Algorithms at Scale
(Week 8)
Summary

Last Week: Caching

External memory model
• How to predict the performance of algorithms?
B-trees
• Efficient searching
Write-optimized data structures
• Buffer trees
Cache-oblivious algorithms
• van Emde Boas memory layout

Today: Graph Algorithms

Breadth-First-Search
• Sorting your graph
MIS
• Luby’s Algorithm
• Cache-efficient implementation
MST
• Connectivity
• Minimum Spanning Tree
Announcements / Reminders

Today:

MiniProject “proposal” due today.

Next week:

Midterm exam (in class)
Midterm info:

- Will post sample from last year.
- In class, here, 2 hours.
- Material up to (and including) today.
 (Lecture, “tutorial”, problem sets, etc.)
- One double-sided “cheat sheet” allowed

Note:

- I will be out of town.
- Prof. Diptarka Chakraborty will give the exam.
Two types of questions:

1. Algorithms questions
 - For example: sublinear connectivity, streaming distinct elements, B-trees, etc.
 - Know the algorithms... when they are useful... when they are not useful...
 - Understand why they work.

2. Technique questions
 - For example: sampling, reservoir sampling, Chernoff/Hoeffding bounds, median-of-means, etc.
 - Know the techniques, how to use them, when they work (and when they don’t work).
Today’s Problem: Connected Components

Assumptions:

Graph $G = (V,E)$
- Undirected
- n nodes
- m edges
- maximum degree d

Error term: ε

Output:
Number of connected components.

Example: output 3
Summary

Last Week: Caching

External memory model
 • How to predict the performance of algorithms?

B-trees
 • Efficient searching

Write-optimized data structures
 • Buffer trees

Cache-oblivious algorithms
 • van Emde Boas memory layout

Today: Graph Algorithms

Breadth-First-Search
 • Sorting your graph

MIS

Luby’s Algorithm

Cache-efficient implementation

MST

Connectivity

Minimum Spanning Tree
Problem: Breadth First Search

Searching a graph:

• undirected graph \(G = (V,E) \)
• source node \(s \)
Problem: Breadth First Search

Searching a graph:

• undirected graph $G = (V,E)$
• source node s
• each adjacency list stored as an array (consecutive in memory)

Adjacency List Format:

Example:

$u : a, b, c, v$
$v : a, e, f$
$w : b, c, d, f$
$...$
Problem: Breadth First Search

Searching a graph:

- undirected graph \(G = (V,E) \)
- source node \(s \)

Layer-by-layer...
Algorithm:

- \(L_0 = \{ s \} \)
- Repeat until done: construct \(L_{i+1} \) from \(L_i \)

Key idea: neighbors of \(L_i \) form layer \(L_{i+1} \).

Key idea 2: remove already visited nodes.

\[L_0 = \{ 1 \} \]
Breadth First Search

Algorithm:

• $L_0 = \{s\}$
• Repeat until done: construct L_{i+1} from L_i

This edge cannot exist!

(If it did, node 7 would be in Layer 2.)
Breadth First Search

Algorithm:

• $L_0 = \{s\}$
• Repeat until done:
 construct L_{i+1} from L_i

Key idea: neighbors of L_i form layer L_{i+1}.

Key idea 2: remove already visited nodes from *only two* layers.

$L_0 = \{1\}$
$L_1 = N(1) = \{2, 3, 4\}$
$L_2 = N(L_1) - L_1 - L_0 = \{5, 6, 7\}$
$L_3 = N(L_2) - L_2 - L_1 = \{7, 8, 9, 10\}$
$L_4 = N(L_3) - L_3 - L_2 = \{11\}$
Breadth First Search

Construct \(L_{i+1} \):

1. \(L_{i+1} = \) neighbors of all nodes in \(L_i \)
2. Sort \(L_{i+1} \).
3. Remove duplicates in \(L_{i+1} \).
4. Scan \(L_i, L_{i+1} \): remove nodes in both.
5. Scan \(L_{i-1}, L_{i+1} \): remove nodes in both.

Invariant: each \(L_i \) is sorted.
Breadth First Search

Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$
Breadth First Search

Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{6, 3, 1, 5, 1, 2, 6, 1, 6\}$

Cost?
Breadth First Search

Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{6, 3, 1, 5, 1, 2, 6, 1, 6\}$

Cost:
$|L_1|/B +$
Breadth First Search

Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{6, 3, 1, 5, 1, 2, 6, 1, 6\}$

Cost:
$|L_1|/B + |L_1| + \ldots$
Breadth First Search

Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{6, 3, 1, 5, 1, 2, 6, 1, 6\}$

Cost:

$|L_1|/B + |L_1|$

$+ \text{edges}(|L_1|)/B$
Breadth First Search

Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{6, 3, 1, 5, 1, 2, 6, 1, 6\}$
Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 1, 1, 2, 3, 5, 6, 6, 6\}$
Breadth First Search

Example:

\[L_0 = \{1\} \]
\[L_1 = \{2, 3, 4\} \]
\[L_2 = \{1, 1, 1, 2, 3, 5, 6, 6, 6\} \]

Remove duplicates
Breadth First Search

Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 1, 1, 2, 3, 5, 6, 6, 6\}$

$O(\text{edges}(L_1)/B)$
Breadth First Search

Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 2, 3, 5, 6\}$

$O(\text{edges}(L_1)/B)$
Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 2, 3, 5, 6\}$

Subtract L_1.
Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 2, 3, 5, 6\}$

Subtract L_1.

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4
Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 2, 3, 5, 6\}$

Subtract L_1.
Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 2, 3, 5, 6\}$

Subtract L_1.
Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 2, 3, 5, 6\}$

Subtract L_1.
Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 2, 3, 5, 6\}$

Subtract L_1.

Diagram of Breadth First Search with layers 0 to 4.
Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 2, 3, 5, 6\}$

Subtract L_1.
Breadth First Search

Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 2, 3, 5, 6\}$

Subtract L_1.
Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 2, 3, 5, 6\}$

Subtract L_1.
Breadth First Search

Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 2, 3, 5, 6\}$

$O(\|L_1\|/B + O(edges(L_1)/B))$
Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 5, 6\}$

$O(|L_1|/B + O(\text{edges}(L_1)/B))$

Subtract L_1.
Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{1, 5, 6\}$

Subtract L_0.
Example:

L₀ = {1}

L₁ = {2, 3, 4}

L₂ = {1, 5, 6}

Subtract L₀.

O(|L₀|/B + O(edges(L₁)/B))
Breadth First Search

Example:

$L_0 = \{1\}$

$L_1 = \{2, 3, 4\}$

$L_2 = \{5, 6\}$

Subtract L_0.

$O(|L_0|/B + O(\text{edges}(L_1)/B))$
Breadth First Search

Cost to construct L_{i+1}:

1. $L_{i+1} = \text{neighbors of all nodes in } L_i$

 \[2|L_i| + \frac{\text{edges}(L_i)}{B} \]

2. Sort L_{i+1}.

3. Remove duplicates in L_{i+1}.

4. Scan L_i, L_{i+1}: remove nodes in both.

5. Scan L_{i-1}, L_{i+1}: remove nodes in both.
Breadth First Search

Cost to construct L_{i+1}:

1. $L_{i+1} =$ neighbors of all nodes in L_i

 $2|L_i| + \frac{\text{edges}(L_i)}{B}$

2. Sort L_{i+1}.

3. Remove duplicates in L_{i+1}.

4. Scan L_i, L_{i+1}: remove nodes in both.

5. Scan L_{i-1}, L_{i+1}: remove nodes in both.
Breadth First Search

Cost to construct L_{i+1}:

1. $L_{i+1} = \text{neighbors of all nodes in } L_i$
 \[2|L_i| + \frac{\text{edges}(L_i)}{B} \]

2. Sort L_{i+1}.

3. Remove duplicates in L_{i+1}.

4. Scan L_i, L_{i+1}: remove nodes in both.

5. Scan L_{i-1}, L_{i+1}: remove nodes in both.
Breadth First Search

Cost to construct L_{i+1}:

1. $L_{i+1} = \text{neighbors of all nodes in } L_i$
 \[2|L_i| + \frac{\text{edges}(L_i)}{B} \]

2. Sort L_{i+1}.
 \[\text{sort}(L_i) \]

3. Remove duplicates in L_{i+1}.
 \[\frac{\text{edges}(L_i)}{B} \]

4. Scan L_i, L_{i+1}: remove nodes in both.
 \[\frac{|L_i|}{B} + \frac{\text{edges}(L_i)}{B} \]

5. Scan L_{i-1}, L_{i+1}: remove nodes in both.
 \[\frac{|L_{i-1}|}{B} + \frac{\text{edges}(L_i)}{B} \]
Breadth First Search

Cost to construct L_{i+1}:

1. $L_{i+1} = \text{neighbors of all nodes in } L_i$

 $2|L_i| + \frac{\text{edges}(L_i)}{B}$

2. Sort L_{i+1}.

3. Remove duplicates in L_{i+1}.

4. Scan L_i, L_{i+1}: remove nodes in both.

5. Scan L_{i-1}, L_{i+1}: remove nodes in both.

Sums to $|V|$ over all levels.
(Every node is in one level.)
Breadth First Search

Cost to construct \(L_{i+1} \):

1. \(L_{i+1} = \) neighbors of all nodes in \(L_i \)
2. Sort \(L_{i+1} \).
3. Remove duplicates in \(L_{i+1} \).
4. Scan \(L_i, L_{i+1} \): remove nodes in both.
5. Scan \(L_{i-1}, L_{i+1} \): remove nodes in both.

\[
2|L_i| + \frac{\text{edges}(L_i)}{B}
\]

Sums to \(|V| \) over all levels. (Every node is in one level.)

\[
\text{sort}(L_i) \quad \text{edges}(L_i)/B
\]

Sums to \(2|E|/B \) over all levels.

\[
\frac{|L_i|}{B} + \frac{\text{edges}(L_i)}{B}
\]

\[
\frac{|L_{i-1}|}{B} + \frac{\text{edges}(L_i)}{B}
\]
Breadth First Search

Cost to construct \(L_{i+1} \):

1. \(L_{i+1} = \text{neighbors of all nodes in } L_i \)
2. Sort \(L_{i+1} \).
3. Remove duplicates in \(L_{i+1} \).
4. Scan \(L_i, L_{i+1} \): remove nodes in both.
5. Scan \(L_{i-1}, L_{i+1} \): remove nodes in both.

\[
\begin{align*}
|L_i|/B + \frac{\text{edges}(L_i)}{B} \\
\frac{2|L_i| + \text{edges}(L_i)}{B} \\
\text{sort}(L_i) \\
\frac{\text{edges}(L_i)}{B} \\
\frac{|L_{i-1}| + \text{edges}(L_i)}{B}
\end{align*}
\]

Sums to \(|V|\) over all levels. (Every node is in one level.)

Sums to \(8|E|/B\) over all levels.
Breadth First Search

Total cost:

\[O(|V| + |E|/B + \text{sort}(|E|)) \]

1. \(L_{i+1} = \) neighbors of all nodes in \(L_i \)
2. Sort \(L_{i+1} \).
3. Remove duplicates in \(L_{i+1} \).
4. Scan \(L_i, L_{i+1} \): remove nodes in both.
5. Scan \(L_{i-1}, L_{i+1} \): remove nodes in both.

Sums to \(|V|/B\) over all levels.

Sums to \(|E|/B\) over all levels.

Sums to \(|V|\) over all levels.

(Each node is in one level.)

\[2|L_i| + \text{edges}(L_i)/B \]
\[\text{sort}(L_i) \]
\[|L_i|/B + \text{edges}(L_i)/B \]
\[|L_{i-1}|/B + \text{edges}(L_i)/B \]
First Search

1. $L_{i+1} = \text{neighbors of all nodes in } L_i$
2. Sort L_{i+1}.
3. Remove duplicates in L_{i+1}.
4. Scan L_i, L_{i+1}: remove nodes in both.
5. Scan L_{i-1}, L_{i+1}: remove nodes in both.

Total cost:

$O(|V| + |E|/B + \text{sort}(|E|))$

Sums to $|V|$ over all levels. (Every node is in one level.)

$2|L_i| + \text{edges}(L_i)/B$

Sums to $8|E|/B$ over all levels.

$\text{sort}(E) = O\left(\frac{E}{B} \log_{M/B}(E/B)\right)$

Sums to $2|V|/B$ over all levels.
Total cost:

\[O(|V| + |E|/B + \text{sort}(|E|)) \]

1. \(L_{i+1} = \) neighbors of all nodes in \(L_i \)
2. Sort \(L_{i+1} \).
3. Remove duplicates in \(L_{i+1} \).
4. Scan \(L_i, L_{i+1} \): remove nodes in both.

Compare to:

\[O(|V| + |E|) \]
Problem: Breadth First Search

Can we do better?
Problem: Breadth First Search

Can we do better?

Unlikely in dense graph.
Problem: Breadth First Search

Can we do better?

Unlikely in dense graph.

- If $|E| > B|V|$ and BFS needs to read each edge, then requires at least $|V|$ time.
Problem: Breadth First Search

Can we do better?

Unlikely in dense graph.
- If $|E| > B|V|$ and BFS needs to read each edge, then requires at least $|V|$ time.

Unlikely if adjacency lists are stored separately.
- BFS needs to access each node and each list at least once, so requires $|V|$ time.
Problem: Breadth First Search

Can we do better?

Sparse graph

Store all edges in one array.

\[
O \left(\sqrt{\frac{|V||E|}{B}} + \text{sort}(E) \right)
\]

If \(|E| = O(|V|)\) then:

\[
O \left(\frac{|V|}{B} + \text{sort}(E) \right)
\]
Summary

Today: Graph Algorithms

Breadth-First-Search
- Sorting your graph

MIS
- Luby’s Algorithm
- Cache-efficient implementation

MST
- Connectivity
- Minimum Spanning Tree
Maximal Independent Set

Independent Set:

A set of nodes S so that no two neighbors are in S.
Maximal Independent Set

Independent Set:

A set of nodes \(S \) so that no two neighbors are in \(S \).

Maximal Independent Set:

An independent set \(S \) where no node can be added.

(Every node has a neighbor in the independent set \(S \).)
Maximal Independent Set

Independent Set:
A set of nodes S so that no two neighbors are in S.

Maximal Independent Set:
An independent set S where no node can be added.

Maximum Independent Set:
An independent set S of maximum size.
Maximal Independent Set

Independent Set:

A set of nodes S so that no two neighbors are in S.

Maximal Independent Set:

An independent set S where no node can be added.

Maximum Independent Set:

An independent set S of maximum size.
Maximal Independent Set

Independent Set:

A set of nodes S so that no two neighbors are in S.

Maximal Independent Set:

An independent set S where no node can be added.

Maximum Independent Set:

An independent set S of maximum size.

NP-Hard
Maximal Independent Set

Greedy MIS Algorithm:
- $S = \text{empty set}$
- for every node v:
 - If no neighbor of v is in S, then add v to S.
Maximal Independent Set

Greedy MIS Algorithm:
- $S = \text{empty set}$
- for every node v:
 - If no neighbor of v is in S, then add v to S.

Cost:
$O(|V| + |E|)$
(every access is a cache miss)
Maximal Independent Set

Luby’s Algorithm:
• \(S = \emptyset \)
• Repeat until \(V \) is empty:
 1. Mark each node \(u \) with probability \(1/2d(u) \).
 2. For each edge \((u,v)\): if both \(u \) and \(v \) are marked:
 - if \(d(u) < d(v) \) then unmark \(u \).
 - else if \(d(v) < d(u) \) then unmark \(v \).
 - else if \(d(u) = d(v) \) then unmark node with smaller id.
 3. Add all marked nodes to \(S \).
 4. Delete from \(V \) every marked node.
 5. Delete from \(V \) every neighbor of marked node.
 6. Delete from \(E \) every edge that no longer exists.
Maximal Independent Set

Luby’s Algorithm:

- \(S = \emptyset \)
- Repeat until \(V \) is empty:
 1. Mark each node \(u \) with probability \(1/2d(u) \).
 2. For each edge \((u,v)\): if both \(u \) and \(v \) are marked:
 - if \(d(u) < d(v) \) then unmark \(u \).
 - else if \(d(v) < d(u) \) then unmark \(v \).
 - else if \(d(u) = d(v) \) then unmark node with smaller id.
 3. Add all marked nodes to \(S \).
 4. Delete from \(V \) every marked node.
 5. Delete from \(V \) every neighbor of marked node.
 6. Delete from \(E \) every edge that no longer exists.

[Example on the board]
Claim 1:

The set S is a maximal independent set.
Claim 1:
The set S is a maximal independent set.

independent:
- only add marked nodes to S
- unmark if two neighbors are marked
- delete all neighbors of every node added to S
Claim 1:
The set S is a maximal independent set.

maximal:
• only delete a node if added to S, or a neighbor is added to S
• algorithm terminates when all nodes are deleted \Rightarrow all are in S or have a neighbor in S.
Maximal Independent Set

Luby’s Algorithm:

- \(S = \emptyset \)
- Repeat until \(V \) is empty:
 1. Mark each node \(u \) with probability \(\frac{1}{2}d(u) \).
 2. For each edge \((u,v)\): if both \(u \) and \(v \) are marked:
 - if \(d(u) < d(v) \) then unmark \(u \).
 - else if \(d(v) < d(u) \) then unmark \(v \).
 - else if \(d(u) = d(v) \) then unmark node with smaller id.
 3. Add all marked nodes to \(S \).
 4. Delete from \(V \) every marked node.
 5. Delete from \(V \) every neighbor of marked node.
 6. Delete from \(E \) every edge that no longer exists.
Luby’s Algorithm

Analysis

Define: $E_j =$ edges at start of iteration j.

Goal: for some constant $\alpha < 1$, show:

$$E[E_j \mid E_{j-1}] \leq \alpha E_{j-1}$$

Idea: reduce the number of edges by a constant fraction in each iteration.
Define: node w is good if $\geq 1/3$ neighbors have smaller degree than w.
Define: node w is good if $\geq 1/3$ neighbors have smaller degree than w.

Define: edge (u,v) is good if u or v is good.
Luby’s Algorithm

Analysis

Claim: At least half of all edges are good.
Claim: At least half of all edges are good.

Proof:
Orient each edge TO the higher degree node.
Luby’s Algorithm

Claim: At least half of all edges are good.

Proof:
Orient each edge TO the higher degree node.
If v is bad, then: $\frac{2}{3}$ are OUT
$\frac{1}{3}$ are IN

Analysis

good \Rightarrow $\geq \frac{1}{3}$ have smaller degree
Luby’s Algorithm

Claim: At least half of all edges are good.

Proof:
Orient each edge TO the higher degree node.

If v is bad, then: > 2/3 are OUT
 ≤ 1/3 are IN

Assign two OUT edges to one IN edge.
(At bad nodes, there are enough OUT...)
Claim: At least half of all edges are good.

Proof:
Assign two OUT edges to one IN edge.

Each BAD edge \((u,v)\) has \(u\) and \(v\) bad.

Since it is IN to a BAD node, it has 2 edges assigned to it.
Claim: At least half of all edges are good.

Proof:
Assign two OUT edges to one IN edge.

Since it is IN to a BAD node, it has 2 edges assigned to it.

If there are B bad nodes, then $\geq 2B$ edges total in graph.
Claim: At least half of all edges are good.

Proof:
If there are \(B \) bad nodes, then \(\geq 2B \) edges total in graph.

If there are \(> E/2 \) bad nodes, then \(> E \) edges total in graph \(\Rightarrow \) impossible.

\(\Rightarrow > E/2 \) good nodes.
Luby’s Algorithm

Analysis

Claim: If v is good, then:

$$\Pr [\text{nbr of } v \text{ marked}] \geq (1 - e^{-1/6}) = 2\alpha$$
Luby’s Algorithm

Claim: If v is good, then:

$$\Pr[\text{nbr of } v \text{ marked}] \geq (1 - e^{-1/6}) = 2\alpha$$

$$\Pr[\text{no nbr of } v \text{ marked}] \leq \Pr[\text{no nbr of } v \text{ with smaller degree marked}]$$

Show at least one neighbor of v with smaller degree is marked!
Luby’s Algorithm

Claim: If \(v \) is good, then:

\[
\Pr[\text{nbr of } v \text{ marked}] \geq (1 - e^{-1/6}) = 2\alpha
\]

\[
\Pr[\text{no nbr of } v \text{ marked}] \leq \Pr[\text{no nbr of } v \text{ with smaller degree marked}]
\leq \prod_{w \text{ smaller degree nbr of } v} \Pr[w \text{ not marked}]
\]

Nodes are marked independently.
Luby’s Algorithm

Claim: If \(v \) is good, then:

\[
\Pr[\text{nbr of } v \text{ marked}] \geq (1 - e^{-1/6}) = 2\alpha
\]

\[
\Pr[\text{no nbr of } v \text{ marked}] \leq \Pr[\text{no nbr of } v \text{ with smaller degree marked}]
\]

\[
\leq \prod_{w \text{ smaller degree nbr of } v} \Pr[w \text{ not marked}]
\]

\[
\leq \prod_{w \text{ smaller degree nbr of } v} \left(1 - \frac{1}{2d(w)}\right)
\]

The probability that a node \(w \) is marked is \(1/2d(w) \).
Luby’s Algorithm

Claim: If \(v \) is good, then:

\[
\Pr[\text{nbr of } v \text{ marked}] \geq (1 - e^{-1/6}) = 2\alpha
\]

\[
\Pr[\text{no nbr of } v \text{ marked}] \leq \Pr[\text{no nbr of } v \text{ with smaller degree marked}]
\]

\[
\leq \prod_{w \text{ smaller degree nbr of } v} \Pr[w \text{ not marked}]
\]

\[
\leq \prod_{w \text{ smaller degree nbr of } v} \left(1 - \frac{1}{2d(w)}\right)
\]

\[
\leq \prod_{w \text{ smaller degree nbr of } v} \left(1 - \frac{1}{2d(v)}\right)
\]

By assumption, \(d(w) < d(v) \).
Luby’s Algorithm

Claim: If \(v \) is good, then:

\[
\Pr[\text{nbr of } v \text{ marked}] \geq (1 - e^{-1/6}) = 2\alpha
\]

\[
\Pr[\text{no nbr of } v \text{ marked}] \leq \Pr[\text{no nbr of } v \text{ with smaller degree marked}]
\leq \prod_{w \text{ smaller degree nbr of } v} \Pr[w \text{ not marked}]
\leq \prod_{w \text{ smaller degree nbr of } v} \left(1 - \frac{1}{2d(w)}\right)
\leq \prod_{w \text{ smaller degree nbr of } v} \left(1 - \frac{1}{2d(v)}\right)
\leq \left(1 - \frac{1}{2d(v)}\right)^{d(v)/3}
\]

At least \(d(v)/3 \) neighbors with smaller degree because \(v \) is good.
Luby’s Algorithm

Claim: If \(v \) is good, then:

\[
\Pr \text{[nbr of } v \text{ marked]} \geq (1 - e^{-1/6}) = 2\alpha
\]

\[
\Pr \text{[no nbr of } v \text{ marked]} \leq \Pr \text{[no nbr of } v \text{ with smaller degree marked]}
\leq \prod_{\text{w smaller degree nbr of } v} \Pr \text{[w not marked]}
\leq \prod_{\text{w smaller degree nbr of } v} \left(1 - \frac{1}{2d(w)}\right)
\leq \prod_{\text{w smaller degree nbr of } v} \left(1 - \frac{1}{2d(v)}\right)^{d(v)/3}
\leq \left(1 - \frac{1}{2d(v)}\right)^{d(v)/3}
\leq e^{-1/6}
\]

\[(1-1/x)^x \leq e^{-1}\]
Claim: If \(w \) is marked, then:

\[\Pr \left[\text{unmark } w \mid w \text{ marked} \right] \leq \frac{1}{2} \]
Luby’s Algorithm

Claim: If \(w \) is marked, then:

\[
\Pr[\text{unmark } w \mid w \text{ marked}] \leq \frac{1}{2}
\]

Only unmark if higher degree neighbor is marked.
Luby’s Algorithm

Claim: If \(w \) is marked, then:

\[
\Pr[\text{unmark } w \mid w \text{ marked}] \leq 1/2
\]

\[
\Pr[\text{unmark } w \mid w \text{ marked}] \leq \Pr[\text{higher degree neighbor of } w \text{ marked}]
\]

\[
\leq \sum_{z \text{ higher degree neighbor of } w} \frac{1}{2d(z)}
\]

Union bound...
Luby’s Algorithm

Claim: If \(w \) is marked, then:

\[
\Pr \left[\text{unmark } w \mid w \text{ marked} \right] \leq \frac{1}{2}
\]

\[
\Pr \left[\text{unmark } w \mid w \text{ marked} \right] \leq \Pr[\text{higher degree neighbor of } w \text{ marked}]
\]

\[
\leq \sum_{z \text{ higher degree neighbor of } w} \frac{1}{2d(z)}
\]

\[
\leq \sum_{z \text{ higher degree neighbor of } w} \frac{1}{2d(w)}
\]

By assumption, \(d(w) < d(z) \).
Claim: If \(w \) is marked, then:

\[
\Pr \left[\text{unmark } w \mid w \text{ marked} \right] \leq \frac{1}{2}
\]

\[
\Pr \left[\text{unmark } w \mid w \text{ marked} \right] \leq \Pr[\text{higher degree neighbor of } w \text{ marked}]
\]

\[
\leq \sum_{z \text{ higher degree neighbor of } w} \frac{1}{2d(z)}
\]

\[
\leq \sum_{z \text{ higher degree neighbor of } w} \frac{1}{2d(w)}
\]

\[
\leq \frac{d(w)}{2d(w)}
\]

Node \(w \) has \(d(w) \) neighbors.
Luby’s Algorithm

Claim: If w is marked, then:

$$\Pr[\text{unmark } w \mid w \text{ marked}] \leq \frac{1}{2}$$

\[
\Pr[\text{unmark } w \mid w \text{ marked}] \leq \Pr[\text{higher degree neighbor of } w \text{ marked}]
\leq \sum_{z \text{ higher degree neighbor of } w} \frac{1}{2d(z)}
\leq \sum_{z \text{ higher degree neighbor of } w} \frac{1}{2d(w)}
\leq \frac{d(w)}{2d(w)} \leq \frac{1}{2}
\]
Luby’s Algorithm

Analysis

Claim: If \(v \) is good, then:

\[
\Pr \left[\text{nbr of } v \text{ marked} \right] \geq (1 - e^{-1/6}) = 2\alpha
\]

Claim: If \(w \) is marked, then:

\[
\Pr[\text{stay marked } w \mid \text{marked } w] \geq \frac{1}{2}
\]
Luby’s Algorithm

Analysis

Claim: If v is good, then:
\[
\Pr[\text{nbr of } v \text{ marked}] \geq (1 - e^{-1/6}) = 2\alpha
\]

Claim: If w is marked, then:
\[
\Pr[\text{stay marked } w \mid \text{marked } w] \geq \frac{1}{2}
\]

Claim: If v is good, then:
\[
\Pr[\text{node } w, \text{nbr of } v, \text{enters the MIS}] \geq \alpha
\]
Luby’s Algorithm

Analysis

Claim: If v is good, then:
$$\Pr[\text{nbr of } v \text{ marked}] \geq (1 - e^{-1/6}) = 2\alpha$$

Claim: If w is marked, then:
$$\Pr[\text{stay marked } w \mid \text{marked } w] \geq \frac{1}{2}$$

Claim: If v is good, then:
$$\Pr[v \text{ is deleted at end of iteration}] \geq \alpha$$
Claim: If v is good, then:

$$\Pr[v \text{ is deleted at end of iteration}] \geq \alpha$$

Claim: If edge (u,v) is good, then:

$$\Pr[(u,v) \text{ is deleted at end of iteration}] \geq \alpha$$

Because either u or v is good.
Luby’s Algorithm

Analysis

--

Claim: If \(v \) is good, then:

\[
\text{Pr}[v \text{ is deleted at end of iteration}] \geq \alpha
\]

--

Claim: If edge \((u,v)\) is good, then:

\[
\text{Pr}[(u,v) \text{ is deleted at end of iteration}] \geq \alpha
\]

--

\[
\mathbb{E}[E_j | E_{j-1}] \leq E_{j-1}(1 - \alpha/2)
\]
Luby’s Algorithm

Analysis

\[\mathbb{E}[E_j | E_{j-1}] \leq E_{j-1} (1 - \alpha/2) \]

\[\mathbb{E}[E_j] = \mathbb{E}[\mathbb{E}[E_j | E_{j-1}]] \]

Law of Total Expectation
Luby’s Algorithm

Analysis

\[E[E_j | E_{j-1}] \leq E_{j-1}(1 - \alpha/2) \]

\[E[E_j] = E[E[E_j | E_{j-1}]] \leq E[E_{j-1}](1 - \alpha/2) \]

Substitution.
Luby’s Algorithm

Analysis

\[\mathbb{E}[E_j | E_{j-1}] \leq E_{j-1}(1 - \alpha/2) \]

\[\mathbb{E}[E_j] = \mathbb{E}[\mathbb{E}[E_j | E_{j-1}]] \]
\[\leq \mathbb{E}[E_{j-1}](1 - \alpha/2) \]
\[\leq |E|(1 - \alpha/2)^j \]

Induction.
Note that \(E_0 = |E| \).
Luby’s Algorithm

Analysis

\[E[E_j|E_{j-1}] \leq E_{j-1}(1 - \alpha/2) \]

\[E[E_j] = E[E[E_j|E_{j-1}]] \leq E[E_{j-1}](1 - \alpha/2) \leq |E|(1 - \alpha/2)^j \]

\[E[\text{iterations}] \leq O \left(\frac{2}{\alpha} \log(|E|) \right) \]

Prove this. (Hint: Markov’s Inequality is useful.)
Theorem:

Luby’s Algorithm terminates in $O(\log |E|)$ iterations, in expectation.
Luby’s Algorithm

Expected time?
Maximal Independent Set

Luby’s Algorithm:

• $S = \emptyset$

• Repeat until V is empty:
 1. Mark each node u with probability $\frac{1}{2d(u)}$.
 2. For each edge (u,v): if both u and v are marked:
 - if $d(u) < d(v)$ then unmark u.
 - else if $d(v) < d(u)$ then unmark v.
 - else if $d(u) = d(v)$ then unmark node with smaller id.
 3. Add all marked nodes to S.
 4. Delete from V every marked node.
 5. Delete from V every neighbor of marked node.
 6. Delete from E every edge that no longer exists.
Luby’s Algorithm

Expected time?

\[O(E + (1 - \alpha/2)E + (1 - \alpha/2)^2 E + (1 - \alpha/2)^3 E + \ldots) = O(E) \]
Theorem:
Luby’s Algorithm terminates in $O(\log |E|)$ iterations, in $O(E)$ time, in expectation.
Luby’s Algorithm:

- \(S = \emptyset \)
- Repeat until \(V \) is empty:
 1. Mark each node \(u \) with probability \(\frac{1}{2d(u)} \).
 2. For each edge \((u,v)\): if both \(u \) and \(v \) are marked:
 - if \(d(u) < d(v) \) then unmark \(u \).
 - else if \(d(v) < d(u) \) then unmark \(v \).
 - else if \(d(u) = d(v) \) then unmark node with smaller id.
 3. Add all marked nodes to \(S \).
 4. Delete from \(V \) every marked node.
 5. Delete from \(V \) every neighbor of marked node.
 6. Delete from \(E \) every edge that no longer exists.
Cache-Efficient Luby’s

Setup

Initially:

Assume that all the edges are in a single array.

Ex:

$$[(u,v), (u,w), (x,z), (z,u), (x,w)]$$

This could take $O(|V|)$ time to construct, otherwise.
Initially:

Assume that all the edges are in a single array. Assume each edge also stores:

- \(\text{deg}(u), \text{deg}(v) \)
- 1-bit: marked
- 1-bit: deleted

Ex:

\[
[(u,v,3,3,00), (u,w,2,4,00), (x,z,4,2,00), (z,u,5,2,00), (x,w,3,1,00)]
\]
Cache-Efficient Luby’s

Setup

Initially:

Assume that all the edges are in a single array.
Assume each edge also stores:
• $\deg(u)$, $\deg(v)$
• 1-bit: marked
• 1-bit: deleted
Assume each edge is stored twice: (u,v) and (v,u)

Ex:
$[(u,v),(v,u),(u,w),(w,u),(x,z),(z,x),(z,u),(u,z)]$
Initially:

Assume that all the edges are in a single array. Assume each edge also stores:
- $\deg(u)$, $\deg(v)$
- 1-bit: marked
- 1-bit: deleted

Assume each edge is stored twice: (u,v) and (v,u)

To access the edges adjacent to u: sort the edge array.
Cache Efficient Luby’s

Luby’s Iteration:
1. Mark each node u with probability $1/2d(u)$.
2. For each edge (u,v): if both u and v are marked:
 - if $d(u) < d(v)$ then unmark u.
 - else if $d(v) < d(u)$ then unmark v.
 - else if $d(u) = d(v)$ then unmark node with smaller id.
3. Add all marked nodes to S.
4. Delete from V every marked node.
5. Delete from V every neighbor of marked node.
6. Delete from E every edge that no longer exists.
Cache Efficient Luby’s

Luby’s Iteration:
1. Mark each node u with probability $1/2d(u)$.

Cache-efficient:
Sort the array by node.
Scan the array.
For each node u, flip a random coin to decide on mark.
(Use the degree of each node that is stored with the edge.)
Set the mark bits for each edge $(u, .)$.

$O(sort(E) + E/B)$
Cache Efficient Luby’s

Luby’s Iteration:
1. Mark each node u with probability $1/2d(u)$.
2. For each edge (u,v): if both u and v are marked:
 - if $d(u) < d(v)$ then unmark u.
 - else if $d(v) < d(u)$ then unmark v.
 - else if $d(u) = d(v)$ then unmark node with smaller id.

Cache-efficient:
Make a copy E'.
Sort by 2^{nd} component of edge $(., u)$.
Iterate and unmark if higher degree neighbor is marked.
Cache Efficient Luby’s

Sort by first:

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(a,d)</th>
<th>(a,e)</th>
<th>(b,a)</th>
<th>(b,c)</th>
<th>(c,b)</th>
<th>(d,a)</th>
<th>(d,e)</th>
<th>(e,a)</th>
<th>(e,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Sort by second:

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(d,a)</th>
<th>(e,a)</th>
<th>(a,b)</th>
<th>(c,b)</th>
<th>(b,c)</th>
<th>(a,d)</th>
<th>(e,d)</th>
<th>(a,e)</th>
<th>(d,e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Cache Efficient Luby’s

Sort by first:

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(a,d)</th>
<th>(a,e)</th>
<th>(b,a)</th>
<th>(b,c)</th>
<th>(c,b)</th>
<th>(d,a)</th>
<th>(d,e)</th>
<th>(e,a)</th>
<th>(e,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2</td>
<td>1</td>
<td>X</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Sort by second:

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(d,a)</th>
<th>(e,a)</th>
<th>(a,b)</th>
<th>(c,b)</th>
<th>(b,c)</th>
<th>(a,d)</th>
<th>(e,d)</th>
<th>(a,e)</th>
<th>(d,e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Scan neighbors of node a.
Do not unmark a.
Scan neighbors of node b.
If b were marked, unmark b because a is marked.
Cache Efficient Luby’s

Sort by first:

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(a,d)</th>
<th>(a,e)</th>
<th>(b,a)</th>
<th>(b,c)</th>
<th>(c,b)</th>
<th>(d,a)</th>
<th>(d,e)</th>
<th>(e,a)</th>
<th>(e,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sort by second:

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(d,a)</th>
<th>(e,a)</th>
<th>(a,b)</th>
<th>(c,b)</th>
<th>(b,c)</th>
<th>(a,d)</th>
<th>(e,d)</th>
<th>(a,e)</th>
<th>(d,e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scan neighbors of node c.
None are marked.
Cache Efficient Luby’s

Sort by first:

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(a,d)</th>
<th>(a,e)</th>
<th>(b,a)</th>
<th>(b,c)</th>
<th>(c,b)</th>
<th>(d,a)</th>
<th>(d,e)</th>
<th>(e,a)</th>
<th>(e,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Sort by second:

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(d,a)</th>
<th>(e,a)</th>
<th>(a,b)</th>
<th>(c,b)</th>
<th>(b,c)</th>
<th>(a,d)</th>
<th>(e,d)</th>
<th>(a,e)</th>
<th>(d,e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Scan neighbors of node d.
Cache Efficient Luby’s

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(a,d)</th>
<th>(a,e)</th>
<th>(b,a)</th>
<th>(b,c)</th>
<th>(c,b)</th>
<th>(d,a)</th>
<th>(d,e)</th>
<th>(e,a)</th>
<th>(e,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sort by first:

Sort by second:

Scan neighbors of node e.
Unmark e because a is marked and has higher degree.
Cache Efficient Luby’s

<table>
<thead>
<tr>
<th></th>
<th>(a,b)</th>
<th>(a,d)</th>
<th>(a,e)</th>
<th>(b,a)</th>
<th>(b,c)</th>
<th>(c,b)</th>
<th>(d,a)</th>
<th>(d,e)</th>
<th>(e,a)</th>
<th>(e,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>second</td>
<td>X</td>
</tr>
</tbody>
</table>

Sort by second:

<table>
<thead>
<tr>
<th></th>
<th>(b,a)</th>
<th>(d,a)</th>
<th>(e,a)</th>
<th>(a,b)</th>
<th>(c,b)</th>
<th>(b,c)</th>
<th>(a,d)</th>
<th>(e,d)</th>
<th>(a,e)</th>
<th>(d,e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>second</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>2</td>
<td>X</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Scan neighbors of node e.
Unmark e because a is marked and has higher degree.
Cache Efficient Luby’s

Sort by first:

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(a,d)</th>
<th>(a,e)</th>
<th>(b,a)</th>
<th>(b,c)</th>
<th>(c,b)</th>
<th>(d,a)</th>
<th>(d,e)</th>
<th>(e,a)</th>
<th>(e,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sort by second:

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(d,a)</th>
<th>(e,a)</th>
<th>(a,b)</th>
<th>(c,b)</th>
<th>(b,c)</th>
<th>(a,d)</th>
<th>(e,d)</th>
<th>(a,e)</th>
<th>(d,e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

\[O(\text{sort}(E) + E/B) \]
Cache Efficient Luby’s

Luby’s Iteration:
1. Mark each node u with probability $1/2d(u)$.
2. For each edge (u,v): if both u and v are marked:
 - if $d(u) < d(v)$ then unmark u.
 - else if $d(v) < d(u)$ then unmark v.
 - else if $d(u) = d(v)$ then unmark node with smaller id.

Cache-efficient:
Make a copy E'.
Sort by 2^{nd} component of edge $(., u)$.
Iterate and unmark if higher degree neighbor is marked.
Luby’s Iteration:
1. Mark each node \(u \) with probability \(1/2d(u) \).
2. For each edge \((u,v)\): if both \(u \) and \(v \) are marked:
 - if \(d(u) < d(v) \) then unmark \(u \).
 - else if \(d(v) < d(u) \) then unmark \(v \).
 - else if \(d(u) = d(v) \) then unmark node with smaller id.
3. Add all marked nodes to \(S \).
4. Delete from \(V \) every marked node.

Cache-efficient:
Create two new arrays \(S \) and (new) \(E \).
Copy all marked edges into \(S \) and all unmarked edges into (new) \(E \).

\(O(E/B) \)
Cache Efficient Luby’s

Luby’s Iteration:
1. Mark each node u with probability $1/2d(u)$.
2. For each edge (u,v): if both u and v are marked:
 - if $d(u) < d(v)$ then unmark u.
 - else if $d(v) < d(u)$ then unmark v.
 - else if $d(u) = d(v)$ then unmark node with smaller id.
3. Add all marked nodes to S.
4. Delete from V every marked node.
5. Delete from V every neighbor of marked node.
6. Delete from E every edge that no longer exists.

Cache-efficient:
Sort S. Sort E.
Scan and delete from E.
Cache Efficient Luby’s

E (sorted by second)

\[
\begin{array}{cccccccc}
(b,a) & (c,a) & (e,a) & (b,d) & (h,d) & (d,f) & (c,f) & (d,h) \\
2 & 2 & 2 & 1 & 2 & 1 & 2 & \\
\end{array}
\]

S (sorted by first)

\[
\begin{array}{cccccccc}
(a,b) & (a,c) & (a,e) & (f,d) & (f,c) & \\
3 & 3 & 3 & 2 & 2 & \\
x & x & x & x & x & \\
\end{array}
\]

Scan neighbors of node a.
Mark to delete if neighbor is marked.
Cache Efficient Luby’s

E (sorted by second)

<table>
<thead>
<tr>
<th></th>
<th>(b,a)</th>
<th>(c,a)</th>
<th>(e,a)</th>
<th>(b,d)</th>
<th>(h,d)</th>
<th>(d,f)</th>
<th>(c,f)</th>
<th>(d,h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Type</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S (sorted by first)

<table>
<thead>
<tr>
<th></th>
<th>(a,b)</th>
<th>(a,c)</th>
<th>(a,e)</th>
<th>(f,d)</th>
<th>(f,c)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scan neighbors of node a.
Mark to delete if neighbor is marked.
Cache Efficient Luby’s

E (sorted by second)

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(c,a)</th>
<th>(e,a)</th>
<th>(b,d)</th>
<th>(h,d)</th>
<th>(d,f)</th>
<th>(c,f)</th>
<th>(d,h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S (sorted by first)

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(a,c)</th>
<th>(a,e)</th>
<th>(f,d)</th>
<th>(f,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Scan neighbors of node d.
Mark to delete if neighbor is marked.
Cache Efficient Luby’s

E (sorted by second)

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(c,a)</th>
<th>(e,a)</th>
<th>(b,d)</th>
<th>(h,d)</th>
<th>(d,f)</th>
<th>(c,f)</th>
<th>(d,h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S (sorted by first)

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(a,c)</th>
<th>(a,e)</th>
<th>(f,d)</th>
<th>(f,c)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scan neighbors of node f.
Mark to delete if neighbor is marked.
Cache Efficient Luby’s

<table>
<thead>
<tr>
<th>E (sorted by second)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(b,a)</td>
<td>2</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c,a)</td>
<td>2</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e,a)</td>
<td>2</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b,d)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h,d)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d,f)</td>
<td>2</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c,f)</td>
<td>1</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d,h)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S (sorted by first)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a,b)</td>
<td>3</td>
<td></td>
<td></td>
<td>(f,d)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a,c)</td>
<td>3</td>
<td></td>
<td></td>
<td>(f,c)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a,e)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f,d)</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f,c)</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scan neighbors of node f.
Mark to delete if neighbor is marked.
Cache Efficient Luby’s

E (sorted by second)

<table>
<thead>
<tr>
<th></th>
<th>(b,a)</th>
<th>(c,a)</th>
<th>(e,a)</th>
<th>(b,d)</th>
<th>(h,d)</th>
<th>(d,f)</th>
<th>(c,f)</th>
<th>(d,h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

S (sorted by first)

<table>
<thead>
<tr>
<th></th>
<th>(a,b)</th>
<th>(a,c)</th>
<th>(a,e)</th>
<th>(f,d)</th>
<th>(f,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Scan neighbors of node h.
Mark to delete if neighbor is marked.
Cache Efficient Luby’s

E (sorted by second)

<table>
<thead>
<tr>
<th></th>
<th>(b,a)</th>
<th>(c,a)</th>
<th>(e,a)</th>
<th>(b,d)</th>
<th>(h,d)</th>
<th>(d,f)</th>
<th>(c,f)</th>
<th>(d,h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
Cache Efficient Luby’s

E (sorted by first)

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(b,d)</th>
<th>(c,a)</th>
<th>(c,f)</th>
<th>(d,f)</th>
<th>(d,h)</th>
<th>(e,a)</th>
<th>(h,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Sort and mark all associated with same node as deleted.
Cache Efficient Luby’s

E (sorted by first)

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(b,d)</th>
<th>(c,a)</th>
<th>(c,f)</th>
<th>(d,f)</th>
<th>(d,h)</th>
<th>(e,a)</th>
<th>(h,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>1</td>
</tr>
</tbody>
</table>

E (sorted by second)

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(c,a)</th>
<th>(e,a)</th>
<th>(b,d)</th>
<th>(h,d)</th>
<th>(d,f)</th>
<th>(c,f)</th>
<th>(d,h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Copy and sort.
Cache Efficient Luby’s

E (sorted by first)

<table>
<thead>
<tr>
<th></th>
<th>(b,a)</th>
<th>(b,d)</th>
<th>(c,a)</th>
<th>(c,f)</th>
<th>(d,f)</th>
<th>(d,h)</th>
<th>(e,a)</th>
<th>(h,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E (sorted by second)

<table>
<thead>
<tr>
<th></th>
<th>(b,a)</th>
<th>(c,a)</th>
<th>(e,a)</th>
<th>(b,d)</th>
<th>(h,d)</th>
<th>(d,f)</th>
<th>(c,f)</th>
<th>(d,h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scan and mark deleted if any neighbor is marked deleted.
Cache Efficient Luby’s

E (sorted by first)

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(b,d)</th>
<th>(c,a)</th>
<th>(c,f)</th>
<th>(d,f)</th>
<th>(d,h)</th>
<th>(e,a)</th>
<th>(h,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>1</td>
</tr>
</tbody>
</table>

E (sorted by second)

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(c,a)</th>
<th>(e,a)</th>
<th>(b,d)</th>
<th>(h,d)</th>
<th>(d,f)</th>
<th>(c,f)</th>
<th>(d,h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Scan and mark deleted if any neighbor is marked deleted.
Cache Efficient Luby’s

E (sorted by first)

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(b,d)</th>
<th>(c,a)</th>
<th>(c,f)</th>
<th>(d,f)</th>
<th>(d,h)</th>
<th>(e,a)</th>
<th>(h,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

E (sorted by second)

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(c,a)</th>
<th>(e,a)</th>
<th>(b,d)</th>
<th>(h,d)</th>
<th>(d,f)</th>
<th>(c,f)</th>
<th>(d,h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Scan and mark deleted if any neighbor is marked deleted.
Cache Efficient Luby’s

E (sorted by first)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(b,a)</td>
<td>(b,d)</td>
<td>(c,a)</td>
<td>(c,f)</td>
<td>(d,f)</td>
<td>(d,h)</td>
<td>(e,a)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

E (sorted by second)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(b,a)</td>
<td>(c,a)</td>
<td>(e,a)</td>
<td>(b,d)</td>
<td>(h,d)</td>
<td>(d,f)</td>
<td>(c,f)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>1</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Scan and mark deleted if any neighbor is marked deleted.
Cache Efficient Luby’s

E (sorted by first)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(b,a)</td>
<td>(b,d)</td>
<td>(c,a)</td>
<td>(c,f)</td>
<td>(d,f)</td>
<td>(d,h)</td>
<td>(e,a)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

E (sorted by second)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(b,a)</td>
<td>(c,a)</td>
<td>(e,a)</td>
<td>(b,d)</td>
<td>(h,d)</td>
<td>(d,f)</td>
<td>(c,f)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Scan and mark deleted if any neighbor is marked deleted.
Cache Efficient Luby’s

E (sorted by first)

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(b,d)</th>
<th>(c,a)</th>
<th>(c,f)</th>
<th>(d,f)</th>
<th>(d,h)</th>
<th>(e,a)</th>
<th>(h,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

new array

Copy anything left to a new array E for the next iteration.
Cache Efficient Luby’s

E (sorted by first)

<table>
<thead>
<tr>
<th>(b,a)</th>
<th>(b,d)</th>
<th>(c,a)</th>
<th>(c,f)</th>
<th>(d,f)</th>
<th>(d,h)</th>
<th>(e,a)</th>
<th>(h,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

new array

\[O(\text{sort}(E) + E/B) \]
Luby’s Iteration:
1. Mark each node u with probability $1/2d(u)$.
2. For each edge (u,v): if both u and v are marked:
 - if $d(u) < d(v)$ then unmark u.
 - else if $d(v) < d(u)$ then unmark v.
 - else if $d(u) = d(v)$ then unmark node with smaller id.
3. Add all marked nodes to S.
4. Delete from V every marked node.
5. Delete from V every neighbor of marked node.
6. Delete from E every edge that no longer exists.

Cache-efficient:

$$O(sort(E) + E/B)$$
Luby’s Algorithm

Analysis

Theorem:

Luby’s Algorithm terminates in $O(\log |E|)$ iterations, in $O(E/B + \text{sort}(E))$ time, in expectation.

\[
\text{sort}(E) = O\left(\frac{E}{B} \log_{M/B}(E/B)\right)
\]
Summary

Today: Graph Algorithms

Breadth-First-Search
• *Sorting your graph*

MIS
• *Luby’s Algorithm*
• *Cache-efficient implementation*

MST
• *Connectivity*
• *Minimum Spanning Tree*
Connected Components

Idea: Transform graph into depth-1 trees.
Cache-Efficient Connectivity

Setup

Initially:

Assume that all the edges are in a single array.
Assume each edge is stored ONCE

Ex:

\[\{(u,v),(u,w),(x,z),(z,u)\}\]
Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E_1 and E_2.
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \Rightarrow$ depth 1 trees.

Base case:
One edge \Rightarrow done.
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \rightarrow \text{depth 1 trees}$.

Only "root" nodes in E_2 are connected to E_1.
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \rightarrow$ depth 1 trees.

Claim: does not change connected components.
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \Rightarrow$ depth 1 trees.

Claim: does not change connected components.
Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \Rightarrow$ depth 1 trees.

Claim: does not change connected components.
Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \rightarrow$ depth 1 trees.

![Diagram showing the division and contraction process]
Cache-Efficient Connectivity

Algorithm Idea

1. Divide \(E \) into two parts: \(E_1 \) and \(E_2 \).
2. Recursively solve \(E_2 \rightarrow \) depth 1 trees.
3. Contract \(E_1 \).

Claim: does not change connected components.

Algorithm:
For each \((x,y)\) in \(E_1 \): if \((a,x)\) or \((a,y)\) is in \(E_2 \) then:
Replace \((x,y)\) with \((y,a)\) or \((x,y)\) with \((x,a)\).
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \Rightarrow$ depth 1 trees.

Only “root” nodes in E_2 are connected to E_1.
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \Rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \Rightarrow$ depth 1 trees.
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \Rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \Rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.
Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \Rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \Rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.

No merging necessary!
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.

Cache-Efficient Connectivity

Algorithm Idea

E2 depth-1 tree
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.

Cache-Efficient Connectivity

Algorithm Idea

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \Rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \Rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.

Claim: Does not change connected components.

Algorithm:

For each (a,b) in E_2:
- If a is an E_1 root: add (a,b) to E_1.
- Else if (x,a) in E_1: add (x,b) to E_1.
Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \Rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \Rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.

Diagram showing the divide and conquer process.
Cache-Efficient Connectivity

Contract(E1, E2)

1. Sort E1 by first.
2. Sort E2 by second.
3. Scan: (a,b) in E1, (x,a) in E2 \Rightarrow delete(a,b), add(x,b)

4. Sort E1 by second.
5. Sort E2 by second.
6. Scan: (a,b) in E1, (x,b) in E2 \Rightarrow delete(a,b), add(x,a)
Cache Efficient Contract

<table>
<thead>
<tr>
<th>E1 (sorted by first)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a,b)</td>
<td>(b,d)</td>
<td>(b,c)</td>
<td>(c,e)</td>
<td>(c,f)</td>
<td>(d,g)</td>
<td>(d,h)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E2 (sorted by second)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(z,b)</td>
<td>(z,c)</td>
<td>(y,d)</td>
<td>(y,f)</td>
<td>(z,j)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sort E1 by first, E2 by second.
Cache Efficient Contract

E1 (sorted by first)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a,b)</td>
<td>(b,d)</td>
<td>(b,c)</td>
<td>(c,e)</td>
<td>(c,f)</td>
<td>(d,g)</td>
<td>(d,h)</td>
</tr>
</tbody>
</table>

E2 (sorted by second)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(z,b)</td>
<td>(z,c)</td>
<td>(y,d)</td>
<td>(y,f)</td>
<td>(z,j)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scan: look for (b, .)
Cache Efficient Contract

E1 (sorted by first)

| (a,b) | (b,d) | (b,c) | (c,e) | (c,f) | (d,g) | (d,h) |

E2 (sorted by second)

| (z,b) | (z,c) | (y,d) | (y,f) | (z,j) | | |

Scan: look for (b, .)
Cache Efficient Contract

E1 (sorted by first)

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(z,d)</th>
<th>(b,c)</th>
<th>(c,e)</th>
<th>(c,f)</th>
<th>(d,g)</th>
<th>(d,h)</th>
</tr>
</thead>
</table>

E2 (sorted by second)

<table>
<thead>
<tr>
<th>(z,b)</th>
<th>(z,c)</th>
<th>(y,d)</th>
<th>(y,f)</th>
<th>(z,j)</th>
</tr>
</thead>
</table>

Scan: replace \((b,d)\) with \((z,d)\)
Cache Efficient Contract

E1 (sorted by first)

| (a,b) | (z,d) | (b,c) | (c,e) | (c,f) | (d,g) | (d,h) |

E2 (sorted by second)

| (z,b) | (z,c) | (y,d) | (y,f) | (z,j) |

Scan: replace (b,c) with (z,c)
Cache Efficient Contract

E1 (sorted by first)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a,b)</td>
<td>(z,d)</td>
<td>(z,c)</td>
<td>(c,e)</td>
<td>(c,f)</td>
<td>(d,g)</td>
</tr>
</tbody>
</table>

E2 (sorted by second)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(z,b)</td>
<td>(z,c)</td>
<td>(y,d)</td>
<td>(y,f)</td>
<td>(z,j)</td>
</tr>
</tbody>
</table>

Scan: replace (b,c) with (z,c)
Cache Efficient Contract

E1 (sorted by first)

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(z,d)</th>
<th>(z,c)</th>
<th>(c,e)</th>
<th>(c,f)</th>
<th>(d,g)</th>
<th>(d,h)</th>
</tr>
</thead>
</table>

E2 (sorted by second)

<table>
<thead>
<tr>
<th>(z,b)</th>
<th>(z,c)</th>
<th>(y,d)</th>
<th>(y,f)</th>
<th>(z,j)</th>
</tr>
</thead>
</table>

Scan...
Cache Efficient Contract

E1 (sorted by first)

| (a,b) | (z,d) | (z,c) | (z,e) | (c,f) | (d,g) | (d,h) |

E2 (sorted by second)

| (z,b) | (z,c) | (y,d) | (y,f) | (z,j) |
Cache Efficient Contract

E1 (sorted by first)

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(z,d)</th>
<th>(z,c)</th>
<th>(z,e)</th>
<th>(c,f)</th>
<th>(d,g)</th>
<th>(d,h)</th>
</tr>
</thead>
</table>

E2 (sorted by second)

<table>
<thead>
<tr>
<th>(z,b)</th>
<th>(z,c)</th>
<th>(y,d)</th>
<th>(y,f)</th>
<th>(z,j)</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Scan...
Cache Efficient Contract

E1 (sorted by first)

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(z,d)</th>
<th>(z,c)</th>
<th>(z,e)</th>
<th>(z,f)</th>
<th>(d,g)</th>
<th>(d,h)</th>
</tr>
</thead>
</table>

E2 (sorted by second)

<table>
<thead>
<tr>
<th>(z,b)</th>
<th>(z,c)</th>
<th>(y,d)</th>
<th>(y,f)</th>
<th>(z,j)</th>
</tr>
</thead>
</table>

Replace...
Cache Efficient Contract

E1 (sorted by first)

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(z,d)</th>
<th>(z,c)</th>
<th>(z,e)</th>
<th>(z,f)</th>
<th>(d,g)</th>
<th>(d,h)</th>
</tr>
</thead>
</table>

E2 (sorted by second)

<table>
<thead>
<tr>
<th>(z,b)</th>
<th>(z,c)</th>
<th>(y,d)</th>
<th>(y,f)</th>
<th>(z,j)</th>
</tr>
</thead>
</table>

Scan...
Cache Efficient Contract

E1 (sorted by first)

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(z,d)</th>
<th>(z,c)</th>
<th>(z,e)</th>
<th>(z,f)</th>
<th>(y,g)</th>
<th>(d,h)</th>
</tr>
</thead>
</table>

E2 (sorted by second)

<table>
<thead>
<tr>
<th>(z,b)</th>
<th>(z,c)</th>
<th>(y,d)</th>
<th>(y,f)</th>
<th>(z,j)</th>
</tr>
</thead>
</table>

Replace...
Cache Efficient Contract

E1 (sorted by first)

| (a,b) | (z,d) | (z,c) | (z,e) | (z,f) | (y,g) | (d,h) |

E2 (sorted by second)

| (z,b) | (z,c) | (y,d) | (y,f) | (z,j) |

Scan...
Cache Efficient Contract

E1 (sorted by first)

<table>
<thead>
<tr>
<th>(a,b)</th>
<th>(z,d)</th>
<th>(z,c)</th>
<th>(z,e)</th>
<th>(z,f)</th>
<th>(y,g)</th>
<th>(y,h)</th>
</tr>
</thead>
</table>

E2 (sorted by second)

<table>
<thead>
<tr>
<th>(z,b)</th>
<th>(z,c)</th>
<th>(y,d)</th>
<th>(y,f)</th>
<th>(z,j)</th>
</tr>
</thead>
</table>

Replace...
Cache-Efficient Connectivity

Contract(E1, E2)

1. Sort E1 by first.
2. Sort E2 by second.
3. Scan: (a,b) in E1, (x,a) in E2 \implies delete(a,b), add(x,b)

4. Sort E1 by second.
5. Sort E2 by second.
6. Scan: (a,b) in E1, (x,b) in E2 \implies delete(a,b), add(x,a)

\(O(sort(E) + E/B) \)
Cache-Efficient Connectivity

Merge(E1, E2)

1. Sort E1 by second.
2. Sort E2 by first.
3. Scan: (a,b) in E1, (b,c) in E2 \(\Rightarrow\) add(a,c) to E1

4. Sort E1 by first.
5. Sort E2 by first.
6. Scan: (a,.) in E1, (a,x) in E2 \(\Rightarrow\) add(a,x) to E1

\[O(sort(E) + E/B)\]
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.
1. Divide E into two parts: E_1 and E_2.
2. Recursively solve E_2 \(\Rightarrow \) depth 1 trees.
4. Recursively solve E_1 \(\Rightarrow \) depth 1 trees.
5. Merge E_2 into E_1.

$O(sort(E) + E/B)$
Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E_1 and E_2.
2. Recursively solve $E_2 \Rightarrow$ depth 1 trees.
4. Recursively solve $E_1 \Rightarrow$ depth 1 trees.
5. Merge E_2 into E_1.

$$T(E) = 2T(E/2) + O(E/B) + \text{sort}(E)$$
$$= O(\text{sort}(E) \log(E))$$

Faster than BFS (except in sparse case)!
Today: Graph Algorithms

Breadth-First-Search
 • *Sorting your graph*
MIS
 • *Luby’s Algorithm*
 • *Cache-efficient implementation*
MST
 • *Connectivity*
 • *Minimum Spanning Tree*
1. Let e be a random edge.
2. Divide E into two parts:
 - E_1 has edges with weight $< w(e)$.
 - E_2 has edges with weight $> w(e)$
3. Recursively find MST of E_1.
4. Do something.
5. Recursively find MST of E_2.
6. Do something.