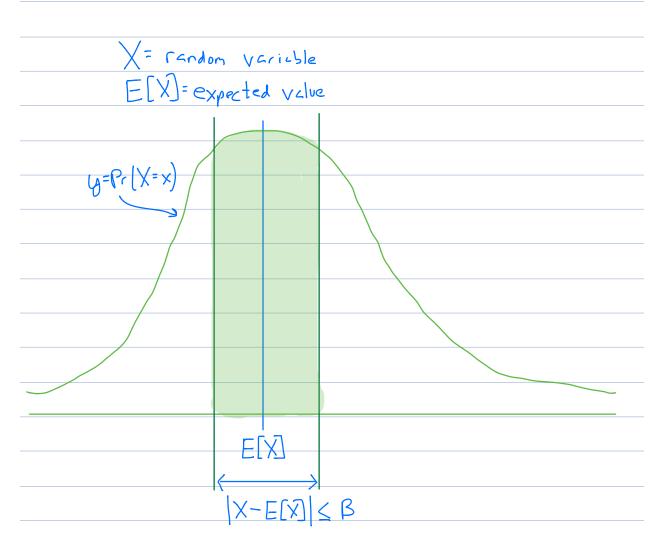
Week 5: Cheroff Bounds and Sampling	February 12, 2019
Last week: Hashing (1) Chaining (2) Linear Probing (3) Cuckoo Hashing	
Today 1) Chernoff-Hoeffding Bounds	
Z) Examples: Coin flipping	
load balancing	
Sampling	
approximate Counting	

Deviation from the Mean

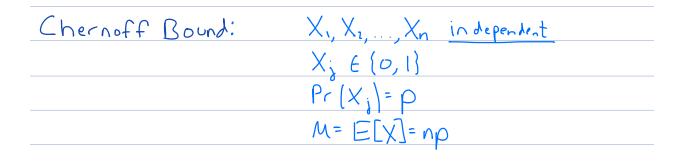


Goal: Show Pr(|X-E[x]| > B) is small.

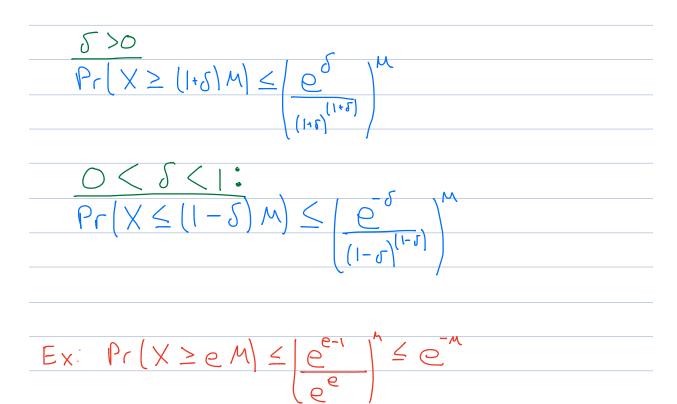
Ex. Flipping coins

$$\rightarrow$$
 flip from coins
 \rightarrow Pr(heads) = $\frac{1}{2}$
 $\rightarrow \chi = \#$ heads
1) $E[\chi] = \frac{n}{2} < 2 - M$
 $\rightarrow \chi_{j} = [Irf j^{n} coin is heads}$
 $= 0$ otherwise
 $\rightarrow E[\chi_{j}] \circ Pr(\chi_{j} = I) = \frac{1}{2}$
 $\rightarrow E[\chi] = E[\frac{1}{2}\chi_{j}] = \sum E[\chi_{j}] = n \cdot \frac{1}{2}$
2) Markov's Inequality: $Pr[\chi \ge \frac{3}{4}n] \le \frac{n/2}{34n} = \frac{2}{3}$
 $\rightarrow not so useful here!$
3) Chebychev
 $\rightarrow Var(\chi_{j}) = p(I-p) = \frac{1}{4}$
 $\rightarrow Var(\chi) = \frac{n}{4}$
 $\rightarrow Var(\chi) = \frac{n}{4}$
 $\rightarrow Pr[\chi \ge \frac{3}{4}n] \le Pr(|\chi - M| \ge \frac{n}{4}) \le \frac{Var(\chi)}{(\frac{n}{4})^{1}}$

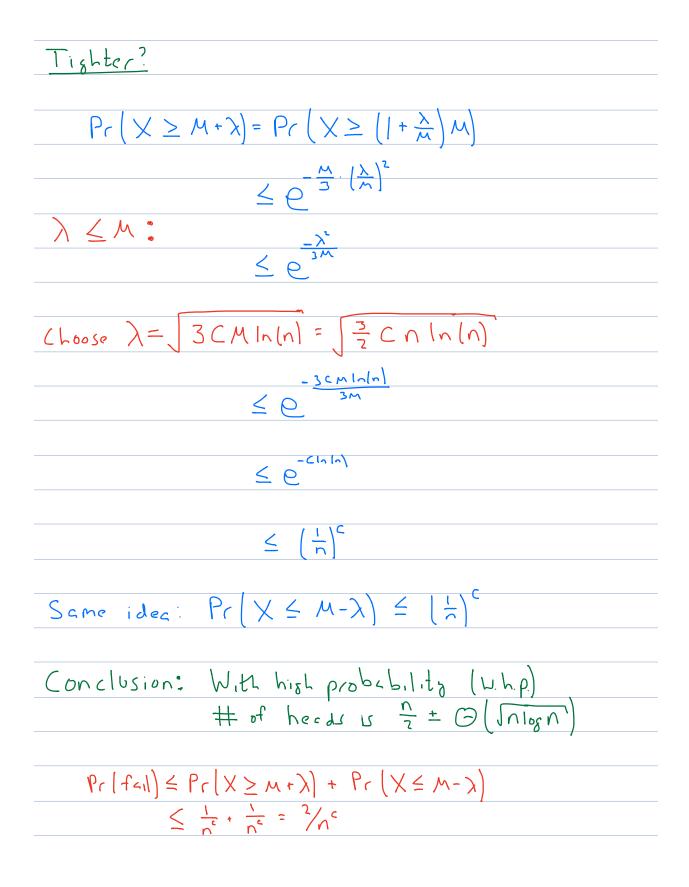
Better. What about Pr(|X-M=En)??

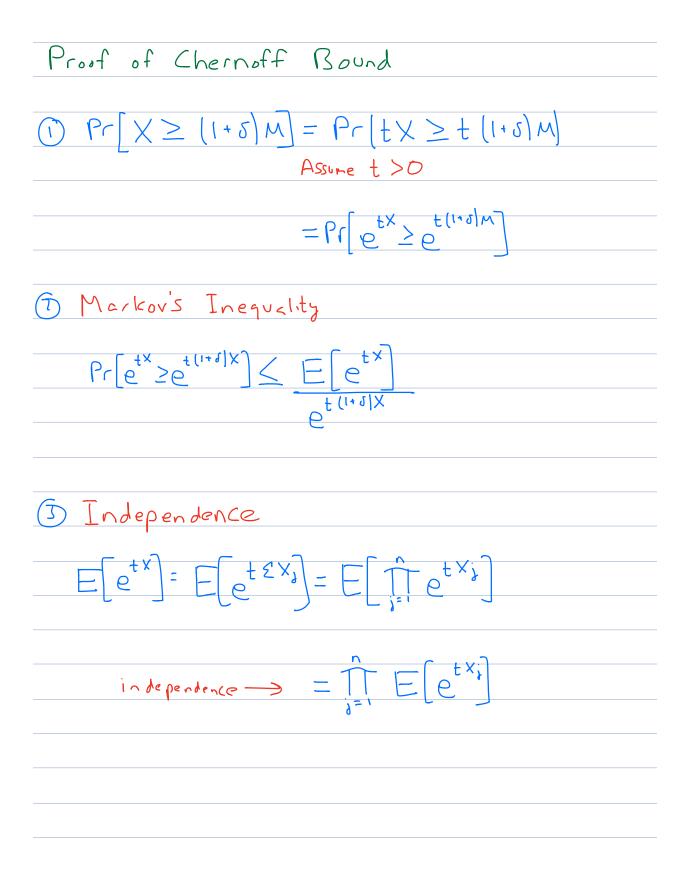


1) General Version



2) Simplified versions $\frac{5 > 0}{\Pr(X \ge (1+\delta)M) \le Q} - \frac{5^{2}/2+\delta}{2+\delta}M$ $\frac{1+\delta}{\Pr(X \le (1-\delta)M) \le Q} - \frac{1+\delta}{2}M \le Q$ $\frac{5 \leq 1}{\Pr\left(X \leq (1 + 5)M\right) \leq e} - M \delta^{2}/3$ These are ulat I memorize! Coin flipping. $\Pr\left(X \ge \frac{3}{4}n\right) \le \Pr\left(X \ge \left(1 + \frac{1}{2}\right)\frac{n}{2}\right)$ $\frac{P_{r}(X \geq (1 + \frac{1}{2})^{\frac{1}{2}})}{\leq P_{r}(X \geq (1 + \frac{1}{2})M) \leq e^{\frac{n}{2} \cdot (\frac{1}{2})^{\frac{1}{2} + \frac{1}{3}}}}{\frac{\leq \frac{1}{2}}{2}}$ Decreases exponentially in n! Very unlikely ...





(a) Approximation

$$E[e^{t \times i}] = pe^{t} + (I-p)e^{s}$$

$$= I - p(I-e^{t}) \times = p(I-e^{t})$$

$$\leq e^{p(I-e^{t})} \xrightarrow{\times} \geq I - X$$
(c) Conclusion:

$$f[e^{t \times i}] \leq (e^{-p(I-e^{t})})^{s} \leq e^{-pn(I-e^{t})}$$

$$\leq e^{-n(I-e^{t})}$$

$$\leq e^{-n(I-e^{t})}$$

$$\leq e^{n \times s}$$

$$Pr[X \geq (I+s)M] \leq e^{M \times s}$$

$$\leq e^{M \times s}$$

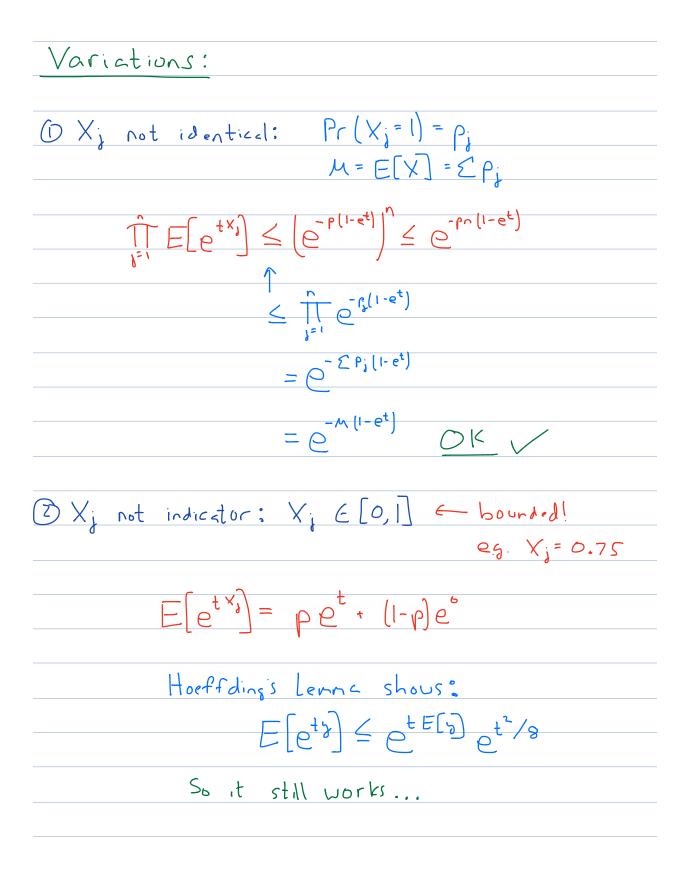
$$\leq e^{M \times s}$$

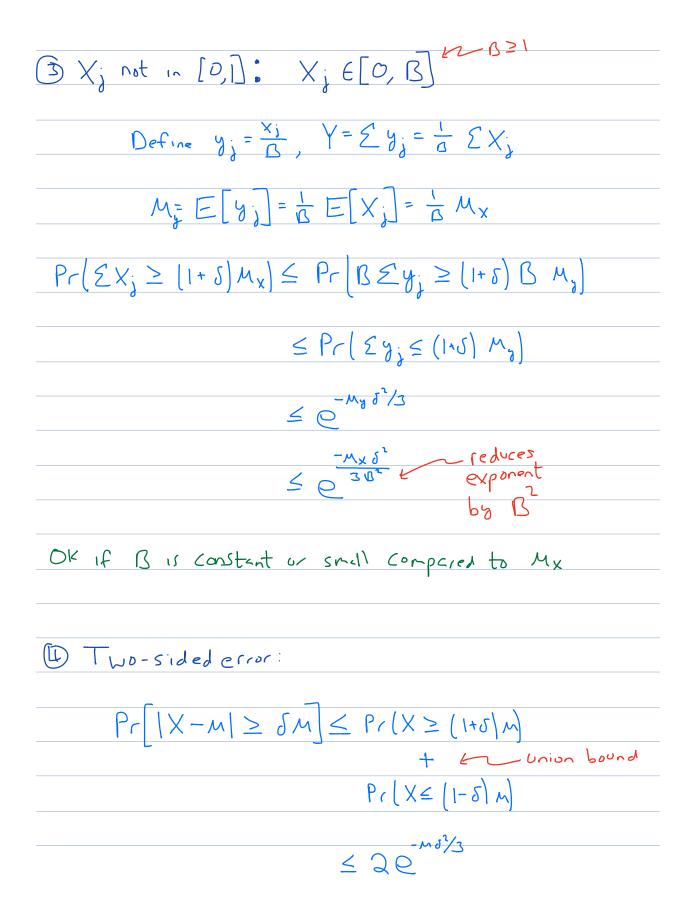
$$\leq (I+s)M \leq e^{M \times s}$$

$$\leq e^{M \times s}$$

$$\leq e^{M \times s}$$

$$\leq (I+s)M = e^{M \times s}$$



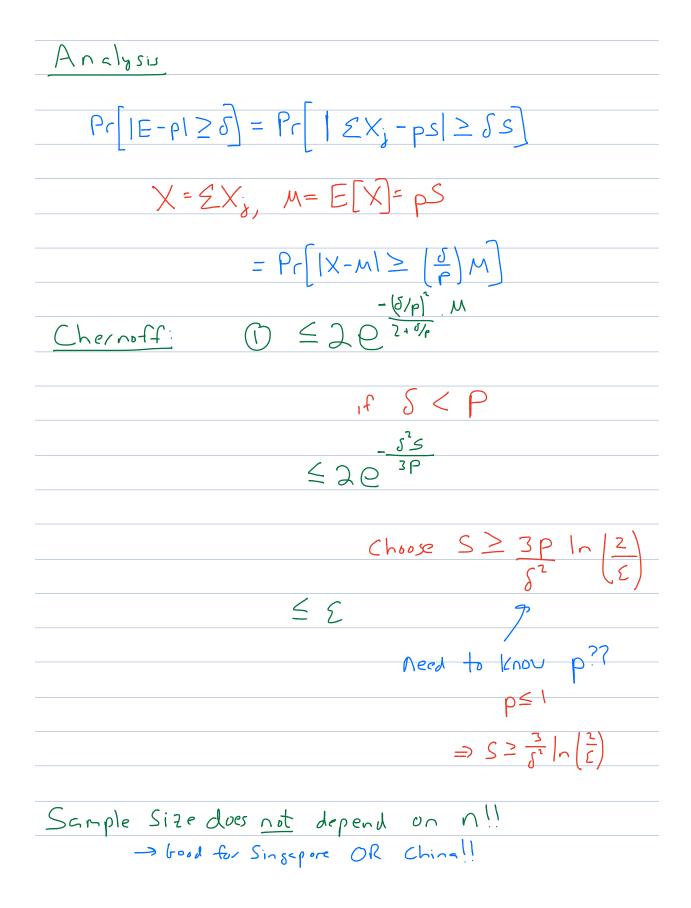


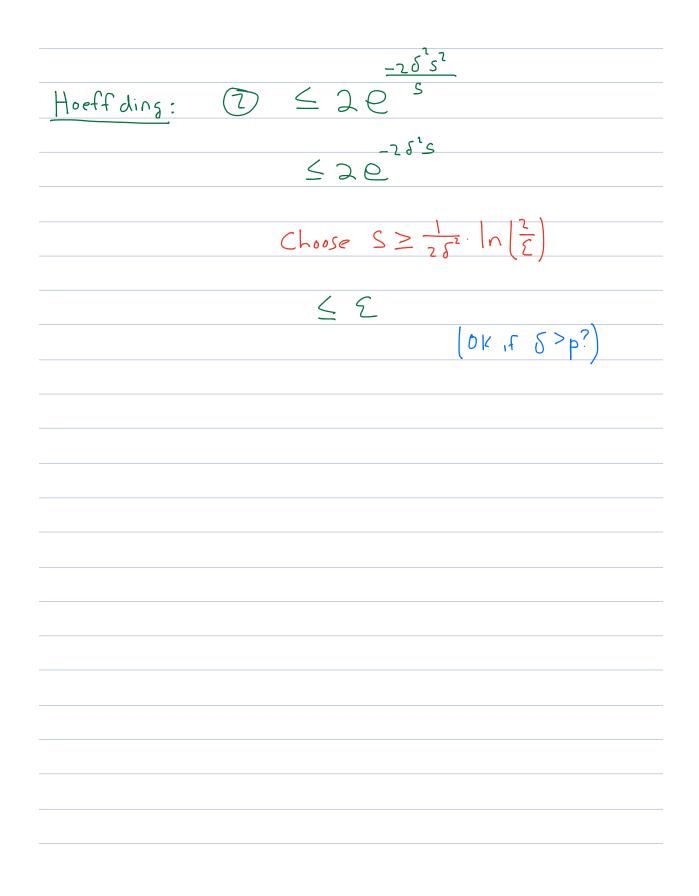
D Absolute bound : $\frac{-2\delta^{2}}{|X-M| \geq \delta} \leq 2e^{-2\delta^{2}} + \frac{2\delta^{2}}{0} + \frac{2\delta^{2}}{$ Hoeffding Bound Ex: Coin flipping $S = \Theta(\sqrt{n \log n})$ (5) Negative Correlation / Negative Association $|f E [Te^{t_{x_i}}] \leq TE[e^{t_{x_i}}]$ then ok! Works for bells in bins ...

Ex Polling / Sampling
What fraction of Singaporeans
like basketball?
Assume population size n, pn like basketball

$$0 \le p \le 1$$

Goal: find E such that:
 $Pr[|E-pn| \le d] \ge 1- \varepsilon$
"Confidence interval $\pm \delta$ u.p. $\ge 1-\varepsilon$ "
"If $\delta = 0.02$ and $\xi = 0.1$; $\pm 2\%$ with
 90% confidence"
 $[P-\delta, P+\delta] = Confidence interval$
Algo: Choose sample of S people.
Let $X_j \le 1$ if person j likes basketball.
Return:
 $E = {\frac{1}{5}} \ge X_j$





Load balancing:
$$n jobs$$

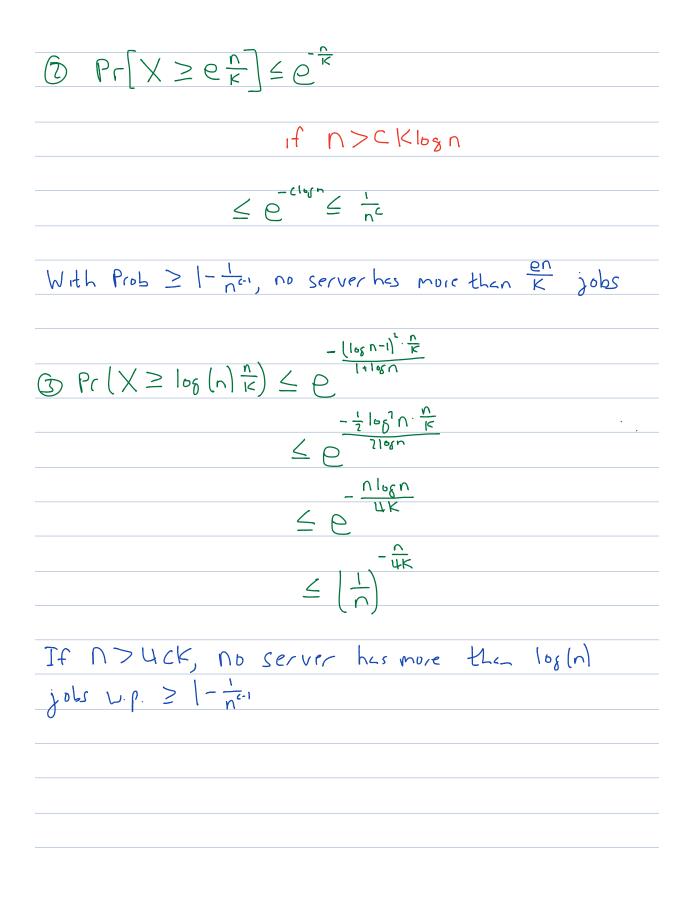
K servers
Algo: assign jobs rendonly to servers

$$\begin{bmatrix} Already analyzed & n = K \end{bmatrix}$$
Fix a server. $X_j = 1$ if job j is on server.

$$E[X_j] = Pr[X_j] = \frac{1}{K} \quad E[X] = \frac{n}{K}$$

$$\begin{bmatrix} 3 \text{ Cases} & n \gg K \\ n > \int (K \log n) \\ n = O[K] \\ \hline \\ R + \int \frac{2}{K} + \lambda \end{bmatrix} \leq 2e^{n}$$

$$\int e^{\frac{2}{K}} \frac{e^{\frac{2}{K}}}{2}$$



Coloring a Bipartile Graph

$$G = (U, V, E), \text{ bipartite}$$
Color each mode in V red or blue to
minimize: $\forall u \in U, |R(u) - B(u)|$
redneybbes blue neybbes

$$OR: \geq (\frac{1}{2} - \delta) \text{ mbs of } u \text{ blue}$$

$$\geq (\frac{1}{2} - \delta) \text{ mbs of } u \text{ red}$$
Fix u: let $k = de_{\delta}(u)$

$$\frac{V_{j} = 1 \text{ if } j^{th} \text{ neybber } \text{ is } U \text{ ted}$$

$$\frac{R(u) - R(u)}{|R(u) - B(u)|} = 2 \left[\frac{\kappa}{2} - \frac{2}{\kappa}^{2}\right]$$

$$Pr(|E|Y_{j} - \frac{\kappa}{2}| \geq \lambda) \leq 2e^{-\frac{2}{\kappa}}$$

$$\lambda = \int_{-\frac{\pi}{2}}^{\infty} K \ln(n)$$

$$\leq 2 \frac{1}{n^{2}}$$

ES, if $\frac{K}{4} \ge \int \frac{c}{2} K \ln(n) \Rightarrow K^2 \ge 8 C K \ln(n)$ $K \geq S cln(n)$ then $\geq \frac{1}{U}$ which red > 1/4 nbrs blue W.h.p: $\Theta(klogn) g = p$ $\geq (\frac{1}{2} - 5)$ reallshe also if $K \ge \Theta(logn)$ Other problems () Find median of array) Similar?? () Find average of array ??)

Random Graphs

 Build G=(V,E) as follows:

 D V= set of nodes, E=Ø

 @ For each UEV: add 2 clog (n) random edges

$$\rightarrow$$
 (u, ?)

 Clain: G is connected [similar to pset]

 Clain: G has diameter O(log n) w.h.p.

 Analysis:

 \rightarrow Start at u \rightarrow choose edges (y, ?)

 \rightarrow Start at u \rightarrow choose edges (y, ?)

 \rightarrow Start at u \rightarrow choose edges for N₁ \rightarrow find nodes N2

 etc.

 Notation:

How big is N. ? 20log(n)

Now big is
$$N_2$$
?

$$\Rightarrow Choose |N_1| Clogin edges
$$\Rightarrow Let X_j = 1 \quad if edge hits new node
$$= 0 \quad other use
\Rightarrow Pr(X_j) = \frac{|M|! + |M|}{n} \leq \frac{2c \log n}{n} \leq \frac{1}{2}$$

$$E[[N_2]] = E[EX_j] = |N_1| Clogin + \frac{1}{2} = M \geq Clogin$$

$$Pr([N_2] \leq (\frac{1}{2})M) \leq e^{-m(4)! + \frac{1}{2}} \leq e^{2\log n}$$

$$\leq \frac{1}{n^2}$$

$$\Rightarrow W_{P_1} \geq |-\frac{1}{n^2}, |N_2| \geq \log(n) \cdot |M_1| \geq 2|N_2|$$
For each node: divide edges scheded into 2 perts:
Phase 1) Clogin
Phase 2) clogin

$$\Rightarrow Use Phase 1 edges to grow set
\Rightarrow Use Phase 2 edges to reach the rest$$$$$$

Let
$$T_{y} = N_{0} \cup N_{1} \cup U N_{y-1} \leftarrow Al node found
in first y-1 steps
Phose I) Expansion: $T_{y} \leq \frac{n}{2}$
Consider N_{y} : $T_{y} \leq \frac{n}{2}$
 $\rightarrow Choose edge for N_{y-1}
 $\rightarrow \geq |N_{y-1}| c \log_{n} edges$
 $\rightarrow X_{1} = 1$ if $edge i$ in the new node (not in T_{y})
 $\rightarrow Pr(X_{1}) \geq |-\frac{T_{1}}{n} \geq \frac{1}{2}$
 $M_{\pi} = E[N_{y}] \geq E[2X_{1}] \geq |N_{y-1}| \leq \log_{n} \geq 16\log_{n}$
 $Pr[N_{y}] \leq \frac{1}{n} = 2|N_{y-1}|$
 $\implies W_{P} \geq 1 - \frac{1}{n}, |N_{y}| \geq 2|N_{y-1}|$
[Whe heat we condition on
 $|N_{y-1}|^{2?}$$$$

$$\Pr\left[any \ N_{g} \ f_{n} | s \right] \leq \frac{l_{m}n}{n}$$

$$\Rightarrow for \ y^{*} = log(n), \ extrem \ T_{g'} \geq \frac{n}{2} \quad or \quad |N_{g'}| \geq 2^{l_{g'}n} | N_{s}|$$

$$\geq n$$
End of phase 1) $T_{g'} \geq \frac{n}{2}$
Phase 2) Finish
$$Let \ E' \ be the set of edges \ chosen \ by \ nodes \ in \ T_{g'}$$

$$|E'| \geq \frac{n}{2} \cdot c \log n$$

$$What \ is \ Pr(V \ not \ hit) \leq n \cdot \frac{1}{n^{2}} \leq \frac{l_{g}}{n}$$

$$\Pr\left(any \ node \ in \ V \ not \ hit\right) \leq n \cdot \frac{1}{n^{2}} \leq \frac{l_{g}}{n}$$

$$\Pr\left(Phase \ I \ f_{sl} \ or \ Phase \ 2 \ f_{sl}\right) \leq \frac{l_{g'}n}{n^{2}} \cdot \frac{l_{g'}n}{n^{2}} \leq \frac{l_{g'}n}{n^{2}}$$

$$\Pr\left(Phase \ I \ f_{sl} \ or \ Phase \ 2 \ f_{sl}\right) \leq \frac{l_{g'}n}{n^{2}} \cdot \frac{l_{g'}}{n^{2}} \leq \frac{l_{g'}n}{n^{2}}$$

$$\Pr\left(Phase \ I \ f_{sl} \ or \ Phase \ 2 \ f_{sl}\right) \leq \frac{l_{g'}n}{n^{2}} \cdot \frac{l_{g'}n}{n^{2}} \leq \frac{l_{g'}n}{n^{2}}$$