CS5330	Randomized	Algorithms	We	ek	1
			Jan	15	í٩

Puzzle of the Day: Three Dice

A: 1, 1, 6, 6, 8, 8 B: 2, 2, 4, 4, 9, 9 C: 3, 3, 5, 5, 7, 7

Rules: 1) Alice chooses a die. 2) Bob chooses a die. 3) Both roll. Higher number wins.

What is probability Alice/Bob wins? [Assume both choose optimally.]

Note: E[A]= E[B]= E[C].

Why randomized algorithms?	Masicl
	Choose a random
-> Faster	answer and
E.g., Sampling	shazen!
"How many Singeporeans	like soup?"
Run a pill	
or	
Find a MST	

-> Simpler Decide of p is prime. Polynomial identity testing Nuts-and-bolts

-> Other

Existence proofs

Derandomization

Security /Privacy

Goals Tools and techniques to help YOU! (1)② Neat algorithms! Topics

	Quicksort
1) Classical algorithms	Treeps
	Min Cut
	Ftc

2) Hashing	Chaining
	Open Addressing
	Cuckoo Hashing
	Bloom Filter
	Tabulation Hashing

3) Sampling

Polling Data analysis

4) Markov Chains

MCMC/Metopolis

Randon Walks

5) Other	Load balancing
	Backoff protocols
	Expert algorithms
	Preserving privacy

Solutions:

 1) Enumerate all cuts: 2° possible cuts

 2) Max-Flow / Min-cut: Reasonable algs:
$$O(n^3)$$

 Relatively complicated

 Today Karger (and stein) Min Cut

 Beautiful, simple algorithm

 Magic!

 Basic idea: Repeat until only I cut left:

 D Choose e eE u.a.r.

 Q Exclude e.

 Operation: edge contraction

After Collapse (G, n, 2): 2 nodes left!

Proof: Every node has degree
$$\geq K$$
.
[Otherwise cut $\leq K$, ie, just that node.]

$$m = \frac{1}{2} \sum_{k=1}^{n} deg(w) \xleftarrow_{every} edge$$

$$\frac{1}{2} \sum_{k=1}^{n} K$$
Let $C = a \min cut$.
 $K = |C|$
Pr [Choose edge in C in step 1] = K/m
 $\leq K/n\kappa/2$
 $\leq \frac{2}{n}$
After step 1? Assume $E \notin C$:
 $\rightarrow Cut C unchanged$
 $\rightarrow n \rightarrow n-1$ [one fever node]
 $\rightarrow \min cut still K \xleftarrow{prove} it!!$
 $\forall u: deg(w) \geq K$
 $\rightarrow \# edges \geq (n-1)K/2$

Pr(choose
$$e \in C$$
) step $|good) = \frac{K}{M'} \leq \frac{K}{(n-1)K/2}$
 $\leq \frac{2}{n-1}$

$$\frac{\Pr(\text{choose } e \in C | \text{step } 1, 2 \text{ good}) \leq K / \frac{[n-2]K}{2}}{S = \frac{2}{n-2}}$$

$$\frac{\Pr(E_{j} \mid E_{1}, E_{2}, \dots, E_{j-1}) \leq K / (n-j+1)K/2}{\leq 2}$$

$$\frac{1}{n-j+1}$$

Fact
$$\left(\frac{1}{4} \leq \left[1 - \frac{1}{8}\right]^{X} \leq e^{-1}\right)^{X}$$
 very useful!!
 $e^{X} = \left[1 + X + \frac{X^{2}}{2} + \cdots \right] \geq 1 + X$
 $e^{X} = \left[1 - X + \frac{X^{2}}{2} - \cdots \right] \geq 1 - X$
 $\leq \left[1 - X + \frac{X^{2}}{2} \leq 1 - \frac{X}{2}\right] + X \leq 1$
 $\Rightarrow e^{1} \geq \left[1 - X\right]^{X}$
"With high probability" $\Rightarrow \geq 1 - \frac{1}{n^{c}}$
for any constant C
Error is polynomially small
 $\Rightarrow as small as you used $\Rightarrow choose C$
 $\Rightarrow e^{2} fir it in algo. cost$
Error scales with problem:
 $\Rightarrow Bisser n, smaller error$
"With $\geq 99\%$ Probability, you don't fail"
 $\Rightarrow n = 10$: Probability no one fails
 $n = 100$: about 10 fail$

With 21-1 Probability, you don't fail > Vn, no one fails

Time: Each iteration: 1) Choose random edge: O(n) 2) Contract: O(n)

Total cost: $O(n^4 \log n)$

Faster version to come ...

Back to min-cut:
Problem: after many iterations, pr (success)
gets smaller.
Larf fail, reped entire alg.
Idea: stop early!
Collepse (G, n, t):
Pr(success) =
$$\left(\frac{n-2}{n-1}\right) + \left(\frac{t}{t+2}\right) \left(\frac{t-1}{t+1}\right)$$

 $= t [t-1]$
 $n [n-1]$
Choose $t = \frac{n}{\sqrt{2}} + \frac{1}{\sqrt{2}}$
 $\geq \left(\frac{n}{\sqrt{2}}\right) \left(\frac{n}{\sqrt{2}}\right) \geq \frac{1}{2}$

 $T(n) = 2T(\frac{n}{\sqrt{2}}+1) + O(n^2)$ $= O(n' \log n)$ Prob correct? -> Tree has height < 2108 n (< n2 leaves) $h(n) = 1 + h\left(\frac{n}{\sqrt{2}}\right)$ $= \left| + \right| + \left| + \right| \left(\frac{n}{2} \right)$ $=h\left(\frac{2}{2}\right)+2$ = 2 log n -> Each edge represents a Contract (G, l, 1/12+1) L Succeeds U.p. ≥ 1/2 -> Alg succeeds if root > leaf path succeeds at every step -> Same as branching problem! Pr(succeeds 2logn deep) > /2logn

Conclusion: FastCut succeeds
$$up \ge \frac{1}{2\log n}$$

Final Alg: Repeat FastCut 2clog²n times.
Return smallest cut.
 $Pr [fai] = [1 - \frac{1}{2\log n}] \le e^{-clog n} \le \frac{1}{n^{c}}$
 $\Rightarrow SUcceeds w.h.p.$
Time: $O(n^{2} \log^{3} n)$

Idea 1 (1)For each edge, choose a random weight. (Repeat of not Unique.) @ Find an MST 3 Cut heaviest edge in MST Return that cut. Claim: Finds min-cut w.p. ≥ 2/n(n-1) Why? Idea 2. Karger Cut implies: Every graph has at most $\frac{1}{2}$ n(n-1) min cuts. Why? Idea 3 If you run Fast Cut with 3 repeats (instead of 2) then Prisuccess) is much higher! Why? This is not a good idea.