
CS5330: Randomized Algorithms

Problem Set 3—Solutions

Due: February 12, 6:30pm

Instructions. The exercises at the beginning of the problem set do not have to be submitted—
though you may. They mainly cover topics related to Cuckoo hashing (which we covered in tutorial)
and hash functions (which we will be talking about next week). There are four problems, related
to different balls-and-bins process, the Coupon Collector problem, etc.

• Please submit the problem set on IVLE in the appropriate folder. (Typing the solution using
latex is recommended.) If you want to do the problem set by hand, please submit it at the
beginning of class.

• Start each problem on a separate page.

• If you submit the problem set on paper, make sure your name is on each sheet of paper (and
legible).

• If you submit the problem set on paper, staple the pages together.

Collaboration Policy. The submitted solution must be your own unique work. You may discuss
your high-level approach and strategy with others, but you must then: (i) destroy any notes; (ii)
spend 30 minutes on facebook or some other non-technical activity; (iii) write up the solution on
your own; (iv) list all your collaborators. Similarly, you may use the internet to learn basic material,
but do not search for answers to the problem set questions. You may not use any solutions that you
find elsewhere, e.g. on the internet. Any similarity to other students’ submissions will be treated
as cheating.

1

Exercises and Review

Exercise 1. Prove the following facts regarding Cuckoo Hashing. (Note: we have already covered
these in tutorial; the goal here is to carefully write down a proof.) Assume throughout that m = 4n.

• Given a Cuckoo Graph containing n edges, show that any path of length p in the Cuckoo
Graph generated by an insert operation that terminates has a simple subpath (with no re-
peated nodes) of length at least p/3.

• Given a Cuckoo Graph containing n edges, show that for all nodes i and j, for all `, the
probability that the graph contains a path of length exactly ` from i to j is at most 1

4`
1
m .

• Prove that the expected cost of an insert operation is O(1) (as long as the Cuckoo Hash Table
contains at most n items).

• Given a Cuckoo Graph containing n edges, prove that the probability it contains a cycle is
at most 1/2.

• Whenever an insert does not terminate (i.e., ends in an infinite loop), you need to create
a new Cuckoo Hash Table, choose new hash functions, and reinsert all n items. (If your
insert operation continues for 2m steps, you can assume you have entered an infinite loop!).
Assume that you continue this process, rehashing as necessary, until you successfully insert
all n items. Prove that the expected total cost of this process is O(n) (including the cost of
the repeated rehashing).

Exercise 2. Consider a version of Cuckoo hashing that only uses one array A, but has two hash
functions f and g. Each element x is inserted at either A[f(x)] or A[g(x)]. As before during an
insert, if a space is occupied, then the old item is kicked out and moved to its new location. Can
you modify the existing analysis to work in this setting?

Exercise 3. Think about the variant where you have one arrayA and k hash functions f1, f2, . . . , fk.
Each element x is inserted at some A[fj(x)], for some j. How would you design an insert algorithm
for this variant? How do you decide where to move an item when it is evicted? What if you are
allowed to store ` items in each slot in the array? What are the trade-offs involved?

Exercise 4. Define the following three random variables:

• A has value 100 with probability 1/2 and value 200 with probability 1/2.

• B has value 100 with probability 1/3, value 120 with probability 1/6, and value 200 with
probability 1/2.

• C has value 1000 with probability 1/4 and value 0 otherwise.

Show that B stochastically dominates A, that B does not stochastically dominate C, and that C
does not stochastically dominate B. (That is, B and C are incomparible.)

2

Problem 1. [Deploying a Sensor Network.]

Imagine you are deploying a sensor network in a flat, square field that is 1km by 1km. Each sensor
has a range r < 1km, meaning that it can record all events that occur within distance r of the
sensor. The sensors are deployed randomly in the field (e.g., imagine they are dropped from an
airplane).

How many sensors should be deployed to ensure that with probability at least (1− ε), every event
in the field can be monitored, i.e., every point in the field is within range of at least one sensor.
Assume ε is a fixed constant error parameter < 1. (Hint: a sensor in a square with side-length
r/
√

2 can reach every point in the square.)

Solution: Divide the field into a grid of small squares with edge-length r/
√

2. Notice that if
there is at least one sensor in each square, then it can cover the entire square (as the diagonal of
the square is of length r). There are at most 2/r2 squares in the field, and each sensor is equally
likely to be deployed to each square. Let n = 2/r2 denote the number of squares.

Thus, by the coupon collector’s analysis, we need O(n log n) = O((2/r2) log(2/r2)) = O(1−log r
r2

)
sensors to monitor the field with high probability.

To get a probability in terms of ε, notice that the probability of a square being empty is at most
(1− 1/n)m ≤ e−m/n, where m is the number of sensors being deployed. If we set m = n log(n/ε),
then e−m/n ≤ e− log(n/ε) ≤ ε/n. By taking a union bound over the n squares, we see that the
probability of any square being empty is at most ε.

Thus, since log(2/(εr2)) = 1− 2 log(εr), we need n log(n/ε) = (1− 2 log(εr))/r2) sensors to ensure
coverage with probability at least 1− ε.

Problem 2. [Random Graphs.]
Assume you build a random graph G(n,m) with n vertices and m edges where the edges are chosen
uniformly at random from the set of all possible edges. (That is, the graph includes a random
subset of the

(
n
2

)
possible edges.) Via the principle of deferred decisions, we can imagine that you

construct the graph as follows:

Repeat until the graph is connected:

– Choose a node u at random.

– Choose a node v at random.

– If (u, v) is not an edge in the graph, add edge (u, v) to the graph.

3

What is the expected number of edges you have to sample before the graph G becomes connected?
Argue that from this you can derive a size m so that a random graph with m edges has at least
a probability 1/2 of being connected. (Hint: think about the graph in terms of its connected
components, and apply the Coupon Collector’s technique.)

Solution: This problem is quite similar to the Coupon Collector’s analysis. Let X1, X2, . . . be
random variables representing the number of connected components, where Xj is the number
of connected components before the addition of edge j. Thus, X1 is the number of connected
components prior to adding any edges, i.e., X1 = n.

We divide the sequence of random variables into segments that have equal value, i.e., let
Sk = {Xj |Xj = k}. Let us focus our attention on a particular set Sk, i.e., the sequence of edges
added to the graph while there were k connected components. Let Y1, Y2, . . . be indicator random
variables specifying whether each edge in Sk connects two existing connected components. (Notice
that if Yj = 1, then edge j is the last edge in Sk, and |Sk| = j.)

We need to calculate Pr [Yj]. We can think of each edge as being chosen as follows: first we choose
one endpoint v, and then we choose a second endpoint w. The probability Pr [Yj = 1] is equal to the
probability that the second endpoint w is in a different component as w. Since there are k connected
components, we know that there are at least k−1 possible endpoints for w (out of the n−1 possible
nodes) that would connect v to a new components. That is, Pr [Yj = 1] ≥ (k−1)/(n−1) ≥ (k−1)/n.

From this, we conclude the the expected number of edges that can be added before connecting
two components is ≤ n/(k − 1). That is, Exp [|Sk|] ≤ n/(k − 1). By linearity of expectation, we

conclude that Exp
[∑2

k=n |Sk|
]
≤
∑n

k=2
n
k−1 = O(n log n).

Notice that one must be careful with the direction of the inequalities. If the connected components
are large, then the probability of connecting two components may be larger than (k− 1)/n; this is
only providing an upper bound.

4

Problem 3. Group Assignment.

Professor Unfriendly wants to group students in his class in such a way that no pair of friends are
in the same group. Luckily, Professor Unfriendly has access to the Facebook friend graph, and can
tell who are friends. He has access to a graph G = (V,E) where V is the set of n students in the
class and each edge e ∈ E indicates a pair of friends. The maximum degree of the graph is ∆, and
Professor Unfriendly wants to create at most T = 2∆ groups.

The professor runs the following algorithm:

Repeat until every student is assigned a group:

– Iterate through all the students in order:

1. Choose a group p uniformly at random from [1, T].

2. If the current student is not yet assigned to a group, and if none of his/her friends
are in group p, then assign the student to group p.

3. Otherwise, skip the current student and continue with the next one.

Your goal in this problem is to analyze the running time of this algorithm. To do that, we will
count the number of times we execute the inner loop (i.e., choosing a group and trying to assign
it).

Let Xj be an indicator random variable defined by the jth iteration of the inner loop: if the student
in the jth iteration is assigned a group, then Xj = 1; otherwise Xj = 0. As soon as

∑
Xj = n, we

know that every student has been assigned a group.

Beware, though, that it is not easy to compute Pr [Xj = 1], since it depends on the outcome of
all the previous random choices. (For example, for the first student to be assigned a group, the
probabiity is 1, i.e., Pr [X1] = 1. For the last student to be assigned a group, the probability is
lower especially if they have a lot of friends!) So the Xj are not independent!

Problem 3.a. Define a new (independent) set of random variables Y1, Y2, . . . so that Xj stochas-
tically dominates Yj . (We will use the Y ’s to bound the running time, so we want them to be less
likely to occur than the X’s.)

Give the definition of Yj and prove carefully (using the definition of stochastic domination) that
Xj dominates Yj .

5

Solution: Define Yj = 1 with probability 1/2 and Yj = 0 with probability 1/2. To show that Yj
stochastically dominates Xj , we need to show that for all values k, Pr [Xj ≥ k] ≥ Pr [Yj ≥ k]. We
now consider the different cases:

• k = 0: Pr [Xj ≥ 0] = 1, and also Pr [Yj ≥ 0] = 1. Thus the desired inequality holds.

• k = 1: Pr [Yj ≥ 1] = 1/2, by definition. For Xj , notice that the student in question has at
most T/2 friends, and the group is chosen from the set [1, T]. Therefore, we know that with
probability at least 1/2, the student is successfully assigned a group different from her friends.
That is, Pr [Xj ≥ 1] ≥ 1/2 ≥ Pr [Yj ≥ k].

• k ≥ 2: In this case, Pr [Xj = k] = Pr [Yj = k] = 0, i.e., this is impossible.

Thus we have shown that the Yj variables are stochastically dominated by the Xj variables.

Problem 3.b. Let t = 2n log n, and define Y =
∑t

j=1 Yj . Show that Y ≥ n with probability at
least 1− 1/n. (If you cannot prove this, then you might want to revisit your definition of Yj .)

Solution: There are several ways to show this, perhaps the most common being to just write
out the binomial distribution and approximate. (Notice that, given how we have defined the Yj
variables, this is the same as showing that if you flip a coin 2n log n times, then with probability you
get at least n heads.) An alternate solution is to break the sequence up into collections of 2 log n
Yj variables. The probability that all the Yj in such a collection are 0 is at most 1/22 logn = 1/n2.
There are n such collections, so the probability that any collection is all 0 is at most n/n2 = 1/n,
by a union bound. Thus with probability at least 1 − 1/n, each collection has at least one 1 and
hence the sum is at least n.

Problem 3.c. Now conclude the proof by showing that, with high probability, the group assign-
ment algorithm completes within time O(n log n).

You may assume the following fact:

• We define the term unconditionally sequentially dominates as follows: A sequence of random
variables (X1, . . . , Xn) unconditionally sequentially dominates another sequence of random
variables (Y1, ..., Yn) if for each j, (Xj | arbitrary X1, ..., Xj−1) stochastically dominates Yj ,
i.e., if each Xj stochastically dominates Yj , regardless of the outcome of all the previous
Xj−1, Xj−2, . . . (i.e., unconditionally).

• If X1, ..., Xn are an arbitrary set of (discrete) random variables, and Y1, ..., Yn are independent
(discrete) random variables, if (X1, ..., Xn) unconditionally sequentially dominates (Y1, ..., Yn)
then

∑
(Xj) stochastically dominates

∑
(Yj).

6

Solution: First, we note that the Xj unconditionally sequentially dominate the Yj , since regard-
less of the other random variables, we see that each Xj has a probability of at least 1/2 of being
true.
As before, define t = 2n log n, and let X =

∑t
j=1Xj and Y =

∑t
j=1 Yj . By the fact stated above,

we know that X stochastically dominates Y . That means that Pr [X ≥ n] ≥ Pr [Y ≥ n] ≥ 1− 1/n.
Thus we know that within the first t iterations of the loop, at least n students are assigned to groups
(i.e., all of them), and so the algorithm terminates. Therefore, we conclude that the algorithm runs
in O(n log n) time with high probability.

7

Problem 4. Contention Resolution.

One of the major problems in distributed and parallel systems is contention resolution: there are a
collection of agents that want to coordinate access to a shared resource. For example, the resource
may be an ethernet connection or a wireless channel (where only one device can broadcast a message
at a time). Or the shared resource may be a lock that multiple concurrent threads are trying to
access in order to update a data structure.

A typical approach is to use a randomized strategy: when a device wants the resource, it randomly
chooses one of the next T timeslots at random and tries to claim the resource in that randomly
chosen slot. If it fails, it waits until all T slots elapse, and repeats the procedure. (The T slots
are often referred to as the “window” and in a backoff protocol, the size of the window may be
adjusted dynamically.)

Here we model this strategy as a simple balls and bins problem. Imagine you have n balls (which
represents requests to use the shared resource) and b bins (which represent timeslots in the window).
We play the following game:

Repeat until all the balls have been removed:

– Place each remaining ball in a bin chosen uniformly at random.

– Every ball that lands in a bin by itself (with no other balls) is removed. (Since this
ball/request was the only one in the bin/timeslot, it can safely access the resource
during that timeslot.)

– All the balls that lands in a bin containing more than one ball are collected and advance
to the next round.

Intuitively, as long as b is sufficiently bigger than n, then in each round of the game we remove
many of the balls and make progress toward completing the game. Our goal in this problem is to
calculate the expected number of rounds until all the balls have been removed.

Assume throughout this problem that the initial number of balls n ≤ b/8. Let nj be the number
of balls that remain after round j.

Continued on the next page.

8

Problem 4.a. Show that:

E [nj | nj−1 ≤ x] ≤ 2x2

b
.

(Hint: remember that if x ≤ 1, then e−2 ≤ (1−1/x)x ≤ e−1; identically, for x ≥ 1, e−2x ≤ (1−x) ≤
e−x.)

Solution: The probability of a ball being removed is at least

(1− 1/b)x−1 ≥ (1− 1/b)x ≥ e−2x/b ≥ (1− 2x/b) .

Hence the expected number of balls that remain is x(1− (1− 2x/b)) = 2x2/b.

Problem 4.b. In the previous part, you showed that in expectation the number of balls de-
creases rapidly in each round. We now want to calculate the probability that we make progress.
(Remember, in some rounds we may do better than the expectation; in some rounds we may do
worse!)

Let Ij be the event that the number of remaining balls is at most n/22
j

at the end of a round.
What is the probability that event I0 does not occur in a round (if it has not previously occurred)?
Show that I0 occurs with probability at least 1/2 (if it hasn’t occurred previously).

Solution: Initially n0 = n ≤ b/8. As we showed in the previous part:

E [n1|n0 = n] ≤ 2(n0)
2/b ≤ 2n(b/8)/b ≤ n/4 .

Hence, by Markov’s Inequality, the probability that I0 does not occur at the end of the first round
is Pr [n1 ≥ n/2|n0 = n] ≤ 1/2. The same is true for all the following rounds where I0 has not
occurred.

Problem 4.c. Given that event Ij−1 has already occurred (and Ij has not already occurred),
what is the probability of Ij not occuring in a round? Show that Ij occurs with probability at least
1/4 (if it hasn’t occurred previously, and Ij−1 has occurred previously).

9

Solution: Let n′ be the number of nodes at the beginning of the round t in question. Since Ij−1
has occurred, we know that n′ ≤ n/22j−1

. From the previous part, we know that:

E
[
nt|nt−1 = n′

]
≤ 2n′2/b ≤ 2(n/22

j−1
)2/b ≤ 2n(b/8)(1/22

j
)/b ≤ (1/4)n/22

j
.

Thus by Markov’s Inequality, the probability that Ij does not hold after round t is at most

Pr
[
nt ≥ n/22

j |nt−1 = n′
]
≤ 1/4.

Problem 4.d. What is the expected number of rounds until the game is over? (Hint: define Xj

to be the number of rounds after Ij−1 until Ij occurs.)

Solution: Define Xj as described, and observe that the game is over when event Ilog log(n) occurs,
which implies that all n balls have been removed. Thus the expected time until the game is done
is equal to

∑log logn
j=1 Xj . (This is similar to the coupon collector’s analysis.)

We have already proven that E [Xj] ≤ 2. (In fact, aside from X1, it is ≤ 4/3.) The total time is∑log logn
j=1 Xj , and so the expected running time is at most 2 log log n.

10

