 and
Y wins.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Game Strategies

Possible Moves

X X X X X

X X X X X Y

X X X X Y Y 1

X X X X Y Y 2 _

Y Y Y Y Y Y Y _ _

Y Y Y Y Y Y Y _

Y Y Y Y Y Y Y

X X Y Y Y Y

X X Y Y Y

Number of Passes: 1; Player to Move: X

X can move to position 1 and score three pieces; Y will have to
pass.
X can move to position 2 and score three pieces; Y can retake one
piece.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Game Strategies

Score of a Situation

Calculating Scores

Let S be the set of possible situations and s ∈ S .

If the game has ended in situation s then score(s) is the
difference Number(Pieces of X) - Number(Pieces of Y).

If Player X has to move in situation s then
score(s) = max{score(t) : X can reach t from s by making
one move or passing}.
If Player Y has to move in situation s then
score(s) = min{score(t) : Y can reach t from s by making
one move or passing}.

Strategy: Each player chooses the move or passes such that the
score is preserved. If there are several options giving the same
score, any of these moves is as good as the others.
Problem: This is too complicated for being computed.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Game Strategies

Ways Out

Just assume that the target of the move is a final situation
and take the one with the highest score (not that good);

Similar as before, but do a weighted random choice (better
situations have higher odds, Greedy Random Player);

Simulate the game for all possible moves for c rounds and
then evaluate the situations (assuming that they are final),
compute back the scores of the situations on the way to them
and take the best possible move by these estimated scores
(game tree method);

As before, but ignore obviously bad moves (pruned game tree
method);

Evaluate situations by different methods than the score
(Position Random Player does this, but it does not simulate
the game tree).

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Game Strategies

Value of Positions

9 3 6 3 9

3 1 2 2 1 3

6 2 3 3 3 2 6

3 2 3 3 3 3 2 3

9 1 3 3 3 3 3 1 9

3 2 3 3 3 3 2 3

6 2 3 3 3 2 6

3 1 2 2 1 3

9 3 6 3 9

Possible quality of positions to move: Corners are extremely good,
because they are never lost; neighbouring positions are not that
good, as going there might give away the corner. The Position
Random Player uses this hierarchy of position qualities -
nevertheless, as it does not search the game tree, a human can
easily defeat it.

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Game Strategies

Summary of Project

Read instructions on http://www.comp.nus.edu.sg/

~gem1501/year1314sem2/project/index.html.

Register your team with an email to kister@comp.nus.edu.sg
and select a team id from “t00” through “t95”. Name all
team members in the email (ideally should be two).

Write a completely new project from scratch or improve one
of the available prototypes.

Make a better user interface (move by clicking on fields in
place of typing field numbers) and incorporating tournament
options for comparing strategies and making an own strategy
in a separate js-file.

Stick to the programming conventions and instructions
outlined in the project description.

http://www.comp.nus.edu.sg/~gem1501/year1314sem2/project/index.html
http://www.comp.nus.edu.sg/~gem1501/year1314sem2/project/index.html
http://www.comp.nus.edu.sg/~gem1501/year1314sem2/project/index.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Game Strategies

Summary of Project - Continued

Put your project including some explanations on what you did
and how your project works and presentation-slides onto your
homepage.

Make a presentation in the last lecture for 5 minutes on 17
April 2014.

All material should be ready by 16 April 2014 24:00 hrs and
let us know the url by email to kister@comp.nus.edu.sg.

Available prototypes: More advanced:
http://www.comp.nus.edu.sg/~gem1501/year1314sem2/

project/hexareversi.html with an included js-file and
some more basic and incomplete version is on http:

//www.comp.nus.edu.sg/~fstephan/hexareversi.html.

http://www.comp.nus.edu.sg/~gem1501/year1314sem2/project/hexareversi.html
http://www.comp.nus.edu.sg/~gem1501/year1314sem2/project/hexareversi.html
http://www.comp.nus.edu.sg/~fstephan/hexareversi.html
http://www.comp.nus.edu.sg/~fstephan/hexareversi.html

Introduction Brute Force Greed The Art of War Dynamic Programming Game Strategies Conclusion

Attribution

Attribution

The images and media files used in this presentation are either in
the public domain or are licensed under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published
by the Free Software Foundation, the Creative Commons
Attribution-Share Alike 3.0 Unported license or the Creative
Commons Attribution-Share Alike 2.5 Generic, 2.0 Generic and 1.0
Generic license.

	Introduction
	Introduction

	Brute Force
	Brute Force
	Linear Search
	Powers
	All Possible Mariages
	Fibonacci
	Shortest Path

	Greed
	Greed
	Finding Peaks
	Minimum Spanning Tree
	Shortest Path

	The Art of War
	The Art of War
	Binary Search
	Powers

	Dynamic Programming
	Dynamic Programming
	Powers
	Fibonacci
	Shortest Path

	Game Strategies
	Game Strategies

	Conclusion
	Attribution

