Today: Caching
 → B-trees
 → Buffer trees
 → Priority Queues
Modeling a Cache: External Memory Model

Goal: Simple model (tractable)
Sufficiently accurate (useful)

Disk

Cache

- Cache line
 - Block

Total memory: M
 \((M/B)\) lines in cache

Often assume \(M \geq B^2\)
(tall cache assumption)

Block size \(B\)
B-trees

\[(a, b)-\text{tree}\] \(a = B, \ b = 2B, \ b \geq 2a\)

Rules:
1) Root has \(\geq 2\) children
 Other nodes have \(\geq a\) children
2) All nodes have \(\leq b\) children
3) All leaves have same depth

\(\Rightarrow\) each leaf has size: \(a \leq |\text{leaf}| \leq b\)

(sometimes BIG leaves help)
\(\rightarrow\) all keys stored in leaves
\(\rightarrow\) internal nodes store pivots \(\leftarrow\) sorted?
\[\geq a-1\] pivots
\[\leq b-1\] pivots

Claim: height \(\leq \log_a \left(\frac{N}{a}\right) + 1\)

\(\rightarrow\) \(\leq \frac{N}{a}\) leaves

except root

\(\rightarrow\) every node has degree \(\geq a\)

\[\Rightarrow\] node at height \(\log_a \frac{N}{a}\) has
Subtree with \(\geq \frac{N}{a}\) leaves

\[\Rightarrow\] children of root are height \(\leq \log_a \frac{N}{a}\)

Search \(K\)

\(V = \text{root}\)

While not leaf \(V\):

if \(K \leq P_i\) then \(V \leftarrow C_i\)

else let \(l = \max j : K > P_j\)

\(V = C_{l+1}\)

return searchLeaf\(V, K\)
search tree property:
All keys K in child C_j satisfy:

$$P_{j-1} < K \leq P_j$$

(Pretend $P_0 = \text{min element} - 1$, and if P_j undefined, $P_j = \text{max element}$.)

Claim: Search works

→ follows from search tree property

Claim: if $a = b$, $b = 2b$ then cost of search is $O\left(\log_b \frac{N}{b}\right)$

→ height of tree is $O\left(\log_b \frac{N}{b}\right)$

→ each node is $O(1)$ blocks
Insert

1) Search for insertion leaf node
2) Add key to node
3) If node has ≥ b keys:
 a) Split node; each new node has ≥ \(b/2 \geq a \) keys
 b) New nodes: X, Y
 c) Key = max element in X
 d) Node = parent (node)
 e) Go to (2) [insert key into parent]

 If node is root, Create new root
Delete

1) Search for key to delete, \(V = \text{leaf} \)

2) Delete it.

3) If \(|V| < a - 1 \):

 let \(u \) be sibling of \(V \)

 Case 1) \(|u| + |v| > b - 1 \)

 \(\Rightarrow \) divide keys between \(u \) and \(v \)

 each gets \(\geq \frac{b}{2} \geq a \) keys

 Case 2) \(|u| + |v| \leq b - 1 \)

 \(\Rightarrow \) merge \(u \) and \(v \)

 in parent, delete pivot

 separating \(u \) and \(v \) and

 recurse: \(V = \text{parent}(v) \)

 go to (3)

 if parent is root: delete parent

 and only one child
Claim: if \(a = b \) and \(b = 2b \) then cost of insert/delete is \(\Theta(\log \theta \frac{\Theta}{b}) \).
\[\Rightarrow O(1) \text{ blocks at each level of tree} \]

Claim: if \(a = b \) and \(b = 5b \) then amortized split/merges are \(O(\frac{b}{\theta}) \) per op.

Goal: After each split or merge:
\[\begin{align*}
&\geq 2B-1 \text{ keys} \\
&\leq 4B \text{ keys}
\end{align*} \]

\(\Rightarrow \) after split:
\[5B \text{ keys } \rightarrow (2.5B, 2.5B) \checkmark \]

On delete:
\(\Rightarrow \) merge if total \(\leq 4B \) \(\checkmark \)
\((\geq B-1 + B \geq 2B-1) \)

Share if total \(> 4B \)
\(\text{each } > 2B \checkmark \)
\(\text{total } \leq 5B + B-1 \leq 6B \)
\(\text{each } \leq 3B \)
\(\Rightarrow \geq B-1 \text{ ops before next merge/split} \)
Notes:

1) Root stays in cache (almost) always
2) If $B=16$KB [Page size] and $N\leq 1000$ TB
 \Rightarrow height $= 4 \Rightarrow$ 3 cache misses

3) What if you maintain parent pointers?

4) How to choose B?

5) How to store/search pivots?
Buffer Tree

- Faster inserts/deletes
- Slower searches

Step 1) **Build a (2,3)-tree**

Step 2) Add a buffer of size $2B$ to every non-leaf node

Step 3) **Guarantee:** each leaf has $\geq B$ keys

\[\leq 5B \]

Each buffer has $\leq B$ items

\[\leftarrow \text{Delete is similar!} \]

Insert:

- Add $\text{ins}[\text{key}]$ to root buffer
- Clean buffer (remove $\text{del}[\text{key}]$, duplicate $\text{ins}[\text{key}]$)
- If buffer $> B$, then empty buffer

Search: Walk tree as usual

- Check each buffer

\[\leftarrow \text{Higher in tree ops have precedence!} \]
empty buffer:
1) Sort buffer
2) Move ops to proper child
3) Clean child - duplicates
 empty if needed

If non-leaf and not enough room:
 a) finish filling child
 b) empty child
 c) finish emptying buffer

If leaf:
 a) perform deletes. If underfull, postpone.
 b) perform inserts. Do splits. [split buffer too!]
 c) at end, do merges → may cause more "empty" ops
 when merge buffers