










Hashing with Chaining

The simplest form of hashing is to resolve collisions with chaining. Each key x is hashed using hash
function f to a table A[1, . . . ,m]. Each slot in the table stores a linked list containing all the keys
hashed to that slot. To insert an item, simply compute f(x) and add the key to the front of the
linked list in slot A[f(x)]. This takes O(1) time (assuming you can compute the hash function in
O(1) time). To search for an item, compute f(x) and then search through the entire linked list at
A[f(x)]. The cost of a search depends on the size of the linked lists.

Using the balls in bins analysis, you should be able to show that:

• If the hash table has size m and there are n items in the table, then the expected cost of an
insert is O(n/m).

• If n = m, the expect cost of an insert is O(1).

• Using the analysis above, you can show that if m = n, then with high probability, every
linked list has length O(log n/ log logn), and so each search operation terminates in time
O(log n/ log logn) with high probability.

• You should be able to show that if m = n, then the following statement is false: with high
probability, each linked list has length O(1).

• In fact, using the analysis above, you can show that in expectation, many search operations
will be cost Ω(log n/ log logn), and you can calculate the probability that at least one searc
operation has cost Ω(log n/ log log n).
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Cuckoo Hashing

This week, we considered Cuckoo Hashing. The basic idea behind Cuckoo Hashing is that we use to
tables A and B of size m = 2n to store n items. For table A, we use hash function f , and for table
B, we use hash function g. To insert an item, we proceed as follows, executing insert(x, A, f):

insert(item x, Table T, hashfunction h)

slot = h(x)

z = T[slot]

T[slot] = x

if (z != null)

if (T == A)

insert(z, B, g)

else if (T == B)

insert(z, A, f)

That is, we put the new item in the proper slot in table A. If the slot is already occupied by some
item z, then we kick z out of table A and insert it (recursively) into table B. Eventually, if this
proceeds for more than 2m steps, then we know there is a problem and we abort.

Searching for an item is simple, and requires at most 2 queries:

search(x)

if (A[f(x)] == x) then return A[f(x)];

if (B[g(x)] == x) then return B[g(x)];

else return NOT_IN_TABLE;

Item x can be in at most two locations: table A or table B, so searching is very fast: O(1) time.
An insertion, on the other hand, can be more expensive. If m ≥ 2n, we can show that most of the

time, each insertion completes in O(log n) with high probability. But sometimes, on occasion, you
may have a problem. For example, imagine you have three keys x, y, z where f(x) = f(y) = f(z)
and g(x) = g(y) = g(z). In this case, the insertion will loop forever—or until it aborts. More
generally, we have a problem when the Cuckoo Graph has two cycles1:

In either of these cases, we will not be able to insert all the items. When this happens, we
choose new hash functions and try again to insert all the items. We can show that for a given set of
n elements, there is a probability of O(1/n) of failure. (Below, we will suggesting proving the easier
bound, i.e., that there is a probability 1/2 of a failure.) Thus, with probabiliy 1/n we will have to
re-hash (and re-build) the tables, which has cost O(n). Thus the expected cost due to rebuilding
is O(1). Overall, then, we can show that insertions have expected amortized cost O(1).

1Figure taken from: http://infoweekly.blogspot.sg/2010/02/cuckoo-hashing.html
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Analysis

To analyze the performance of Cuckoo Hashing, we consider the Cuckoo Graph which is a bipartite
graph defined as follows: there are m left node representing array A and m right nodes representing
array B; for every key x, add one edge to the graph connecting node f(x) on the left side to node
g(x) on the right side.

Notice that when analyzing the Cuckoo Graph, we are not actually executing the insertion
algorithm. We are simply looking at the edges that would be created by the keys. By looking at
the Cuckoo Graph for n keys, we can determine both whether or not it is possible to insert them
all (without an infinite loop) and the expect cost of each insertion.

As an exercise, prove the following facts regarding Cuckoo Hashing. Assume throughout that
m = 4n.

• Given a Cuckoo Graph containing n edges, show that any path of length p in the Cuckoo
Graph that is generated by an insert operation that terminates has a simple subpath (with
no repeated nodes) of length at least p/3.

• Given a Cuckoo Graph containing n edges, show that for all nodes i and j, for all `, the
probability that the graph contains a path of length exactly ` from i to j is at most 1

4`
1
m .

• Prove that the expected cost of an insert operation is O(1) (as long as the Cuckoo Hash Table
contains at most n items).

• Given a Cuckoo Graph containing n edges, prove that the probability it contains a cycle is
at most 1/2.

• Whenever an insert does not terminate (i.e., ends in an infinite loop), you need to create
a new Cuckoo Hash Table, choose new hash functions, and reinsert all n items. (If your
insert operation continues for 2m steps, you can assume you have entered an infinite loop!).
Assume that you continue this process, rehashing as necessary, until you successfully insert
all n items. Prove that the expected total cost of this process is O(n) (including the cost of
the repeated rehashing).
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