Randomized Algorithms March 12, 2019
National University of Singapore CS5330
Seth Gilbert Midterm Solutions

Midterm Solution Sketches

e Don’t Panic.
e The midterm contains six problems (and one just for fun). You have 120 minutes to earn 100 points.
e The midterm contains 16 pages, including this one and 3 pages of scratch paper.

e The midterm is closed book. You may bring one double-sided sheet of A4 paper to the midterm. (You
may not bring any magnification equipment!) You may not use a calculator, your mobile phone, or
any other electronic device.

e Write your solutions in the space provided. If you need more space, please use the scratch paper at
the end of the midterm. Do not put part of the answer to one problem on a page for another problem.

e Read through the problems before starting. Do not spend too much time on any one problem.

e Show your work. Partial credit will be given. You will be graded not only on the correctness of your
answer, but also on the clarity with which you express it. Be neat.

e Draw pictures and give examples.

e Good luck!
Problem # Name Possible Points | Achieved Points
1 True, False, Explain 15
2 Faulty Servers 10
3 Minimum Cuts for Fun and Profit 12
4 Room Allocation 30
3 Morris Likes to Count 16
6 The World Congress 17
Total: 100

Student Number:
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Problem 1. True, False, and Explain [15 points]

For each statement, indicate whether it is true or false, and briefly explain why. (No credit
will be given for a blank or incorrect explanation.)

For any random variable X, assume that

E[X] > /Var [X]| > 0. Then Pr[X > 3E [X]] < 1/4.

TRUE FALSE
Solution: True. Pr[X > 3E [X]] <
Pr[|X —E[X]| < 2E[X]] < Var [X] /4E[X]* < 1/4.
For every non-negative random variable X and for every
value a, Pr[X > a] > Pr[X? > a?].
TRUE FALSE

Solution: True.  More specifically, Pr[X >a] =
Pr[X? > a?] since for all non-negative values, X > a
if and only if X2 > a.
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Stochastic domination is transitive: given three indepen-
dent random variables A, B, and C, if A stochastically
dominates B and B stochastically dominates C, then A
stochastically dominates C'.

Solution: True. For all values t, Pr[(JA > t) >
Pr[(]B >t) > Pr[(JC > t), as required.

TRUE

FALSE

The expected search time for Cuckoo Hashing is asymp-
totically faster than the expected search time for a hash
table with chaining (where the table size m = ©(n), the
number of keys).

Solution: False. Both are O(1) in expectation. In fact,
for Cuckoo Hashing it is deterministically O(1), while for
hashing with chaining it is O(1) in expectation.

TRUE

FALSE

If you throw n balls randomly into n bins, where n > 2,
then the expected number of empty bins is < n/9.
Solution: False. The probability that a bin is empty is
(1—1/n)? > 1/e* > 1/9. Therefore the expected number
of empty bins is > n/9.

TRUE

FALSE
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Problem 2. Faulty Servers [10 points]

You are the system administrator for a collection of n servers. Unfortunately, every so often,
a server fails. It’s your job to detect when servers fail and identify them. To check if a
server is running properly, you can ping it, sending it a message and getting a response.
Unfortunately, communication is faulty, so sometime your ping fails.

e If the server has failed, then there is no response to the ping.

e If the server is functional, then with probability 1/2 you get a response to your ping;
with probability 1/2 you get no response.

Thus, when there is no response to a ping, you cannot be sure whether the server failed or
whether the ping failed.

This morning, an alarm goes off, indicating that (exactly) one server has failed! Alas, you do
not know which server has failed. (You may assume that a randomly chosen server failed.)

Assume that n = 4, and you ping server X and get no reponse.

What is the probability that server X has failed? 2/5

Show that your answer is correct:

Solution: Let f be the event that the server X has failed, and p be the event there is no

response to a ping. By the rule of conditional probability, we know that Pr[f|p] = E?{i } In

this case, Pr|[f] = 1/4, since n = 4 and one server has failed. The probability that a ping
gets a response is (3/4)(1/2), since the failure of the ping is independent of which server
failed. So Pr[p] = 5/8. We conclude that Pr[f|p] = (1/4)/(5/8) = 2/5.
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Problem 3. Minimum Cuts for Fun and Profit [12 points]

Consider the following graph G containing n nodes and n edges, where n — 1 nodes are
arranged in a ring and one node is attached outside:

Problem 3.a. What is the minimum cut of G?

Solution: The minimum cut is of size 1, separating the outside node from the ring.

Problem 3.b.  Prove (carefully, in detail) that the probability that one execution of the
contraction algorithm (i.e., executing Collapse(G,n,2), reducing the number of nodes to
two) in Karger’s Min-Cut algorithm has probability exactly 2/n of successfully finding the
minimum cut.
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Solution: We need to show that for n — 1 iterations, we never choose to contract the
edge outside the ring, i.e., the only edge in the minimum cut. We refer to that edge as the
“critical edge.”

In the first step, there are n edges total and n — 1 other edges to choose; in the second step,
there are n — 1 edges total and n — 2 other edges to choose; in the third step, there are n — 2
edges total and n — 3 other edges to choose, etc. Notice that this is an exact calculation
because whenever an edge on the ring is collapsed, only one edge is removed (i.e., there are
no parallel edges until the very last step).

Let E; be the event that we choose the critical edge in step j, and E]- be the event that we
do not choose the critical edge in step j. Thus the probability of not choosing the critical
edge is:

n—2 7j—1

Pr [mj:j EJ} = I[er |EINE
j=1 i=1
e n—j+1
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Problem 4. Room Allocation [30 points]

Professor Rogammer has n study rooms and n high school students, each of whom needs to
be assigned to a room. Her goal is to assign students to study rooms in a uniform fashion,
so that no study room has too many students. To do this, she wants to use a random load
balancing strategy: when each student arrives, she chooses a room uniformly at random and
assigns the student to the room.

It turns out that all the students arrive in pairs. (They were each assigned partners in class.
Assume n is even.) Some of the pairs want to work together, while others do not. When a
pair of students arrives:

e With probability 1/2, the pair want to study together. Professor Stubbins chooses a
random room and assigns them both to the same room.

e With probability 1/2, the pair does not want to study together. Professor Stubbins
assigns each of the two students to randomly chosen rooms, independently of each
other. (They may, by chance, still end up in the same room, of course.)

Choose one room that we want to analyze (maybe, room number seven). Let X be the
number of students assigned to that room, after all n students have arrived.

Problem 4.a. What is the expected value of X7 1

Show that your answer is correct:

Solution: Let y; be the indicator random variable equal to 1 if student 7 is assigned to the
room. We know that E [y;] = Pr[y; = 1] = 1/n. (The fact that some choices are correlated
does not change that.) By linearity of expectation, we know that E[X] = >°"  E[y,] =

Yo l/n=1
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Problem 4.b. What is the variance of X7 él/ 2))(3 -
n

Show that your answer is correct:

Solution: The variance Var [X] = E[X?] — E[X]*. We know that E[X]* = 1. We need
to compute the E[X? = E[(>_", v;)?]. By linearity of expectation, we know that E [X?] =
> k. E[Yrye]. There are three cases here to consider:

e i is odd and ¢ = k + 1 (or vice versa): In this case, k and ¢ represent two students
in a pair. Thus with probability 1/(2n) they are both assigned to the room because
they are inseparable partners; with probability (1/2(1/n)(1/n) they are both assigned
to the room independently. Thus the total probability that k£ and ¢ are both assigned
to the room is (1/2n)(1+ 1/n). Therefore E [yrye] = (1/2n)(1 + 1/n) (as the only case
where this is 1 is when both are assigned to the room). This case occurs n times in
total (i.e., n/2 different pairs, where the pairs can appear in both orders).

e k = (: In this case, k and ¢ represent the same student. In this case, E [yzy] = 1/n.
The fact that this may depend on some other student is irrelevant. This case occurs n
times.

e None of the above cases hold: In this case, k and ¢ represent independent students.
Therefore the probability that they are both assigned to the room is (1/n)(1/n) = 1/n.
Thus E [yry] = 1/n?. This case occurs n? — 2n times.

It remains only to compute the total:
n(1/2n)(1+1/n) +n(1/n)+ (n*—2n)(1/n?) =1/2+1/2n+14+1—-2/n = (5/2)(1+1/n) .

Therefore, the variance is (5/2)(1+1/n) —1 = (1/2)(3+4 5/n). If you observe that 1/n <1,
then this is bounded by 4.

Problem 4.c.  Use Chebychev’s Inequality to upper bound the probability that the room
has more than 9 students. For this approximation, you may assume that n > 5, which should
simplify your variance calculation from the previous part. (If you were not able to solve the
previous part, then for partial credit you may use V' to represent the variance of X.)

Solution: From the previous part, we know that Var [X] = (1/2)(3+5/n) < (1/2)(4) < 2.

Var [X]
4

Pri|X —1| >8] < <2/64 < 1/32
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Problem 4.d. Now prove that every room has O(logn) students, with high probability.
(Remember to show that this holds for all rooms, not just for one room.) For this part, you
may again assume that n > 5.

Hint: You might want to define some new random variables that are independent.

Solution: Fix one room. Consider students in pairs: let zp = (yap_1 + yor)/2 where k
ranges from 1 to n/2. Each z;, € [0, 1] depending on whether neither, one, or both students
are allocated to the room. Notice that the actual number of student assigned to the room

is X; =2 Z;‘fl 2. So if we can show that Z’,jfl 21 = O(logn) with high probability, then
we have successfully proved the desired property.

The E [z¢] = (1/2)(2/n) = 1/n (by linearity of expectation). Each of the z; are independent.
Thus we can apply a Chernoff Bound to show that:

n/2
Pr sz > (1 —|—61nn)(n/2)(1/n) < 67(1/2)361n2(n)/(2+61nn) < 67181n2(n)/81nn < 6721nn < 1/712
k=1

Taking a union bound over all n/2 pairs, we see that with probability at least 1 — 1/n, we
know that ZZfl 2, < 61lnn, and hence X < 12Inn.

10
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Problem 5. Morris Likes To Count [16 points]

Morris invented the following clever algorithm for (approximate) counting:

Algorithm 1: Morris Approximate Counter

1¢c=0
2 INCREMENT()
3 With probability 1/2¢: set ¢ = ¢+ 1.

4
5 ANSWER()
6 return 2 —1

Start with the counter ¢ equal to 0. On each increment, increment the counter ¢ with
probability 1/2¢. Morris showed that after n increment operations:

E2)=n+1
Var [2¢] < n?
(You can assume this is true for today. As a fun exercise, you can prove it by induction.)

This means that, luckily, it is an unbiased estimator, giving the propert expected answer!
Unfortunately, the variance is quite high.

Problem 5.a. Design an algorithm using the Morris Counter as a block box that returns
a (1+e€) approximation of the correct count with probability at least 3/4. Do this by running
a copies of the Morris Counter in parallel and combining the answers in some way. Explain
how your algorithm works. (Give your analysis/proof on the next page.)

Solution: Run « independent copies of the Morris Counter and return the average value.

11
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Problem 5.b. Prove that your algorithm is correct, i.e., after n increment operations it
returns a value n(1 + €) with probability at least 3/4.

Solution: Let A be the average value of « copies of the Morris Counter. Since each copy of
the Morris Counter returns a value with expectation n, we know that E[A] = n. Similarly,
since the variance of the Morris Counter is < n?, we know that Var [A] = « - Var [2¢] /a? <
n?/a. By Chebychev’s Inequality, we know that:

Var [A]

PrilA—n|> 22| « 12

r[’ “'—x/a] = (2n/J/a)?
oo
—  a4n?
< 1/4

Therefore, we conclude that A = n(1 + 2//a) with probability at least 3/4. By choosing
a = 4/€%, we conclude that A = n(1 4 ¢) with probability at least 3/4.

Problem 5.c.  What value of a did you choose, as a function of €7 O(4/€?)

Briefly explain your choice of a:
Solution: See the above analysis. We showed that A = n(1 £ 2/y/«a) with probability at

least 3/4, so by choosing a = 4/¢?, we conclude that A = n(1 4 €) with probability at least
3/4.

12
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Problem 6. The World Congress' [17 points]

In the future, we will all be governed by The World Congress, which has representatives
from n countries. The World Congress has many subcommittees, each of which governs an
important aspect of daily life (e.g., the Committee on Clean Air, the Committee on the
Prevention of War, the Committee on Superhero Management, etc.). Your job is to help
design a randomized algorithm for selecting membership of the various committees. There
are k < n committees in total. Each committee makes decisions based on majority vote.

Unfortunately, some of the representatives represent evil countries that want to overthrow
The World Congress and destroy the world.? If evil representatives take control of a commit-
tee, who knows what harm they may do! It is imperative that we ensure that each committee
has a majority of representatives that are good (i.e., not evil).

Luckily, we know that at most 1/4 of the representatives are evil, and at least 3/4 of the
representatives are good. So it shouldn’t be too hard to design some good committees, right?
Each committee is assigned a members, chosen uniformly and independently at random from
the n representatives. (A representative may therefore be on more than one committee, and
for simplicity, a representative may be chosen more than once for a single committee.)

Your goal is to choose a value of v so that with probability at least 1—1/n, all the committees
have a good majority.

24(Inn  +

What value of a do you choose:
In k)

Prove that all the committees have a good majority with probability at least
1—1/n:

1This problem may seem apocryphal, but the basic idea in fact underlies recently popular sharding ideas in cyp-
tocurrencies, where transactions are balanced across smaller committees that can process transactions more quickly.

2Their plot is currently unknown, but rumor goes that it involves Thanos, Harvestors, Ice Nine, and burning a lot
of oil.

13



CS85330 Midterm Exam Student number:

Solution: Fix one committee. Let x; be an indicator random variable that is equal to 1
if committee member ¢ is good and equal to 0 if committee member ¢ is evil. Therefore we
know that E [z;] = Pr[z; = 1] > 3/4. Let X =Y | (2;) be the number of honest members
of the committee. We know that E [X] > an/4. Since the z; are 0/1 random variables, and
are independent, we can use a Chernoff Bound to show that:

PriX <(1-1/3)E[X]] < e EXI1/3°/2
o~ (3/9(1/9)(1/2)a

IA A

o (1/20)a

Therefore, if we choose a = 24(Inn + In k), we find that Pr[X < (1/2)a] < 1/nk. Taking a

union bound over the k£ committees, we conclude that the probability that any committees
has a majority of evil representatives is at most 1/n, as desired.

(Extra space on the next page.)

14
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Optional extra space for the previous question:

15



CS85330 Midterm Exam Student number:

Scratch Paper
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Scratch Paper
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Scratch Paper
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