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Abstract

One of the most significant challenges introduced by ad hoc networks is coping with
the unpredictable deployment, uncertain reliability, and erratic communication exhib-
ited by emerging wireless networks and devices. The goal of this thesis is to develop a
set of algorithms that address these challenges and simplify the design of algorithms
for ad hoc networks.

In the first part of this thesis, I introduce the idea of virtual infrastructure, an
abstraction that provides reliable and predictable components in an unreliable and
unpredictable environment. This part assumes reliable communication, focusing pri-
marily on the problems created by unpredictable motion and fault-prone devices. I
introduce several types of virtual infrastructure, and present new algorithms based
on the replicated-state-machine paradigm to implement these infrastructural compo-
nents.

In the second part of this thesis, I focus on the problem of developing virtual
infrastructure for more realistic networks, in particular coping with the problem of
unreliable communication. I introduce a new framework for modeling wireless net-
works based on the ability to detect collisions. I then present a new algorithm for
implementing replicated state machines in wireless networks, and show how to use
replicated state machines to implement virtual infrastructure even in an environment
with unreliable communication.

Thesis Supervisor: Nancy Lynch
Title: NEC Professor of Software Science and Engineering
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Chapter 1

Introduction

There are several significant challenges associated with developing algorithms for ad
hoc networks. First, the devices are unreliable: the physical hardware is often small
and fragile; the batteries are easily exhausted; users may interrupt ongoing protocols
by turning devices off. Second, the devices are often mobile, moving in an unpre-
dictable manner, leaving the algorithm designer uncertain as to which devices may
be participating in which protocols. Third, communication is unreliable: the devices
communicate using wireless radios that make use of a shared spectrum that is subject
to message collisions and other forms of interference. All of these challenges can be
lessened by the deployment of a fixed infrastructure that is more reliable, less mobile,
and supports more efficient communication. Unfortunately, it is often impractical—
due to logistical or cost-related concerns—to deploy such a fixed infrastructure.

In this thesis we develop a set of algorithms that address the unpredictable and
unreliable behavior exhibited by wireless ad hoc networks. These new algorithms,
together with the new techniques and abstractions introduced in this thesis, simplify
the design of algorithms for wireless ad hoc networks. Collectively, we refer to these
abstractions and the algorithms that implement them as virtual infrastructure. Vir-
tual infrastructure (VI) replaces the fixed infrastructure found in more traditional
networks, thus compensating for unpredictable and unreliable behavior.

1.1 Ad Hoc Networks and Mobile Devices

Throughout this thesis, we focus on developing algorithms for ad hoc networks con-
sisting of a large number of small, often mobile, devices that are deployed in an
entirely ad hoc manner over some geographic region. These devices may be sensors,
such as the Berkeley motes (see e.g., [87]), which are primarily static devices designed
to collect and process data. Alternatively, these devices may be more mobile, such as
handheld PDAS or cell phones.

All of these devices, however, share certain attributes. First, the devices are small
and battery powered, and tend to be fault prone. Second, they tend to be deployed in
an ad hoc manner: sensor networks are often deployed through random distribution,
as from an airplane, rather than through careful placement; handheld devices tend
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to travel with their owners, rather than as designated by an algorithm designer.

Third, these devices communicate primarily using wireless radio, rather than
through a fixed network. Two devices can communicate only if they are geographically
near to each other; long-distance communication requires multi-hop communication.
As a result, it can be quite difficult in a network of mobile devices to ensure reliable
point-to-point communication between devices.

Moreover, wireless communication is notoriously unreliable: messages may be lost
due to collisions, electromagnetic interference, or other network anomalies. Moreover,
the collisions may be non-uniform: some devices may receive a message, while others
may not. The devices, however, have the ability to detect collisions: when a receiver
misses a message it should have received, it can detect the disruption and report a
collision. (Note that the transmitter, of course, cannot tell whether its messages was
received or not, i.e., receives no notification of a collision.)

A final key assumption is that the devices have reliable access to a synchronized
time source and a localization service that provides each device with its location.

1.2 Background

There are a wide variety of scenarios in which it seems more practical to equip a
set of devices with radios, forming an ad hoc network, than to build a fixed network
infrastructure. For example, firefighters in a burning building or soldiers on an enemy
battlefield may need to coordinate their operations; cars on a highway may coordi-
nate to provide a cooperative driving experience. In these (oft-cited) cases, it may
be prohibitively expensive to deploy a fixed infrastructure, especially when it must
be deployed over a large area under potentially hostile conditions. By contrast, radio
transceivers are relatively cheap and easy to integrate into current devices. Unfortu-
nately, it has long been recognized that a major barrier to deploying ad hoc networks
is the complexity of developing algorithms in such an unpredictable environment. In
this section, we discuss a variety of problems and protocols that arise in the context
of wireless ad hoc networks, and some of the difficulties that arise.

1.2.1 Point-to-Point Routing

In wired networks, the basis of almost every high-level protocol is an efficient and
reliable point-to-point communication protocol. The TCP/IP protocol stack [13, 88,
89], along with BGP routing [92], enables devices on the internet to communicate
reliably with each other, despite congestion, message loss, and occasional failures.

Naturally, then, the first attempts at developing algorithms for ad hoc networks
focused on providing reliable point-to-point communication, despite the constraints
of wireless communication and the requirement of geographic proximity (see, e.g., [42,
84,85,93]). Under this paradigm, applications are oblivious to the underlying wireless
network; they simply send and receive messages just as in the wired internet setting,
and the routing layer compensates for the unpredictable and changing network.
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There are two fundamental problems with this approach. The first problem is
pragmatic: it can be quite expensive to implement a routing layer that entirely masks
the underlying ad hoc behavior. Recall that long-distance communication can be
quite expensive; if the application is entirely oblivious to the underlying network and
the underlying topology, then the resulting protocol may spend significant time and
energy sending messages needlessly across the network. If the devices themselves are
mobile, the difficulty increases substantially: maintaining a routing network despite
constant change can be expensive, if not impossible: the routing layer must contin-
ually monitor the changing network and exchange information to update its routing
tables. In the worst case, where dynamic change is frequent, most protocols resort
to flooding every message to every node in the network. It remains an open question
whether existing algorithms can actually scale, in practice, to large mobile networks.

The second problem with relying on reliable point-to-point communication as
a basis for ad hoc network protocols is philosophical: for many of the scenarios
in which ad hoc networking appears useful, point-to-point routing is not the most
useful or desirable form of communication. In particular, many of the applications
for ad hoc networks are deeply rooted in geography, while point-to-point routing
is oblivious to real geography. For example, when coordinating rescue workers, it
is often important to coordinate reliably with nearby devices; moreover, accurately
and efficiently locating individuals may be critical; and certain standing orders or
danger warnings may be associated with a given location. None of these problems
can be solved simply with a location-oblivious routing protocol. By contrast, wireless
communication hardware is well-suited for this style of multicast communication.
Protocols that focus on point-to-point communication often mask this useful capacity.

1.2.2 Wireless-Aware and Location-Aware

In response to these problems, many researchers began to focus instead on wireless-
aware and location-aware algorithms. Instead of designing a protocol that uses point-
to-point routing as a building block, a wireless-aware protocol is built directly on a
wireless MAC layer and can take advantage of the underlying network topology and
wireless capabilities. There have been a variety of approaches to building wireless-
aware applications, mostly varying in the properties of the underlying MAC layer.
For example, Kuhn et al. describe a protocol for clustering in a static network based
on minimal MAC layer assumptions [55]. By contrast, Malpani et al. and Walter et
al. present protocols for leader election [74] and mutual exclusion [102] (respectively)
in a model with reliable communication, but changing topologies. The main difficulty
with the wireless-aware approach is the complexity of the resulting algorithms. In
many cases, it is nearly impossible to analyze the algorithms in a truly dynamic mobile
environment. Even for static networks, analysis may be quite difficult: for example,
many depend on complicated backoff protocols (to reduce contention on the wireless
channels); each protocol requires a new (and often complicated) analysis. Finally, the
close dependence on MAC layer attributes may lead to difficulties and inefficiencies as
MAC layers and radio technologies evolve. For example, many protocols assume that
message loss is relatively uniform (see, e.g., [10, 21, 22]), but that detecting collisions
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is impossible. More recent research has indicated instead that message loss is not
uniform, but that current MAC layers can in fact detect collision.

An alternative approach is to develop primitive building blocks that are wireless-
aware, in contrast to point-to-point routing, which is location-oblivious. These prim-
itives can then be themselves used to construct higher-level applications. Many of
these building-block protocols take advantage of location information to simplify prob-
lems of coordination and communication. One of the most common wireless-aware
and location-aware primitives is geocast, the geographic analogue to point-to-point
routing: a geocast service delivers a message to a location, rather than to a specific
device; any device near to the target location receives the message. A variety of proto-
cols for geocast have been developed, analyzed, and simulated (see, e.g., [17,50,56,78]).

A second class of wireless-aware primitives provides location-based storage (see,
e.g., [65,91]). These protocols use locations as a repository for data, allowing nodes to
share data at known locations. In contrast to the algorithms presented in this thesis,
however, these algorithms make only ad hoc attempts at guaranteeing reliability when
devices fail or move. The PersistentNode abstraction by Beal [11, 12] also builds a
data-storage primitive. A PersistentNode is a virtual entity that travels around a
static (rather than mobile) sensor network. It can carry with it some state, but does
not provide any consistency guarantees with respect to the data being stored.

Luo et al. attempt a more general approach to building an abstraction layer of
wireless-aware services [68]. In Nascent, they develop a suite of middleware services,
including token circulation, leader election, and reliable broadcast. These services are
then made available to build higher level applications. Others, such as Greenstein et
al. [39], have also attempted to develop a general toolkit for developing algorithms
for ad hoc networks.

1.3 Virtual Infrastructure

In this thesis, we introduce a new approach to the problem of building wireless-aware
and location-aware algorithms: instead of developing a specific service or applica-
tion, we suggest the use of virtual infrastructure as a general abstraction. Virtual
infrastructure provides many of the advantages of a fixed infrastructure, in terms
of simplicity and algorithm development, while simultaneously tolerating an ad hoc,
potentially hostile, environment in which fixed infrastructure may be overly costly
and impractical. In this thesis we describe two types of virtual infrastructure: virtual
objects and virtual nodes.

1.3.1 Virtual Objects

The most basic type of virtual infrastructure introduced in this thesis consists of
virtual objects. A virtual object is akin to a reliable storage unit deposited at some
known location in the network. Each real node, i.e., client, can store and retrieve
information from the virtual object. The object can implement any “variable type,”
and supports atomic invoke/response semantics (see, e.g., [70], Chapter 9).
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A virtual object is (relatively) reliable, even though the set of real nodes that
reside near—and implement—the object may be continuously changing. As long as
some real nodes reside near the virtual object, it can continue to operate1. Virtual
objects generalize some of the previously mentioned approaches for location-aware
data storage [11,12,65,91], and were first introduced in [32,33].

1.3.2 Virtual Nodes

A virtual node is a natural extension of a virtual object. Instead of simply storing
data and passively responding to requests, the virtual node can process data, send
messages, and initiate actions. A virtual node resembles a reliable server, that is, a
piece of computing infrastructure residing at some well-known location. Clients can
send and receive messages to and from the virtual node, just as they would interact
with a real device. If they are near to the virtual node, they may communicate with
it via “local broadcast” communication; if the virtual node is farther away, they may
communicate using a GeoCast service. Similarly, the virtual nodes may communicate
with each other. Each virtual node is an arbitrary I/O automaton [70] (without tasks
or fairness), and thus can execute any arbitrary (untimed) program.

Much like virtual objects, virtual nodes are designed to be more reliable than
the individual mobile nodes in the underlying network. As long as some real nodes
reside near the virtual node, it can continue to operate. If a virtual node fails (due to
regional depopulation, say), it can recover if mobile nodes again return to the region
near to the virtual node.

Moreover, a virtual node may be mobile, traveling on a predictable path through
the network. The basic idea of executing algorithms on virtual mobile nodes (in con-
trast to static virtual infrastructure) was inspired by the development of compulsory
protocols [20, 40, 66], and was first introduced in [31]. The basic observation in com-
pulsory protocols is that if mobile nodes moved in a programmable way, algorithms
could take advantage of the motion, providing elegant and simple solutions. This idea
is illustrated by Hatzis et al. [40], who introduce the notion of a compulsory protocol,
one that requires a subset of the mobile nodes to move in a pre-specified manner.
They present an efficient compulsory protocol for leader election. The routing pro-
tocols of Chatzigiannakis et al. [20] and Li et al. [66] provide further evidence that
compulsory protocols are simple and efficient. Using virtual mobile nodes, it is possi-
ble to take advantage of compulsory protocols even in networks where the underlying
mobile nodes in fact do not behave in the desired manner.

1.4 Implementing Virtual Infrastructure

In this thesis we present three different algorithms for implementing virtual infras-
tructure. The first two of these algorithms are designed for a network that guarantees

1As presented in this thesis, there is no mechanism for virtual objects to recover; the same
techniques that are employed to support the recover of virtual nodes, however, can be adopted for
virtual objects.
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reliable communication: the first implements virtual objects, and the second virtual
nodes. The third algorithm is designed for a network in which communication is
unreliable, that is, susceptible to collisions and lost messages.

All the algorithms in this thesis for implementing virtual infrastructure are, fun-
damentally, based on replicated state machine techniques. Each virtual infrastructure
component is implemented by a set of participants (replicas) that maintain the state
of the virtual infrastructure component. Whenever the state is updated, as a result of
either a message received or a spontaneous action, all the replicas perform a consistent
update, maintaining the replicated state.

The main challenges lie in dynamically determining an appropriate set of replicas
as the underlying system changes, ensuring consistency even as the set of replicas is
continuously changing, and ensuring that the resulting emulation is efficient.

Each virtual infrastructure component is emulated by a set of replicas that reside
near the actual location of the virtual object or node. As real devices move toward
and away from the virtual component, and as real devices join and leave the system,
the set of replicas changes continuously. In particular, a device is able to examine
its current location and determine whether to join or leave the emulation; the use of
hysteresis may well improve efficiency.

In order to maintain consistency, each replica must apply updates in the same
order. One way to achieve this is to use a (local) totally ordered broadcast service
that ensures that messages sent within a specific region—the area of emulation of the
virtual component—are delivered in the same order to all active participants. When
the network guarantees reliable and timely communication, it is possible to build a
totally ordered communication service using timestamp-based techniques originally
developed by Lamport [58] in the context of fixed-infrastructure replicated state ma-
chines. When a node joins the emulation, it first requests a copy of the replicated
state, and at the same time begins participation in the totally ordered broadcast
service. On receiving a copy of the replicated state, the new node can update the
state (adjusting for changes that may have occurred while the replica message was in
transit) and begin participating in the emulation. In Part I of this thesis, we present
protocols to implement virtual infrastructure based on these ideas.

Unfortunately, collisions and message loss may disrupt communication, making it
difficult to implement totally ordered broadcast. In particular, the timestamp-based
techniques for totally ordering messages do not adapt well to such an environment
since it is difficult to determine when everyone has received a particular message. Most
other prior techniques for implementing replicated-state machines, such as Paxos [60],
also do not adapt well to a wireless environment. For example, many require all the
participants to communicate. In a wireless setting, however, increased communication
results in increased rates of collision; in such a setting, Paxos might never terminate.

Thus, in Part II of this thesis, we focus on the problem of implementing vir-
tual infrastructure in collision-prone wireless networks. The protocol is based on
a two-round consensus protocol in which all the replicas agree on each update to
the replicated state. However, if consensus is used directly as a building block, the
resulting replicated-state machine protocol is not suitable for implementing virtual
infrastructure. In particular, the resulting emulation is not efficient: it results in mes-
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sages that may be arbitrarily large, and there may be long delays in implementing
even a single step of the virtual infrastructure component.

We therefore introduce a special type of replicated-state machine that is collision-
aware and suitable for implementing virtual infrastructure. Instead of simply repeat-
ing the consensus algorithm for each step of the state machine, it adapts the basic
consensus algorithm ideas to develop a more efficient protocol that guarantees efficient
virtual nodes and efficient communication.

1.4.1 Performance

Virtual infrastructure is of course only useful when the virtual components perform
efficiently and with low latency. For each algorithm implementing virtual infrastruc-
ture, this thesis analyzes the conditional performance.

The first two algorithms for implementing virtual infrastructure guarantee good
performance under the assumption that the underlying physical network is well-
behaved, e.g., it delivers messages within a bounded time. By good performance,
we mean that each action taken by a virtual object or virtual node (e.g., sending or
receiving a message) is emulated in only a small constant number of message delays.

The third algorithm for implementing virtual infrastructure (presented in Part II
of this thesis) guarantees good performance if the underlying network is eventually
well-behaved. In contrast to Part I, the second part of this thesis assumes a syn-
chronous but unreliable broadcast service. If, eventually, messages are delivered
reliably (and other stabilization criteria hold) in the underlying network, then the
virtual infrastructure guarantees that eventually the virtual network is also well-
behaved: messages are delivered reliably and other good criteria hold. Moreover, the
implementation itself is efficient, requiring only a constant number of rounds of com-
munication and constant-sized message-overhead to implement each virtual round.

1.5 Overview of the Thesis

The thesis is divided into two main parts. The first part of the thesis focuses on
introducing the concept of virtual infrastructure in the context of reliable commu-
nication, while deferring many of the details related to collisions and message loss.
The second part focuses on the more practical problem of designing and developing
virtual infrastructure in real, collision-prone, ad hoc networks.

Part I

In the first part of the thesis, we assume that the mobile nodes can communicate
reliably. Thus, Part I focuses on the other two major problems of ad hoc networks:
fault-prone devices and unpredictable motion. The third problem, unreliable com-
munication, is postponed to the second part of the thesis. By avoiding the problems
of unreliable communication, Part I allows for an introduction to the basic ideas of
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virtual infrastructure, and allows a simple presentation of algorithms that contain
many of the major ideas used in Part II of the thesis.

Chapter 2. We begin by introducing a model of mobile ad hoc networks, a variation
on the commonly used “unit-disc graph” model for wireless networks. Communication
is either local (via a local broadcast service) or long-distance, via a GeoCast service.
We discuss in this chapter some of the existing GeoCast protocols that may be used
to implement this service. An alternate model that does not include long-distance
GeoCast is discussed in Chapter 7.

Chapter 3. We then define the two main types of virtual infrastructure: the Virtual
Object Model and the Virtual Node Model.

Chapter 4. In this chapter, we present a protocol that implements the Virtual Ob-
ject Model in a mobile ad hoc network. This protocol, the Virtual Object Emulator,
takes advantage of “focal points” where mobile nodes congregate to implement virtual
objects. We argue that the protocol correctly emulates the Virtual Object Model,
and we present a brief analysis of the efficiency of the Virtual Object Emulator.

Chapter 5. Next, we consider the Virtual Node Model. I extend the Virtual Ob-
ject Emulator, developing a protocol that implements the Virtual Node Model. The
Virtual Node Emulator is quite similar conceptually to the Virtual Object Emulator.
The analysis, however, is more involved as the virtual entities being emulated are
more powerful: virtual nodes can initiate actions on their own, and they can commu-
nicate directly with each other. We argue that the protocol correctly emulates the
Virtual Node Model, and we present a brief analysis of the efficiency of the Virtual
Node Emulator.

Chapter 6. In this chapter, we describe an application that can be implemented
using the Virtual Object Model: a reliable, reconfigurable read/write shared memory.
This application is built using virtual objects, which store the data and ensure the
reliability and availability of the shared memory. This chapter serves as an example
of how virtual infrastructure can be used to simplify the development of otherwise
complicated applications. In particular, it is relatively simple to understand the be-
havior of the protocol, which would otherwise be complicated by analyses of mobility
and failure rates.

Chapter 7. We conclude Part I with a discussion of how to modify the proto-
cols described in the preceding chapters to use only local communication. The basic
model introduced in Chapter 2 allowed for both some local communication (“fpcast”)
and long-distance communication (GeoCast). In practice, wireless networks typically
contain only simple local broadcast. (In fact, one of the potentially compelling ap-
plications of virtual infrastructure is to build reliable long-distance communication.)
Thus, in this section we describe a virtual node-based infrastructure that supports
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only local communication, and describe how the protocol described in Chapter 5 can
be modified to execute in an environment with only local communication.

Part II

In the second part of the thesis, we focus on the problem of implementing virtual
infrastructure in wireless networks with unreliable communication. In general, this
part is based on many of the ideas originally introduced in Part I; however, unreliable
communication, collisions, and lost messages introduce a variety of complications that
require some new techniques and new approaches.

Chapter 8. We begin the second part by presenting a more realistic model for
wireless networks. The new model captures many attributes of real networks, such as
(i) non-uniform patterns of message loss where different nodes receive different sets of
messages; (ii) collision detection, which allows devices to detect anomalies in receiving
messages; and (iii) reliable time and synchronous communication, which allows nodes
to execute algorithms in synchronous rounds. We assume that the collision detectors
are complete, meaning that they detect all collisions, and eventually accurate, meaning
that, eventually, they report no false positives. The new model also provides devices
with contention managers, which use backoff protocols to reduce the contention on
wireless channels. Unlike in Part I, all communication is local.

Chapter 9. Next, we introduce a virtual node-based infrastructure that is compat-
ible with a collision-prone network. In particular, the virtual infrastructure model
introduced in this chapter reproduces many of the properties of the underlying wire-
less network: communication is local, and occurs in synchronous rounds, clients and
virtual nodes can detect collisions, and both clients and virtual nodes have access to
contention managers which can help to reduce the number of collisions.

Chapter 10. In this chapter, we present an algorithm that implements the virtual
infrastructure model described in Chapter 9. Much like the emulator protocols in
Part I, this algorithm is based on a replicated-state-machine approach. However,
unlike Part I, this replicated state machine is collision aware, in that it can tolerate
collisions and cooperate with a contention manager to reduce collisions.

At the heart of the emulator is a three-phase “agreement protocol” in which the
replicas for each virtual node try to agree on an execution of that virtual node. This
“agreement protocol” is derived from an earlier consensus protocol for wireless net-
works [23, 79], and is reminiscent in style of a three-phase-commit protocol. Unlike
these earlier protocols, however, the “agreement protocol” does not always result
in the replicas coming to single decision; disagreement is (inevitably) a possible out-
come. It does guarantee, however, that when the network is well-behaved, the replicas
agree; moreover, it ensures that the disagreement is limited such that the replicas can
converge eventually on a single virtual node execution.

21



Chapter 11. We then proceed to argue that the protocol presented in Chapter 10
is a correct implementation of the virtual infrastructure layer. The main goal of the
chapter is to transform an arbitrary execution α of the underlying (physical) system
into an execution γ of the virtual infrastructure such that the clients cannot distin-
guish between α and γ. This indistinguishability property implies that, from the
clients’ perspective, the emulator is successfully implementing the virtual infrastruc-
ture. The proof proceeds by first constructing an execution of each of the clients and
virtual nodes, along with the other components of the virtual system, and then past-
ing the executions together to produce a unified execution γ. The main difficulty is
in constructing the individual virtual node executions in such a way that they satisfy
the requisite properties.

1.6 Related Work

In this section, we discuss some of the other work related to the ideas presented in
this thesis. We begin in Section 1.6.1 with a review of the progress that has been in
the area of virtual infrastructure. Next, in Section 1.6.2, we review other abstrac-
tions for ad hoc networks. In Section 1.6.3, we describe prior research on replicated
state machines, the key algorithmic tool in implementing virtual infrastructure. Fi-
nally, in Section 1.6.4, we present some background on radio networks and wireless
communication.

1.6.1 Virtual Infrastructure

We first introduced the idea of virtual infrastructure in [32] in the context of virtual
objects that are used to implement a reconfigurable, atomic memory. This paper
was then extended in [33] to support general virtual objects. The protocol for vir-
tual objects in Chapter 4 is derived from this paper, as is the example application
in Chapter 6.

We extended the virtual infrastructure paradigm to include virtual nodes in [31].
The protocol in [31] extends the ideas in [32], and also introduces the idea of a mobile
virtual entity. The protocol in Chapter 5 is derived from [31], as is the material in
Chapter 7 on implementing virtual infrastructure in the context of local-only com-
munication. This paper also introduced the idea that a virtual node might recover,
even if it had failed (due to an insufficient number of replicas).

In [34], we introduce the idea of autonomous virtual nodes, that is, virtual nodes
that determine their motion in an on-line fashion in response to ongoing sensing and
computation. For example, an autonomous virtual node may choose to move itself
toward a more populated region of the network, rather than languishing in a deserted
corner of the world. Unlike other virtual node models, the autonomous virtual node
moves discretely, where each move follows from a discrete programmatic output. They
present an overview of a self-stabilizing protocol to implement this new virtual node
layer, focusing on the difficulties in ensuring consistent membership in the context of
an unpredictable virtual location. They also introduce new techniques for restoring
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a failed virtual node. In particular, a key difficulty is determining when the virtual
node has failed and needs to be recreated. They present three different techniques,
one based on a network of static virtual nodes and two based on random-walk based
techniques.

In [29,30], we introduce a timed virtual infrastructure in which the virtual nodes
represent timed I/O automata (TIOA). They present a self-stabilizing algorithm for
implementing this virtual infrastructure model. They also describe how to implement
a tracking service and a GeoCast routing service, which together instantiate a point-
to-point routing service. More details on tracking can be found in [83], and more
details on routing can be found in [35].

Tulone [99] extends [31], studying the restrictions on mobility necessary to ensure
that a sufficient number of virtual nodes remain active, and developing robust quorum
systems that allow for virtual nodes to restore their previous state after a failure.

Lynch et al. [69] develop a particularly interesting application of virtual infrastruc-
ture. They use virtual nodes to coordinate the motion of the clients in the system.
The resulting protocol enables the mobile nodes to easily and efficiently form any
particular geometric pattern in the plane, despite unreliable failures. Brown [15] has
continued this direction, using a virtual infrastructure to construct an air-traffic con-
trol system in which virtual nodes act to coordinate the motion of airplanes. Brown
focuses on the problem of free flight, where the individual airplanes can choose their
own flight paths independently.

Brown et al. [14] have implemented a prototype virtual infrastructure on a set
of handheld Compaq iPAQ devices. The protocol used in [14] is a simplified—and
optimized—variant of the algorithm described in Chapter 5 and [31], including the
modifications described in Chapter 7 (and first introduced in [31]). Using this pro-
totype virtual infrastructure, we built a few simple applications, including a virtual
traffic light that can be used to coordinate traffic at a busy intersection.

1.6.2 Other Abstractions for Ad Hoc Networks

There has been much work of late (and, in some cases, concurrently with the work in
this thesis) on high-level programming languages and region-based abstractions for
ad hoc networks, particularly sensor networks, e.g., [64,80,81,103,104]. Much of this
work is complementary to the work on virtual infrastructures presented in this thesis:
better programming languages are essential to simplifying the task of developing
software for ad hoc networks; providing reliable virtual infrastructure with strong
consistency guarantees can simplify the programming paradigm, regardless of the
language employed.

The work of Nath and Niculescu [77] takes advantage of precalculated paths to
forward messages in dense networks. Messages are routed along trajectories, where
nodes on the path forward the messages. Similarly, prior GeoCast work (for exam-
ple, [17, 78]) attempts to route data geographically. Sun et al. [98] use cars traveling
on a highway to regionally broadcast alert information. In many ways, these strate-
gies are ad hoc attempts to emulate some kind of traveling node. We provide a more
general framework to take advantage of predictably dense areas of the network to per-
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form arbitrary computation. A significant focus of these prior papers is determining
good trajectories, a problem that we do not address.

1.6.3 Replicated State Machines

Many of the key techniques in implementing virtual infrastructure are derived from
the literature on replicated state machines. The concept of implementing fault-
tolerant services using replicated state machines (RSMs) was first introduced by
Lamport in [58] and extended and popularized by Schneider in [94]. Lamport [57]
also presents a technique for implementing a fault-tolerant state machine in a message-
passing system with fail-stop replicas (i.e., with reliable failure detection). For stronger
fault models, the Paxos protocol and its variants [61–63] provide an RSM implemen-
tation that is resilient to fewer than n/2 replica crashes, where n is the number of
replicas, and that tolerates arbitrarily long periods of network instability. Castro and
Liskov present a Byzantine resilient version of the Paxos protocol [19]. A separate
line of research was dedicated to implementing RSMs on top of view-oriented group
communication systems (e.g., [5, 36,49]).

These protocols, however, were designed for traditional “wired” networks and
therefore do not address several important concerns arising in wireless ad hoc envi-
ronments. In particular, they lack the ability to dynamically adapt their patterns of
communication to the number of participating nodes, and rely on a priori knowledge
of the number of participants and their identities. An algorithm for atomic broadcast
that tolerates dynamic networks with an unknown set of participants is presented by
Bar-Joseph et al. [7]. Although their protocol can be used to implement a reliable
state machine, it is nevertheless inapplicable in our setting as it assumes reliable,
collision-free communication.

There has been a substantial body of prior work on developing TDMA schedules
for wireless ad hoc networks where the number of participants is a priori unknown
(e.g., [16,41]). A TDMA schedule can be used to avoid collisions, which can simplify
the problem of implementing an RSM. Note, however, that these techniques do not
trivialize the implementation of an RSM as they result in initial periods of instability
during which collisions may occur. Moreover, many of these algorithms are unsuitable
for highly dynamic networks.

1.6.4 Wireless Communication and Radio Networks

Starting with a seminal paper by Bar Yehuda et al. [10], and followed by many others
(e.g., [9,21,53]), reliable broadcast was studied in synchronous radio networks where
a node is guaranteed to deliver a message in a given time slot if and only if exactly one
of its neighbors is transmitting a message in this slot. In contrast to this model, in
this thesis we develop a communication model that allows for unpredictable collision
patterns which in particular, might result in non-uniform message loss. Such non-
deterministic behavior is frequently observed in real networks [51, 106, 108], and in
fact arises in simulations [23]. We also do not assume any advance knowledge of a
node’s neighbors and therefore, cannot attribute lost messages to specific nodes in
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the networks. A variety of other variants to the reliable broadcast problem in a model
similar to that of [10] have been considered in [4, 22,25,76].

Current practical research in wireless devices and networks motivates the basic
model of a wireless network developed in Part II of this thesis. First, it is well
known that wireless broadcast networks are inherently unreliable. Several recent
experimental studies [37, 51, 105, 108] suggest that even with sophisticated collision
avoidance mechanisms (e.g., 802.11 [1], B-MAC [86], S-MAC [107], and T-MAC [101]),
and even assuming low traffic loads, the fraction of messages being lost can be as high
as 20− 50%.

The algorithms in Part II of this thesis rely on collision detectors to overcome
uncertainties in message loss. The importance and practicality of having collision
information available to applications was argued in [106]. Several existing MAC layers,
such as B-MAC [86], already support some collision detection capability. Moreover,
the recent study by Deng et al. [27] suggests that there is no technical obstacle to
adding collision detection support to the current 802.11 protocol.
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Part I

An Introduction to
Virtual Infrastructure
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Introduction

In the first part of this thesis, we introduce the idea of virtual infrastructure, and de-
velop protocols to implement virtual infrastructure in wireless networks that support
reliable communication. Part I focuses on two of the major problems of ad hoc net-
works: fault-prone devices and unpredictable motion. The third problem, unreliable
communication, is postponed to the second part of the thesis.

We begin in Chapter 2 by introducing a model of mobile ad hoc networks. In
this model, mobile nodes are fault-prone devices that move unpredictably in a two-
dimensional plane. They communicate via various broadcast services: either local
(via an fpcast service), or long-distance, via a GeoCast service ( as per, say, [17,50]).

Next, in Chapter 3, we formally introduce the idea of virtual infrastructure. This
chapter first introduces the idea of virtual objects and virtual nodes, perhaps the
key innovation in Part I of this thesis. We begin by defining the Virtual Object
Model, a virtual infrastructure layer that resembles a typical distributed shared object
model. In the virtual object model, clients interact with virtual objects, invoking
operations and receiving responses. We then proceed to introduce the Virtual Node
Model. Unlike the Virtual Object Model, in which the virtual entities are restricted
to objects, the Virtual Node Model allows for the virtual entities to perform arbitrary
computation. Communication between the “clients” and “virtual nodes” proceeds via
a virtual GeoCast service.

In Chapters 4 and 5, we present protocols to implement the Virtual Node Model
and the Virtual Object Model, respectively. Both of these protocols rely on “focal
points,” well-populated regions of the network, to implement the virtual entities:
each focal point is associated with a virtual object or virtual node, and each mobile
node in a focal point acts as a replica for the associated object. As mobile nodes
arrive, leave, and fail, the set of replicas adapts to the current set of available mobile
nodes. These protocols extend standard replicated-state-machine techniques to this
new environment. We show that the two protocols are correct, and provide a brief
analysis of their efficiency.

In Chapter 6, we present an example of an application that is built on the Vir-
tual Object Model. Specifically, we show how to implement a reliable, reconfigurable
read/write shared memory. The virtual objects are used to replicate data throughout
the entire world, and a reconfigurable set of quorums are used to maintain consis-
tency among the virtual nodes. The protocol is based on a simplified version of the
Ramboprotocols (see, e.g., [38]). We argue that the the resulting shared memory
guarantees atomic read and write operations, and provide some analysis as to its

27



efficiency.
Finally, in Chapter 7, we consider networks in which all communication is local.

That is, unlike in the previous chapters in Part I, there is no long-distance GeoCast
service available, and no focal-point-oriented fpcast service available. We provide a
brief description of a virtual node infrastructure (based on the Virtual Node Model
introduced in Chapter 3) in which all communication is local (in contrast to the
earlier model in which communication occurs via a virtual GeoCast service). We
then describe how to modify the protocols described in Chapter 5 to implement this
local virtual node layer.
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Chapter 2

Wireless Ad Hoc Network Model

In this chapter, we describe the underlying model for a mobile ad hoc network. Fig-
ure 2-1 defines some of the notation used in Part I of the thesis. Figure 2-2 provides
an overview of the system model.

The basic model consists of a bounded region of a two-dimensional plane, popu-
lated by mobile nodes. The mobile nodes communicate using an atomic local broad-
cast service, which we call fpcast, and a long-distance communication service, called
GeoCast. Each mobile node receives discrete updates from an external “Geosensor”
that notifies the mobile nodes of the real time and their location in the real world.

While we make no assumptions about the motion of the mobile nodes, we do
assume that certain regions are usually “populated” by mobile nodes. We assume
that there exists a finite collection of such regions in the plane, called focal points, such
that (i) at any point during an execution, “enough” focal points remain “populated,”
ensuring that sufficiently many focal points remain available, and (ii) within each
focal point, there is a reliable, atomic broadcast service available for the mobile nodes
to communicate reliably with each other. A focal point can be static, meaning that
it consists of a fixed geographic region, or a focal point can be mobile, changing
throughout an execution.

We begin in Section 2.1 to describe the basic geometry of the world, focusing on
the definition of a focal point. The definitions from this section are used later in
other contexts (for example, the description of virtual objects and virtual nodes in
Chapter 3). In Section 2.2, we describe the mobile nodes. In Section 2.3 we describe
the two broadcast service: the fpcast service and the GeoCast service. In Section 2.4,
we describe the liveness properties of the basic model.

2.1 Geometric Basics

The world consists of a bounded region of a two-dimensional plane1. We assume that
there exists a finite collection of regions in the plane, called focal points. For each

1In fact, all the results described in this thesis carry over naturally to an arbitrary metric space.
It is necessary only that the metric space supports appropriate broadcast services. In particular, it
would be natural to consider three-dimensional space.
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focal point, we identify a “focal point center,” that is, a designated location within the
focal point, and a “focal point region,” that is, a portion of the plane covered by the
focal point. A focal point can be static, meaning that it consists of a fixed geographic
region, or a focal point can be mobile, changing throughout an execution2. We assume
that the set of focal points is determined a priori and is common knowledge.

More formally, a focal point is defined by:

1. a unique identifier h chosen from the set O,

2. a function fp-regionh : R≥0 → P(L) that maps each time t to a contiguous
geographic region in the plane3, the focal point region, and

3. a function fp-centerh : R≥0 → L that maps each time t to a point within that
geographic region, the focal point center.

Notice that a focal point is dynamic, since its center and region can change with
time. If the center and region of the focal point do not change with time, that is, if
the two functions are constant, we say that the focal point is static and its maximum
velocity is 0.

We define the radius of a focal point at some time t in the natural way: a focal
point h has radius r at time t if r is the infimum value such that fp-regionh(t) is
contained in a circle of radius r centered at fp-centerh(t).

Since the focal point center and region can change with time, we need to define
the velocity of a focal point. If the focal point region is “rigid” and does not rotate,
then we can define the velocity simply with respect to the focal point center. More
generally, we can define the velocity in terms of how rapidly a point in the plane
is “left behind” by the focal point region. For a dynamic focal point h ∈ O whose
geographic region is defined by the function fp-regionh(t), we define the maximum
velocity as follows:

• Define fp-regionh(t) to be the complement of fp-regionh(t), that is, all the points
in the plane L not part of the focal point region for h at time t.

• For a point ` ∈ fp-regionh(t), define depthh(`, t) to be the infimum distance
between the point ` and the closest point in L that is not part of the focal point
region for h at time t. It specified how close a location ` is to the edge of the
focal point at time t.

• Define vsup(h), a real number, to be the supremum velocity of focal point h as
follows:

vsup(h) = sup

t,t′∈R≥0, t≤t′

`∈fp-regionh(t)

`/∈fp-regionh(t′)

depth(`, t)

t′ − t

2Dynamic focal points, i.e., those that chance location during an execution, are used in imple-
menting virtual mobile nodes. The mobility of virtual nodes can be useful in the context of moving
data and computation through a network.

3By P(S) we refer to the power set of S, i.e., {s : s ⊆ S}.
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Thus, the supremum velocity of a focal point h determines the minimum (in fact,
infimum) length of time that it takes for some fixed point ` in a focal point region
to cease to be in that focal point region. For example, if a point is at a distance d
from the edge of a focal point region that has a supremum velocity of vsup(h), then
that point in the plane will remain within the focal point region for at least d/vsup(h)
time.

As a specific example, consider a focal point region that is defined by a circle
of some fixed radius around the focal point center. Notice that in this case, the
maximum velocity of the focal point is simply the maximum velocity of the focal
point center. Define vfp-max to be the maximum velocity vsup(h) for any h ∈ O.

2.2 Mobile Nodes

The basic model is populated by mobile nodes, each assigned a unique identifier from
the set I. We model the computation at each mobile node as an asynchronous I/O
automaton; an asynchronous I/O automaton is a special case of a timed I/O automa-
ton in which all the state variables are discrete, and in which the set of trajectories
consists of all constant-valued mappings from all possible time intervals. (See Ap-
pendix A for more details on timed I/O automata.) As a result, it is reasonable to
compose asynchronous automata with timed I/O automata.

The mobile nodes may join and leave the system, and may fail at any time. (We
treat nodes leaving the system as having failed.) The mobile nodes can move on any
continuous path in the plane, with speed bounded by a constant vmax. We assume
there exists at least one node i0 ∈ I.

In the following two subsections, we discuss the mobile nodes’ interactions with
their environment (Section 2.2.1), and their interactions with the regions of the world
identified as focal points (Section 2.2.2).

2.2.1 The Real World

We model the environment, which interacts with the mobile nodes, using a timed
RealWorld automaton (see [45, 71, 72] for a formal presentation of timed automata;
see Appendix A for a brief review). The RealWorld automaton maintains in its
state the current location of every mobile node, as well as the current real time.
It also maintains the failure status of each mobile node. Finally, the RealWorld
implements the various broadcast services that the mobile nodes use to communicate.
We occasionally refer to these different functionalities of the RealWorld as “sub-
components.” (Notice that sub-components are not distinct automata, that is, they
are not automata that can be composed to form the RealWorld.)

The Status Sub-Component. In order to model nodes joining and leaving the
system, the RealWorld automaton maintains in its state an indication for each mobile
node as to its status, i.e., whether it is asleep, awake or failed. Formally, when the
execution begins, the RealWorld automaton is initialized with a set A ⊆ I of mobile
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nodes that begin the executions awake. Each mobile node is similarly initialized with
an indicator as to whether it begins the execution awake or asleep. A new node i is
woken up when the RealWorld automaton sends a wakeupi signal to node i, and adds
i to A. A node i fails when the RealWorld automaton sends a faili signal to node i and
removes i from A. Throughout the first part of this thesis, for simplicity, we omit the
formal details relating to a node waking up when presenting pseudocode: each mobile
node automaton described in this part of the thesis can be trivially transformed to
include a wakeupi and a faili transition, and perform operations only when it is awake
and not failed.

The GeoSensor Sub-Component. The RealWorld automaton also contains as a
sub-component a Geosensor ; the Geosensor updates each mobile node with its current
location, and with the current real time, a nonnegative real number. It performs these
updates via a geo-update action. The mobile node locations and the real time are
the only two non-discrete state variables of the RealWorld state, and the only two
non-discrete state variables in the system. We assume that each mobile node receives
a geo-update from the Geosensor (i.e., the RealWorld) at least every time tupd.

In practice, there are a number of ways to provide mobile nodes with location and
time services. GPS is perhaps the most common means, but others, like Cricket [90],
have being developed to remedy the weaknesses in GPS, such as the inability to
operate indoors. Our algorithms can tolerate small errors in the time or location,
though we do not discuss this here.

The Broadcast Service Sub-Components. The RealWorld automaton contains
two further sub-components: an atomic local broadcast service, called fpcast due to its
relationship with focal points, and a long-distance broadcast service called GeoCast.
These are discussed in detail in Section 2.3.

2.2.2 Focal Points

Throughout the execution, nodes enter and exit the focal point regions; when a mobile
node’s location is in the focal point region at some point in time, we say that the
mobile node is inside the focal point region. In the context of a focal point h, when
we say that a mobile node i is inside h, we mean that it is inside the focal point region
for h.

In order to compensate for the inexact location information available to the mobile
nodes, we identify an “inner region” of the focal point region; we say that a mobile
node is well inside the focal point region when it is in the inner region. The size of
the buffer zone depends on two factors: the maximum speed of a mobile node, and
the rate of geo-update events. The buffer zone is chosen to be large enough that a
mobile node exiting a focal point has time to learn that it has left the inner region
prior to leaving the focal point region altogether.

Informally, we say that a mobile node is well inside a focal point region when it
has moved far enough into the focal point region: a node at location ` is well inside
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a focal point at time t if:

depth(`, t) > tupd · (vmax + vfp-max) . (2.1)

We refer to the locations ` that satisfy Equation 2.1 at time t to be the inner region
of h at time t. In the context of a focal point h, when we say that a mobile node i is
well inside h, we mean that it is well inside the focal point region for h.

Notice that according to this definition, if a node is well inside a focal point region
at some time t, then during the most recent geo-update prior to time t the node learns
that it is, in fact, inside the focal point region. Conversely, if a node is not inside a
focal point region at time t, we can be certain that during the most recent geo-update
prior to time t, the node learns that it is, in fact, not well inside the focal point
region. (Note the contrast between inside and well inside in the previous claim.) We
thus conclude the following:

Lemma 2.2.1. Let α be any finite execution, let i ∈ I be a mobile node, and let
h ∈ O be a focal point.

• If i is well inside h at the end of α, and if geo-update(`, t)i is the last geo-updatei

event in α, then i is inside the focal point region of h at time t.

• If geo-update(`, t)i is the last geo-updatei event in α, and if i is well inside h at
time t, then mobile node i is inside the focal point region of h at the end of α.

Proof. Consider the first claim. Since the geo-update occurs at most time tupd prior
to the end of α, the relative distance travelled by the mobile node with respect to
the focal point region during this interval of time is at most tupd · (vmax + vfp-max) (by
the definition of vfp-max). Since i is well inside h, the depth in the focal point region
is larger than this distance, and hence i is inside the focal point region at time t.

Next, consider the second claim. Again, since the geo-update occurs at most time
tupd prior to the end of α, the relative distance travelled by the mobile node with
respect to the focal point region during this interval of time is at most tupd · (vmax +
vfp-max) (by the definition of vfp-max). Since i is well inside h at time t, the depth in
the focal point region is larger than this distance, and hence i is inside the focal point
region at the end of α.

In Chapters 4 and 5, we present protocols that take specific actions when a mobile
node is well inside a focal point, according to its most recent geo-update. Lemma 2.2.1
allows us to conclude that whenever a mobile node takes such an action, it is in fact
inside a focal point.

2.2.3 Motion-Controlled Devices

Throughout this section, we have assumed that the mobile nodes have no control over
their own motion. In some practical situations, however, there may be an algorithm
running on the mobile node that controls the physical motion of the device. For
example, a mobile robot can direct its own motion in a suitable fashion; a vehicle
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may choose its own velocity; machines in a factory may have some autonomous control
over their actions.

Moreover, some of the most compelling uses for the virtual infrastructure paradigm
presented in this thesis are those in which devices may have some control over their
motion. For example, consider a battlefield scenario where a set of tanks wish to
coordinate their motion according to some predetermined formation; in this case, the
tanks might use virtual nodes to coordinate their motion. (See [69] for an example
of using virtual infrastructure to solve a basic coordination problem among mobile
robots.)

It is straightforward to augment the model presented here to include motion con-
trol. Specifically, each mobile node is assumed to produce (as an output) some motion
control signal, for example, move(. . .). This signal may be in the form of a velocity
vector, a target waypoint, or any other desired form of motion control signal. In
practice, the most common such signal is acceleration. The RealWorld automaton, as
a model of the environment, receives such signals as input and uses them to update
the location of the mobile nodes.

2.3 Broadcast Services

In the first part of this thesis, we assume the availability of reliable communication
services. (We relax the assumption of reliability in the second part of this thesis.)
There are two different types of broadcast services that the mobile nodes use to
communicate:

• fpcasth, for each h ∈ O: a focal point broadcast service that supports reliable,
totally-ordered communication among nodes in focal point h; each message
broadcast is delivered eventually to every mobile node in the focal point region
for h, and each node receives the messages in the same order.

• geocast: a long-range broadcast service that delivers messages to specified lo-
cations in the network; each message broadcast is eventually received by every
node that is within some radius R of the designated destination location.

The first broadcast service, fpcast, is “local” in that, conceptually, it operates over
a small region of the network, delivering messages to nearby nodes4. The second
service, GeoCast, handles multi-hop message delivery: it can deliver a message from
any location in the network to any other location in the network. Unlike a more
traditional routing service, however, it delivers messages to a given location in the
network, not to a given mobile node. In Chapter 7, we discuss how to implement
virtual infrastructure when only local broadcast is available.

4While a focal point region could theoretically be quite large, we tend to think of a focal point
region as a single-hop region of the network. Implementing the fpcast service over a multi-hop focal
point region is presumably more difficult, leading to the conclusion that focal point regions are likely
to be small.
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Formally, the broadcast services are sub-components of the RealWorld automaton
that models the external environment. For each broadcast service, we specify both
the safety and liveness properties guaranteed by traces of the RealWorld automaton.

2.3.1 The fpcast Service

For each focal point, we assume that there is a broadcast service that guarantees
reliable, totally-ordered local communication between mobile nodes within that fo-
cal point. The broadcast services guarantees the following properties: (1) integrity,
meaning that every message delivered was previous broadcast; (2) reliable delivery,
meaning that if two correct nodes reside in some focal point, and one sends a mes-
sage, then it will eventually be delivered to the other; (3) total order, meaning that
messages are delivered to all of the mobile nodes in the same order; and (4) consistent
delivery, meaning that if a mobile node remains in a focal point for some period of
time, there will be no “gaps” (with respect to the ordering) in the sequence of mes-
sages received by the mobile node. The service is defined here as “asynchronous,”
meaning that there is no bound on the delivery time for messages. Formally, this
means that for every message broadcast, there is some ε that bounds the latency
of the message. Later in Section 2.4, when making further assumptions as to the
performance of the system, we assume that this message delay is bounded.

Formal Definition. The broadcast service for focal point h ∈ O, fpcasth, supports
the following interface for each mobile node i:

• Input fpcast(m)h,i

• Output fpcast-rcv(m)h,i

where m is an arbitrary message to be sent. Notice that the first index of the action
indicates the focal point; the second index indicates the mobile node at which the
event takes place. For mobile nodes that are in focal point h, the fpcasth service
satisfies the following properties:

Integrity : For any message m and mobile node i, if an fpcast-rcv(m)h,i event occurs,
then an fpcast(m)h,j event precedes it, for some mobile node j.

Reliable Delivery : For each fpcast(m)h,i event there exists some ε such that: as-
sume that i is inside the focal point region for h when the event occurs, and
assume that mobile node j ∈ I (potentially j = i) is a mobile node satisfying
the following:

• mobile node j is in the focal point region for h when the event occurs;

• mobile node j remains in focal point region until time ε after the event;
and

• mobile node j does not fail until at least time ε after the event;
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then an fpcast-rcv(m)h,j event occurs within time ε after the event, delivering
the message m to node j.

Total Order : For every execution, if every message sent by the fpcasth is unique5,
then there exists a total ordering m1, . . . ,mk, . . . of all messages sent by the
fpcasth service during an execution; if some mobile node i receives messages mr

and mt, then i receives mr prior to mt if and only if r < t.6

Consistent Delivery : Assume there are three messages m1 < m2 < m3, ordered
according to the total order posited above. If node i receives messages m1 and
m3, and remains inside the focal point region for the entire interval between
receiving m1 and m3, then node i receives message m2.

Notice that the reliable delivery property allows each message to have a different ε
governing its delivery time. Thus, in an infinite execution, this definition allows for
unbounded message delivery times. When discussion the performance of algorithms,
we will make further assumptions, including placing an upper bound on ε. (See
Section 2.4.)

The consistent delivery property is the only property not found in typical totally-
ordered (“atomic”) broadcast services (see, for example [8, 24, 48]). The consistent
delivery property ensures that if a mobile node is within the focal point region for
some interval of time, then it receives a sequence of messages in the total order.
That is, if a mobile node receives some message ms in the totally-ordered sequence of
messages, and remains in the focal point region until it receives some later message
mt in the totally-ordered sequence of messages, then it also receives every message
ordered after ms and prior to mt.

Notice that the consistent delivery property does not necessarily follow from the
reliable delivery and total order properties. Consider the case where some node i
receives messages m1, m2, and m3; another node j that leaves the focal point region
after receiving message m3 may receive only messages m1 and m3: “Reliable Delivery”
ensures that there exists some ε which bounds how long after time t′ j has to remain
in the focal point region in order to receive m2; however, this ε may be quite large,
and thus m2 may not be delivered by the time j leaves the focal point after m3 is
delivered.

Discussion of Practical Issues. In terms of implementing the fpcast service in a
real wireless network, the most notable property is that it guarantees totally-ordered

5Notice that if messages are not unique, then it becomes more difficult to define such a total
ordering property.

6There is no formal requirement that this total ordering relate in any way to the real time order
in which the messages were sent, though in practice it is likely that messages will be delivered
in an order quite similar to that in which they are sent. In fact, in Chapter 7 where we present
an algorithm that implements this totally-ordered message delivery, the messages are ordered with
respect to the time on the local clocks of the broadcasting node; since the clocks may be out-of-date
by some time tupd , the messages are not necessarily delivered in the order in which they are sent.
However, any two messages sent greater than time tupd apart are in fact delivered in the order that
they are sent.
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message delivery, a property that is not typically provided by most physical MAC
layers. In a radio network, however, each message is typically received at almost the
exact instant that it is broadcast, as radio waves propagate quite quickly. Therefore,
under some circumstances, it may be reasonable to assume that each node in a wireless
network receives messages in the same order. In a prototype implementation of a
virtual infrastructure [14], the only messages that typically arrived out of order at
some node i were those very messages sent by i: the loopback mechanism resulted in
i receiving its own messages earlier than other nodes.

Unfortunately most MAC layer protocols—the low-level implementation of wire-
less broadcast—do not simply broadcast a message once and assume that it is de-
livered successfully. In order to avoid collisions and compensate for lost messages, a
single message broadcast can involve multiple wireless transmissions. Thus the very
techniques that are typically used to ensure reliability—that is, backoff protocols—
disrupt the ordering of messages and potentially result in different nodes receiving
messages in different orders.

One solution is to avoid backoff-related techniques for ensuring reliability, instead
depending on an alternative strategy for avoiding collisions. For example, the broad-
cast service might use two different (and non-conflicting) radio channels, instead of
only one. The first channel, the reservation channel, might be used when joining the
focal point. The second channel, the communication channel, might operate using a
time-division/multiple access (TDMA) protocol that allocates each node a time slot
in which to broadcast. When joining the focal point on the reservation channel, a
mobile node might compete for a time slot in the TDMA schedule. This would elimi-
nate collisions on the main communication channel, while ensuring that messages are
delivered to each node in the exact order specified by the TDMA schedule.

In Chapter 7, as part of discussing how to implement virtual infrastructure us-
ing only basic local communication, we (briefly) present an alternative solution for
implementing the fpcast service. We first introduce an alternative model for wireless
broadcast, the lbcast service, that more closely resembles the typical behavior of wire-
less radio broadcast: each message is eventually delivered in a timely fashion to every
node within some radius R. In practice, such a service could be implemented using
simple backoff protocols, with a small number of retries to avoid collisions. We then
show how to use the lbcast service to implement fpcast. This construction uses tech-
niques originally introduced by Lamport in [59] to ensure that messages are delivered
in the same order to each node.

2.3.2 GeoCast Service

The mobile nodes also have access to a global message delivery service, GeoCast. The
GeoCast service delivers a message to every node within a certain radius R of some
specified destination in the plane. Formally, the GeoCast service is parameterized by
some constant R which determines the size of the destination region.

For the first part of this thesis, we fix a particular Rgeo. The constant Rgeo is
chosen to be larger than the radius of the largest focal point. As a result, a GeoCast
message directed at the center of a focal point will be delivered to every mobile node
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in that focal point. When it is clear from context, we refer to the Rgeo-GeoCast
service as simply the GeoCast service.

The GeoCast service satisfies three properties: (1) integrity, meaning that every
message delivered was previously broadcast, (2) reliable delivery, meaning that if a
message is geocast to a specific region, and if some node resides in that destination
region for sufficiently long, then it will receive the message; and (3) minimum delivery
time, meaning that every message is delivered at least time tupd after it is sent.

The reliable delivery property posits that for every geocast event, there exists some
delivery time t′ such that every correct mobile node that is in the delivery region at
time t′ and remains with the delivery region for sufficiently long after t′ receives the
message. This remains an asynchronous property, however, as there is no bound on
how long the delivery may take.

The minimum delivery time ensures that messages are not delivered, for example,
in zero time. This ensure that some every time two mobile nodes participate in a
round-trip message exchange, some time passes. In particular, enough time passes
that a response is received at a time strictly greater than when the initial message
was sent, according to the sender’s local clock. In particular, this implies that the
local clock of a mobile node has sufficient resolution.

Formal Definition. For mobile node i, for R ∈ R, the R-GeoCast service supports
the following two actions:

• Input geocast(m, d)i

• Output geocast-rcv(m, d)i

where m is an arbitrary message to be sent and d ∈ L is the destination location.
The GeoCast service has the following properties:

Integrity : For any GeoCast message m, location d, and node i, if a geocast-rcv(m, d)i

event occurs, then a geocast(m, d)j event precedes it, for some node j.

Reliable Delivery : For every geocast(m, d)i event that occurs at time t where i ∈ I,
there exists some t′ > t+tupd and ε ≥ 0 such that: assume that j ∈ I is a mobile
node satisfying the following:

• mobile node j is within distance R of location d at time t′;

• mobile node j remains within distance R of location d until time t′ + ε;
and

• mobile node j does not fail prior to time t′ + ε;

then a geocast-rcv(m, d)j event occurs at some point in the interval [t′, t′ + ε],
delivering the message to node j.

Minimum Delivery Time: Each message takes some time > tupd to be delivered.

38



Notice that the reliable delivery property allows each message to have a different ε
governing its delivery time. Thus, in an infinite execution, this definition allows for
unbounded message delivery times. When discussion the performance of algorithms,
we will make further assumptions, including placing an upper bound on ε. (See
Section 2.4.)

Discussion of Practical Issues. There has been a significant amount of research
on implementing GeoCast services in wireless ad hoc networks, and GeoCast is a
common communication service in mobile networks: a number of algorithms have
been developed to solve this problem, originally for the internet protocol [78] and
later for ad hoc networks (e.g., [17, 50]). GeoCast services have been used in routing
algorithms (e.g., [44,54]), tracking algorithms (e.g., [2]), and data storage algorithms
(e.g., [65,91]). GeoCast can be implemented inefficiently via simple flooding protocols;
more efficient implementations reduce the message traffic by attempting to find direct
(geographic) routes from the source to the destination.

2.4 Liveness, Performance and Synchrony

For the purpose of proving liveness properties and analyzing performance, we will
consider a restricted set of executions that guarantee certain synchrony assumptions.
Specifically, we assume the following:

• Any enabled action at a mobile node is executed immediately with no real time
elapsing.

• For every fpcast event, the ε specified by the “Reliable Delivery” property is
bounded by dfp . This implies that every message broadcast using the fpcast
service is delivered within time dfp.

• For every geocast event, the ε specified by the “Reliable Delivery” property is
bounded by εgeo.

• Every message broadcast using the geocast service is delivered within time dgeo.
7

These assumptions are discussed in more detail in Sections 4.3 and 5.3.

7Notice that this bound on delivery time is not implied by the bound on ε for the GeoCast service,
as the reliable delivery property states that every message is delivered with ε after some time t′; the
delivery time is thus at most (t′ − t) + εgeo.
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Notation:

– I, totally-ordered set of node identifiers
– i0 ∈ I, a distinguished node identifier in I that is smaller than all other identi-

fiers in I
– S, set of port identifiers, defined as N>0×OP×I, where OP is a set of operation

identifiers.
– O, the totally-ordered, finite set of focal point identifiers
– T , set of tags, defined as R≥0 × I
– U , set of operation identifiers, defined as R≥0 × S
– X, set of memory locations
– For each x ∈ X:

– Vx, the set of values for x

– v0,x ∈ Vx, the initial value of x

– M , a totally-ordered set of configuration names
– c0 ∈M , a distinguished configuration in M that is smaller than all other names

in M
– C, totally-ordered set of configuration identifiers, defined as R≥0 × I ×M
– L, set of locations in the plane , defined as R× R
– tupd ∈ R, the frequency with which each mobile node receive time and location

updates.
– tjoin ∈ R, the time that a new mobile node needs to enter a focal point prior to

the previous mobile node leaving in order for the focal point to remain popu-
lated.

– vmax, the maximum velocity of any mobile node.
– RFP, the radius of the largest focal point.
– Rgeo, the radius of the GeoCast service. Rgeo > RFP.
– RVgeo, the radius of the virtual GeoCast service. RVgeo = Rgeo −RFP.
– Rlb, the radius of the Local Broadcast service.

Figure 2-1: Notation used throughout Part I of this thesis.
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Figure 2-2: Architecture of the theoretical system model. The shaded boxes represent
two mobile nodes i and j from the set I. Each mobile node is an asynchronous I/O
automaton, which is a special case of a timed I/O automaton. Everything inside the
shaded area represents programs running on the mobile nodes. Everything outside
the shaded area is part of the RealWorld automaton, which represents the physical
world in which the other automata operation; this includes the GeoCast service,
multiple fpcast services (one per focal point), and the Geosensor. (Dashed lines
indicate subcomponents of the RealWorld automaton.) The focal point identifiers h
and k are from the set O. The wakeup and fail events are initiated by the RealWorld
automaton.
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Chapter 3

Virtual Infrastructure

In this chapter, we introduce two types of virtual infrastructure: an infrastructure
based on virtual objects and an infrastructure based on virtual nodes.

The first of these abstractions is the Virtual Object Layer.1 The Virtual Object
Layer is a shared object model: clients (i.e., the mobile nodes) can perform operations
on virtual objects that reside at pre-determined, potentially changing, locations in
the network. From the perspective of a client, the virtual objects behave exactly as
objects in a typical shared object model.

The second of these abstractions, the Virtual Node Layer, generalizes the Vir-
tual Object Layer. Each virtual entity is similar to a mobile node in that it is an
automaton that can broadcast and receive messages. Unlike a virtual object, a vir-
tual node can initiate activity (i.e., messages and computation) directly, rather than
simply responding to client requests. Also, virtual nodes can communicate with each
other via a virtual GeoCast service. For example, virtual nodes can transport data
from one end of a network to the other by transmitting it along a chain of virtual
nodes. Clients and virtual nodes communicate with each other via a virtual GeoCast
service.

We begin in Section 3.1 by introducing the Virtual Object Layer. We continue in
Section 3.2 to introduce the Virtual Node Layer. Finally, in Section 3.3, we briefly
discuss a few examples of applications that can be built using the Virtual Node Layer.
A more detailed and extensive example using the Virtual Object Layer is described
in Chapter 6.

3.1 Virtual Object Layer

The Virtual Object Layer is a simple shared-object model that hides the underlying
dynamics of a mobile ad hoc networks. The Virtual Object Layer consists of three
types of entities: clients, virtual objects, and a RealWorld automaton modelling
the environment:

1This model was previously referred to as the Focal Point Object Model in [32,33].
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Figure 3-1: Virtual Object Layer. The clients interact with the virtual objects via
invocations and responses.

44



• Each client is modelled as an asynchronous I/O automaton. The clients interact
with the virtual objects.

• Each virtual object is specified by a variable type specification, and is also mod-
elled as an asynchronous I/O automaton, specifically the canonical automaton
that implements the specified variable type. Recall (see Appendix A for more
details) that a variable type specification consists of (1) a set of values V , (2)
some initial value v0 ∈ V , (3) a set of invocations I, (4) a set of responses R, and
(5) a deterministic transition function f : I × V → R× V , that is, mapping an
invocation and a state to a response and a new state. Given such a type speci-
fication, the associated canonical automaton is a trivial atomic implementation
of the shared object with the semantics specified by the type specification. (See
Appendix A for more details.) Virtual objects receive invocations from the
clients and return responses generated by the transition function based on the
invocation and their current state.

• The RealWorld automaton models the (virtual) environment and is a timed I/O
automaton. The RealWorld maintains the location of each client, along with
the real time, and delivers geo-updates to the clients. Updates occur at least
every time tupd. Since an asynchronous I/O automaton is a special case of a
timed I/O automaton, and hence it is possible to composed the untimed clients
with the timed RealWorld.

The Virtual Object Layer is presented schematically in Figure 3-1, where a set of
clients interacts with a set of virtual objects.

Notice that the clients and virtual objects are modelled as asynchronous automata,
although they receive updates from the RealWorld that contain timing information.
In Section 3.1.2 we introduce further timing assumptions that are used when analyzing
the liveness and performance of the Virtual Object Layer.

Client / Virtual Object Interactions. The clients communicate only through
their interactions with the shared objects; there is no message-passing network. Each
client has a (countably) infinite number of invocation/response ports onto each shared
object, allowing it to invoke concurrent operations on an object. That is, the port set
Q of each object is S = N>0×OP × I, where OP is a set of operations (for example,
read, write, enqueue, dequeue, etc.). As is usual in shared object models, the clients
can invoke only one operation at a time on each port of an object.

Virtual Objects and Focal Points. Each virtual object is associated with a focal
point in the set O. At any given time, a virtual object resides at the center of its
associated focal point. Specifically, if a virtual object is associated with focal point
h, then at time t, the virtual object resides at the location fp-centerh(t).

If the function fp-centerh is constant over time, then the virtual object associated
with h remains in the same location throughout an execution. If both functions
fp-centerh and fp-regionh are constant over time, we say that virtual object h is static.
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If every virtual object h ∈ O is static, then we refer to this case as the Static Virtual
Object Layer. Otherwise, we refer to the general case as the Dynamic Virtual
Object Layer2.

3.1.1 Virtual Object Failures

The virtual objects are fault prone. That is, a virtual object can fail during an execu-
tion, at which point it ceases to respond to invocations. The failure or correctness of
a virtual object depends only on the client population of its associated focal point. If
a focal point region is populated throughout an execution, then its associated virtual
object is correct. If, on the other hand, a focal point region becomes depopulated,
then the virtual object associated with that focal point may fail. Note that it does
not matter how a focal point region becomes depopulated, be it as a result of clients
failing, leaving the area, etc. Any depopulation results in the virtual object failing.
We do not consider the possibility of a virtual object recovering; the same recovery
definitions and techniques discussed in the context of a virtual node (see Section 3.2.3)
can be applied to a virtual object.

A focal point is populated throughout a finite execution fragment if for some
sufficiently large constant tjoin there exists a sequence, j0, . . . , jk of clients such that:

• Client j0 is well inside the focal point region when the execution fragment begins,
and remains well inside the focal point region until at least time tjoin. That is,
the location of node j0 at the beginning of the execution fragment through
time tjoin is within the inner region specified for the focal point, i.e., its location
satisfies Equation 2.1. We refer to the time at which j0 first leaves the inner
region as the departure time for j0.

• For every ` < k, client j`+1 is well inside the focal point region at least tjoin
prior to the departure time for j`, and remains well inside the focal point region
and non-failed until at least time tjoin after the departure time for j`. We refer
to the first time after the departure time of j` at which j`+1 leaves the inner
region as the departure time of j`+1. The constant tjoin will be specified later
in Sections 4.3 and 5.3 when analyzing the performance of the Virtual Object
Layer3.

2Notice that the location of a virtual object is, in many ways, irrelevant to the clients that are
using these objects: the objects behave in the same manner regardless of their location. However,
the location of a virtual object—as determined by its associated focal point—affects its correctness,
since it remains correct only if its associated focal point region is populated. Thus it may be desirable
for a virtual object to inhabit regions that are more populated. The location of a virtual object may
also affect the cost of accessing it, if one were to account for the cost of a long-distance geocast; we
do not examine this latter metric, however.

3Notice that this definition requires a mobile node to be well inside a focal point region at least
time tjoin prior to the earlier node leaving. As we have not yet made any liveness assumptions about
the underlying physical system, we cannot at this point quantify tjoin; intuitively, this time interval
must be long enough for the focal point join protocol to complete and for any messages in the process
of being delivered to arrive. In Sections 4.3 and 5.3, where we analyze the performance of one of
our protocols, we quantify more precisely the size of tjoin.
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• Client jk is well inside the focal point region at the end of the execution frag-
ment.

A focal point is populated throughout an infinite execution fragment if it is populated
for all finite prefixes of the execution fragment. Thus a virtual object is correct in
some execution if its associated focal point is populated throughout that execution.

3.1.2 Timing and Liveness

In this thesis, we consider primarily an asynchronous variant of this model, that is,
there is no upper bound on how long an operation at a virtual object might take, and
there is no bound on the rate at which a client might take steps.

The Virtual Object Layer does, however, guarantee a lower bound on the duration
of an operation at a virtual object: each operation takes some finite time > tupd. This
technical assumption proves useful in building applications using the Virtual Object
Layer, as it implies that the updates provided by the RealWorld automaton are
sufficiently frequent to distinguish when an operation begins from when an operation
ends.

For the sake of analyzing performance, however, we will consider a synchronous
variant of the Virtual Object Layer in which:

• Client responsiveness: Any enabled action at a client is executed immediately.

• Virtual object responsiveness: If a correct client i at some location ` invokes an
operation on a correct focal point h and remains forever within distance Rgeo

of location `, then eventually i receives a response from h. In particular, there
is an upper bound on how long i waits to receive a response.

This describes a special case of a timed I/O automaton (similar to the model presented
in [75]) in which certain tasks have upper bounds associated with them.

Simple Example

As a very simple toy example of an algorithm that uses the Virtual Object Layer,
consider the problem of implementing an unreliable atomic read/write memory in
the Virtual Object Layer. In Chapter 6, we provide a more complete and involved
example, involving the implementation of a reliable atomic read/write memory. In
this simple example, we use only a single virtual object, h ∈ O, with operations
OP = {read, write}. The virtual object implements the read/write memory variable
type (presented, for reference, in Figure A-1). In order to perform read and write
operations, the client simply invokes the appropriate operation on the virtual object.
For example, when client i wants to satisfy a read request, it simply invokes the read
operation on the virtual object. It does this by performing the following transition:
invoke(〈read〉)p where port p = 〈1, read, i〉, a port for client i on object h. Eventually,
the virtual object responds as follows: respond(〈read-ack, val〉)p. At this point, the
client i can return the value. A write operation proceeds similarly, invoking the write
operation on an appropriate port of the virtual object.
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This simple algorithm solves the problem of implementing unreliable read/write
atomic memory in the Virtual Object Layer. This algorithm is, effectively, a cen-
tralized solution that depends on a single virtual object. If the virtual object h fails
(because, say, the focal point itself becomes depopulated), then the read/write mem-
ory itself fails. In Chapter 6, we describe a fault-tolerant algorithm for read/write
atomic memory in the Virtual Object Layer.

3.2 Virtual Node Layer

The Virtual Node Layer is a natural generalization of the Virtual Object Layer. It
is quite similar to the Virtual Object Layer with the exception that (1) each virtual
entity is a virtual node, rather than a virtual object, and (2) the entities—virtual
and real—communicate using a (virtual) GeoCast service, rather than through an
invocation-and-response mechanism. In addition, virtual nodes may recover, should
they fail.

The Virtual Node Layer consists of three types of entities: clients, virtual nodes,
and a RealWorld automaton modelling the environment:

• Each client is modelled as an asynchronous I/O automaton.

• Each virtual node is modelled a deterministic, asynchronous I/O automaton.

• The RealWorld automaton models the (virtual) environment and is a timed
I/O automaton. The RealWorld maintains the location of each client, along
with the real time, and delivers geo-updates to the clients. (Notice that it does
not deliver such updates to the virtual nodes.4) Updates occur at least every
time tupd. The RealWorld automaton also supports a virtual GeoCast broadcast
service, which allows clients and virtual nodes to geocast messages to each other.
This service is discussed further in Section 3.2.4.

Notice that the clients and virtual nodes are modelled as asynchronous automata,
although they receive updates from the RealWorld that contain timing information.
In Section 3.2.5 we introduce further liveness and timing assumptions that are used
when analyzing the liveness and performance of the Virtual Node Layer.

3.2.1 Virtual Nodes and Focal Points

Each virtual node is associated with a focal point in the set O. At any given time,
a virtual node resides at the center of its associated focal point. Specifically, if a

4In practice, it is often useful for the virtual nodes to be aware of time and location information.
Modelling the virtual nodes as timed automata introduces significant complications into both the
virtual layer definition and into emulation algorithms. See [82] for an example of how to accomplish
this. In order to achieve some of the benefits of a timed model, a simple application-level technique
can be used: nearby clients can be programmed to send time and location information to the
virtual nodes. This technique is a simple way of providing the virtual nodes with near-up-to-date
information, and was first introduced in [69].
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virtual node is associated with focal point h, then at time t, the virtual node resides
at the location fp-centerh(t). If the function fp-centerh is constant over time, then the
virtual node associated with h remains in the same location throughout an execution.
If both functions fp-centerh and fp-regionh are constant over time, we say that virtual
node h is static. If every virtual node h ∈ O is static, then we refer to this case
as the Static Virtual Node Layer. Otherwise, we refer to the general case as the
Dynamic Virtual Node Layer.

3.2.2 Motion-Controlled Clients

Throughout this section, we have assumed that the clients have no control over their
own motion. In some cases, however, we may be interested in considering a Virtual
Node Layer in which the clients can direct their own motion. As in the case of the
mobile nodes (see Section 2.2.3), it is a simple modification to support clients that
execute an algorithm to control the clients motion. Specifically, each client is assumed
to produce (as an output) some motion control signal, for example, move(. . .). This
signal may be in the form of a velocity vector, a target waypoint, or any other desired
form of motion control signal. In practice, the most common such signal is accelera-
tion. The RealWorld automaton, as a model of the environment, receives such signals
as input and uses them to update the location of the clients.

3.2.3 Virtual Node Failures

The virtual nodes are fault prone, but may recover. The failure and recovery of a
virtual node depends only on the client population of its associated focal point. If a
focal point region is populated throughout an execution fragment, then its associated
virtual node is correct—after some initial interval of time. If, on the other hand, a
focal point region becomes depopulated, then the virtual node associated with that
focal point may fail. Note that it does not matter how a focal point region becomes
depopulated, be it as a result of clients failing, leaving the area, etc. Any depopulation
results in the virtual node failing. When the focal point region is re-populated, then
after some sufficient interval of time, the virtual node recovers.

A focal point is populated throughout a finite execution fragment if for some
sufficiently large constant tjoin there exists a sequence, j0, . . . , jk of clients such that:

• Client j0 is well inside the focal point region when the execution fragment begins,
and remains well inside the focal point region until at least time tjoin. That is,
the location of node j0 at the beginning of the execution fragment through time
3tjoin is within the inner region specified for the focal point, i.e., its location
satisfies Equation 2.1. We refer to the time at which j0 first leaves the inner
region as the departure time for j0.

• For every ` < k, client j`+1 is well inside the focal point region at least tjoin

prior to the departure time for j`, and remains well inside the focal point region
and non-failed until at least time tjoin after the departure time for j`. We refer
to the first time after the departure time of j` at which j`+1 leaves the inner
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region as the departure time of j`+1. The constant tjoin will be specified later
in Sections 4.3 and 5.3 when analyzing the performance of the Virtual Node
Layer5.

• Client jk is well inside the focal point region at the end of the execution frag-
ment.

A focal point is populated throughout an infinite execution fragment if it is populated
for all finite prefixes of the execution fragment.

We say that a virtual node is correct in some execution fragment if its associated
focal point is populated throughout that fragment, and either (1) the fragment in
question is the very beginning of the execution, or (2) there is sufficient time prior to
the fragment for the virtual node to recover during which the focal point is populated.
Formally, for every fragment α′ of a timed execution α of the Virtual Node Layer,
we say that a virtual node h ∈ O is correct during α′ if focal point h is populated
throughout α′ and either:

• fragment α′ is a prefix of α; or

• there exists a fragment α′′ of temporal length at least 2tjoin that precedes α′ in
α (i.e., α′′.α′ is a fragment of α) and h is populated throughout α′′.α′.

3.2.4 The RealWorld and Virtual GeoCast

The clients and virtual nodes communicate using a GeoCast service, which is formally
part of the virtual RealWorld automaton that models the virtual environment. The
virtual RealWorld automaton is similar to that of the underlying system, except that
(1) it accounts for the failure status of clients and virtual nodes, instead of mobile
nodes, (2) it accounts for the location of clients, instead of mobile nodes, and (3) it
contains a virtual GeoCast service as a sub-component, but no fpcast services.

Each client and virtual node can use the virtual GeoCast service to send message
to all the clients and virtual nodes within some radius R of a chosen destination
location. To distinguish this broadcast service from the GeoCast service in the un-
derlying physical network, we refer to it as the virtual GeoCast service; when a
node sends a message, we say that it performs a virtual-geocast(m, d), sending mes-
sage m to destination d; when a node receives a messages, we say that it performs a
virtual-geocast-rcv(m, d).

For technical reasons, it is useful in this case to specify an automaton for the
RealWorld that captures the safety properties of the environment; this will be useful
when showing that a protocol satisfies the safety properties of the Virtual Node Layer.

5Notice that this definition requires a mobile node to join a focal point at least time tjoin prior to
the earlier node leaving. As we have not yet made any liveness assumptions about the underlying
physical system, we cannot at this point quantify tjoin; intuitively, this time interval must be long
enough for the focal point join protocol to complete and for any messages in the process of being
delivered to arrive. In Sections 4.3 and 5.3, where we analyze the performance of one of our protocols,
we quantify more precisely the size of tjoin.
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(See Section 5.2.5.) In the case of the Virtual Object Layer, this was unnecessary as
the virtual objects had no interaction with the RealWorld automaton. In this case,
however, the clients and virtual nodes communicate via the virtual GeoCast service,
which is part of the RealWorld. Hence when showing that an algorithm correctly
emulates the Virtual Node Layer, it is useful to be able to discuss more precisely the
behavior of the RealWorld. We describe the RealWorld automaton by specifying the
safety properties that is exactly satisfies, and arguing that they are easily captured
in an automaton.

The virtual RealWorld automaton maintains in its state the following components:

• the current real time (a non-negative real);

• the location of each client (a mapping from I to L);

• the time at which the last geo-update occurred for each client (a mapping from
I to non-negative reals); this allows the RealWorld to ensure that updates are
delivered with sufficient frequency;

• a set consisting of every message m broadcast by the virtual GeoCast service;

• a set A ⊆ I ∪O consisting of all non-failed clients and virtual nodes.

Along with the virtual GeoCast interface—virtual-geocast and virtual-geocast-rcv—it
has an output fail action which causes a client or virtual node to fail. The automaton
is defined so that its trace set consists of exactly those traces γ satisfying the following
properties:

1. In trace γ, for each non-failed client i, a geo-update event occurs at least every
tupd time.

2. Trace γ satisfies the integrity property (as defined in Chapter 2 in the context
of the GeoCast service):

Integrity : For any virtual GeoCast message m, location d, and client or virtual
node i ∈ I ∪O, if a virtual-geocast-rcv(m, d)i event occurs in an execution,
then a virtual-geocast(m, d)j event precedes it, for some client or virtual
node j ∈ I ∪O.

Notice that it easy to define transitions that enforce exactly these two properties: the
only condition on the virtual-geocast-rcv is that the message to be delivered exists in
the set of previously broadcast messages; the only restriction on trajectories is that
each client receives geo-updates with sufficient frequency.

The virtual GeoCast service also satisfies a liveness property: reliable delivery (as
is defined also in Chapter 2 in the context of the GeoCast service):

Reliable Delivery : For every virtual-geocast(m, d)i event that occurs at time t
where i ∈ I∪O, there exists some t′ > t+tupd and ε ≥ 0 such that: let j ∈ I∪O
be a client or virtual node satisfying the following:
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– j is within distance R of location d at time t′;

– j remains within distance R of location d until time t′ + ε; and

– j is correct for the interval [t′, t′ + ε];

then a geocast-rcv(m, d)j event occurs at some point in the interval [t′, t′ + ε],
delivering the message to j.

This property is treated as a restriction on the executions of interest in the virtual
model. In particular, we will show that the Virtual Node Layer, when implemented
using the algorithm in Chapter 5, guarantees reliable delivery (along with some spe-
cific performance metrics) when the underlying physical model guarantees additional
liveness and timing properties.

Recall that the underlying GeoCast service is parameterized by some delivery
radius Rgeo, meaning that messages are delivered to every mobile node within distance
Rgeo of the specified destination. We now specify the delivery radius for the virtual
GeoCast service. Let RFP be the maximum radius of any focal point. Recall (from
Section 2.3.2) that the radius Rgeo of the GeoCast service in the underlying mobile
network is > RFP. Fix RVgeo = Rgeo −RFP.

This choice of RVgeo allows us to relate the behavior of the underlying GeoCast
service in the mobile network to the virtual GeoCast service in the Virtual Node
Layer. For example, assume that some mobile node i GeoCasts a message m to some
location d. We know, by assumption, that every mobile node within distance Rgeo of
d receives message m. In the Virtual Node Layer, we also want every virtual node
within distance RVgeo of location d to receive message m. In fact, if some focal point
center ` is within distance RVgeo of location d, then every mobile node in the focal
point region receives message m. That is, we claim the following:

Lemma 3.2.1. For every geocast(m, d)i event that occurs at time t where i ∈ I,
there exists some t′ > t+ tupd and ε ≥ 0 such that: assume that h ∈ O is a focal point
and j ∈ I is a mobile node that satisfy the following:

• the focal point center of h is within distance RVgeo of d at time t′,

• the focal point center of h remains within distance RVgeo of d through time t′+ε,

• mobile node j is inside the focal point region of h at time t′,

• mobile node j remains inside the focal point region of h through time t′ + ε,

• mobile node j does not fail prior to time t′ + ε,

then a geocast-rcv(m, d)j event occurs at some point in the interval [t′, t′+ε], delivering
the message to node j.

Proof. We need to show the following three conditions for j to satisfy the Reliable
Delivery property of the underlying GeoCast service, which implies the desired result:
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• Mobile node j is within distance Rgeo of location d at time t′: Since j is inside
focal point h at time t′, we know that j is within distance RFP of the focal point
center for h at time t′. Moreover, the focal point center of h is within distance
RVgeo of d at time t′. Thus, by the triangle inequality, j is within distance
Rgeo ≤ RVgeo + RFP of d at time t.

• Mobile node j remains within distance Rgeo of location d until time t′+ ε: This
conclusion follows by the same argument, since j remains inside the focal point
region for h through time t′ + ε, and since the focal point center for h remains
within distance RVgeo of d through time t′ + ε.

• Mobile node j does not fail prior to time t′ + ε, by assumption.

3.2.5 Timing and Liveness

In this thesis we consider primarily an asynchronous variant of the Virtual Node
Layer. That is, there is no upper bound on the rate at which clients and virtual
nodes take steps, and there is no upper bound on the delay of the virtual GeoCast
communication service.

For the sake of analyzing performance, however, we will consider a synchronous
variant of the Virtual Node Layer in which:

• Any enabled action at a client is executed immediately.

• An enabled action at a virtual node is executed within a bounded time. That
is, if at time t some action a is enabled at virtual node v, then after some
bounded amount of time, either action a is executed, or at some point during
that interval of time, some other action occurs such that action a is no longer
enabled.

• The delay of the virtual-geocast/virtual-geocast-rcv communication service is
bounded.

• For every execution, there is a bound on the ε specified in the reliable delivery
property of the virtual GeoCast service.

This describes a special case of a timed I/O automaton (similar to the model presented
in [75]) in which certain tasks have upper bounds associated with them.

3.3 Example Applications

In this section we briefly discuss some scenarios in which virtual nodes facilitate the
design of algorithms. The algorithms described (briefly) in this section depend on
using virtual nodes to collect, disseminate, and process information. We focus in
particular on applications that involve dynamic virtual nodes, that is, virtual nodes
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that travel through the network. In Chapter 6, we provide a complete example of a
protocol that uses static virtual objects to reliably store data in a changing network.

These examples are, loosely, related to the problem of maintaining dynamic data
structures in a mobile ad hoc network. For example, the first example in Section 3.3.1
is related to the problem of routing, which in most implementations attempts to main-
tain portions of a shortest-path tree. Due to the constantly changing environment,
these algorithms are notoriously difficult to implement correctly and even harder to
analyze: it is rare for such a dynamic algorithm to have provably good performance
in the worst case. We suggest that instead of maintaining these data structures ex-
plicitly, it is easier to take advantage of the spatial topology of the mobile nodes and
use virtual nodes to collect and process the data.

3.3.1 Routing

We first consider the problem of point-to-point message routing that delivers messages
to specifically identified mobile nodes. Notice that the GeoCast service does not
deliver messages to specified nodes; instead, it sends messages to a particular region
of the network. Most routing algorithms (e.g., [42,84,85,93]) either track the location
of every mobile node in the system, or flood the entire network with messages to
discover the location of each node. Both approaches can be quite expensive, and
optimizations are difficult.

We suggest instead a routing scheme based on the compulsory protocol of Chatzi-
giannakis et al. [20]. In its simplest version, a single virtual node travels through the
network, collecting and delivering messages. In order to send a message, a mobile
node i waits until it nears the virtual node, and then uses the geocast service to send
a message to the virtual node’s (predicted) location. A mobile node can determine
that it is near to a virtual node by calculating the mobile node’s location at a given
time and comparing it to its own location. Since the mobile node receives time and
location updates at least every tupd time, this calculation is never too far off. The
first time that the client receives a time update placing it within broadcast range of
the virtual node, it transmits its messages. Underlying this idea is the assumption
that a client will be within broadcast range of the virtual node for some time� tupd;
this depends on the broadcast radius, the velocity of the client, and the velocity of
the virtual node in question.

The virtual node collects messages that it has received, and waits to deliver them
to clients. A client that wants to receive messages waits until the virtual node is
nearby, and then requests from it any messages it has to deliver to that specific
client.

Recall that virtual nodes fail in empty regions of the network. However, wherever
there are nodes that need to send and receive messages, there is presumably enough
network density to ensure that the virtual node does not fail. Notice, though, that this
algorithm only works well when the populated regions of the network are “connected:”
if a node in one populated region tries to send a message to a node in another
populated region, but all paths between these two regions are sparsely populated, the
virtual node cannot deliver the message.
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If the virtual node is correct, i.e., never enters a depopulated region of the net-
work, then we can conclude under certain conditions that messages are delivered.
Specifically, under the timing assumptions described in Section 3.2.5, along with the
assumption that, every so often, a client is within broadcast range of the virtual node
for sufficiently long to detect its presence and exchange information with it, then we
can conclude that every message will eventually be delivered. The time to deliver
the message can be calculated based on (1) how long it takes for the sending client
to approach the virtual node, and (2) how long it takes for the virtual node to reach
the receiving node. If the virtual node sweeps through the network, then we can
determine a bound on this time based on the size of the geographic region and the
velocity of the virtual node.

Using more virtual nodes can shorten the average message latency, while increasing
the overall cost of the protocol. For example, a set of virtual nodes may traverse the
network in a covering fashion; whenever two virtual nodes pass each other, they
send each other their stores of messages. In this way, all the messages spread to all
the virtual nodes. A more space-efficient algorithm might use the scheme developed
in [20], where the virtual nodes form a snake, winding through the network in a
pseudorandom path, thus regularly visiting every populated region of the network
and delivering messages to the resident nodes.

Compared to typical routing schemes (such as DSR and AODV), these algorithms
are easier to tune, in terms of space versus latency trade-offs: by increasing the number
of virtual nodes, and thus the space, messages are more rapidly delivered. Unlike
DSR and AODV, the cost (in terms of message latency and space usage) of these
algorithms scales with the number of virtual nodes and the size of the region being
covered, rather than the number of nodes. On the other hand, using a Virtual Node
Layer has larger associated overhead costs, as it requires emulating a virtual layer.
It remains an interesting experimental question whether it is feasible to implement
routing on a Virtual Node Layer in such a way that it is competitive with existing
routing protocols. (See [97] for ongoing progress in this direction.)

3.3.2 Data Collection

A common use of ad hoc networks is to monitor environmental sensors. For example,
one might wish to evaluate the average temperature, the average remaining battery
charge, or the number of nodes in various regions of the network. (The latter appli-
cation might be used to track animals or cars, or to determine the density of mobile
nodes for other uses.)

We propose a very simple algorithm for collecting data in mobile (rather than
static) networks. As in the case of routing, we assign the main work to the virtual
nodes, which systematically explore the region in question, collecting and aggregating
data. The primary difference from the routing algorithm is that the data may be
aggregated, both regionally and temporally, as it is being collected. A client can
specify as part of a query what sort of data the sensors should produce, and how the
“network” should aggregate that data. The virtual nodes return only the necessary
data to the clients. The rate of data collection can be calculated, as in the case of
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routing, by considering the velocity of the virtual node and the size of the geographic
region, under a similar set of performance and liveness assumptions. As in the case of
routing, using more virtual nodes improves the performance, at the cost of increased
communication.
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Chapter 4

The Virtual Object Emulator

In this chapter we present a protocol that implements the Virtual Object Layer. The
main goal of this chapter, then, is to show how to reliably emulate virtual objects
using unreliable mobile nodes. The protocol for emulating a virtual object is based
on the replicated-state-machine approach, in which all the mobile nodes in a focal
point region cooperate to emulate the associated virtual object. Clients, by con-
trast, are emulated directly by the mobile nodes. The replicas for each virtual object
coordinate using the fpcast service associated with the virtual object’s focal point;
this broadcast service provides for reliable, totally ordered broadcast. The standard
replicated-state-machine techniques are extended to tolerate nodes joining and leav-
ing the emulation. The result is a virtual object that remains reliable as long as
the associated focal point region remains “populated” with clients; if the focal point
region becomes depopulated, then the associated virtual object fails.1

In Section 4.1 we present an overview of the Virtual Object Emulator, the algo-
rithm which implements the Virtual Object Layer. In Section 4.2 we argue that the
emulation is correct. In Section 4.3 we discuss the performance of the Virtual Object
Emulator.

An extended abstract of this work appeared in the 17th International Symposium
on Distributed Computing (DISC 2003) [32], and a full version appeared in Dis-
tributed Computing [33]. The version included here includes some minor edits and
improvements from the version in [33]. The protocol has been modified to tolerate
dynamic virtual objects, and new names have been chosen for various entities and
protocols. Specifically, the objects implemented are now referred to as virtual objects
(rather than “focal point objects”), and the main emulation protocol is now referred
to as the Virtual Object Emulator (rather than the “focal point emulator”).

1Note that it does not matter how a focal point region becomes depopulated, be it as a result of
mobile nodes failing, leaving the area, going to sleep, etc. Any depopulation results in the virtual
object failing.
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4.1 Virtual Object Emulator

In this section we present the Virtual Object Emulator (VOE), an algorithm that
implements the Virtual Object Layer described in Chapter 3. We focus in this section
on describing how the emulator implements a single virtual object associated with a
single focal point h. Fix h ∈ O for the remainder of this section. The entire layer is
emulated simply by executing one instance of this protocol for each h ∈ O.

The basic idea of the Virtual Object Emulator is to use mobile nodes in the
focal point region as replicas. Throughout an execution, mobile nodes move in and
out of the focal point region. The nodes that are inside the focal point region at any
given time act as replicas, and collaborate to implement the virtual object. They take
advantage of the fpcasth service to implement a replicated state machine that tolerates
nodes continually joining and leaving. This replicated state machine consistently
maintains the state of the atomic object, ensuring that the invocations are performed
in a consistent order at all mobile nodes.

The Virtual Object Emulator consists of two automata that run on each mobile
node. The VOE is designed to emulate a virtual object; it is not involved in emulating
the client. The emulator consists of two components: the VOE-Client and the
VOE-Server, which communicate with each other using the GeoCast service. Notice
that both components of the emulator, though executing on the same mobile node,
interact only via the GeoCast service. For each virtual object h′ ∈ O we assume a
distinct instantiation of both Virtual Object Emulator components; recall that we
are describing here the implementation of a single virtual object h.

Figure 4-1 depicts the various components, along with the two broadcast services
GeoCast and fpcasth. The clients (not depicted) send invocations to the VOE-Clients
(on the left), which attach a tag to every request and broadcast the request to a focal
point using the GeoCast service. Within the focal point, the request is received by the
VOE-Servers. The VOE-Servers then coordinate amongst themselves to determine
an ordering of the requests. They accomplish this coordination using the fpcasth
service, which delivers messages to all of the VOE-Servers in the same order. This
total ordering determines the order in which the VOE-Servers process the requests.
Based on this (ordered) sequence of requests, the VOE-Servers consistently update
their local replicas of the atomic object, and send a response back to the originating
VOE-Client using the GeoCast service. The VOE-Client then removes duplicates, and
delivers the response to the client.

The VOE-Client runs on every mobile node that wants to access atomic object h;
the VOE-Server runs on every mobile node and is active when the mobile node is well
inside2 the focal point region corresponding to the atomic object. We now proceed
to describe these two components in more detail.
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Figure 4-1: Diagram of the Virtual Object Emulator for emulating a single virtual
object h. Each of the VOE-Clients and VOE-servers may execute on a different mobile
node. When a VOE-Client (on the left) receives an invocation, it sends the request
to all the VOE-Servers using the GeoCast service. At least one of the VOE-Servers
broadcasts the request to all the other VOE-Servers in the focal point, using the
fpcasth service. Each VOE-Server then updates its object replica as a result of the
request. At this point, at least one VOE Server sends a response to the originating
VOE-Client, using the GeoCast service. The VOE-Client then filters out extraneous
responses and delivers a response.
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Figure 4-2: Automaton VOE-Client: Signature and State
for client i and object obj of variable type τ = 〈V, v0, invocations, responses, δ〉

1 Input:
2 invoke(inv)p, inv ∈ invocations, p ∈ Q
3 geocast-rcv(〈response, resp, oid, loc〉, d)i, resp ∈ responses, oid ∈ U, d ∈ L

4 geo-update(l, t)i, l ∈ L, t ∈ R>0

5

6 Output:
7 geocast(m, d)i, m ∈ invoke × invocations × U × L × L, d ∈ L
8 respond(resp)p, resp ∈ responses, p ∈ Q
9

10 Constants:
11 fp-center : Rˆ{≥ 0} → L, a function mapping time to the focal point center
12 fp-region : Rˆ{≥ 0} → P(L), a function mapping time to the focal point region
13

14 State:

15 clock ∈ R≥0, the current time, initially 0, updated by the geosensor
16 location ∈ L, node i′s location, initially i′s initial location, updated by the geosensor
17 ready-responses ⊆ Q × responses, a set of an operation responses, initially ∅
18 geocast-queue, a queue of messages to be geocast, initially ∅
19 ongoing-oids ⊆ U, a set of operation identifiers, initially ∅
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Figure 4-3: Automaton VOE-Client: Transitions
for client i and object obj of variable type τ = 〈V, v0, invocations, responses, δ〉

1 Input invoke(inv)p

2 Effect:
3 new-oid ← 〈clock, p〉
4 Enqueue(geocast-queue, 〈〈invoke, inv, new-oid, location〉, fp-center(clock)〉)
5 ongoing-oids ← ongoing-oids ∪ {new-oid}
6

7 Input geocast-rcv(〈response, resp, oid, loc〉, d)i

8 Effect:
9 if (oid ∈ ongoing-oids) then

10 〈c, p〉 ← oid
11 ready-responses ← ready-responses ∪ {〈p, resp〉}
12 ongoing-oids ← ongoing-oids − {oid}
13

14 Input geo-update(l, t)i

15 Effect:
16 location ← l
17 clock ← t
18

19 Output geocast(m, d)i

20 Precondition:
21 Peek(geocast-queue) = 〈m, d〉
22 Effect:
23 Dequeue(geocast-queue)
24

25 Output respond(resp)p

26 Precondition:
27 〈p, resp〉 ∈ ready-responses
28 Effect:
29 ready-responses ← ready-responses − {〈p, resp〉}
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4.1.1 VOE-Client

The signature and state of the VOE-Client are presented in Figure 4-2, and the
transitions for the VOE-Client are presented in Figure 4-3. The VOE-Client has
three basic purposes. First, it ensures that each invocation receives at most one
response by eliminating duplicates. It accomplishes this by attaching a unique tag
to each request and delivering only one response for each tag. Second, it instantiates
the invoke/response interface for the virtual object, delivering the requests via the
GeoCast service to the actual replicas responsible for emulating the virtual object.
Third, it provides each mobile node with multiple ports with which to access the
virtual object.

4.1.2 VOE-Server

The VOE-Server performs the actual replicated emulation of the virtual object. The
VOE-Server implements a replicated state machine. Thus, each mobile node, when
it is active in the emulation, maintains a copy of the state of the virtual object. The
mobile nodes use the total-ordering property of the fpcasth service to ensure that the
replicated state is updated consistently. Figure 4-4 contains the signature and state
of the VOE-Server. The remaining code for the VOE-Server is in Figures 4-5 and 4-5.

Emulator State. We begin by enumerating the elements of the VOE-Server’s state:

• The clock and the location variables store the time and location information
from the most recent geo-update.

• The status determines whether the emulator is currently participating in the
emulation as a replica, joining the emulation, or idle.

• The value val stores the current state of the replica.

• The join-id is a unique identifier selected and used during the join protocol.

• The fpcast-queue and geocast-queue are two queues storing outgoing messages
for the respective broadcast services.

• The answered-join-reqs is a set indicating which join requests have already been
answered.

• The queue pending-ops stores messages waiting to be processed.

• The queue completed-ops stores messages that have already been processed.

• The counter fpcast-cnt is used to ensure that each fpcast message is unique.

2Recall that a mobile node is well inside a focal point region when it is sufficiently deep inside
the region, as was defined in Section 2.2.2.
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Figure 4-4: Automaton VOE-Server: Signature and State

1 Input:
2 geocast-rcv(〈invoke, inv, oid, loc〉, d)i, inv ∈ invocations, oid ∈ U, loc ∈ L, d ∈ L
3 fpcast-rcv(〈join-req, jid〉)obj ,i, jid ∈ T
4 fpcast-rcv(〈join-ack, jid, v〉)obj ,i, jid ∈ T, v ∈ V
5 fpcast-rcv(〈invoke, inv, oid, loc〉)obj ,i, inv ∈ invocations, oid ∈ U, loc ∈ L

6 geo-update(l, t)i, l ∈ L, t ∈ R>0

7

8 Output:
9 geocast(〈response, resp, oid, loc〉, d)i, resp ∈ responses, oid ∈ U, loc ∈ L, d ∈ L

10 fpcast(〈join-req, jid〉)obj ,i, jid ∈ T
11 fpcast(〈join-ack, jid, v〉)obj ,i, jid ∈ T, v ∈ V
12 fpcast(〈invoke, inv, oid, loc〉)obj ,i, inv ∈ invocations, oid ∈ U, loc ∈ L
13

14 Internal:
15 join()i

16 simulate-op(inv)i, inv ∈ invocations
17

18 Constants:
19 fp-center : Rˆ{≥ 0} → L, a function mapping time to the focal point center
20 fp-region : Rˆ{≥ 0} → P(L), a function mapping time to the focal point region
21

22 State:

23 clock ∈ R≥0, the current time, initially 0, updated by the geosensor
24 location ∈ L, node i′s location, initially i′s initial location, updated by the geosensor
25 status ∈ {idle,joining,listening,active}, initially active if node is in the focal point region; idle otherwise
26 val ∈ V, holds current value of the simulated atomic object, initially v0

27 join-id ∈ T, unique id for current join request, initially 〈0, i0〉
28 fpcast-queue, a queue of messages to be sent by fpcast, initially ∅
29 geocast-queue, a queue of messages to be sent by the GeoCast, initially ∅
30 anwered-join-reqs, set of ids of join requests that have already been answered, initially ∅
31 pending-ops, queue of operations waiting to be simulated, initially ∅
32 completed-ops, queue of operations that have been simulated, initially ∅
33 fpcast-count ∈ N, counter of fpcast operations, initially 1
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Figure 4-5: Automaton VOE-Server: Input Transitions
for client i and object obj of variable type τ = 〈V, v0, invocations, responses, δ〉

1 Input fpcast-rcv(〈〈join-req, jid〉, cnt, k〉)obj ,i
2 Effect:
3 completed-ops ← completed-ops ∪ 〈join-req, jid〉
4 if ((status = joining) ∧ (jid = join-id)) then
5 status ← listening
6 if ((status = active) ∧ (jid 6∈ answered-join-reqs)) then
7 Enqueue(fpcast-queue, 〈join-ack, jid, val, completed-ops〉)
8

9 Input fpcast-rcv(〈〈join-ack, jid, v, c-ops〉, cnt, k〉)obj ,i
10 Effect:
11 answered-join-reqs ← answered-join-reqs ∪ {jid}
12 completed-ops ← completed-ops ∪ 〈join-ack, jid, v, c-ops〉
13 if ((status = listening) ∧ (jid = join-id)) then
14 status ← active
15 completed-ops ← completed-ops ∪ c-ops
16 val ← v
17

18 Input fpcast-rcv(〈〈invoke, inv, oid, loc〉, cnt, k〉)obj ,i
19 Effect:
20 if ((status = listening ∨ active)
21 ∧
22 (〈inv, oid, loc〉 6∈ pending-ops ∪ completed-ops)) then
23 Enqueue(pending-ops, 〈invoke, inv, oid, loc〉)
24

25 Input geocast-rcv(〈invoke, inv, oid, loc〉, d)i

26 Effect:
27 if (〈inv, oid, loc〉 6∈ pending-ops ∪ completed-ops) then
28 Enqueue(fpcast-queue, 〈invoke, inv, oid, loc〉)
29

30 Input geo-update(l, t)i

31 Effect:
32 clock ← t
33 location ← l
34 if (depthobj (location, clock) < tupd ·(vmax + vfp-max)) then
35 status ← idle
36 join-id ← 〈0, i0〉
37 val ← v0

38 answered-join-reqs ← ∅
39 pending-ops ← ∅
40 fpcast-queue ← ∅
41 geocast-queue ← ∅
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Figure 4-6: Automaton VOE-Server: Internal and Output Transitions
for client i and object obj of variable type τ = 〈V, v0, invocations, responses, δ〉

43 Internal simulate-op(inv)i

44 Precondition:
45 status = active
46 Peek(pending-ops) = 〈invoke, inv, oid, loc〉
47 Effect:
48 if (〈invoke, inv, oid, loc〉 /∈ completed-ops) then
49 (val, resp) ← δ(inv,val)
50 Enqueue(geocast-queue, 〈〈response, resp, oid, loc〉, loc〉)
51 Enqueue(completed-ops, Dequeue(pending-ops))
52

53 Internal join()i

54 Precondition:
55 depthobj (location, clock) ≥ tupd ·(vmax + vfp-max)
56 status = idle
57 Effect:
58 join-id ← 〈clock, i〉
59 status ← joining
60 Enqueue(fpcast-queue, 〈join-req, join-id〉)
61

62 Output fpcast(〈m, fpcast-count, i〉)obj ,i
63 Precondition:
64 Peek(fpcast-queue) = m
65 Effect:
66 fpcast-count ← fpcast-count +1
67 Dequeue(fpcast-queue)
68

69 Output geocast(m, d)i

70 Precondition:
71 Peek(geocast-queue) = 〈m, d〉
72 Effect:
73 Dequeue(geocast-queue)
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Joining and Leaving the Emulation. The emulator transitions between three
statuses: idle, joining, listening, and active. We first discuss how a mobile node joins
the emulation. The join protocol is activated when the mobile node enters the inner
region of focal point h, i.e., when it hears that it is well inside the focal point region. In
this circumstance, the join transition is enabled (Figure 4-6, lines 53–60). This results
in the mobile node broadcasting a join-request message using the fpcasth service, at
which point it sets its status to joining and awaits a response.

The other active nodes in the focal point receive the join request (Figure 4-5,
lines 1–7) and respond by sending the current replicated state of the virtual object
using the fpcasth service. As an optimization to avoid unnecessary message traffic,
if a node observes (by examining answered-join-reqs) that someone else has already
responded to a join request, then it does not respond; only one node needs to send
a join response. Notice (Figure 4-5, line 6) that only active nodes will send join
responses. When the node that originated the join request receives its own join
request (Figure 4-5, lines 4–5), it sets its status to listening.

When the joining node receives a response to its join request (Figure 4-5, lines 9–
16), it starts participating in the emulation, setting its status to active. This completes
the join protocol.

By contrast, ceasing to participate in the emulation does not require any coor-
dination with other replicas. When a node hears that it has left the inner focal
point region (either due its own motion, or the movement of the virtual object), it
re-initializes its variables, and becomes idle (Figure 4-5, lines 30–41).

Responding to Invocations. We next discuss how active replicas respond to an
invocation. When a node participating in focal point h receives a GeoCast message
containing an invocation on object h (Figure 4-5, lines 25–28), it rebroadcasts the
invocation with the fpcasth service, thus ordering the invocation with respect to the
other messages broadcast with the fpcasth service (i.e., join-request messages, join
responses, and other operation invocations). Since it is possible that a GeoCast
invocation is received—and rebroadcast—by more than one node in the focal point,
there is some bookkeeping to ensure that only one copy of the same invocation is
actually processed by the nodes. We include an optimization that if a node observes
via the pending-ops or completed-ops queues that an invocation has already been sent
by the fpcasth service, then it does not do so again.

Active nodes keep track of invocations in the order in which they receive the
invocation messages via the fpcasth service (Figure 4-5, lines 18–23). Duplicates
are discarded using the unique operation identifiers, which are stored in the sets
pending-ops and completed-ops . The operations are then performed (Figure 4-6,
lines 43–51) on the simulated state in this order. After each operation is executed, a
GeoCast is sent back to the invoking node with the operation’s response. We can be
sure that the invoking node receives a response when it remains in the same region
from which it sent the invocation, allowing the GeoCast to find it.

There are some subtle points involved in deciding when during the process of join-
ing the emulation a node should start recording invocation messages, when a node
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should start executing operations, and when a node should start sending responses.
During the process of joining, a node receives a snapshot of the object’s state. How-
ever by the time the snapshot is received, it might be out of date, since there may
have been some intervening messages delivered by the fpcasth service that have been
received since the snapshot was sent. Therefore the joining node must record all
the operation invocations that are broadcast after its join request was broadcast but
before it receives the snapshot. This is accomplished by having the joining node en-
ter a “listening” state once it receives its own join-request message; all invocations
received when a node is in either the listening or the active state are recorded, and
actual processing of the invocations can start once the node has received the snap-
shot and has the active status. The processing consists of first emptying the queue
of waiting invocations, and then proceeding to handle newly arrived invocations.

A final point to notice is that every message sent by the fpcasth service is unique:
attached to each message is a counter (fpcast-cnt) and the process identifier; each
processor increments its counter after each fpcast, ensuring that no message is dupli-
cated. Notice that each message m that is fpcast is of the form 〈P, cnt , k〉, where cnt
is a counter and k is a node identifier. We refer to P as the payload of m.

4.2 Analysis

In this section we show that the Virtual Object Emulator correctly implements the
Virtual Object Layer. We first focus on a single focal point h, and show that the
Virtual Object Emulator for h correctly emulates the canonical atomic object associ-
ated with h. The key tool in this proof is Theorem A.3.2 (see Appendix A.3 for more
details). In order to use this theorem, we define a total order on all the operations
simulated by the VOE, and show that this order satisfies certain properties. Once we
have shown that each individual VOE emulates a single virtual object, we argue that
the entire emulation of all the virtual objects results in an emulation of the Virtual
Object Layer. Of note, throughout this proof, we depend only on the basic timing
assumptions described in Chapter 2, i.e., the accurate time and location updates re-
ceived sufficiently frequently from the (RealWorld) GeoSensor. In Section 4.3, we
make additional timing assumptions regarding the behavior of the mobile nodes and
the broadcast service, and analyze the performance of the emulator.

We begin by describing what it means for the Virtual Object Emulator to emulate
the Virtual Object Layer. For each h ∈ O, let Ah be the canonical atomic object
automaton specified by the type of virtual object h. (See Appendix A.3 for a defini-
tion of the canonical atomic object automaton.) Notice that Ah is an asynchronous
automaton, formalized with TIOA, that is, with arbitrary time passage between dis-
crete events. Let S be the composition of all the VOE-Clients, VOE-Servers, and the
RealWorld, where all the actions that are not invoke, respond, or geo-update actions
are hidden. For each h ∈ O, let Sh be automaton S with all actions except for invo-
cations and responses for object h hidden. Thus, the external interface to Sh consists
only of invoke and respond actions on object h. (Notice that all the hidden actions
are output actions, since the only inputs to S are invoke actions.) The result of this
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definition is that the external interface of Sh is identical to the external interface
of Ah.

Our first goal is to show that every trace of Sh is also a trace of Ah. That is, for
every possible pattern of invocations by the clients, the result trace of the emulator is
also a trace of the atomic object Ah. The majority of the analysis lies in proving this
claim. Notice that Sh is a timed automaton, while Ah is asynchronous in the sense
that it allows for arbitrary time passage events between discrete events. Note that
traces of Sh and Ah are both timed, even though Ah is asynchronous.

Once we have shown that every trace of Sh is also a trace of Ah, it remains to
show that for the entire composition of the emulators and the RealWorld, i.e., for the
emulation of all the objects simultaneously, every trace is also a trace of the Virtual
Object Layer. We show this fact in Section 4.2.4 by pasting together the individual
client and virtual object executions.

We now fix one h ∈ O and focus on showing that Sh implements Ah. In particular,
we need to show that every trace of Sh is also a trace of Ah. (Again, recall that
traces are timed.) Formally, let U be any well-formed environment: a well-formed
environment is an arbitrary timed automaton that preserves well-formedness. Our
goal is to show that traces(U × Sh) ⊆ traces(U × Ah).

The main body of the proof consists of determining a total ordering on all the
operations of the object h, given an arbitrary execution in which all the operations
complete. The total ordering is shown to have certain properties, allowing us to
conclude that the algorithm correctly implements an atomic object. Specifically,
the key properties are that the ordering is consistent with the real-time ordering of
operations, and that the ordering is consistent with the responses sent during the
execution. We then use Theorem A.3.2 (see Appendix A.3 for further details) to
conclude the proof.

Fix an arbitrary execution α of the system U × Sh in which every operation
completes, where U is an arbitrary environment for Sh that is compatible with Sh

and preserves well-formedness. (Theorem A.3.2 indicates that we need only consider
executions in which all the operations complete.) Let Π be the set of operations
in α. Since every operation completes, we know that for every operation π ∈ Π, for
some port p ∈ Q (the set of ports), an invoke(π)h,p event occurs in α, followed by a
respond(π)h,p event.

We begin in Section 4.2.1 to define some notation, and a total order on the oper-
ations in Π. These operations are ordered based on the order in which the associated
fpcast messages are delivered. We then proceed in Section 4.2.2 to prove certain prop-
erties of this total order. Specifically, in Invariant 4.2.1 we prove the key property of
the total order: at every point in the execution α, the replicated state of each VOE
active in the replication is equal to the state after some prefix of the ordered opera-
tions. Notice that this claim alone is sufficient to show that the replicas agree on an
an execution of the virtual object, and moreover that the agreed-upon execution is
exactly defined by the total order on operations. In Section 4.2.3, we invoke Theo-
rem A.3.2 to show that the VOE emulator Sh implements the virtual object Ah, and
in Section 4.2.4 conclude that the VOE emulator as a whole implements the Virtual
Object Layer.
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4.2.1 Totally Ordered Operations

We begin by defining some preliminary notation. Recall that we have already fixed an
execution α of Sh × U . We define id(π) to be the unique identifier of each operation
π, and id(m) to be the operation identifier of each message m; for each prefix β of α
we define IM (β) to be the set of messages sent by the fpcasth service in β. Finally,
we define a total order ≺ on the operations in Π based on the messages in IM (α).
We proceed in more detail.

First, recall that every operation begins, by definition, with an invocation on some
port, and notice that each operation π ∈ Π is assigned a unique identifier 〈clock , p〉
by the VOE-Client before it is GeoCast to the VOE-Servers (see Figure 4-3, line 3).
We refer to this identifier as id(π).

Second, for any prefix β of execution α, let IM (β) be the set of messages sent
(and later delivered) by the fpcasth service in β. That is:

IM (β) = {m | ∃i ∈ I, fpcast(m)h,i ∈ β }

The set IM (β) contains one message m for every fpcast(m) event in β.

Third, since each message fpcast is unique, the properties of the fpcasth service
guarantee that there exists a total ordering of the messages in IM (α) that is consistent
with the order in which each mobile node receives the messages. That is, if node i
receives two messages mr and mt in that order, then mr ≺ mt in the total ordering.
Fix ≺ to be this ordering.

Fourth, notice that a “message” m consists of the tuple: 〈〈op, inv , oid , loc〉, ·, ·〉,
the tuple sent by an fpcast. Each invoke message, that is, each message in which
op = invoke, includes an identifier oid 6= ⊥. If m is an invoke message, then let
id(m) be the identifier associated with message m. This identifier is closely related
to the identifier associated with operation, id(π) that led to this message: for each
invoke message, oid is set to the unique identifier of an operation associated with that
message. (See Figure 4-5, line 28, and notice that the enqueued fpcasth message uses
the identifier from the received GeoCast request). This allows us to say that certain
fpcasth messages are associated with each operation. However, it also means that the
oid identifiers in each message are not unique: two fpcasth messages (sent by different
mobile nodes) may have the same oid identifier as they may result from two different
mobile nodes receiving the same geocast invoke message.

Finally, we define a total ordering on operations π ∈ Π as follows, using the
ordering ≺ induced by the fpcasth service. Let πi and πj be two operations in Π.
For operation πi, let m1 be the first message according to the ordering ≺ in IM (α)
associated with operation πi, that is, where id(m1) = id(πi). The message m1 is the
first message delivered by fpcasth in α that was generated by operation πi.

Similarly, for operation πj, let m2 be the first message according to the ordering
≺ in IM (α) such that id(m2) = id(πj). We say that πi ≺ πj if m1 ≺ m2. Since
operation identifiers are unique and an operation can only be associated in this way
with a single message (i.e., the first), this defines a total ordering on operations.
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4.2.2 Properties of the Total Order

Our goal now is to show that the total ordering on operations satisfies the criteria
of Theorem A.3.2, thus implying that the emulation of atomic object Ah is correct.
The most difficult property required by Theorem A.3.2 is Property 2: we need to
show that the total ordering of operations is consistent with the responses sent by
the VOE-Servers. In order to show this property, we focus on a key invariant that
relates the total ordering to the state of each replica. Invariant 4.2.1 shows that at
every point in the execution, the state of each replica precisely reflects a prefix of the
ordered operations. From this we are able to conclude that each response sent by a
replica is also consistent with the total order.

We begin by defining, for each prefix of α and for each replica i, a prefix of the
ordered messages in IM (α); this prefix of the ordered messages represents the set of
messages processed by i. It is easy to see that every message processed by i is in
this set. We argue (in the proof to Invariant 4.2.1) that this set exactly captures the
set of messages that have been processed to produce i’s replicated state. That is, i’s
replicated state is exactly the value v resulting from executing each operation in this
designated prefix of IM (α). We now proceed in more detail.

Let α′ be any finite prefix of execution α, and let i be any node. Recall that
each message m ∈ IM (α) consists of a payload P , along with a counter and a node
identifier. Of all the fpcasth messages ordered in IM (α′), we are interested in a
particular subset of these messages: those that are delivered in α′ to i that have
not had their payload added to pending-ops i. This subset includes all the messages
processed by i in α′, since every message processed by i has been received and is no
longer in the pending queue. More formally, define IM (α′, i) to be the set of messages
m̄ that satisfy the following three conditions:

1. fpcast-rcv(m̄)obj ,i occurs in α′, and

2. m̄ = 〈P, ·, ·〉 and

3. P /∈ `state(α′).pending-ops i.

Here `state(α′) denotes the last state in α′.

We now define γ(α′, i) to be the state of the atomic object after processing all
the operations in α′ up to and including the last operation in α′ processed by i, that
is, the operations represented by all the messages in IM (α′) up to and including the
largest message in IM (α′, i). (An operation is processed when it is applied to the
state of the atomic object.) We now define γ(α′, i) more formally.

First, choose m̄ to be the largest message (according to the total ordering ≺) in
IM (α′, i). The message m̄ is, in effect, the most recent message that has been pro-
cessed by node i: all prior messages have been received, added to the set pending-ops i,
and then removed from the set pending-ops i; all later messages are in the set of pend-
ing operations pending-ops i, or have not yet been received. If no such m̄ exists, i.e.,
if IM (α′, i) = ∅, then set m̄ = ⊥.
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We now define γ(α′, i) to be the state of the atomic object after processing all
fpcasth messages in IM (α) prior to (and including) m̄. That is, γ(α′, i) is the state af-
ter beginning in the initial state v0 and processing all the invoke messages for node i in
IM (α), stopping after message m̄, while skipping the “duplicate” messages, referring
to the same operation, that might occur in IM (α′). If m̄ = ⊥, then γ(α′, i) = v0.

Thus γ(α′, i) is the state after processing the operations, π1, π2, . . . , πt, where πt

is the most recent operation that i has processed in α′.
We show that for every prefix α′ of execution α, if node i has completed the join

protocol, then the state of the replica at node i is equal to γ(α′, i). That is, the
state of the replica at node i is consistent with all prior operations in IM (α′) having
occurred.

If node i has itself received all the messages in IM (α′), this claim is immediate,
as it executes each operation that it receives. In the case that node i has joined the
focal point during the execution, however, node i may have received only a suffix of
the sequence. As a result, the main difficulty in proving the following invariant is
showing that the join protocol works, i.e. that after a node sets its status to active,
it has correctly acquired a good snapshot of the state of the world.

Invariant 4.2.1. Let α′ be any finite prefix of execution α. If `state(α′).status i =
active, then `state(α′).vali = γ(α′, i).

Proof. We show this by induction on the length of α′. Throughout the induction, we
also maintain a second invariant. This sub-invariant shows that the sets pending-ops
and completed-ops together reflect all the operations that i is aware of. Specifically,
every message m′ that precedes the largest received message is in one of those two
sets.

Invariant 4.2.2. For every i ∈ I: if `state(α′).status i = active and message m is the
largest message such that a fpcast-rcv(m)h,i occurs in α′, then for every message m′ ≤
m, m′ ∈ IM (α′) where m′ = 〈P, ·, ·〉, the payload P is in `state(α′).pending-ops i ∪
`state(α′).completed-ops i.

For the base case (for both the main invariant, as well as Invariant 4.2.2), consider
the initial state of the system, before any events occur in α. Let β′ be this empty
prefix of α. If i is not in the focal point region, then status i = idle, and both
claims are trivial. If i is in the focal point, then the state of vali is v0. In this case
IM (β′) is empty, and as a result γ(β′, i) also equals v0, satisfying the main invariant.
Invariant 4.2.2 follows from the fact that there are no messages received in the empty
execution.

There are two types of inductive steps to consider for executions of timed au-
tomata: discrete events and trajectories. Notice that for trajectories, the invariants
are trivially maintained since all the state elements mentioned in the invariants are
discrete and unchanged under time passage. Consider, then, a discrete event.

Let s and s′ be the states before and after the new event, respectively. Let β be
the previous prefix of α, that is, s = `state(β). Let β′ be the new prefix of α, that is,
s′ = `state(β′).
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We already know, inductively, that for any finite prefix α′ of execution β, for
any node j ∈ I, if `state(α′).statusj = active, then: `state(α′).valj = γ(α′, j)), and
Invariant 4.2.2 holds. We need to show that `state(β′).val i = γ(β′, i), and that
Invariant 4.2.2 continues to hold. We now consider the various actions relevant to
this claim.

• fpcast-rcv(〈〈invoke, inv , oid, loc〉, cnt , k〉)obj ,i: (Figure 4-5, lines 18–23.)

Recall that the set IM (β′, i) includes only messages that have been sent in β′,
received by i, and whose payload is no longer in pending-ops i. As a result of
this event, the message payload 〈invoke, inv , oid , loc〉 is added to pending-ops i,
and therefore the sequence IM (β′, i) is equal to IM (β, i), and as a result,
γ(β′, i) = γ(β, i). By induction, we already know that γ(β, i) = `state(β).val i.
The state of the replicated object is also unchanged, that is: `state(β′).val i =
`state(β).val i. The claim then follows.

We next proceed to argue that Invariant 4.2.2 is maintained. Notice that the
message m = 〈〈invoke, inv , oid , loc〉, cnt , k〉 is the largest message received by i
from the fpcasth service in β′, since the total-ordering reflects the order in which
messages are received. Let m′ be the largest message received by i in β from the
fpcasth service. The induction hypothesis states that every message m′′ ≤ m′

in IM (β) has its payload in either pending-ops or completed-ops . Since this
event does not remove messages from either of these sets, and since this event
adds payload 〈〈invoke, inv , oid , loc〉, ·, ·〉 to pending-ops , it remains to show that
for every message m′ < m′′ < m in IM (β′), they payload of m′′ is either in
pending-ops or completed-ops . Assume for the sake of contradiction that such
a message m′′ exists that its payload is not in either set. First, we argue that
this implies that node i has exited the focal point region at some point after
receiving message m′ and prior to receiving message m: since the payload of
every message received from the fpcasth service is added to either pending-ops
or completed-ops , and messages are removed only when i exits the focal point
region, there are two possible cases:

– Node i exits the focal point region at some point between receiving m and
m′, and resets pending-ops during the geo-update), removing message m′′

from pending-ops .

– Node i does not receive m′′. In this case, we conclude by the consistent
delivery property of the fpcasth service that i exits the focal point region
at some point between receiving m and m′.

Moreover, we know that message m′ is the most recent message received by i
prior to m (since it is the largest message in β). Thus between receiving message
m and m′, node i exits the focal point region, setting its status to idle, and node
i does not receive a join-ack message, allowing it to reset its status to active,
contradicting our assumption that i has a status of active.

• simulate-op(inv)i: (Figure 4-6, lines 43–51.)
First, when this action occurs, status i = active, since that is a precondition
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to this action (Figure 4-6, line 45). The invoke operation removes a message
payload P = 〈inv , . . .〉 from the set pending-ops i, and in doing so adds message
m = 〈P, ·, ·〉 to IM (β, i). As a result, IM (β′, i) = IM (β, i) ∪ {m}.
We next notice that the state γ(β, i) includes all the messages preceding m in
IM (β′). Otherwise, it would imply that the message immediately preceding
m in IM (β′) was not received by i in β and hence that i had left the focal
point region and set status i = idle (during a geo-update), contradicting our
assumption that i is active.

The total-ordering guarantee of the fpcast service ensures that m is the largest
message in IM (β′, i). There are two subcases to consider.

– Message m has the same payload as a message already received and pro-
cessed. That is, there exists a message delivered earlier in the ordering with
the same invocation and operation identifier. In this case, γ(β′, i) = γ(β, i).
It remains to show that val i is also unmodified as a result of the fpcast-rcvh

event. Inductively, we know from Invariant 4.2.2 that every message in
IM (β) has its payload in pending-ops i ∪ completed-ops i. Thus, the ear-
lier message with the same operation identifier also has its payload in
pending-ops i ∪ completed-ops i. We know that it is not in pending-opsi , as
the payload for message m is the oldest in pending-ops (as it is a queue);
from this we conclude that the earlier message is in completed-ops i, in
which case the simulated-op event does not modify val i, and the main in-
variant is maintained.

– Message m refers to a new operation, in which case γ(β′, i) = δ(inv , γ(β, i)).
In this case, the state val i = γ(β, i) in state s, by induction. After the
simulate-op action, val i is set to δ(inv , γ(β, i)), as this is the definition
of how the object responds to invocations. This maintains the desired
invariant.

Since this event neither results in a new message being received from the fpcasth
service, nor removes any message payloads from pending-ops ∪ completed-ops
(only moving a message from one to the other), Invariant 4.2.2 is maintained.

• fpcast-rcv(〈〈join-ack, jid , v, c-ops〉, ·, ·〉)i: (Figure 4-5, lines 9–16.)
In this event, node i sets status to active (Figure 4-5, line 14), if the message
is a response to an outstanding join-req previously sent by i. (If this is not the
case, then this action causes no change to status i, pending-ops i, or val i, and the
invariant is trivially maintained.)

The fpcasth service guarantees that if a message is received, an earlier fpcast
occurred at some node j that sent the message (that is, it guarantees message
integrity). In particular, some node j previously fpcast a join acknowledgment,
i.e., performed a fpcast(〈join-ack, jid , v, c-ops〉)j.

The only action that causes a join-ack to be sent is a prior join request being
received . Therefore, node j previously performed an fpcast-rcv(〈join-req, jid〉)i.
Let β′′ be the prefix of β ending with the fpcast-rcv(〈join-req, jid〉)j action.
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Consider the state of node j at the end of β′′. First, the status, statusj, must
be active; otherwise node j would not send a response to the join request.
Inductively, then, we know that `state(β′′).valj is equal to γ(β′′, j). Moreover,
we can conclude that v, the value send from j to i, is also equal to γ(β′′, j).

Since val i is set to v when the join-ack message is received, i.e., during the
transition in question, it remains only to show that:

γ(β′, i) = γ(β′′, j) , (4.1)

and we can conclude that val i = γ(β′, i), as desired.

Let m be the largest message in IM (β′) received by i that does not have its pay-
load in s′.pending-ops i, that is, m is the largest messages in IM (β′, i). We claim
that m must correspond to node i’s join request, which implies Equation 4.1.

First, notice that i ignores all messages that it receives before its own join
request. None of these messages have their payload added to pending-ops i, and
therefore m is no smaller than all such messages.

Second, notice that i adds the payload of every message it receives after its own
join request to pending-ops i because when i receives its own join request, it sets
status i to listening (Figure 4-5, line 5). No message is removed from the set
pending-ops i because status i is not yet active (Figure 4-6, line 45). Therefore m
cannot be equal to any message received by i after i’s own join request.

We conclude, then, that m is exactly i’s join request. The state γ(β′, i) is
defined as the state reached after processing all messages prior to and including
m, that is, prior to i’s join request.

Notice, though, that i’s join request is exactly the last message processed by j
in β′′ before sending a response to i. In particular, then, γ(β′′, j) is the state
reached on processing every message in IM (β′′ prior to i’s join request.

Therefore, Equation 4.1 holds, and the invariant holds in state s′.

We next argue that Invariant 4.2.2 is also maintained. Notice that when node
j sends the join-ack message, it also includes a copy of its set completed-opsj ,
and that at this point in the execution, Invariant 4.2.2 holds with respect to
j, meaning that every message preceding node i’s join request has its payload
in pending-opsj ∪ completed-opsj. Since pending-opsj is a queue, and when re-
sponding to the join request, all the messages preceding it have been removed
from pending-opsj, we can conclude that every message preceding the join re-
quest has its payload in completed-opsj. When node i receives the join-ack, it
adds all the messages in the set c-ops to its own set completed-ops i. It remains
only to show that every message sent after i’s join request has its payload in
pending-ops i. This follows immediately from the fact that i has remained in the
focal point region, and the consistent delivery property of the fpcasth service.

The rest of the cases are straightforward, having no effect on the status of i, the
elements of pending-ops i, or the state of the replicated object.
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4.2.3 Atomicity

We can now show that the two properties required by Theorem A.3.2 hold for the total
ordering we have defined, and as a result, that the Virtual Object Emulator correct
emulates virtual object h. Specifically, the emulator Sh when composed with any
well-formed environment U is a correct implementation of the object Ah composed
with the same well-formed environment U .

Theorem 4.2.3. traces(Sh × U) ⊆ traces(Ah × U).

Proof. Fix some execution α of Sh × U . We consider the properties from Theo-
rem A.3.2 in order:

1. (Property 1) Assume πi and πj are two operations and πi completes before πj

begins. We want to show that πi < πj in the total ordering. Let message m1

be the first message associated with operation πi, and let message m2 be the
first message associated with operation πj. Since πi completes before πj begins,
the message m1 must be received before the message m2 is sent, and therefore
m1 precedes m2 in the total ordering induced by the fpcast service. This then
implies that πi precedes πj in the total ordering on operations, as claimed.

2. (Property 2) We need to show that the total ordering on operations is consistent
with the responses output. This follows from Invariant 4.2.1.

Fix some operation π ∈ Π. Let inv 1, inv 2, · · · , invk be the invocations of the
operations preceding π in the total ordering, indexed according to the total
ordering. Let inv(π) be the invocation that initiates π, and resp(π) be the
response that concludes π.

Let v be the value of the variable type that results from starting with the initial
value, v0, and processing the following invocations:

inv 1, inv 2, . . . , invk .

We need to show that the response to operation π is consistent with the object
being in state v. More specifically, we need to show that for some v′:

〈resp(π), v′〉 = δ(inv(π), v) .

A VOE-client automaton that delivers a response for π does so because it receives
a GeoCast with a response for π for the first time from an VOE-server, say node
i. Let α′ be the prefix of α ending just before the simulate-op event that causes
i to enqueue the GeoCast response. The value v determined by starting in state
v0 and handling all the invoke(πr) operations prior to π is exactly γ(α′, i): every
preceding operation is associated with an earlier fpcast message (by the way in
which the total ordering is defined); at the time when node i invokes operation
π, it has removed all prior messages from the pending-ops queue, and therefore
the message associated with operation π is exactly the largest message that i
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has received in α′ that is not in pending-ops i. Invariant 4.2.1 shows that the
state of val i prior to operation π is equal to γ(α′, i). Therefore the response to
operation π is exactly that obtained by applying π to γ(α′, i).

Therefore we conclude from Theorem A.3.2 that there exists an execution γ of Ah×U
such that trace(α) = trace(γ), implying the desired result.

4.2.4 Pasting

Finally, we consider the entire Virtual Object Layer. Let C be the composition of all
the clients. Recall that S is the composition of all the VOE-Clients, VOE-Servers,
and the RealWorld, with all the actions hiddent except invoke, respond and geo-update
actions. Let A be the composition of all the virtual objects Ah for h ∈ O, and let
VRW be the virtual RealWorld automaton. Our goal is to show that traces(C×S) ⊆
traces(C × VRW × A). (Recall that we are considering timed traces.) Notice that
the only external actions in both the underlying system and the Virtual Object Layer
are the invoke, respond, and geo-update actions.

In order to show this fact, we first fix an arbitrary execution α of C × S. From
this execution, we derive (timed) executions γi, for every client i ∈ I, and (timed)
executions γh, for every h ∈ O, that correspond to executions of the clients and virtual
objects in the Virtual Object Layer. We also derive an execution γVRW of the virtual
RealWorld automaton. We then paste these executions together to form an execution
γ of C × VRW × A such that trace(α) = trace(γ), which implies the desired trace
property.

We will need the following key lemma to paste the executions together. This
lemma is an extension of Theorem 7.3 from [45,46]:

Lemma 4.2.4. Let A1 and A2 be compatible timed automata, and A = A1×A2. Let
α1 and α2 be executions of A1 and A2, respectively.

Let β be an (E, ∅)-sequence, where E is the set of external actions of A. Suppose
that β|(Ei, ∅) = trace(αi), i ∈ {1, 2}.

Then there exists an execution α of A such that trace(α) = β, and αi = α|(Ai, Xi),
i ∈ {1, 2}.

It follows that we can paste together a finite collection of components:

Corollary 4.2.5. Let A1, A2, . . . , Ak be a finite collection of compatible timed au-
tomata, and let A = A1 × A2 × . . .× Ak. Let αi be an execution of Ai.

Let β be an (E, ∅)-sequence, where E is the set of external actions of A. Suppose
that β|(Ei, ∅) = trace(αi), i ∈ {1, 2, . . . , k}.

Then there exists an execution α of A such that trace(α) = β, and αi = α|(Ai, Xi),
i ∈ {1, 2, . . . , k}.

We now proceed to prove the main result of this chapter:

Theorem 4.2.6. The Virtual Object Emulator implements the Virtual Object Layer.
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Proof. Recall that our goal is to show that traces(C × S) ⊆ traces(C × VRW × A).
Begin by fixing an execution α of C × S.

For each i ∈ I, we derive an execution γi of client i in the Virtual Object Layer
that has the same trace as the client in α. Specifically, define γi = α|〈Ei, Xi〉, where
Ei is the set of external actions for client i and Xi is the set of variables for client i.
Notice that since α is a timed execution, γi is a timed execution.

Next, for each h ∈ O, we derive an execution γh of virtual object Ah in the Virtual
Object Layer that has the same trace as Sh in α. Notice that the clients C are a
well-formed environment, and hence given an execution α|〈T, Y 〉 of C × Sh where T
contains all the actions of C and Sh and Y contains all the variables of C and Sh,
we know by Theorem 4.2.3 that there exists an execution γ′ of C × Ah such that
trace(γ′) = trace(α)|〈Eh, ∅〉, where Eh is the set of external actions for Ah. Thus
we define γh = γ′|〈Eh, Xh〉, where Xh is the set of variables for Ah. Thus γh is an
execution of Ah such that trace(α)|〈Eh, ∅〉 = trace(γh). Notice that γh is a timed
execution.

Finally, we construct execution γVRW of the virtual RealWorld automaton. While
the underlying RealWorld both outputs geo-updates and also implements the GeoCast
service, the virtual RealWorld only outputs geo-updates. We construct the execution
of the virtual RealWorld simply by restricting α to the geo-update events, which are
the only external events by the virtual RealWorld automaton. More specifically, let
EVRW be the set of external actions for the virtual RealWorld automaton, i.e., the
geo-updatei transitions for i ∈ I. Then we define γVRW = α|〈EVRW , XVRW 〉, where
XVRW is the set of variables for the virtual RealWorld automaton.

We now need to construct a hybrid sequence β consisting of invoke event, respond
events, and geo-update events, along with appropriate timing information. This
sequence β is used to paste together the various execution components. We de-
rive β from the invoke,respond, and geo-update events in α. More specifically, let
EC =

⋃
i∈I{invokei, respondi, geo-updatei}. Define β = α|〈EC , ∅〉.

It is immediately clear by construction that for each client i ∈ I, the trace of β is
equal to the trace of γi; that is, β|〈Ei, ∅〉 = γi|〈Ei, ∅〉, where Ei is the external actions
of client i. This follows since both β and γi are constructed from α to include i’s
external events (and no other events of i).

Observe too that for each virtual object h ∈ O, the trace of β is equal to the trace
of γh; that is, β|〈Eh, ∅〉 = γh|〈Eh, ∅〉, where Eh is the external actions of virtual object
h. This follows from the fact that trace(γh) = trace(α)|Eh; since every external event
in γh is in α, we can conclude that each such event also occurs in β.

Lastly, the trace of β is equal to the trace of γVRW ; that is, β|〈EVRW , ∅〉 =
γVRW |〈EVRW , ∅〉, where EVRW is the set of external actions for the virtual RealWorld.
This follows from the fact that both β and γVRW are constructed from α to include the
virtual RealWorld’s external events (and no other events of the virtual RealWorld).

We thus conclude from Corollary 4.2.5 that there exists an execution γ of C ×
VRW × A where trace(γ) = trace(α).
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4.3 Performance Analysis

We now briefly discuss the performance of the Virtual Object Emulator, and deter-
mine the maximum latency of an operation. In particular, our goal is to prove the
client and virtual object responsiveness properties. For the purpose of analyzing the
performance of the focal point emulator, we make the following additional liveness
assumptions:

• Any enabled action at a mobile node is executed immediately.

• For every fpcast event, the ε specified by the “Reliable Delivery” property is
bounded by dfp . This implies that every message broadcast using the fpcast
service is delivered within time dfp.

• For every geocast event, the ε specified by the “Reliable Delivery” property is
bounded by εgeo.

• Every message broadcast using the geocast service is delivered within time dgeo.

We also assume, in this case, that tjoin > 2dfp + εgeo + tupd, which means that the join
protocol has sufficient time to complete from the first point at which a mobile node
is well inside a focal point region.

First, notice that the client responsiveness property follows immediately from the
assumption that an enabled action at a mobile node is executed immediately. We
focus for the remainder of this section on the virtual object responsiveness property.

For the purpose of this analysis, we consider a virtual object h that does not fail,
and we assume that some correct mobile node i at location ` invokes an operation on
object h; moreover, we assume that node i remains for sufficiently long within distance
Rgeo of location `. We conclude that node i receives a response to its invocation within
time 2dgeo + dfp:

Theorem 4.3.1. If a mobile node i at location ` invokes an operation on a correct
virtual object h, and if i remains within distance Rgeo of location ` for time 2dgeo+dfp,
then node i receives a response within time 2dgeo + dfp.

Proof. Assume that i invokes an operation at time t, resulting in a geocast at time t
by the VOE-Client associated with i; this geocast sends the invocation to the VOE-
Servers for h. Let t′ > t be the time specified by the GeoCast reliable delivery
property.

The first key claim is that at time t′ there is some replica j ∈ I that has joined h
prior to time t′ and does not fail until after time t′ + εgeo. We show that this follows
from the definition that a virtual object is correct, i.e., that it is populated.

Specifically, the assumption that h is correct implies that there exists some j1, j2, . . .
such that each j`+1 enters the inner region of h at least time tjoin prior to j` departing,
and remains well inside h without failing until at least tjoin after j` departs. Since the
join protocol requires two broadcasts using the fpcast service, and since j`+1 enters at
least tjoin prior to j` departing, it is easy to see (inductively) that each j`+1 completes
the join protocol and becomes active at least εv prior to j` departing.
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We can thus conclude that for the interval of time [t′, t′+ εgeo, either some replica
j` resides well inside the focal point region throughout the specified interval, or j`

leaves the focal point region during the specified interval. In the first case, we have
identified a replica, as claimed; in the latter case, by assumption, there exists some
j`+1 that enters at least time tjoin prior to j` departing, and has has joined at least
time εgeo prior to j` departing. In this latter case, j` remains well inside h until at
least εgeo after j` departs, which is at least εgeo after t′.

The theorem then follows immediately by simply summing the message latencies
involved in processing an invocation. The invoked operation is immediately sent by
the GeoCast service to focal point h, at which point it is received time dgeo later by
some replica for h, since h is correct. Immediately it is rebroadcast using the fpcasth
service, at which point it is received time dfp later by some replica for h. Immediately,
the replica sends a response to i, which receives the response time dgeo later.
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Chapter 5

Emulating Virtual Nodes

In this chapter we present an algorithm that implements the Virtual Node Layer in
a wireless ad hoc network. We begin with a brief review of the Virtual Node Layer,
and then present the Virtual Node Emulator (VNE), an algorithm for emulating the
Virtual Node Layer, in Section 5.1. In Section 5.2, we analyze the Virtual Node Em-
ulator and show that it is a safe emulation of the Virtual Node Layer. In Section 5.3,
we examine the performance of the emulator and show that every execution of the
emulation also satisfies the liveness properties of the Virtual Node Layer (specifically,
the liveness properties of the virtual GeoCast service). The material in this chapter
is based on a protocol published in the 18th International Symposium on Distributed
Computing (DISC 2004) [31]. The main difference is that in [31], mobile nodes com-
municate only via local broadcast, and in the Virtual Node Layer, clients and virtual
nodes communicate only via local broadcast. Here, mobile nodes communicate via
a GeoCast service, and clients and virtual nodes communicate via a virtual GeoCast
service. This choice ensures that the primary difference between Chapters 4 and 5 is
the type of computation that occurs at the virtual entity, not the type of communi-
cation. Moreover, the virtual GeoCast simplifies the use of virtual nodes since clients
can communicate with virtual nodes that are not nearby. In Chapter 7, we discuss
modifications that support this local-only communication.

Recall from Chapter 3 that the Virtual Node Layer contains three types of entities:

• clients, each of which is associated with a mobile node;

• virtual nodes, each of which is associated with a focal point;

• RealWorld, containing a RVgeo-GeoCast service virtual-geocast, which performs
communication between the clients and virtual nodes; the RealWorld tracks the
location and failure status of each node (real or virtual), and provides clients
with updates as to the real time and their current location.

In the Virtual Object Layer, clients interacts directly with (virtual) objects; by con-
trast, in the Virtual Node Layer, clients and virtual nodes interact with each other.
In the former, clients invoke operations and (virtual) objects respond ; in the latter,
clients and virtual nodes use a virtual-geocast service to geocast messages to each
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other. Notice that a virtual node is more powerful than a virtual object in that it can
initiate actions on its own and it can coordinate directly with other virtual nodes.

The algorithm implementing the Virtual Node Layer is, in many ways, a natural
extension of the protocol presented in Chapter 4. As before, each mobile node acts
as a replica for nearby virtual entities: when a mobile node enters a focal point, it
joins the emulation for the associated virtual node; when it leaves the focal point,
it leaves the emulation. If a focal point becomes depopulated, then the associated
virtual node fails. In contrast to the virtual objects in Chapter 4, if the focal point
becomes populated again, then the associated virtual node recovers.

As in Chapter 4, the key to maintaining the consistency of the replicas is the
totally-ordered broadcast service fpcast, which guarantees that within a focal point
messages are delivered reliably and consistently in a well-defined order. The local
broadcast service is used to implement a type of replicated state machine, one that
tolerates joins and leaves of mobile nodes.

Despite the similarities between the material in this chapter and Chapter 4, the
material in this chapter is complete and can be read independently of Chapter 4.

5.1 Virtual Node Emulator

In this section we present the Virtual Node Emulator (VNE), an algorithm that
implements the Virtual Node Layer (described in Section 3.2). The basic idea of the
algorithm is the same as the Virtual Object Emulator presented in Chapter 4: The
Virtual Node Emulator uses the mobile nodes in each focal point region as replicas
for a virtual node associated with that focal point. Throughout an execution, mobile
nodes move in and out of the focal point regions. The nodes that are inside the
focal point region at any given time act as replicas, and collaborate to implement the
virtual node. They take advantage of the fpcast service associated with the focal point
to implement a replicated state machine that tolerates nodes continually joining and
leaving. This replicated state machine consistently maintains the state of the virtual
node.

As a slight abuse of notation, throughout this section, we refer to the virtual node
by the name of the focal point with which it is associated; thus we often refer to some
focal point v ∈ O, and then later refer to the automaton for virtual node v, meaning
the automaton for the virtual node associated with that particular focal point.

In Chapter 4, we presented an algorithm for implementing a single virtual object,
and then noticed that by composition, this algorithm extended immediately to an
emulator for many virtual objects. For the purpose of description, we continue in this
manner, describing how to implement a single virtual node v ∈ O. Formally, however,
the pseudocode for the algorithm is specified for the entire set of virtual nodes, one
for each focal point in the set O. This is because the virtual nodes communicate
with each other via the virtual GeoCast service, and hence we need to emulate this
interaction.

The Virtual Node Emulator consists of two automata that run on each mobile
node. The VNE is designed to emulate a virtual node; it is not involved in emulating
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Figure 5-1: Diagram of the Virtual Node Emulator for emulating virtual nodes in O.
Each of the VNE-Clients and VNE-servers may execute on a different mobile node.
When a VNE-Client (on the left) receives a virtual-geocast(m, `) from a client (not
pictured), it sends the message m to all the VNE-Servers in the destination region
near ` using the underlying GeoCast service. If there is a virtual node v in that
region, i.e., near location `, then at least one of the VNE-Servers in the focal point
region for v broadcasts the request to all the other VNE-Servers in the focal point
using the fpcastv service. Each VNE-Server then updates its replica of virtual node
v’s state, simulating the virtual node v receiving the message in question. The VNE-
Servers can also propose other actions for a virtual node by broadcasting the proposal
using the fpcastv service. Whenever a VNE-Server receives a proposal, it simulates
the virtual node taking that action (if it is possible for the virtual node to take that
action).
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the client. The emulator consists of two components: the VNE-Client and the
VNE-Server, which communicate with each other using the GeoCast service. Notice
that both components of the emulator, though executing on the same mobile node,
interact only via the GeoCast service. Each mobile node executes one VNE-Client,
and one VNE-Server, both of which are together responsible for emulating all the
virtual nodes.

The Virtual Node Emulator is presented schematically in Figure 5-1. The clients
(not depicted) pass virtual GeoCast messages to the VNE-Clients, which attach a
tag to every message and broadcast the message to a focal point using the GeoCast
service. Within the focal point, the request is received by the VNE-Servers. The
VNE-Servers then coordinate amongst themselves to implement the input, internal
and output transitions, and determine an ordering of the virtual node’s transitions.
They accomplish this coordination using the fpcast service, which delivers messages
to all of the VNE-Servers in the same order. This total ordering determines the
order in which the VNE-Servers simulate the virtual node’s transitions. Based on
this (ordered) sequence of events, the VOE-Servers consistently update their local
replicas of the virtual node. When a VNE-Server simulates the virtual node sending
a GeoCast message, the VNE-Server sends the message on behalf of the virtual node.
When the VNE-Client receives a GeoCast message, it delivers it to the client.

5.1.1 VNE-Client

The pseudocode for the VNE-Client automaton is presented in Figures 5-2 and 5-
3. The VNE-Client acts as a filter between the client and the GeoCast service:
Whenever the client performs a virtual-geocast, the VNE-Client translates this event
into a geocast in the physical system, attaching a unique identifier. Whenever the
VNE-client receives a geocast message from the physical system, it translates it into
a virtual-geocast-rcv for the client. Unlike in the case of the Virtual Object Emulator,
it does not need to remove duplicates, as there is no requirement that the virtual
GeoCast service deliver messages only once.

5.1.2 VNE-Server

The VNE-Server performs the actual replicated emulation of the virtual nodes. Here
we describe the behavior with respect to one particular virtual node v ∈ O. The
VNE-Server implements a replicated state machine, enhanced to perform internal and
output actions. Each mobile node, when it is active in the emulation, maintains a copy
of the state of the virtual node. The mobile nodes use the total-ordering property of
the fpcastv service to ensure that the replicated state is updated consistently. Figure 5-
4 contains the signature and state of the VNE-Server automaton. The remaining
pseudocode for the VNE-Server automaton for node i is in Figures 5-5 and 5-6.
Much of the description that follows is identical to the VOE-Server description in
Chapter 4; we call attention to the key differences.

Emulator State. We begin by enumerating the elements of the VNE-Server’s state:
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Figure 5-2: Automaton VNE-Client: Signature and State
for client i

1 Input:
2 virtual-geocast(m, d)i, m ∈ msgs, d ∈ L
3 geocast-rcv(〈m, oid〉, d)i, m ∈ msgs, oid ∈ U, d ∈ L
4

5 Output:
6 virtual-geocast-rcv(〈m, oid〉, d)i, m ∈ msgs, oid ∈ U, d ∈ L
7 geocast(m, d)i, m ∈ msgs, d ∈ L
8

9 State:
10 count ∈ N, the current count of unique ids, initially 1
11 ready-msgs, a set of GeoCast messages, initially ∅
12 geocast-queue, a queue of messages to be geocast, initially ∅
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Figure 5-3: Automaton VNE-Client: Transitions
for client i

1 Input virtual-geocast(m, d)i

2 Effect:
3 new-oid ← 〈count, i〉
4 count ← count +1
5 Enqueue(geocast-queue, 〈〈geo, m, oid〉, d〉)
6

7 Input geocast-rcv(〈geo, m, oid〉, d)i

8 Effect:
9 if (〈m, oid〉 /∈ delivered-oids ∪ ready-msgs) then

10 ready-msgs ← ready-msgs ∪ {〈m, d〉}
11

12 Output geocast(m, d)i

13 Precondition:
14 Peek(geocast-queue) = 〈m, d〉
15 Effect:
16 Dequeue(geocast-queue)
17

18 Output virtual-geocast-rcv(m, d)i

19 Precondition:
20 〈m, d〉 ∈ ready-msgs
21 Effect:
22 ready-msgs ← ready-msgs − {〈m, d〉}
23 delivered-oids ← delivered-oids ∪ {〈m,d〉}
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Figure 5-4: Automaton VNE-Server: Signature and State
for client i

1 Input:
2 geocast-rcv(〈m, oid〉, d)i, m ∈ msgs, oid ∈ T, d ∈ L
3 fpcast-rcv(〈join-req, jid, vnid〉)v,i, jid ∈ T, vnid ∈ O, v ∈ O
4 fpcast-rcv(〈join-ack, jid, vnid, val, r-id, c-ops〉)v,i, jid ∈ T, vnid ∈ O, val ∈ Vv , r-id ∈ T, c-ops a set, v ∈ O
5 fpcast-rcv(〈act, vnid, oid〉)v,i, act ∈ actionsvnid, vnid ∈ O, oid ∈ T, v ∈ O

6 geo-update(l, t)i, l ∈ L, t ∈ R>0

7

8 Output:
9 geocast(〈m, oid〉, d)i, m ∈ msgs, oid ∈ T, d ∈ L

10 fpcast(〈join-req, jid, vnid〉)v,i, jid ∈ T, vnid ∈ O, v ∈ O
11 fpcast(〈join-ack, jid, vnid, val, r-id, c-ops〉)v,i, jid ∈ T, vnid ∈ O, val ∈ V, r-id ∈ T, c-ops a set of ops , v ∈ O
12 fpcast(〈act, vnid, oid〉)v,i, act ∈ actionsvnid, vnid ∈ O, oid ∈ T, v ∈ O
13 fpcast(〈reset, vnid, oid〉)v,i, vnid ∈ O, oid ∈ T, v ∈ O
14

15 Internal:
16 join()v,i, v ∈ O
17 initiate-op(act, v)i

18 initiate-reset(v)i, v ∈ O
19 simulate-op(act, v, oid)i, act ∈ actions[v ], v ∈ O, oid ∈ T
20 process-join-req(jid, vnid)i, jid ∈ T, vnid ∈ O
21 process-join-ack(v)i, v ∈ O
22 process-reset(v, oid)i, v ∈ O, oid ∈ T
23

24 Constants:

25 fp-centerv : R≥0 → L, a function mapping time to the focal point center for v ∈ O.

26 fp-regionv : R≥0 → P(L), a function mapping time to the focal point region for v ∈ O.
27 actionsv , v ∈ O, the set of actions for virtual node v
28 inputv , v ∈ O, the set of input actions for virtual node v
29 outputv , v ∈ O, the set of output actions for virtual node v
30 internalv , v ∈ O, the set of internal actions for virtual node v
31 δv , v ∈ O, the transition function for virtual node v
32 vmax ∈ Rˆ{≥ 0}, the maximum speed of a mobile node
33 v(v)fp-max ∈ Rˆ{≥ 0}, v ∈ O, the maximum speed of virtual node v
34 msgs, a message alphabet containing all the messages sent by virtual nodes in the set O
35

36 State:

37 clock ∈ R≥0, the current time, initially 0, updated by the geosensor
38 location ∈ L, node i′s location, initially i′s initial location, updated by the geosensor
39 statusv ∈ {idle,joining,listening,active}, v ∈ O, initially active if node is in the focal point region; idle otherwise
40 valv ∈ V, v ∈ O, holds current value of the simulated atomic object, initially v0

41 join-idv ∈ T, v ∈ O, unique id for current join request, initially 〈0, i0〉
42 fpcast-queuev , v ∈ O, a queue of messages to be sent by fpcast, initially ∅
43 geocast-queuev , v ∈ O, a queue of messages to be sent by the GeoCast, initially ∅
44 anwered-join-reqsv , v ∈ O, set of ids of join requests that have already been answered, initially ∅
45 pending-opsv , v ∈ O, queue of operations waiting to be simulated, initially ∅
46 completed-opsv , v ∈ O, set of operations that have been simulated, initially ∅
47 fpcast-count ∈ N, counter of fpcast operations, initially 1
48 op-counter ∈ N, initially 0, a counter for operations initiates by i
49 reset-idv ∈ T, identifier of last reset, initially 〈−1, i0〉
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Figure 5-5: Automaton VNE-Server: Input Transitions for client i

1 Input fpcast-rcv(〈〈join-req, jid, vnid〉, cnt, k〉)v,i

2 Effect:
3 if (v = vnid) then
4 if ((statusv = joining) ∧ (jid = join-idv )) then
5 statusv ← listening
6 else if ((statusv = listening ∨ active) then
7 pending-opsv ← pending-opsv ∪ {〈join-req, jid, vnid〉}
8

9 Input fpcast-rcv(〈〈join-ack, jid, vnid, val, c-ops, r-id〉, cnt, k〉)v,i

10 Effect:
11 if (v = vnid) then
12 answered-join-reqsv ← answered-join-reqsv ∪ {jid}
13 if ((statusv = listening) ∧ (jid = join-idv )) then
14 statusv ← active
15 completed-ops ← completed-ops ∪ c-ops
16 valv ← val
17 completed-ops ← completed-ops ∪ 〈join-ack, jid, vnid, val, c-ops〉
18 reset-idv ← r-id
19 else
20 pending-opsv ← pending-opsv ∪ {〈join-ack, jid, vnid, val, c-ops〉}
21

22 Input fpcast-rcv(〈〈act, vnid, r-id, oid〉, cnt, k〉)v,i

23 Effect:
24 if (v = vnid) then
25 if ((statusv = listening ∨ active)
26 ∧
27 (〈act, vnid, oid〉 6∈ pending-opsv ∪ completed-opsv )) then
28 Enqueue(pending-opsv , 〈act, vnid, r-id, oid〉)
29

30 Input fpcast-rcv(〈〈reset, vnid, oid〉, cnt, k)v,i

31 Effect:
32 if (v = vnid) then
33 if ((statusv = listening ∨ active) then
34 Enqueue(pending-opsv , 〈reset, v, oid〉)
35

36 Input geocast-rcv(〈geo, m, oid〉, d)i

37 Effect:
38 for every v ∈ O do
39 if (statusv 6= idle) then
40 if (〈virtual-geocast-rcv(m), v, oid〉 6∈ pending-opsv ∪ completed-opsv ) then
41 Enqueue(fpcast-queuev , 〈virtual-geocast-rcv(m), v, reset-id, oid〉)
42

43 Input geo-update(l, t)i

44 Effect:
45 clock ← t
46 location ← l
47 for every v ∈ O do
48 if (depthv(location, clock) < tupd ·(vmax + vfp-max)) then
49 statusv ← idle
50 join-idv ← 〈0, i0〉
51 valv ← v0

52 answered-join-reqsv ← ∅
53 pending-opsv ← ∅
54 fpcast-queuev ← ∅
55 geocast-queuev ← ∅
56

57 Internal join()v,i

58 Precondition:
59 depthv(location, clock) ≥ tupd ·(vmax + vfp-max)
60 statusv = idle
61 Effect:
62 join-idv ← 〈clock, i〉
63 statusv ← joining
64 Enqueue(fpcast-queuev , 〈join-req, join-idv 〉)
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Figure 5-6: Automaton VNE-Server: Internal Transitions for client i

66 Internal initiate-op(act, v)i

67 Precondition:
68 statusv = active
69 δ(act, valv )v 6= ⊥
70 act ∈ internalv ∧ act ∈ outputv
71 Effect:
72 oid ← 〈op-counter, i〉
73 op-counter ← op-counter +1
74 Enqueue(fpcast-queuev , 〈act, v, reset-id, oid〉)
75

76 Internal simulate-op(act, v, r-id, oid)i

77 Precondition:
78 statusv = active
79 Peek(pending-opsv ) = 〈act, v, r-id, oid〉
80 Effect:
81 if (〈act, v, oid〉 /∈ completed-opsv ) then
82 if (r-id = reset-idv) then
83 if (δ(act, valv ) 6= ⊥) then
84 valv ← δ(act, valv )
85 if (act = virtual-geocast(m, d)) then
86 Enqueue(geocast-queuev , 〈〈m, oid〉, d〉)
87 Enqueue(completed-opsv , Dequeue(pending-opsv))
88

89 Internal process-join-req(jid, vnid)i

90 Precondition:
91 statusv = active
92 Peek(pending-opsv ) = 〈join-req, jid, vnid〉
93 Effect:
94 if (jid 6∈ answered-join-reqsvnid ) then
95 Enqueue(fpcast-queuevnid , 〈join-ack, jid, vnid, valvnid , reset-idvnid, completed-opsvnid 〉)
96 Dequeue(pending-opsvnid )
97

98 Internal process-join-ack(v)i

99 Precondition:
100 statusv = active
101 Peek(pending-opsv ) = 〈join-ack, . . . 〉
102 Effect:
103 Dequeue(pending-opsv)
104

105 Internal initiate-reset(v)i

106 Precondition:
107 location ∈ fp-region(clock)v
108 statusv 6= active
109 Effect:
110 oid ← 〈op-counter, i〉
111 op-counter ← op-counter +1
112 Enqueue(fpcast-queuev , 〈reset, v, oid〉
113

114 Internal process-reset(v, oid)i

115 Precondition:
116 Peek(pending-opsv = 〈reset, v, oid〉
117 Effect:
118 Dequeue(pending-opsv )
119 if (location ∈ fp-region(clock)v then
120 status ← active
121 valv ← v0

122 fpcast-queuev ← ∅
123 geocast-queuev ← ∅
124 reset-id ← oid
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Figure 5-7: Automaton VNE-Server: Output Transitions for client i

126 Output fpcast(〈m, fpcast-count, i〉)v,i

127 Precondition:
128 Peek(fpcast-queuev ) = m
129 Effect:
130 fpcast-count ← fpcast-count +1
131 Dequeue(fpcast-queuev )
132

133 Output geocast(m, d)i

134 Precondition:
135 v ∈ O
136 Peek(geocast-queuev ) = 〈m, d〉
137 Effect:
138 Dequeue(geocast-queuev )
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• The clock and the location variables store the time and location information
from the most recent geo-update.

• The status determines whether the emulator is currently participating in the
emulation as a replica, joining the emulation, or idle.

• The value val stores the current state of the replica.

• The join-id is a unique identifier selected and used during the join protocol.

• The fpcast-queue and geocast-queue are two queues storing outgoing messages
for the respective broadcast services.

• The answered-join-reqs is a set indicating which join requests have already been
answered.

• The queue pending-ops stores messages waiting to be processed.

• The queue completed-ops stores messages that have already been processed.

• The counter fpcast-cnt is used to ensure that each fpcast message is unique1.

• The counter op-counter is used when simulated internal and output events to
assign a unique identifier to each event.

• The identifier reset-id is used to uniquely identify each time the virtual node is
reset.

For many of these state elements, the emulator maintains one copy for each v ∈ O.
For example, if v1 and v2 are two different virtual nodes, there exists state elements
pending-opsv1

and pending-opsv2
. Each element is used only in the emulation of the

specified virtual node. Some, such as the clock , location, fpcast-count , and op-counter
are used in the emulation of all the virtual nodes. This distinction is not critical; the
elements are not duplicated when it is clear that this causes no additional complica-
tions.

Joining and Leaving the Emulation. The emulator transitions between three
statuses: idle, joining, and active. We first discuss how a mobile node joins the emu-
lation. The join protocol is activated when the mobile node enters the inner region
of a focal point v, i.e., when it hears that it is well inside the focal point region. In
this circumstance, the join transition is enabled (Figure 5-6, lines 57–64). This results
in the mobile node broadcasting a join-request message using the fpcastv service, at
which point it sets its status to joining and awaits a response.

The other active nodes in the focal point receive the join request (Figure 5-5,
lines 1–7) and respond by sending the current replicated state of the virtual object

1Up until this point, the emulator state has been equivalent to that of the VOE-Server. The
remaining elements are specific to the VNE-Server
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using the fpcastv service (Figure 5-6, lines 89–96). Notice that this is slightly different
than in the case of the Virtual Object Emulator, as the join request is processed in
the order received using the pending-ops queue. This is due to the need in this case
to order the join request with respect to reset messages that may reset the virtual
node.

As an optimization to avoid unnecessary message traffic, if a node observes (by
examining answered-join-reqs) that someone else has already responded to a join
request, then it does not respond; only one node needs to send a join response.
Notice (Figure 5-5, line 91) that only active nodes will send join responses. When
the node that originated the join request receives its own join request (Figure 5-5,
lines 4–5), it sets its status to listening.

When the joining node receives a response to its join request (Figure 5-5, lines 9–
20), it starts participating in the emulation, setting its status to active. This completes
the join protocol.

By contrast, ceasing to participate in the emulation does not require any coor-
dination with other replicas. When a node hears that it has left the inner focal
point region (either due its own motion, or the movement of the virtual node), it
re-initializes its variables, and becomes idle (Figure 5-5, lines 43–55).

Simulating Input, Output, and Internal Actions. We next discuss how ac-
tive replicas simulate the virtual node’s transitions. When a node participating in
emulating virtual node v receives a GeoCast message containing a message to deliver
to virtual node v (Figure 5-5, lines 36–41), it broadcasts a proposal that the virtual
node simulate a virtual-geocast-rcv of that message; it broadcasts this proposal using
the fpcastv service, thus ordering the virtual-geocast-rcv event for that message with
respect to the other messages broadcast with the fpcastv service (i.e., join-request
messages, join responses, and other virtual node transitions). Notice that this pro-
posal includes the identifier for the most recent reset, i.e., the reset-id , which allows
nodes receiving the proposal to determine whether the virtual node was reset between
when the transition was proposed and when it was received. (This is different from
the Virtual Object Emulator, which does not include resets.)

Since it is possible that a GeoCast message is received—and hence rebroadcast—
by more than one node in the focal point, there is some bookkeeping to ensure that
only one copy of the same invocation is actually processed by the nodes. We include
an optimization that if a node observes via the pending-ops or completed-ops queues
that an invocation has already been sent by the fpcastv service, then it does not do
so again.

Replicas also simulate other types of transitions that the virtual nodes may exe-
cute, that is, its locally controlled actions. (This is different from the Virtual Object
Emulator, which only needs to process operation invocations.) At any time, a replica
may examine its local state and determine that some particular locally-controlled
action is enabled. In this case, it broadcasts a proposal using the fpcastv service sug-
gesting that this transition be executed (Figure 5-6, lines 66–74). Again, notice that
the proposal includes the reset-id .
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Active nodes keep track of messages received via the fpcastv service in the order in
which they are received (Figure 5-5, lines 22–28); this orders the various input, output,
and internal actions to be simulated for virtual node v. Duplicates are discarded
using the unique operation identifiers, which are stored in the sets pending-ops and
completed-ops . The transitions are then simulated (Figure 5-6, lines 76–87) on the
replicated state in this order, as long as the reset-id included in the proposal matches
the reset-id of the emulator. Specifically, for input actions (e.g., virtual-geocast-rcv
transitions), the transition is always simulated, since input actions are always enabled.
For internal and output actions, the transition is simulated if it is still enabled. Notice,
though, that it is possible that intervening events might have disabled this transition
after it was originally proposed, and hence it cannot be simulated. Whenever a replica
simulates a virtual-geocast of some message m, the replica adds the message m to its
outgoing geocast-queue, resulting in the GeoCast of the specified message (Figure 5-6,
line 86).

There are some subtle points involved in deciding when during the process of join-
ing the emulation a node should start recording invocation messages, when a node
should start executing operations, and when a node should start sending responses.
During the process of joining, a node receives a snapshot of the object’s state. How-
ever by the time the snapshot is received, it might be out of date, since there may
have been some intervening messages delivered by the fpcastv service that have been
received since the snapshot was sent. Therefore the joining node must record all
the operation invocations that are broadcast after its join request was broadcast but
before it receives the snapshot. This is accomplished by having the joining node en-
ter a “listening” state once it receives its own join-request message; all invocations
received when a node is in either the listening or the active state are recorded, and
actual processing of the invocations can start once the node has received the snap-
shot and has the active status. The processing consists of first emptying the queue
of waiting invocations, and then proceeding to handle newly arrived invocations.

A final point to notice is that every message sent by the fpcastv service is unique:
attached to each message is a counter (fpcast-cnt) and the process identifier; each
processor increments its counter after each fpcast, ensuring that no message is dupli-
cated. Notice that each message m that is fpcast is of the form 〈P, cnt , k〉, where cnt
is a counter and k is a node identifier. We refer to P as the payload of m.

Resetting the Virtual Node. Sometime, particularly when the virtual node has
failed due to depopulation, it may be useful for the virtual node to reset itself. In
particular, if a node does not receive a response during the join protocol, it can
initiate a reset (Figure 5-6, lines 105–112). In this case, it broadcasts a reset message
using the fpcast service. This reset message contains a unique identifier that is used
to name each successful reset event. Each proposed transition for the virtual node
includes the identifier of the most recent reset; if a more recent reset has occurred in
the interim since the transition was proposed, then the proposal is ignored.

When a node receives a reset message, if it is well inside the focal point region,
then it processes the reset message in order from the pending-ops queue, sets its status
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to active, and resets its emulator state, including the replicated state val of the virtual
node.

5.2 Analysis: Safety of the Emulation

In this section we show that the Virtual Node Emulator ensures a safe emulation of
the Virtual Node Layer, meaning that every trace of the emulator, when restricted
to the clients actions, is a trace of the Virtual Node Layer. The performance of the
emulator is considered separately in Section 5.3. We begin be reviewing what it means
for the protocol to ensure a safe emulation.

For each i ∈ I, let ci be a client automaton, and let C be the composition of all
the client automata. Let Av be a virtual node automaton, specifically, the automaton
designated to execute on virtual node v. When describing Av, let δv be the transition
relation associated with automaton Av. Recall that automaton Av is deterministic,
and hence for every state s and every action a, there is at most one state s′ such that
〈s, a, s′〉 ∈ δv.

Let S be the physical system consisting of the client automata ci, each composed
with (1) a VNE-Client automaton and (2) a VNE-Server automaton. Let U rep-
resent the environment, i.e., the RealWorld automaton containing the geocast and
fpcastv services. Thus the automaton S×U describes the underlying physical system
executing a set of clients along with the Virtual Node Emulator.

Recall that the virtual node layer consists of three types of automata: clients,
virtual nodes, and the RealWorld automaton, containing the virtual GeoCast service.
Let S ′ be the subsystem of the Virtual Node Layer consisting of the set of clients
ci, and the set of virtual nodes O. Let U ′ be the virtual RealWorld automaton,
which includes the virtual GeoCast service. Thus the automaton S ′ × U ′ describes
the Virtual Node Layer.

We want to show that every trace of S×U , when restricted to the external actions
of the clients C, is a trace of S ′ × U ′, restricted to the external actions of the clients
C. (Recall that a trace is a timed sequence of externally-visible events.) Formally,
we first define a set H containing all the hidden actions in S×U : let H be the entire
set of externally-visible actions for S×U , excluding the externally-visible actions for
C. Similarly we define a set H ′ containing all the hidden actions in S ′×U ′: let H ′ be
the entire set of externally-visible actions in S ′ × U ′, excluding the externally-visible
actions for C.

We say that the emulation is safe if for every admissible execution α of S × U ,
there exists an execution γ of S ′ ◦ U ′ such that

trace(hideH′(γ)) = trace(hideH(α)) .

In this case, the clients cannot distinguish whether they are executing in the virtual
system or the real system.

For the purpose of this section, fix an arbitrary admissible execution α of system
S×U . The goal of this section is to demonstrate an execution γ of S ′×U ′ satisfying
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the requisite trace indistinguishability.

We first construct individual executions for the components of system S ′, that
is, the clients (Section 5.2.1) and virtual nodes (Section 5.2.2). These individual
executions are constructed independently, based on the execution α of the underly-
ing physical system. We then construct a trace of the composed system S ′ that is
consistent with each of the individual executions (Section 5.2.3). Finally, we invoke
a pasting lemma to construct a single execution of the composed system S ′ (Sec-
tion 5.2.4). The resulting execution defines the behavior of the clients and virtual
nodes in the virtual system.

It remains to consider the virtual RealWorld automaton and the behavior of the
virtual GeoCast service, i.e., U ′ (Section 5.2.5). Recall that the virtual RealWorld
automaton is defined as an automaton that produces every trace satisfying integrity,
while maintaining the real time and the location of each client, along with a restriction
on traces that guarantees reliable delivery. To this point, we have constructed an
execution γS′ of system S ′; this execution implies a trace of the virtual RealWorld
automaton (and the virtual GeoCast service) U ′. We show that this trace satisfies
the integrity property, and thus that there is an execution of U ′ consistent with this
trace. A second invocation of the pasting lemma produces an execution γ of the entire
virtual system S ′ × U ′, and completes the proof that the emulation is safe.

5.2.1 Client Executions

We begin by constructing an execution γi for each client i ∈ I. Specifically, we define
γi to be the restriction of α to the actions of client i. Formally, let actions i be the
set of actions for client ci; then γi = α|actions i.

5.2.2 Virtual Node Executions

We now construct an execution γv for each virtual node v ∈ O. For the rest of
Section 5.2.2, fix some virtual node v ∈ O.

First, we define a set of events IM (α)v that occur in execution α. Second, we
define a total order on these events. Third, we construct an execution of virtual node
v derived from this total order.

We then show an important property of this execution: the state of each replica at
each point in α reflects exactly the events described in IM (α)v as ordered according
to the total order that we have defined in this proof. This construction and this proof
is analogous to the construction in Sections 4.2.1 and 4.2.2.

Defining the Set of Operations. For execution α, let IM (α)v be the set of events
for virtual node v simulated by the VNE-Server automata, along with the set of reset
events. Specifically:

IM (α)v = {〈act, v, oid〉 : ∃j ∈ I such that simulate-op(act, v, oid)j occurs in α }
∪ {〈reset, v, oid〉 : ∃j ∈ I such that process-reset(v, oid)j occurs in α } .
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Thus, for each operation simulated in α and for each reset event, there is one element
〈act, v, oid〉 in the set IM (α)v.

Defining a Total Order. Notice that each element in the set IM (α)v is associated
with at least one message m = 〈〈act, v, oid〉, ·, j〉 or m = 〈〈reset, v, oid〉, ·, j〉 where for
some j ∈ I there is an fpcast(m)j event in α: the precondition of simulate-op ensures
that each simulated event is drawn from the queue pending-opsv; the precondition of
process-reset also ensures that each reset event is drawn from the queue pending-opsv.
This queue is populated with messages received from the fpcastv service. We say that
an event 〈act, v, oid〉 is associated with some message m if the event can be traced to
the reception of message m, which added the event to the pending-opsv queue, and
then was processed/simulated.

The total-ordering property of the fpcastv service guarantees that, since every
fpcast message is unique, there exists a total ordering of the messages that is consistent
with the order in which each mobile node receives the messages. That is, if node i
receives two messages mr and mt in that order, then mr ≺ mt in the total ordering.
Thus, we order the events in IM (α)v according to the total ordering on their associated
messages: fix ≺v to be this ordering. (We will drop the subscript v where it is clear
by context that we are referring to messages from this particular fpcastv service.)

Defining an Execution. We define execution γv based on the events in IM (α).
We first construct a non-timed version of γv inductively as is described in Figure 5-8,
and then we insert appropriate time-passage events. In this construction, we iterate
over the messages in IM (α)v, considering the messages that represent either an action
for v or a reset request. We apply these actions/resets in the specified total order,
omitting those that are not enabled, and inserting fails before recoveries.

More formally, we proceed as follows. For each message proposing an action, if
that action is enabled, we add a transition in δv to the end of the execution; that
is, we apply the action to the state at the end of the execution. Since the virtual
node is deterministic, we can uniquely identify the behavior of each action. For each
message proposing a reset, we add a fail transition to the end of the execution; that
is, we apply a fail action to the state at the end of the execution. We then add a reset
action, which returns the virtual node to its initial state. Finally, if there are no more
messages to consider, and if in execution α there are eventually no active emulators,
then we add a final fail event to the end of the execution. Notice also that for each
message proposing a virtual-geocast-rcv for some message m with an associated unique
identifier u, we consider only the first such message.

To this point, there are no trajectories in execution γv. For each event in γv we fix
a time at which that event occurs, and then add appropriate trajectories in between
the discrete events. Specifically, for each event e in γv that was added as a result
of a simulate-op event in α, associate event e with the time at which the first such
simulate-op event occurs in α. For each reset event e in γv, associate with event e the
same time as the process-reset event in α that resulted in the reset event being added
to the execution. For each fail event e in γv, associate with event e the same time as
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Figure 5-8: Construction of Virtual Node Execution γv

1. Initially, set γv = s0, the initial state of virtual node v.

2. Define the set S as follows:

S = {〈P, cnt , k〉 : P ∈ IM (α)v, and

〈P, cnt , k〉 is the fpcast message associated with P} .

3. Repeat while S 6= ∅:

(a) Let m be the minimum message in S, according to the total order ≺v.

(b) If m = 〈〈act , v , oid〉, ·, ·〉 then:

• Let s be the last state in γv.

• If there exists some state s′ such that 〈s, act , s′〉 ∈ δv, i.e., if action
act is enabled, then choose the unique s′ such that this condition is
satisfied and append act .s′ to γv.

(c) Else if m = 〈〈reset, v, oid〉, ·, ·〉 then:

• Let s be the last state in γv.

• Choose the unique s′ such that 〈s, fail, s′〉 ∈ δv. (Recall that input
actions are always enabled.)

• Choose s′′ = v0.

• Append fail.s′.reset.s′′ to γv.

(d) If m represents a virtual-geocast-rcv event, remove from S every message
m′ that proposes the identical virtual-geocast-rcv, as identified by the as-
sociated unique identifier.

4. If S = ∅ and at some point in execution α after the last event in S there does
not exist any i ∈ I such that statusv,i = active, then add a failv to the end of γv.
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the event preceding it in γv.

5.2.3 Constructing the Trace

Next, we construct a hybrid sequence β of externally-visible actions by the clients
and virtual nodes, i.e., of externally-visible actions of S ′. (Recall we are postponing
consideration of the virtual RealWorld until Section 5.2.5.) We show that β is a trace
of S ′, and use it to align the various component executions. As a result, β enables us
to paste together the various component executions in a single execution of S ′.

More formally, we construct a sequence β such that the following properties holds:

• For all i ∈ I, let external i be the externally visible actions of client i. For all
i ∈ I, β|external i = trace(γi).

• For all v ∈ O, let externalv be the externally visible actions of virtual node v.
For all v ∈ O, β|externalv = trace(γv).

As a result, the trace β is consistent with the individual component executions.
In order to construct this trace, we begin with a trace of the physical system, i.e.,

a trace of α. We exclude from this trace all the events that are not relevant to clients
and virtual nodes, and then substitute some virtual node events for certain emulator
events.

More specifically, let β be the trace of α containing all the externally visible client
events, i.e., external i for all i ∈ I. Also, temporarily, include in β all the simulate-op
events and process-reset events as well. (We will remove these events after the next
step.) Formally, then, let:

E = {external i : i ∈ I}
∪ {simulate-op(act , v, oid)i : act ∈ actions [v], v ∈ O, oid ∈ U, i ∈ I}
∪ {process-reset(v, oid)i : oid ∈ U, i ∈ I}

and let β = α|〈E, ∅〉.
It remains to add the virtual node events, and to remove the simulate-op and

process-reset events. For each virtual node v, we add the externally visible events
from γv to β as follows:

Let e be some externally-visible event from γv. If e is not a failv event or a resetv,
then by the construction of γv, for some j ∈ I, there is a simulate-op(e, v, oid)j event in
IM (α)v, and hence in α, that led to event e being added to γv. In this case, add event
e to β immediately after—and with no time passage—as the first simulate-op(e, v, oid)
event in β.

If e is a failv event followed by a resetv event, then by the construction of γv, for
some j ∈ I, there is a process-reset(v, oid)j event in IM (α)v, and hence in α, that
led to event e being added to γv. Let e′ be the first process-reset(v, oid)j event in β,
and let e′′ be the event immediately preceding e. Add a failv event immediately after
event e′′ with no time passage between event e′′ and the fail event. Add a resetv event
to β immediately after event e′ with no time passage between e′ and the reset event.
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If e is a resetv event, notice by the construction of γv that it is immediately
preceded by a failv event, and hence is covered by the previous case.

If e is a failv event that is not followed by a resetv event, then add it to β after
all the other events from γv at a point corresponding to the first point in α after
the other events in γv at which there does not exist a i ∈ I where status i,v = active.
Since such a failv event is always the last event in γv, placing it at this point is clearly
consistent with the other events in γv. Assign it the same time as its immediately
preceding event.

Finally, remove all the simulate-op events and process-reset events from β. The
resulting trace is clearly consistent with the client executions, as both β and the client
executions are constructed directly from a restriction of α. It is also consistent with
the virtual node executions since every external event in γv is added to β, and they
are added in the same order and at the same time, i.e., the order of the simulate-op
and process-reset events.

5.2.4 Pasting Executions

Next, we invoke a pasting lemma to combine the various component executions to
generate an execution of S ′. In Section 5.2.5, we construct an execution of U ′ and
perform a second pasting step to produce an executino of S ′ × U ′, i.e., an execution
of the Virtual Node Layer.

We begin by stating a basic lemma related to execution-pasting, which is an
extension of Theorem 7.3 from [45,46]:

Lemma 5.2.1. Let A1 and A2 be compatible timed automata, and A = A1×A2. Let
α1 and α2 be executions of A1 and A2, respectively.

Let β be an (E, ∅)-sequence, where E is the set of external actions of A. Suppose
that β|(Ei, ∅) = trace(αi), i ∈ {1, 2}.

Then there exists an execution α of A such that trace(α) = β, and αi = α|(Ai, Xi),
i ∈ {1, 2}.

It follows that we can paste together a countable collection of components:

Corollary 5.2.2. Let A1, A2, . . . , Ak be a finite collection of compatible timed au-
tomata, and let A = A1 × A2 × . . . Ak. Let αi be an execution of Ai.

Let β be an (E, ∅)-sequence, where E is the set of external actions of A. Suppose
that β|(Ei, ∅) = trace(αi), i ∈ {1, 2, . . . , k}.

Then there exists an execution α of A such that trace(α) = β, and αi = α|(Ai, Xi),
i ∈ {1, 2, . . . , k}.

Using Corollary 5.2.2, we can paste together all the various components’ execu-
tions that we have constructed in the preceding sections:

• γi, i ∈ I, the clients, and

• γv, v ∈ O, the virtual nodes.

Define γS′ to be the execution of S ′ resulting from pasting together these various
automata. We now proceed in the following section to consider U ′.
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5.2.5 RealWorld / Virtual GeoCast Execution

In this section, we construct an execution of U ′, the RealWorld automaton (and
the virtual GeoCast service) and again invoke the pasting lemma to construct an
execution γ of S ′ × U ′. We construct the execution of U ′ as follows: first we notice
that we can derive a trace βU ′ of U ′ from execution γS′ , since every external action
of U ′ is shared with S ′. We show that this hybrid sequence βU ′ satisfies the integrity
property, and that the geo-updates to the clients occur sufficiently frequently. By the
definition of the virtual RealWorld automaton, there exists an execution of U ′ that
is consistent with this sequence. We then invoke Lemma 5.2.1 to construct execution
γ.

The key claim in this section is that the sequence βU ′ satisfies the integrity prop-
erty, implying that it is a trace of the virtual RealWorld automaton. We show that
for every virtual-geocast-rcv(m, d)k event in βU ′ of U ′, there is a preceding virtual
geocast, i.e., virtual-geocast(m, d)`. Notice that nodes k and ` can be either clients
(identified by the set I) or virtual nodes (identified by the set O). The proof of this
integrity property follows the same structure as Section 4.2.2, and the main claim,
Invariant 5.2.3, is similar in structure to Invariant 4.2.1.

Defining the sequence. We begin by defining the sequence βU ′ of the RealWorld/-
GeoCast automaton. Recall that we have already determined an execution β of ex-
ecution γS′ in Section 5.2.3. We begin with the trace β and restrict to the set of
externally-visible actions of the virtual RealWorld. Formally, let:

Egeo = {virtual-geocast(m, d)k : m is a message, d ∈ R, k ∈ I ∪O}
∪ {virtual-geocast-rcv(m, d)k : m is a message, d ∈ R, k ∈ I ∪O}
∪ {failv : v ∈ O}
∪ {faili : i ∈ I}
∪ {resetv : v ∈ O}
∪ {geo-update(t, `)i : t ∈ R, ` ∈ L, i ∈ I}

and let βU ′ = β|〈Egeo, ∅〉. Our goal is to show that β′ satisfies the integrity property,
and hence that there exists an execution of U ′ with trace βU ′ .

Defining partial executions. We now define partial executions that reflect the
operations known to a given replica. For every prefix α′ of α, for every i ∈ I, define
γ(α′, v, i) as follows. We first construct an asynchronous execution, as in Figure 5-8,
and then assign a time to each event. Define γ(α′, v, i) as is described in Figure 5-9.
First, choose message m to be the largest message received by i via the fpcastv service
in α′ that is not in `state(α′).pending-opsv,i. The construction proceeds exactly as in
Figure 5-8, with the exception that we only consider messages that precede m. That
is, we iterate over the messages in IM (α)v that precede m, considering the messages
that represent either an action for v or a reset request. We apply these actions/resets
in the specified total-order, omitting those that are not enabled, and inserting fails
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Figure 5-9: Defining Partial Execution γ(α′, v, i)

Choose m to be the largest message received by i via the fpcastv service in α′ that is
not in `state(α′).pending-opsv,i.

1. Initially, set γ(α′, v, i) = s0, the initial state of virtual node v.

2. Define the set S as follows:

S = {〈P, cnt , k〉 : P ∈ IM (α)v,

〈P, cnt , k〉 is the message associated with P, 〈P, cnt , k〉 ≤ m} .

3. Repeat while S 6= ∅:

(a) Let m be the minimum message in S, according to the total order ≺v.

(b) If m = 〈〈act , v , oid〉, ·, ·〉 then:

• Let s be the last state in γ(α′, v, i).

• If there exists some state s′ such that 〈s, act , s′〉 ∈ δv, i.e., if action
act is enabled, then choose the unique s′ such that this condition is
satisfied and append act .s′ to γ(α′, v, i).

(c) Else if m = 〈〈reset, v, oid〉, ·, ·〉 then:

• Let s be the last state in γ(α′, v, i).

• Choose the unique s′ such that 〈s, fail, s′〉 ∈ δv. (Recall that input
actions are always enabled.)

• Choose s′′ = v0.

• Append fail.s′.reset.s′′ to γ(α′, v, i).

(d) If m represents a virtual-geocast-rcv event, remove from S every message
m′ that proposes the identical virtual-geocast-rcv, as identified by the as-
sociated unique identifier.
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before recoveries.

Notice that the sequence constructed by Figure 5-9 is necessarily a prefix of the
sequence constructed by Figure 5-8: both constructions follow an identical process,
but the former considers only messages that precede some message m (including m
itself) in the ordering inducted by the fpcast service.

We therefore assign a time to each event in a manner that matches γv: if some
event e occurs in (γ(α′, v, i)), then it also occurs in γv; assign event e the same time
in the former as it has in the latter. Notice, then, the following observation:

Observation 1. For every α′ < α, for every i ∈ I: γ(α′, v, i) is a prefix of γv.

This follows since the partial execution γ(α′, v, i) is defined by set S which is a
prefix of the (ordered) set of events IM (α)v.

Notice that every reset event in γ(α′, v, i), for any α′ and i, is associated with some
〈reset, v, oid〉 message received in α′. We refer to oid as the reset identifier for such
a reset event.

The main invariant. We now proceed to show that for every i ∈ I, the execution
γ(α′, v, i) reflects exactly the state of replica i at the end of α′. In particular, we
show that for every active replica i, the replica state val v,i is equal to the last state

in γ(α′, v, i) at the end of every prefix α′.

Invariant 5.2.3. Let execution α′ be a finite prefix of execution α, and mobile node
i ∈ I. If `state(α′).statusv,i = active, then `state(α′).valv,i = `state(γ(α′, v, i)).

Proof. We show this by induction on the length of α′. Throughout the induction, we
also maintain two further invariants. The first, Invariant 5.2.4, show that an active
replica is aware of the entire history since the most recent reset event. Notice that for
each fpcast-rcv(m) event, message m = 〈P, cnt , k〉, i.e., consists of some P , which we
refer to as the payload, along with two further parameters that ensure each message
is unique.

Invariant 5.2.4. For all j ∈ I, if the following conditions hold for some prefix α′

of α:

• `state(α′).statusv,j = active,

• message m is the largest message such that a fpcast-rcv(m)v,j occurs in α′,

• message m′ is the largest message ≤ m such that m′ = 〈〈reset, v, ·〉, ·, ·〉, or
m′ = ⊥ if there is no such message;

then for every message m′′ : m′ < m′′ ≤ m that is received in α via a fpcast-rcvv,j′

for j′ ∈ I where m′′ = 〈P, ·, ·〉, the payload P is in `state(α′).pending-opsv,j ∪
`state(α′).completed-opsv,j.
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The second, Invariant 5.2.5, shows that the the reset-id of a replica correctly tracks
the most recent reset identifier. This is used to ensure that a replica only processes
operations that have occurred since the last reset. Together with Invariant 5.2.4,
this ensures that each operation is only executed once: operations prior to the most
recent reset are ignored, and operations since the most recent reset are available in
the history of completed-ops .

Invariant 5.2.5. For all j ∈ I, if for some prefix α′ of α:

• `state(α′).statusv,j = active,

• e is the last reset event in α′, and

• oid is the reset identifier of e;

then `state(α′).reset-idv,j = oid. If no such event e exists in execution α′, then:

`state(α′).reset-idv,j = 〈i0,−1〉 .

For the base case, consider the initial state of the system, before any events occur
in α. Let γpost be this empty prefix of α. If i is not in the focal point region, then
statusv,i = idle, and the claim is trivial. If i is in the focal point, then the state of valv,i

is v0, the initial state of virtual node v. Since i has received no messages, γ(γpost , v, i)
is also the empty execution, satisfying the main invariant. Invariant 5.2.4, for the
base case, also follows immediately from the fact that there are no messages received
in the empty execution. Similarly, for Invariant 5.2.5, γpost has no reset events, and
every node has reset-idv,j = 〈i0,−1〉 in its initial state, implying the desired condition.

There are two types of inductive steps to consider for executions of timed au-
tomata: discrete events and trajectories. Notice that for trajectories, the invariants
are trivially maintained since all the state elements mentioned in the invariants are
discrete and unchanged under time passage. Consider, then, a discrete event.

Let s and s′ be the states before and after the new event, respectively. Let γpre

be the previous prefix of α ending in state s, that is, s = `state(γpre). Let γpost be
the new prefix of α after the new event, that is, s′ = `state(γpost).

We know, inductively, that for any finite prefix α′ of γpre , for any node j, if

`state(α′).statusj = active, then `state(α′).valj = γ(α′, v, j)), and also that Invari-

ant 5.2.4 holds. We need to show that `state(γpost).val v,i = γ(γpost , v, i), and that
Invariant 5.2.4 continues to hold. We now consider the different events that can
occur which modify the state relevant to the three invariants:

• fpcast-rcv(〈〈act , vnid , oid〉, ·, ·〉)v ,i: (Figure 5-5, lines 22–28.)
This event adds 〈act, vnid , oid〉 to pending-opsv, if the status of i is active and
if the operation is not already in pending-opsv or completed-opsv.

Recall that the execution γ(γpost , v, i) includes only messages that have been
simulated in γpost and precede the largest message received by i not in the set
of pending operations, i.e., pending-opsv,i. There are three cases to consider:
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– The event 〈act , vnid , oid〉 is already in pending-opsv,i. In this case, the
state of pending-opsv,i is not modified. The message m = 〈〈act , vnid , oid〉, ·, ·〉
becomes the largest message received by i (in the total order); however,
since m is already in pending-opsv,i, the message m that is used to define

γ(γpre , v, i) remains unchanged.

As a result, the execution γ(γpost , v, i) is equal to γ(γpre , v, i). By induction,

we already know that γ(γpre , v, i) = `state(γpre).val v,i. Since val v,i remains
unchanged, the claim follows.

– The event 〈act , vnid , oid〉 is not in pending-opsv,i or completed-opsv,i. In
this case, the event 〈act , vnid , oid〉 is added to pending-opsv,i. As in the
previous case, the received message becomes the largest message received
by i, but does not result in any changes to γ(γpre , v, i) since the message
is in pending-opsv,i.

– The event 〈act , vnid , oid〉 is in completed-opsv,i. In this case, the largest
message received by i, as determined by the total ordering, remains un-
changed: some message 〈〈act , vnid , oid〉, ·, ·〉 (from a different node) has
already been received earlier in the ordering in order to be resident in
completed-opsv,i.

We next proceed to argue that Invariant 5.2.4 is maintained. If the message
〈〈act , vnid , oid〉, ·, ·〉 is not the largest message received by i, then the situation
is unchanged and Invariant 5.2.4 continues to hold by the inductive hypothesis.

Consider the case where message 〈〈act , vnid , oid〉, ·, ·〉 is the largest message
received by i from the fpcastv service in γpost . Let m′ be the largest message
received by i in γpre from the fpcastv service. We show that every message
m′′ : m′ < m′′ < m has its payload either in pending-ops or completed-ops .
(Notice that this proves a property somewhat stronger than the necessary in-
variant, as it does not exclude messages prior to a reset event that may occur
between m′′ and m.)

Assume for the sake of contradiction that such a message m′′ exists whose
payload is not in either set. We argue that this implies that node i has exited
the focal point region at some point after receiving message m′ and prior to
receiving message m: since every message received from the fpcastv service is
added to either pending-ops or completed-ops , and messages are removed only
when i exits the focal point region, there are two possible cases:

– Node i exits the focal point region at some point between receiving m and
m′, and resets pending-ops during the geo-update, removing the payload
of message m′′ from pending-ops .

– Node i does not receive m′′. In this case, we conclude by the consistent
delivery property of the fpcastv service that i exits the focal point region
at some point between receiving m and m′.
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In either case, i exits the focal point between receiving message m and m′,
setting status i,v to idle. Moreover, it is easy to see that i does not reset its
status to active prior to receiving message m: we know that message m′ is the
most recent message received by i prior to m (since it is the largest message in
γpre), and hence i did not receive a join-ack between messages m′ and m. This
contradicts our assumption that status i,v = active.

Finally, consider Invariant 5.2.5: notice that this event has no effect either on
the reset events in execution γ(γpre , v, i), nor does it modify reset-id i,v; therefore
the invariant is maintained.

• simulate-op(act , v , r-id , oid)v,i: (Figure 5-6, lines 76–87.)
First, when this event occurs, statusv,i = active, since that is a precondition to
this action (Figure 5-6, line 78). The event removes 〈act , v , oid〉 from the set
pending-opsv,i, and thus the message m which originally caused this operation
to be added to pending-opsv,i is now included in the construction of execution

γ(γpost , v, i); in particular, since m no longer refers to the largest message re-
ceived by i and (no longer) in pending-ops , we can conclude that act is the last
event in γ(γpost , v, i). By construction we can conclude that γ(γpost , v, i) includes
every operation specified by every message preceding m that is received in α.

There are two subcases to consider.

– Message m contains a payload 〈act , v, oid〉 included in another message
already received and processed. That is, there exists a message delivered
earlier in the ordering with the same action, virtual node, and operation
identifier. In this case, γ(γpost , v, i) = γ(γpre , v, i), as the construction
includes each payload only once. It remains to show that val v,i is also
unmodified as a result of the simulate-op event. If r-id 6= reset-id i,v, then
val v,i is unmodified as desired (Figure 5-6, line 82).

Assume therefore that r-id = reset-id i,v. By Invariant 5.2.5, we conclude
that either there are no reset events in γpre , or r-id is the reset identifier
of the most recent reset event in γpre . Let m′ = 〈〈reset, v, r-id〉, ·, ·〉 be the
message in IM (α′) associated with that reset event. Notice that message
m could not have been received and processed prior to message m′ as in
that case i would have a different reset-id and hence would reject message
m. Thus we are interested in the case where i has received some message
m′′ with the same operation identifier as m such that in the total ordering
m′ < m′′ < m.

By induction, we know from Invariant 5.2.4 that every message m′′ : m′ <
m′′ ≤ m that is received in α is in pending-opsv,i ∪ completed-opsv,i. Thus,
the payload of the earlier message m′′ identifying the same operation as
m is also in pending-opsv,i ∪ completed-opsv,i. We also know that it is
not in pending-opsv ,i since message m is the smallest—and hence oldest—
message in pending-ops (as it is a queue); from this we conclude that the
earlier message is in completed-opsv,i. In this case the simulated-op event
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transition does not modify val v,i due to Figure 5-6, line 81, and the main
invariant is maintained.

– Message m refers to a new operation, in which case

γ(γpost , v, i) = δ(act , `state(γ(γpre , v, i))) .

By induction we know that val v,i = `state(γ(γpre , v, i)) in state s. After
the simulate-op transition, val v,i is set to δ(act , val v,i). This maintains the
desired invariant.

Since this event neither results in a new message being received from the fpcastv
service, nor removes any messages from pending-ops∪completed-ops (only mov-
ing a message from one to the other), Invariant 4.2.2 is also maintained.

Finally, consider Invariant 5.2.5: notice that this event has no effect either on
the reset events in execution γ(γpre , v, i), nor does it modify reset-id i,v; therefore
the invariant is maintained.

• fpcast-rcv(〈〈join-ack, jid, v, c-ops〉, ·, ·〉)v,i: (Figure 5-5, lines 9–20)
In this event, node i sets statusv,i to active (Figure 5-5, line 14), if the message
is a response to an outstanding join-req previously sent by i. (If this is not the
case, then this action causes no change to statusv,i, pending-opsv,i, reset-idv,i, or
val v,i, and adds the message to completed-psv,i; thus the invariants are trivially
maintained.)

The fpcastv service guarantees that if a message is received, an earlier fpcast
occurred at some node j that sent the message (that is, it guarantees message
integrity). In particular, some node j previously performed a

fpcast(〈join-ack, jid, v, val, r-id , c-ops〉)j .

The only action that causes a join-ack to be sent is a prior join request being re-
ceived . Therefore, node j previously performed an fpcast-rcv(〈join-req, jid, v〉)v,i.
Let γ′′ be the prefix of γpre ending with the fpcast-rcv(〈join-req, jid, v〉)j event.

Consider the state of node j at the end of γ′′. First, the status, statusv,j,
must be active; otherwise node j would not send a response to the join request
(Figure 5-6, line 91). Inductively, then, we know that `state(γ′′).val v,j is equal

to `state(γ(γ′′, v, j)). Thus, we can conclude that val , the value sent from j to
i, is also equal to `state(γ(γ′′, v, j)). By Invariant 5.2.5 we can conclude that
`state(γ′′).reset-idv,j identifies the most recent reset in γ(γ′′, v, j).

Since val v,i is set to val when the join-ack message is received, i.e., during the
transition in question, it remains only to show that:

γ(γpost , v, i) = γ(γ′′, v, j) , (5.1)

and we can conclude that val v,i = `state(γ(γpost , v, i)), as desired. From this we
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will also conclude that the reset identifier r-id included in the join-ack message is
the most recent reset identifier for γ(γpost , v, i), thus maintaining Invariant 5.2.5.

Let m be the largest message that is received by i via the fpcastv service in γpost

whose payload is not in s′.pending-opsv,i, that is, m is the message used in the

construction of γ(γpost , v, i). We claim that m must correspond to node i’s join
request, which implies Equation 5.1, as it is easy to see that i’s join request is
the message used in the construction of γ(γ′′, v, j): i’s join request is the last
message received by j and removed from pending-opsv,j prior to sending the
join-ack message.

First, we know that i has already received its own join request in γpost : i sets
its status to active only if it has previously received its own join request and
set its status to listening. Moreover, i does not add its own join request to
pending-msgs and hence we can conclude that m is no smaller that i’s join
request.

Second, notice that when i receives its own join request, it sets its status to
listening and when i’s status is listening, it adds every message it receives (after
its own join request) to pending-opsv,i (Figure 5-5, line 5). No message is re-
moved from the set pending-opsv,i because statusv,i is not yet active (Figure 5-6,
line 78). Therefore m cannot be equal to any message received by i after i’s
own join request.

We conclude, then, that m is exactly i’s join request. Recall that the execution
γ(γpost , v, i) is defined as including all the simulated messages prior to m, that
is, prior to i’s join request.

Notice that i’s join request is exactly the last message processed by j in γ′′ before
sending a response to i. In particular, then, γ(γ′′, v, j) is the execution including
every operation in IM (γ′′) prior to i’s join request. Therefore, Equation 5.1
holds, and the invariants holds in state s′.

We next argue that Invariant 4.2.2 is also maintained. Notice that when node
j sends the join-ack message, it also includes a copy of its set completed-opsv ,j ,
and that at this point in the execution, Invariant 4.2.2 holds with respect to j;
this means that the payload of every message preceding node i’s join request
and after the most recent reset is in pending-opsv,j ∪ completed-opsv,j. Since
pending-opsv,j is a queue, and since when responding to a join request, all
payloads from preceding messages have been removed from pending-opsv,j, we
can conclude that the payload of every message preceding the join request is
in completed-opsv,j. When node i receives the join-ack, it adds all the message
payloads in the set c-ops to its own set completed-opsv,i. It remains only to
show that every message payload sent after i’s join request is in pending-opsv,i.
This follows immediately from the fact that i has remained in the focal point
region, and the consistent delivery property of the fpcastv service.

• process-join-req(jid , vnid i: (Figure 5-6, lines 89–96)
In this case, a join-req message is removed from pending-opsv,i, which potentially
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indicates that γ(γpost) 6= γ(γpre).

In fact, the virtual execution prefix is unmodified. Let m be the join-req message
〈join-req, jid , vnid〉 that precipitated this event. Let m be the largest message
received by i via the fpcast service in γpre that is not in pending-opsv,i at the

end of γpre , i.e., the message that is used to define γ(γpre). We argue that there
are no intervening messages in IM (α) between m and the join-req message m.

Assume for the sake of contradiction that such an intervening message m′ ∈
IM (α) exists where m < m′ < m. Choose m′ to be the largest such message.
By the consistent delivery property of the fpcast, either i receives message m′,
or i leaves the focal point point between receiving m and m. In the latter case,
however, i sets statusv,i to idle; by assumption (i.e., the choice of m) there is
no intervening message in γpre that causes i to reset its status to active, thus
contradicting our assumption that i is active. We thus conclude that i receives
message m′. By the choice of m this implies that m′ is in pending-opsv,i, which
contradicts the fact that messages are processed in order and hence m′ would
have been processed prior to m.

Finally, we notice that message m is not in IM (α), as it is a join request, and
there are no intervening messages between overlinem and m that are in IM (α),
and hence the virtual execution prefix is unmodified.

• process-join-ack(v)i: (Figure 5-6, lines 98–103)
In this case, a join-ack message is removed from pending-opsv,i. The argument
is identical to the previous case.

• process-reset(v, oid)i: (Figure 5-6, lines 114–124)
In this case, the virtual node is reset. In the case where the replica is not in the
focal point, the invariants are trivially maintained since the status of i is idle.
We thus assume that i is in the focal point and hence executes the reset code.

Let m be the 〈reset, v, oid〉 message that leads to this event. Since messages
are processed in order, it is clear that m is the largest message received by i
that is not in pending-opsv,i. Thus the last event in γ(γpost , v, i) is a reset event,
and hence the final state is v0, the initial state. Similarly, after the process-reset
event, val v,i = v0, and thus the main invariant is maintained.

Similarly, Invariant 5.2.4 is maintained since every message received after m
remains in pending-opsv,i. (The consistent delivery property ensures that there
are no gaps in the sequence of received messages.) Messages prior to m are no
longer relevant since m is a reset event.

Finally, Invariant 5.2.5 is maintained since this event updates reset-idv,i to oid ,
which is the reset identifier for this reset event.

The rest of the cases are straightforward, having no effect on the status of i, the
state of the replica, or the reset-id ; moreover, every other fpcast message is added to
completed-ops or pending-ops , and no elements are removed (except when i exits the
focal point region).
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Relating states to executions. Our goal now is to show that the execution γv

constructed for virtual node v is consistent with the simulation performed by each
replica, i.e., by each VNE-Server automaton. We have already shown that the state
of each replica is consistent with the partial executions; we now show that this is
consistent with γv as well. This follows primarily from the fact that each partial
execution is a prefix of γv.

In more detail, a replica i simulates an event act in the virtual node execution by
performing a simulate-op(act, v, oid)v,i step. Thus, we need to show that each such
simulate-op event in α reflects an event in the execution γv. We therefore prove the
following lemma:

Lemma 5.2.6. Let α′ be a finite prefix of execution α such that

α′′ = α′.simulate-op(act, v, oid)v,i

is also a prefix of α. Then there exists a prefix γ′ of γv such that the following hold:

• pre-state: `state(α′).valv,i = `state(γ′),

• transition: Let s′′ = δ(`state(gamma′), act). Execution γ′.act .s′′ is also a prefix
of γv.

• post-state: s′′ = `state(α′′).valv,i.

Proof. This lemma follows immediately from Invariant 5.2.3. Choose γ′ to be γ(α′, v, i).
Notice that γ′ is a prefix of γv. The pre-state claim exactly restates Invariant 5.2.3.
The transition claim follows from the fact that γ(α′, v, i) is defined in terms of a
message m that is the largest message received by i in α′ whose payload is not in
pending-opsv,i; the message 〈act , vn, oid〉 posited by the precondition of simulate-op
must in fact be the message immediately following m in the total order, and hence
act is the next event in the virtual node execution. Finally, the post-state claim again
restates Invariant 5.2.3, with respect to α′′.

Proving Integrity. Since the trace βU ′ of the virtual RealWorld automaton is
derived from the executions γS′ , which is itself derived from pasting client executions
γi, i ∈ I, and virtual node executions γv, v ∈ O, we can now conclude that the virtual
RealWorld automaton guarantees integrity:

Lemma 5.2.7. For every k ∈ I ∪ O, if a virtual-geocast-rcv(m, d)k event occurs in
βU ′, then there exists some ` ∈ I ∪ O such that a virtual-geocast(m, d)` precedes it
in βU ′.

Proof. There are two main cases, depending on whether k is a client or a virtual node:

• k is a client: In this case, since there is a virtual-geocast-rcv(m, d)k in βU ′ ,
there must also be a virtual-geocast-rcv(m, d)k in γk, and hence also in α.
The VNE-Client automaton at k performs this action only if it has received
a geocast-rcv(m, d)k from the underlying GeoCast service. We can conclude by
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the integrity of the underlying GeoCast service that there is some i ∈ I that pre-
viously geocast message m in α. There are two possibilities: either the geocast
came from another client, i.e., a VNE-Client automaton fom some ` ∈ I, or
from a VNE-Server automaton for some virtual node v ∈ O and some replica
` ∈ I.

In the former case, the desired conclusion follows immediately: since some VNE-
Client at mobile node ` ∈ I performs a geocast(m, d)`, we can conclude that
client ci previously performed a virtual-geocast(m, d)` in α. By the construction
of γ`, this virtual GeoCast by client ` occurs also in γ`, and hence also in γS′ ,
and hence also in βU ′ .

In the latter case, we know that some VNE-Server GeoCast message m. This
occurs only when the VNE-Server adds the message to the geocast-queuev,i

during a simulate-op event, from which we conclude by Lemma 5.2.6 that a
geocast(m, d)v event occurs in γ(α′, v, i), for appropriate choice of α′, and hence
in γv, and hence in γS′ , and hence also in βU ′ . By the construction of the trace
βU ′ , we can conclude that the geocast(m, d)v in γS′ precedes the time at which
the message is received.

• k is a virtual node: This case is essentially identical to the previous, with one
additional step.

Since there is a virtual-geocast-rcv(m, d)k in βU ′ in βU ′ , there must also be a
simulate-opk in α that led to this event, and hence a geocast-rcv(m, d)` at some
VNE-Server for some mobile node ` ∈ I which proposed the virtual-geocast-rcv.
From this point, the argument proceeds as in the previous case. We can conclude
by the integrity of the underlying GeoCast service that there is some i ∈ I
that previously geocast message m in α. There are two possibilities: either
the geocast came from another client, i.e., a VNE-Client automaton fom some
` ∈ I, or from a VNE-Server automaton for some virtual node v ∈ O and some
replica ` ∈ I.

In the former case, the desired conclusion follows immediately: since some VNE-
Client at mobile node `′ ∈ I performs a geocast(m, d)`′ , we can conclude that
client ci previously performed a virtual-geocast(m, d)`′ in α. By the construction
of γ`′ , this virtual GeoCast by client `′ occurs also in γ`′ , and hence also in γS′ ,
and hence also in βU ′ .

In the latter case, we know that some VNE-Server GeoCast message m. This
occurs only when the VNE-Server adds the message to the geocast-queuev,i

during a simulate-op event, from which we conclude by Lemma 5.2.6 that a
geocast(m, d)v event occurs in γ(α′, v, i), for appropriate choice of α′, and hence
in γv, and hence in γS′ , and hence also in βU ′ . By the construction of the trace
βU ′ , we can conclude that the geocast(m, d)v in γS′ precedes the time at which
the message is received.
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Recall that the virtual RealWorld automaton produces every integrity-producing
trace that includes sufficiently frequent geo-updates. Since the trace βU ′ guaran-
tees integrity, and since βU ′ contains sufficiently frequent geo-updates, we conclude
that there exists an execution γU ′ of the virtual RealWorld automaton such that
trace(γU ′) = βU ′ .

Moreover, recall that βU ′ = β|〈Egeo, ∅〉. Thus we conclude also that trace(γU ′) =
β|〈Egeo, ∅〉.

Finally, we invoke Lemma 5.2.1 a second time to paste executions γS′ and γU ′ and
conclude:

Lemma 5.2.8. There exists an execution γ of S ′ × U ′ such that:

trace(hideH′(γ)) = trace(hideH(α)) .

Proof. Let A1 and A2 be compatible timed automata, and A = A1 ×A2. Let α1 and
α2 be executions of A1 and A2, respectively.

Let β be an (E, ∅)-sequence, where E is the set of external actions of A. Suppose
that β|(Ei, ∅) = trace(αi), i ∈ {1, 2}.

Then there exists an execution α of A such that trace(α) = β, and αi = α|(Ai, Xi),
i ∈ {1, 2}.

We have already constructed executions γS′ of S ′ and γU ′ of U ′. We have also
already constructed β such that β = trace(γS′) and β|〈Egeo, ∅〉 = trace(γU ′). Thus we
conclude by Lemma 5.2.1, there exists an execution γ of S ′×U ′ such that trace(γ) = β.

Moreover, we can conclude that if actionsS′ are the set of actions in S ′ and XS′

are the set of variables in S ′, then γ|〈actionsS′ , XS′〉 = γS′ .
Since the set of hidden actions H ′ includes all the non-client actions in S ′, we can

conclude that:
trace(hideH′(γ)) = trace(hideH′(γS′)) .

Since γS′ is itself constructed by pasting various γi, i ∈ I, executions (along with
other component executions), and since each γi is defined as a restriction of α to the
events of client i, we conclude that:

trace(hideH′(γS′)) = trace(hideH(α)) .

Together, these two equalities lead to the desired conclusion.

From this, we conclude the main theorem of this section:

Theorem 5.2.9. The Virtual Node Emulator guarantees a safe emulation of the
Virtual Node Layer.

5.3 Analysis: Liveness of the Emulation

In this section, we show that the emulation satisfies the liveness properties of the
Virtual Node Layer. Specifically, this entails showing that the virtual RealWorld, in
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particular the GeoCast subcomponent, guarantees reliable and timely message deliv-
ery. In order to guarantee liveness properties in the virtual infrastructure emulation,
we need to make some further liveness assumptions for the underlying physical sys-
tem. Specifically, we assume that:

• Any enabled action at a mobile node is executed immediately.

• For every fpcast event, the ε specified by the “Reliable Delivery” property is
bounded by dfp . This implies that every message broadcast using the fpcast
service is delivered within time dfp.

• For every geocast event, the ε specified by the “Reliable Delivery” property is
bounded by εgeo.

• Every message broadcast using the geocast service is delivered within time dgeo .

Also, recall from Section 3.2.3 that a focal point is said to be correct when some mobile
node arrives at least time tjoin prior to the previous mobile nodes leaving the focal
point, and remains at least tjoin afterwards. We assume that tjoin = 4dfp + εgeo + tupd.

We also make one timing related restriction to the reset protocol. As presented
in Figure 5-6, a mobile node could choose to reset a virtual node with very few
restrictions. In order to show that the virtual node continues to operate throughout
some period of time, we need to assume that the virtual node is not reset unnecessarily.
That is, we assume that a node only initiates a reset by performing an initiate-reset
if it has remained in status = joining for time 2tfp without receiving a join response.
Otherwise, without this additional restriction, a node might initiate a reset non-
deterministically, even when unnecessary.

The main lemma we prove in this section is that execution γ satisfies the reliable
delivery property for the virtual GeoCast service. We also, at the same time, prove
that each virtual geocast message is delivered within a bounded time.

Theorem 5.3.1. There exists some εv such that if node k ∈ I ∪ O performs a
virtual-geocast(m, d)i action at time t in γ, then there exists some time t′ > t + tupd

such that if ` ∈ I ∪O and satisfies the following:

• node ` is within distance RVgeo of location d at time t′;

• node ` remains within distance RVgeo of location d until time t′ + εv; and

• node ` does not fail prior to time t′ + εv,

then a virtual-geocast-rcv(m, d)` event occurs at some point in the interval [t′, t′+ εv],
delivering the message to node `. Moreover, the message is delivered within time
dgeo + εv.

Proof. Notice that by assumption the ε associated with the underlying physical-layer
GeoCast service is bounded by εgeo. We choose εv = εgeo + dlitfp. There are two cases
depending on whether k is a client or a virtual node. In each case we trace the virtual
GeoCast from the sender to the receiver and show that it is received as required.
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First, assume that node k is a client. In this case, by assumption, there is a
virtual-geocast(m, d)k at time t, and hence we conclude that the VSE-Client for node
k performs a geocast(m, d)k at time t. Let t′ be the time specified by the reliable
delivery property of the underlying GeoCast service. If ` is a client, then the claim
follows immediately from the reliable delivery of the underlying GeoCast service.

Assume, then, that ` is a virtual node. By assumption, virtual node ` does not
fail prior to some t′ + εv. From this we argue that there is some mobile node i ∈ I
that has statusv,i = active throughout the interval [t′, t′ + εv] and does not fail prior
to time t′ + εv.

This follows from the assumption that v is correct in this interval, implying that
v is populated for at least 2tjoin prior to time t′ through time t′ + εv.

We next argue that node j0, as specified by the definition of a focal point being
populated, as status active sufficiently prior to time t′. If any node has status active,
then it is easy to see that the join protocol for j0 completes successfully, if j0 is not
already active. Otherwise, consider the case where there are no nodes with status
active for v at time t′−2tjoin. Since v is populated from that point through time t′+εv,
we can conclude that some node resets v by performing an initiate-reset during that
interval. In particular node j0, as specified by the definition of a focal point being
populated, becomes active within time 4tfp: after waiting time 3fp for its join protocol
to complete, it either succeeds in resetting v in the next tfp time, or it completes the
join protocol. Thus we can assume without loss of generality that node j0 is active
at least time tjoin prior to its departure, and at least time εgeo prior to t′.

It is then easy to see (inductively) that each of the subsequent j` becomes active no
later than time εgeo prior to the previous j`−1 departing, as the previous j`−1 remains
active and can respond to the join protocol.

Finally, since each j` remains at least tjoin after the previous j`−1 departs, there is
some j` that is active and non-failed during the interval [t′, t′ + εv], as claimed. Fix i
to be this mobile node.

We conclude that mobile node i receives the geocast of message m by time t′+εgeo,
and immediately performs a fpcastv of message m. This arrives within time dfp , and
immediately results in a simulate-op of that operation. By the construction of γ (and
Lemma 5.2.6), we conclude that the virtual-geocast-rcv event occurs at exactly that
instant, i.e., within time εv of t′. Moreover, we know that t′ occurs at most time dgeo

after time t, leading to the desired conclusion. This completes the case where k is a
client.

Next, consider the case where k is a virtual node. We first identify the geocast(m, d)
associated with this virtual-geocast, and the rest follows as in the previous case. By
the construction of execution γ, we can identify a simulate-op event that is associ-
ated with the virtual-geocast(m, d)k of interest, and this event adds a message to a
geocast-queue. Immediately thereafter, this message is geocast with the underlying
physical geocast service. The remainder of this case is identical to the case where k is
a client: if ` is a client, the result follows from the underlying geocast service guaran-
tees; if ` is a virtual node, it follows from the fact that some mobile node replicating
the virtual node receives the message and processes it.
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We conclude this chapter with one further claim regarding the conditional liveness
of a virtual node:

Theorem 5.3.2. If the precondition for some action for some virtual node v is enabled
at some time t in γ, and if the virtual node is correct during the interval [t, t + dfp,
then within time t + tfp either the event in question occurs or the action is no longer
enabled.

Proof. This claim follows from the fact that if an event is enabled, than some replica
performs a initiate-op event, which results immediately in an fpcast of a message
suggesting that event. If the action is still enabled when the message arrives, and if
the virtual node has not failed, then every replica that receives the message simulates
that event. Thus the total latency is a single fpcast, i.e., tfp.
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Chapter 6

The GeoQuorums Protocol
Atomic Storage in the Virtual Object Layer

In this chapter we present the GeoQuorums Operation Manager, an algorithm for
implementing reliable, reconfigurable, atomic read/write storage in a mobile ad hoc
network. That is, we implement a read/write shared memory that is reliable, in the
sense of not failing under certain conditions, and reconfigurable, in the sense that it
can be tuned for improved performance and availability.

The GeoQuorums Operation Manager presented in this chapter serves as an ex-
ample of the geoquorums approach: the problem of implementing atomic memory
is divided into two parts: (1) choosing a type of virtual infrastructure, and (2) de-
veloping a protocol targeted at that specific virtual infrastructure. In this case, the
GeoQuorums Operation Manager is designed to execute in the Virtual Object Layer,
as described in Chapter 3.

The goal of the GeoQuorums Operation Manager is to emulate a reliable, recon-
figurable, atomic read/write object with in a mobile ad hoc network. Our implemen-
tation is described for a single read-write object; the composition of all the read/write
objects results in a distributed shared read/write memory.

The GeoQuorums Operation Manager is designed for the Virtual Object Layer,
which significantly simplifies the algorithm. There is no notion of mobility in the
Virtual Object Layer, and as a result, the GeoQuorums Operation Manager avoids
much of the complexity usually associated with an ad hoc mobile network. There is
no need to handle nodes joining and leaving in any special way, as the only interpro-
cess communication is through the virtual objects. If at most f of the underlying
virtual objects fail, then the Operation Manager ensures that the resulting read/write
memory is robust.

The GeoQuorums Operation Manager is a quorum-based algorithm. By replicat-
ing data at multiple virtual objects, and performing read and write operations on
quorums of virtual objects, the GeoQuorums Operation Manager ensures that the
data is maintained reliably and consistently.

The GeoQuorums Operation Manager relies on the variable type of the virtual
objects, which we call the put/get variable type. These objects support specially
defined operations, put, get, and two others, that allow clients to send information to
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Figure 6-1: Implementing atomic read/write memory in the Virtual Object Layer.
This figure depicts how the GeoQuorums Operation Manager is implemented in the
Virtual Object Layer, as depicted in Figure 3-1. The dotted oval depicts the boundary
between the Virtual Object Layer and the external clients that submit read and write
requests. The solid oval depicts the boundary of the read/write atomic memory. The
client automata of Figure 3-1 are here the OM Clients (Operation Manager Clients),
and the virtual objects are put/get objects.
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the objects and retrieve information from the objects, thus exchanging information.
Each read and write operation uses a different port on the virtual objects, so that

earlier operations do not interfere with later ones. (In fact, an operation may use two
different ports for two different phases during the same operation.) This allows for
improved performance, since even if a given object is very slow during one operation
(perhaps never responding, due to a lost or severely delayed message), it may be used
in a later operation.

Figure 6-1 depicts the various components of the GeoQuorums Operation Man-
ager. The dashed black oval represents the boundary interface of the GeoQuorums
Operation Manager. Notice that this interface includes three operations: read, write
and recon. Our goal is to show that the GeoQuorums algorithm implements an atomic
read/write object; the recon interface should be hidden from the external environment
that will use this as a read/write object.

We assume that there exists a set of reconfiguration automata, one for each mobile
node, which we call ReconClient i, for all i in I. These reconfiguration automata
generate recon requests, and they receive recon-ack responses. They are not a part of
the algorithm presented in this chapter, but rather a component specified by a client
of the GeoQuorums algorithm. We place only one restriction on the ReconClient
automata: the reconfiguration clients are required to respect the environmental well-
formedness requirement that a recon request is issued at node i only if there is no
ongoing read, write, or reconfiguration at node i. Notice that there still may be
concurrent operations at other nodes. (It would be a relatively simple modification to
completely decouple the ReconClient automata from the read/write environment, by
allowing concurrent reconfigurations and read/write operations, as is done in [38,73].
We impose this restriction primarily for simplicity of presentation.)

When the GeoQuorums Operation Manager is composed with both the ReconClient
automata and the virtual objects, the recon and recon-ack actions are hidden, as are
the invoke and the respond actions on the put/get objects. This results in an exter-
nal interface consisting only of read/read-ack actions and write/write-ack actions, as
depicted by the solid black oval in Figure 6-1. This matches the external signature
of a read/write object, as specified in Figure A-1.

We begin in Section 6.1 with some preliminaries, defining “configurations,” “quo-
rums,” etc. We proceed in Section 6.2 to present the detailed implementation of
the GeoQuorums Operation Manager. We prove the protocol correct in Section 6.3,
and present some (conditional) performance results in Section 6.4. We discuss some
further extensions in Section 6.5.

An extended abstract of this chapter appeared in the 17th International Sym-
posium on Distributed Computing (DISC 2003) [32], and a full version appeared in
Distributed Computing [33].

6.1 Preliminaries

In this section we present some preliminary definitions. (See Figure 2-1 for a summary
of notation used in Part I of this thesis.)
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A configuration, c, consists of three components: members(c), get-quorums(c),
and put-quorums(c). The set members(c) ⊆ O is a set of virtual identifiers, and
determines which virtual objects are part of the configuration. (Recall that each
virtual has an identifier in O.)

The sets put-quorums(c) and get-quorums(c) are collections of quorums; each
quorum is a set of virtual identifiers. Each virtual object in a quorum is a member
of the configuration. That is, each quorum is a subset of members(c).

Every get-quorum intersects every put-quorum. That is, if G ∈ get-quorums(c)
and P ∈ put-quorums(c), then

G ∩ P 6= ∅ .

Moreover, if any f virtual objects fail, then at least one get-quorum and one put-
quorum survive intact. That is, for any set F of f virtual object identifiers, there
exists a quorum G ∈ get-quorums(c) and P ∈ put-quorums(c) such that:

• F ∩ G = ∅

• F ∩ P = ∅.

Thus, an algorithm based on these quorums can tolerate f focal points failing. We
assume for the purpose of this chapter that the Virtual Object Layer ensures that no
more than f virtual objects fail in any execution.

We assume a fixed set of configurations that is finite, ordered, and known in
advance to all mobile nodes. Each configuration is assigned a name in M (the set of
configuration names).

Each configuration proposal is identified by a tuple of three components: a time
when the configuration is proposed (according to a local clock), the node (∈ I) that
proposed the configuration, and the name of the configuration (∈ M) that is being
proposed. We refer to such a tuple (i.e., an element of C) as a configuration identifier.

As long as no mobile node proposes more than one configuration at a given instant,
then every configuration identifier (i.e., every proposal) created during an execution
is unique. The configuration identifiers are ordered lexicographically, based first on
comparing the time components, then comparing the process identifiers, and then
comparing the configuration names.

Practical Aspects.

We propose one set of configurations that may be particularly useful in practical
implementations. In this case, we use two configuration c0 and c1. We take advantage
of the fact that accessing nearby focal points is usually faster than accessing distant
focal points. The focal points can be grouped into clusters, using some geographic
technique [26]. Figure 6-2 illustrates the relationship among mobile nodes, focal
points, and clusters. For configuration c0, the get-quorums are defined to be the
clusters. The put-quorums consist of every set containing one focal point from each
cluster. Configuration c1 is defined in the opposite manner. Assume, for example, that
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focal point

mobile node

cluster

Figure 6-2: Clusters of focal points, each of which represents a virtual object. Each
cluster comprises a get-quorum, while each set containing one focal point from each
cluster comprises a put-quorum.
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read operations are more common than write operations (and most read operations
only require one phase). If the clusters are relatively small and are well distributed (so
that every mobile node is near to every focal point in some cluster), then configuration
c0 is quite efficient. On the other hand, if write operations are more common than
read operations, configuration c1 is quite efficient. Our algorithm allows the system
to switch safely between two such configurations.1

Another difficulty in implementation might be agreeing on the focal points and
ensuring that every mobile node has an accurate list of all the focal points and con-
figurations. Some strategies have been proposed to choose focal points: for example,
the mobile nodes might send a token on a random walk, to collect information on
geographic density [28]. The simplest way to ensure that a mobile node has access to
a list of focal points and configurations is to depend on a centralized server, through
transmissions from a satellite or a cell-phone tower. Alternatively, the GeoCast ser-
vice itself might facilitate finding other mobile nodes, at which point the definitive
list can be discovered.

6.2 GeoQuorums Operation Manager

In this section we present the GeoQuorums Operation Manager (OM), an algorithm
built on the Virtual Object Layer. As the Virtual Object Layer contains two entities,
virtual objects and mobile nodes, we present two specifications, one for the objects
(each depicted as a “virtual object” in Figure 3-1) and one for the clients running on
the mobile nodes (each depicted as a “client” in Figure 3-1):

• put/get variable type (Figure 6-3): the variable type of the virtual objects in
the Virtual Object Layer.

• Operation Manager Client (Figure 6-4, 6-5, 6-6, and 6-7): an automaton that re-
ceives read, write, and recon requests from clients and manages quorum accesses
to implement these operations.

Figure 6-1 depicts the various GeoQuorums Operation Manager components. The
GeoQuorums Operation Manager (OM) is the collection of all the Operation Manager
Clients (OM i, for all i in I). It is composed with the virtual objects, each of which
is an atomic object with the put/get variable type.

6.2.1 The put/get Variable Type

The put/get variable type supports four operations: put, get, confirm, and recon-done.
The variable type is specified in Figure 6-3. The put and get operations are used to set
and retrieve the value. We first describe the various state components of the variable
type, and then explain the different operations and how they modify the state.

1Since the original publication of the GeoQuorums protocol in [32], there has been further research
into cluster-based quorum systems for geographic networks [18].
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Figure 6-3: Definition of the put/get variable type τ .

1 State:
2 tag ∈ T, initially 〈0, i0〉
3 value ∈ V, initially v0

4 config-id ∈ C, initially 〈0, i0, c0〉
5 confirmed-set ⊆ T, initially ∅
6 recon-ip, a Boolean, initially false
7

8 Operations:
9

10 put(new-tag, new-value, new-config-id)
11 if (new-tag > tag) then
12 value ← new-value
13 tag ← new-tag
14 if (new-config-id > config-id) then
15 config-id ← new-config-id
16 recon-ip ← true
17 return put-ack(config-id, recon-ip)
18

19 get(new-config-id)
20 if (new-config-id > config-id) then
21 config-id ← new-config-id
22 recon-ip ← true
23 confirmed ← (tag ∈ confirmed-set)
24 return get-ack(tag, value, confirmed, config-id, recon-ip)
25

26 confirm(new-tag)
27 confirmed-set ← confirmed-set ∪ {new-tag}
28 return confirm-ack()
29

30 recon-done(new-config-id)
31 if (new-config-id = config-id) then
32 recon-ip ← false
33 return recon-done-ack()

Variable Type State Components. The put/get variable type is used to maintain
a value, which is therefore the primary component of its state. The variable type
also contains a tag component in its state. Each tag consists of a nonnegative real
number (the time at which the tag was determined) and a unique process identifier
(i.e., T = R≥0× I, see Figure 2-1). A tag is associated with every value, and the tags
determine an ordering on the values that are stored by the put invocations (the only
invocations that modify the value component of the state). Ordering these values
allows us to order the high-level write operations that create these values, which is
necessary for guaranteeing atomic consistency. The put and get invocations take a
configuration identifier, new-config-id , as a parameter (Figure 6-3, lines 10 and 19).
The put/get variable type includes a config-id in its state, corresponding to the largest
configuration identifier that any put or get invocation has used. The confirmed-set
is a set of tags, indicating whether a tag has been confirmed. We explain later in
Section 6.2.2 when a tag is confirmed. The recon-ip flag indicates whether the virtual
object believes that a reconfiguration is in progress; this is set to true when the object
learns about a new configuration, and is set to false when a recon-done indicates that
the configuration is fully installed.

Variable Type Transitions. The put/get variable type supports four types of in-
vocations and responses. A put invocation includes three parameters: the new-value,
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Figure 6-4: Operation Manager Automaton: Signature and State
for node i where τ is the put/get variable type.

1 Input:
2 write(val)i, val ∈ V
3 read()i

4 recon(cid)i, cid ∈ C
5 respond(resp)obj ,p, resp ∈ responses(τ), obj ∈ O, p = 〈∗, ∗, i〉 ∈ S

6 geo-update(t, l)i, t ∈ R≥0, l ∈ L
7

8 Output:
9 write-ack()i

10 read-ack(val)i, val ∈ V
11 recon-ack(cid)i, cid ∈ C
12 invoke(inv)obj ,p, inv ∈ invocations(τ), obj ∈ O, p = 〈∗, ∗, i〉 ∈ S
13

14 Internal:
15 read-2()i

16 recon-2(cid)i, cid ∈ C
17

18 State:
19 confirmed ⊆ T, a set of tag ids, initially ∅
20 conf-id ∈ C, a configuration id, initially 〈0, i0, c0〉
21 recon-ip, a Boolean flag, initially false

22 clock ∈ R≥0, a time, initially 0
23 ongoing-invocations ⊆ O × S, a set of objects and ports, initially ∅
24 current-port-number ∈ N>0, used to invoke objects, initially 1
25 op, a record with the following components:
26 type ∈ {read,write,recon}, initially read
27 phase ∈ {idle,get,put}, initially idle
28 tag ∈ T, initially 〈0, i0〉
29 value ∈ V, initially v0

30 recon-ip, a Boolean flag, initially false
31 recon-conf-id ∈ C, a configuration id, initially 〈0, i0, c0〉
32 acc ⊆ O, a set of data objects, initially ∅

a value to be stored in the state, the new-tag , a tag, and new-config-id , a configu-
ration identifier. The put invocation modifies the value component of the state only
if the invocation’s tag, new-tag , is larger than the tag stored in the state (i.e., the
tag of the last successful put invocation, Figure 6-3, line 11). The put invocation also
modifies config-id if the invocation’s configuration identifier, new-config-id , is larger
than the identifier config-id stored in the state (line 14). Whenever the put invocation
causes config-id to be modified, we assume that a reconfiguration is in progress and
set recon-ip to true (line 16).

A put invocation results in a put-ack response. The response includes the con-
figuration identifier stored in the state, config-id , and an indication of whether a
reconfiguration is in progress, recon-ip.

A get invocation takes a single parameter: new-config-id , a configuration iden-
tifier. The get modifies the state only if the invocation’s configuration identifier,
new-config-id , is larger than the config-id stored in the state. In this case, the objects’
configuration identifier, config-id , is set to the invocation’s configuration identifier,
new-config-id . As in the case of a put invocation, if the config-id is modified, recon-ip
is set to true.

A get invocation results in a get-ack response. This response includes the tag
and value stored in the state, as well as the config-id and an indication of whether
a reconfiguration is in progress, that is, recon-ip. It also includes a boolean flag
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Figure 6-5: Operation Manager invoke Transitions for node i

1 Output invoke(〈get, config-id〉)obj ,p
2 Precondition:
3 p = 〈current-port-number, get, i〉
4 〈obj, p〉 /∈ ongoing-invocations
5 obj /∈ op.acc
6 op.phase = get
7 config-id = conf-id
8 Effect:
9 ongoing-invocations ← ongoing-invocations ∪ {〈obj, p〉}

10

11 Output invoke(〈put, tag, val, config-id〉)obj ,p
12 Precondition:
13 p = 〈current-port-number, put, i〉
14 〈obj, p〉 /∈ ongoing-invocations
15 obj /∈ op.acc
16 op.phase = put
17 tag = op.tag
18 val = op.value
19 config-id = conf-id
20 Effect:
21 ongoing-invocations ← ongoing-invocations ∪ {〈obj, p〉}
22

23 Output invoke(〈confirm, tag〉)obj ,p
24 Precondition:
25 p = 〈k, confirm, i〉
26 〈obj, p〉 /∈ ongoing-invocations
27 tag ∈ confirmed
28 Effect:
29 ongoing-invocations ← ongoing-invocations ∪ {〈obj, p〉}
30

31 Output invoke(〈recon-done, config-id〉)obj ,p
32 Precondition:
33 p = 〈k, recon-done, i〉
34 〈obj, p〉 /∈ ongoing-invocations
35 recon-ip = false
36 config-id = conf-id
37 Effect:
38 ongoing-invocations ← ongoing-invocations ∪ {〈obj, p〉}

indicating whether the tag is confirmed. That is, it returns true if the tag is in
the confirmed-set stored in the state. Effectively, this indicates whether a confirm
invocation has previously indicated that the tag is confirmed.

A confirm invocation takes one parameter: a new-tag . The confirmed-set com-
ponent of the state is modified, adding the tag new-tag to this set. The confirm
invocation results in a confirm-ack response.

A recon-done invocation includes a single parameter: a new-config-id , a configu-
ration identifier. The recon-ip component of the state is modified if the configura-
tion identifier, new-config-id , matches the config-id stored in the state. In this case,
recon-ip is set to false. This indicates that the configuration associated with that
configuration identifier is installed, that is, that the reconfiguration that proposed
the configuration identifier is complete. This invocation results in a recon-done-ack
response. (Note that if new-config-id is not equal to config-id , stored in the state,
the invocation is ignored. While it may improve performance to allow the recon-done
action to modify config-id , we do not do this in the interests of simplicity.)
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Figure 6-6: Operation Manager respond Transitions for node i

40 Input respond(〈get-ack, tag, val, confirmed, new-cid, new-rip〉)obj ,p
41 Effect:
42 if (〈current-port-number, get, i〉 = p) then
43 op.acc ← op.acc ∪ {obj}
44 if (tag > op.tag) then
45 op.tag ← tag
46 op.value ← val
47 if (new-cid > conf-id) then
48 conf-id ← new-cid
49 op.recon-ip ← true
50 recon-ip ← new-rip
51 else if (new-cid = conf-id) then
52 recon-ip ← recon-ip ∧new-rip
53 if (confirm = true) then
54 confirmed ← confirmed ∪ {tag}
55 ongoing-invocations ← ongoing-invocations − {〈obj, p〉}
56

57 Input respond(〈put-ack, new-cid, new-rip〉)obj ,p
58 Effect:
59 if (〈current-port-number, put, i〉 = p) then
60 op.acc ← op.acc ∪ {obj}
61 if (new-cid > conf-id) then
62 conf-id ← new-cid
63 op.recon-ip ← true
64 recon-ip ← new-rip
65 else if (new-cid = conf-id) then
66 recon-ip ← recon-ip ∧new-rip
67 ongoing-invocations ← ongoing-invocations − {〈obj, p〉}
68

69 Input respond(〈confirm-ack〉)obj ,p
70 Effect:
71 ongoing-invocations ← ongoing-invocations − {〈obj, p〉}
72

73 Input respond(〈recon-done-ack〉)obj ,p
74 Effect:
75 ongoing-invocations ← ongoing-invocations − {〈obj, p〉}

6.2.2 Operation Manager Client Specification

The Operation Manager Client uses the atomic objects (with the put/get variable
type) provided by the Virtual Object Layer as replicas, invoking put operations to
update the virtual objects and get operations to retrieve the value (and associated
information) from the virtual objects. Replication allows the Operation Manager
Clients to guarantee fault-tolerance, tolerating the failure of up to f virtual objects.
Figure 6-1 depicts the implementation of a read/write atomic object in the Virtual
Object Layer.

Signature. We first describe the signature of the Operation Manager Client, con-
tained in Figure 6-4. The external signature consists of read actions, write actions,
and recon actions, to initiate the appropriate operations, and read-ack, write-ack, and
recon-ack actions to indicate that the operation have completed.

The external signature also includes invoke and respond actions, to communicate
with the virtual objects. Each of these actions is performed on some port, p, for some
object, obj .

There are also two internal actions: read-2 and recon-2. The first of these be-
gins the second phase of a read operation. The latter begins the second phase of a
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reconfiguration operation. (We describe these operations later in this section.)

The Operation Manager Clients are composed with two sets of automata: the
virtual objects and the ReconClient automata. The invoke/respond actions allow the
Operation Manager to communicate with the virtual objects. The recon and recon-ack
allow the Operation Manager to communicate with the ReconClient automata.

State. The state of an Operation Manager Client consists of two parts: some general
state that is maintained throughout the execution, and the op record, which maintains
state specific to an ongoing operation.

The confirmed-set is a set of tags associated with operations that have completed.
That is, if a tag is in confirmed-set , then some read or write operation associated with
that tag has completed.

The conf-id is the largest configuration identifier that the Operation Manager
Client has received. The Operation Manager Client receives configuration identifiers
from respond actions for get-ack and put-ack responses.

The recon-ip flag indicates whether the Operation Manager Client believes that
a reconfiguration is in progress. The Operation Manager Client sets this flag to true
whenever it receives a new, larger configuration identifier (from a respond action),
and sets it to false when it receives an indication that the reconfiguration is complete
(also from a respond action).

The clock is the current real time, as specified by the Geosensor component of the
RealWorld.

The ongoing-operations is a set of objects and ports, indicating that an operation
has been invoked on the specified port of that object, and that a response has not yet
occurred. This is used to ensure the well-formedness condition that atomic objects
require: there is only one operation ongoing at any given time on a given port of a
given object.

Each invocation of a virtual objects uses a port, which consists of a sequence
number, an operation identifier, and a node identifier. The current-port-number stores
the sequence number component of the port. An invocation by node i, then, uses the
port 〈current-port-number , op, i〉, where op is either put, get, confirm, or recon-done.

Every time a new phase of an operation is begun, the current-port-number is
incremented. Since only one operation can take place on a port at a time, incrementing
the port number allows the new phase to perform invocations, even if old invocations
on the prior port have not completed.

The op record maintains information specific to a given operation. The op.type
field indicates the type of the ongoing operation. The op.phase field indicates the
phase of the operation. (Operations may go through two phases: a get phase and a
put phase; a write operation performs only a put phase.) The op.tag field indicates
the largest tag discovered during the get phase of an operation. The op.value field
indicates the value associated with that tag.

The op.recon-ip field indicates whether a reconfiguration is in progress. Notice
that, unlike the general recon-ip flag, the op.recon-ip flag is never reset to false until
the phase completes. Once a reconfiguration occurs concurrently with some phase of
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an operation (and some Operation Manager Client receives information about this
reconfiguration), the op.recon-ip flag is set to true for the rest of the phase.

The op.recon-conf-id field is used to keep track of the configuration being installed
by an ongoing reconfiguration. While the reconfiguration occurs, a new reconfigura-
tion may be initiated at some other mobile node. This may cause the node’s con-
figuration identifier, conf-id , to be modified. The op.recon-conf-id , however, is not
modified until the ongoing reconfiguration is complete.

The op.acc set is an accumulator that maintains the set of object identifiers of
objects that have performed a respond during the phase of an operation. A phase
completes when op.acc contains a large enough set of object identifiers; in particular,
it completes when object identifiers that are associated with appropriate quorums are
contained within the op.acc set.

Read/Write Operations. The code for read/write operations is presented in Fig-
ures 6-5, 6-6, 6-7, and 6-8. We first explain how a write operation proceeds, and then
go on to explain read operations.

Each read and write operation consists of either one or two phases. A write op-
eration requires only a single phase, a “put phase” that propagates the new value to
at least one quorum of virtual objects. Some read operations require only a single
phase, a “get phase”, that retrieves the value from at least one quorum of virtual
objects. Other read operations require two phases: a “get phase”, that retrieves the
value, followed by a “put phase”, that propagates the retrieved value.

Assume that the read or write operation is initiated at node i. During each phase
of the operation, node i invokes put and get operations on the virtual objects. Each
invocation and subsequent response uses a port.

Each phase of each operation uses a unique port. When a phase begins, node i
chooses a new port to use during that phase by incrementing the current-port-number
(for example, Figure 6-8, line 51).

The choice of port serves two purposes. First, it ensures that the Operation Man-
ager Client respects the well-formedness requirement of the virtual objects. Well-
formedness requires that only one operation may occur at a time on each port of each
object. By choosing a new port for each phase, we ensure that node i can perform in-
vocations during that phase, regardless of earlier ongoing operations without violated
well-formedness.

Second, the use of a unique port, p, for each phase allows node i to be sure that any
response received on port p is the result of an invocation during the phase associated
with port p. Any response on any other port (i.e., a port that is not identified by
current-port-number) is ignored (see Figure 6-5, line 42, for example), since it results
from an earlier (completed) phase.

A write operation begins at node i when OM i receives a write(val)i request. Node
i then examines its clock to choose a new tag for the operation (Figure 6-8, line 52).
For example, if the write is initiated at time t, then the tag is chosen to be 〈t, i〉. At
this point, the current-port-number is incremented, choosing port p for this phase of
the operation.
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The OM i automaton then begins a put phase, which performs put invocations
on the virtual objects (Figure 6-5, lines 11–21). We allow invocations to happen,
nondeterminstically, on all the virtual objects. In most cases, of course, there is no
need to contact all the virtual objects; it is simpler, however, to allow nondetermin-
istic invocations and assume that an optimized implementation may impose further
restrictions.

The phase completes when the OM i automaton receives “sufficient” responses
from the objects on port p (Figure 6-5, lines 57–67). Assume that when the operation
begins, the automaton is in the configuration identified by cid = 〈∗, ∗, c〉 (i.e., cid =
conf-id i). If all responses indicate that c is the most recent configuration identifier and
no reconfiguration is in progress, then the operation terminates when OM i receives
at least one response from each object in some put-quorum, P ∈ put-quorums(c)
(Figure 6-8, line 60).

On the other hand, if any response indicates that a reconfiguration is in progress,
then OM i waits until it receives responses from objects in quorums of every configu-
ration. Specifically, the phase completes when for every configuration c′ in M , there
is some quorum, P ∈ put-quorums(c′) such that every object in P has responded to
node i during the phase (Figure 6-8, line 58).

After the operation the OM i may notify objects that the tag has been confirmed,
indicating that the previous operation is complete (Figure 6-5, lines 23–29). The
confirm invocation uses the port 〈current-port-number , confirm, i〉, thus ensuring that
it does not conflict with put and get invocations.

A read request can complete in one of two ways: if the value being read has been
confirmed, the operation completes in one phase; otherwise, the operation completes
in two phases. When the OM i automaton receives a read request, it first begins
a get phase (Figure 6-7, line 4) and performs get invocations on the atomic objects
(Figure 6-5, lines 1–9). Again, assume that when the operation begins, the automaton
is in the configuration identified by cid = 〈∗, ∗, c〉 (i.e., cid = conf-id i).

If all responses indicate that c is the most recent configuration identifier, then the
get phase terminates when OM i receives a response from each object in some quorum
G ∈ get-quorums(c). Otherwise, the phase completes when for every configuration c′

in M , OM i receives a response from each object in some quorum G ∈ get-quorums(c′).
At this point, OM i chooses the value associated with the largest tag from any of

the responses and determines if the operation is complete, or whether a second phase
is necessary. If the chosen tag has been confirmed, then the operation completes
(Figure 6-7, lines 6–16).

Otherwise, OM i begins a second phase, a put phase. The put phase is similar to
the protocol for the write operation (Figure 6-7, lines 18–31): the current-port-number
is incremented, choosing port p for this phase of the operation; the OM i automa-
ton then begins a put phase, which performs put invocations on the virtual objects
(Figure 6-5, lines 11–21); the phase completes when the OM i automaton receives
“sufficient” responses from the objects on port p (Figure 6-5, lines 57–67).

The knowledge of the confirmed tags is used to short-circuit the second phase of
certain read operations. The second phase is required only when a prior operation
with the same tag has not yet completed. By notifying objects when the tag has been
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confirmed, the algorithm allows later operations to discover that a second phase is
unnecessary.

Reconfiguration. The code for the reconfiguration algorithm is presented in Fig-
ure 6-5 (where Figure 6-5, lines 31–38 are used by the reconfiguration mechanism,
while the rest is used also by the read/write mechanism) and Figure 6-8, lines 66–93.

The reconfiguration algorithm differs from the reconfiguration processing pre-
sented in the Rambo algorithm [38, 73]. The new algorithm eliminates the Recon
service and the associated consensus service, while limiting the number of configu-
rations the system can support. In Rambo, an arbitrary new configuration can be
proposed, while upgrading to the new configuration requires knowledge about all ac-
tive preceding configurations. The Recon service in Rambo uses consensus to agree
on the order of configurations, while the configuration-upgrade operation in Rambo
uses the knowledge of the order and local information about active configurations.

The new reconfiguration algorithm works with a known finite set of possible con-
figurations. The algorithm does not use consensus because all possible preceding
configurations are known. The configuration identifiers determine a total ordering
on the installed configurations, however it is not necessary that a mobile node be
aware of all prior configuration identifiers in the total order. It is sufficient for the
reconfiguration algorithm to simply contact all configurations in order to ensure that
all configurations preceding it in the total order are contacted. Because this simplifi-
cation obviates the need for a consensus service, it significantly improves efficiency.

A reconfiguration operation is a two-phase operation similar to a two-phase read
operation; it includes a get phase and a put phase. In each phase it requires contacting
appropriate quorums of objects from certain configurations.

A reconfiguration begins when the Operation Manager Client receives a recon(c)
input, where c names one of the configurations in M . For the sake of this discussion,
assume that the recon is initiated at mobile node i.

First, the Operation Manager Client chooses a new, unique configuration iden-
tifier, by examining the local clock, and using its node identifier (i.e., node i) and
the name of the new configuration (i.e., configuration c). Specifically, if the recon(c)i

occurs at time t, then the configuration identifier is cid = 〈t, i, c〉 (Figure 6-8, line 68).
At the same time, node i sets its conf-id i to the new configuration identifier (〈t, i, c〉)
and sets recon-ipi to true, to indicate that a reconfiguration is in progress (Figure 6-8,
line 69).

The OM i then chooses a new port for the operation, incrementing the counter
tracking the current port number, i.e., current-port-number i (Figure 6-8, line 70).
This event starts a get phase. During the get phase, several invoke(get, . . .)obj ,p events
occur (Figure 6-5, lines 1–9) for objects obj in quorums of all configurations in M .

When a respond(get-ack, . . .)obj ,p event occurs (on the same port p), obj is added
to op.acc. The phase completes when i has received a response from every object in
at least one put-quorum and one get-quorum of each configuration in M .

At this point, a recon-2(cid)i event occurs (Figure 6-8, lines 73–82) and the Op-
eration Manager Client chooses a new port, p′ (Figure 6-8, line 80). This event
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begins the put phase. During the put phase, several invoke(put, . . .)obj ,p′ events occur
(Figure 6-5, lines 11–21) for objects obj in quorums of the new configuration, c.

When a respond(put-ack, . . .)obj ,p′ event occur (on the same port p′), obj is added
to op.acc. The phase completes when node i has received responses from every object
in at least one put-quorum of the new configuration, c (Figure 6-8, line 88).

At this point, a recon-ack(cid)i event occurs (Figure 6-8, lines 84–93), ending the
reconfiguration.

If conf-id i is equal to op.recon-conf-id , then recon-ipi is set to false (Figure 6-8,
line 92). Otherwise, a new configuration with a larger configuration identifier has
been discovered by node i, and a reconfiguration for this new configuration identifier
may be in progress elsewhere. Therefore, in this case, recon-ipi is left unchanged.

When a reconfiguration is not in progress, node i may notify virtual objects that
the reconfiguration for a certain configuration identifier is done, with recon-done in-
vocations (Figure 6-5, lines 31–38).

Finally, notice that the reconfiguration algorithm proceeds in the same way, re-
gardless of whether the newly proposed configuration (i.e., the configuration with
name c) is the same as the old configuration: whenever the new configuration id-
entifier is different from the old one, a reconfiguration occurs.

6.3 Analysis of the Operation Manager

In this section, we show that the Operation Manager guarantees atomic consistency.
We show that the Operation Manager correctly implements an atomic read/write
object by showing that a partial ordering of operations exists with the properties
required by Theorem A.3.3. We first define some notation, in Section 6.3.1. We then
define a partial order, in Section 6.3.2. Next, we prove some preliminary lemmas, in
Section 6.3.3. We then outline the main part of the proof in Section 6.3.4, and then
move on to the main body of the proof in Section 6.3.5.

6.3.1 Notation

We first define some notation that we use during the proof. Throughout this section,
we fix α to be an execution of the entire system: the Operation Manager, the virtual
objects, the reconfiguration clients, and the well-formed environment, U . Addition-
ally, we assume that every read and write operation in α completes. Let Π be the set
of read and write operations in α.

There are two ways in which a read operation may conclude: after two phases (see
Figure 6-7, lines 33–43), or after a single phase (see Figure 6-7, lines 6–14). In the
first case, at the end of the read operation when the read-ack occurs, op.phase = put,
indicating that a “put” phase has completed. In the second case, at the end of the
read operation, op.phase = get, indicating that only a single phase, a “get” phase,
has completed. In this case, the tag, op.tag , is in the set confirmed immediately
before the read completes, so the operation completes after only the get phase.
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Every read operation begins with a read action and ends with a read-ack action.
We say that a read operation π ∈ Π that takes place at node i is a two-phase read
operation if a read-2i event occurs between the readi event and read-acki event. Op-
eration π is a one-phase read operation if no read2i event occurs.

We now associate a configuration identifier with each phase of a read or write
operation, π, based on the value of the conf-id of the operation’s initiator at the end
of that phase. Specifically, if π is a one-phase read operation initiated by node i,
then the “get configuration” of π, get-conf-id(π), is the value of conf-id i when π’s
read-acki event occurs, ending the get phase. If π is a two-phase read operation, then
get-conf-id(π) is the value of conf-id i when operation π’s read-2i event occurs, ending
the get phase. (If π is a write operation, then π has no get phase, so get-conf-id(π)
is undefined.)

If for some operation π, get-conf-id(π) = 〈t, i, c〉, then we define get-conf (π) to
be c, the name of the configuration identified by the get-conf-id(π). We say the
get-conf (π) is the “get configuration” of π.

If π is a two-phase read operation (respectively, a write operation), then the “put
configuration identifier” of π, the put-conf-id(π), is the value of the configuration
identifier conf-id i when π’s read-acki (respectively, write-acki) event occurs. If π is
a reconfiguration operation, then the configuration identifier put-conf-id(π) is equal
to op.conf-id i when the recon-ack event occurs. (If π is a one-phase read operation,
then π has no put phase, so put-conf-id(π) is undefined.)

If for some operation π, put-conf-id(π) = 〈t, i, c〉, then we define put-conf (π) to
be c, the name of the configuration identified by the put-conf-id(π). We say the
put-conf (π) is the “put configuration” of π.

Next, we associate a “recon-in-progress” flag with each phase of a read or write
operation, based on the value of op.recon-ip at the end of that phase. Specifically, if
π is a one-phase read operation initiated by node i, then we define get-rip(π) to be
the value of op.recon-ipi when operation π’s read-acki event occurs, ending the get
phase. If π is a two-phase read operation, then get-rip(π) is the value of op.recon-ipi

when π’s read-2i event occurs, ending the get phase.
If π is either a two-phase read operation or a write operation, then we define

put-rip(π) to be equal to the value of the op.recon-ipi flag when π’s read-acki or
write-acki event occurs.

The get-rip and put-rip flags indicate whether node i detects a reconfiguration in
progress during the get or put phase of the operation. It is sufficient to consider the
value of the op.recon-ip flag at the end of the phase, since the flag is never set to false
during the phase: none of the invoke/respond actions set op.recon-ip to false, only the
write, read, read-2, recon, and recon-2 event might have this effect, if recon-ip is true.
If at any time during the phase recon-ip is set to true, which happens only during
a respond event, then op.recon-ip is set to true at the same time (for example, see
Figure 6-5, lines 49 and 50), and it is therefore true at the end of the phase.

During the proof, if s is a state during the execution and obj is a virtual object, we
use the terminology s .obj to refer to the state of the object. If x is a component of the
state of the object, we use the terminology s .obj .field to refer to the field component
of the object. For example, s .obj .tag refers to the tag of the object obj in state s.
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6.3.2 Partial Order

We now construct an appropriate partial ordering, and then show that it meets the
necessary requirements of Theorem A.3.3. For a read or write operation, π ∈ Π, initi-
ated at mobile node i, we define tag(π) as follows: tag(π) = op.tag i immediately after
the acknowledgment of π occurs, that is, when the read-acki or write-acki event occurs.
(In fact, the tag is often fixed earlier in the operation, as we show in Lemma 6.3.1.)
For a reconfiguration operation, ρ, we define tag(ρ) = op.tag i immediately after the
recon-2 event occurs. We then define the partial order ≺:

• For any two operations π1 and π2:

if tag(π1) < tag(π2) then π1 ≺ π2 .

• For any write operation π1, and any read operation π2:

if tag(π1) = tag(π2) then π1 ≺ π2 .

We show in Theorem 6.3.16 that this partial order, ≺, satisfies the three conditions
of Theorem A.3.3. The key condition to prove about the partial ordering is that it is
consistent with the ordering of operations in α. That is, we need to show Property 2
of Theorem A.3.3, that if π1 and π2 are two operations, and π1 completes before π2

begins, then π2 does not precede π1 in the partial order.

6.3.3 Preliminary Lemmas

Before beginning the main part of the proof, we prove a few preliminary lemmas.
First we examine when during an operation the tag of the operation is fixed. Then
we prove some general lemmas about the propagation of tags and values during a put
phase and the retrieval of tags and values during a get phase.

Recall that for operation π at node i, tag(π) is defined as the value of op.tag i

when the operation completes. In fact, if the operation has a put phase, the tag is
fixed prior to the put phase of the operation.

Lemma 6.3.1. If π is a write operation at node i, then tag(π) = op.tag i immediately
after the writei event. If π is a two-phase read operation, then tag(π) = op.tag i

immediately after the read-2i event.

Proof. Assume π is a write operation. In this case, OM i performs only put invoca-
tions. Notice that the response action, respond(put-ack, . . .)i, does not update op.tag i

Therefore op.tag i does not change after the writei event until the write-acki event that
concludes the operation and defines the tag(π).

Assume π is a read operation. Similarly, after the read-2i event, the OM i only
performs put invocations, so again the tag op.tag i does not change after the read-2i

event, until the read-acki that concludes the operation and defines the tag(π).

We next note that the tag component of the virtual object’s state is nondecreasing:
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Lemma 6.3.2. For every virtual object, obj , the tag of obj is nondecreasing. If s and
s′ are two states during execution α, and s precedes s′, then s .obj .tag ≤ s ′.obj .tag.

Proof. Immediate by examination of the code that modifies tag . The tag is modified
only in Figure 6-3, line 13, which is executed only if new-tag > tag .

Next we consider how tag information is propagated during read and write opera-
tions to virtual objects. We show that after the put phase of an operation completes,
there exists a specific quorum of objects each of which has a tag no smaller than that
of the operation.

Lemma 6.3.3. Let π be a two-phase read operation, a write operation, or a recon-
figuration that occurs at node i. Then there exists a put-quorum, P , in put-conf (π)
such that for every object, obj , in P , tag(π) ≤ obj .tag anytime after π completes.

Proof. This lemma follows from the termination condition of the put phase of an
operation. Assume that when the put phase of π begins (i.e., immediately after the
write, read-2, or recon-2 event), p = 〈current-port-number , put, i〉, the port number
that is used throughout the phase. Also, assume that cid = put-conf-id(π) = 〈∗, ∗, c〉.

We divide the proof of into two subcases: the case where put-rip(π) = false, and
where put-rip(π) = true.

First, consider the case where put-rip(π) = false. Recall that if π is a read or write
operation, then the configuration identifier cid (which is equal to put-conf-id(π)) is
equal to the configuration identified by conf-id i when the operation completes; if π
is a reconfiguration, then cid is equal to the configuration identifier op.conf-id i when
the operation completes. (Notice that our use of c is consistent with the notation
used in Figure 6-8, line 56, 35, and 87.)

Then the precondition for the put phase ending is that there exists a put-quorum
P ∈ put-quorums(c) such that P ⊆ op.acci (see Figure 6-8, line 60, 39, and 88.

An object obj is added to op.acc only when a respond(put-ack, . . .)obj ,p event occurs
(see Figure 6-5, lines 57–67). The Virtual Object Layer guarantees that each respond
event is caused by a unique preceding invoke event, that is: invoke(put, t , v , cid)obj ,p.
Since the invocation takes place on port p, this means that it must occur after the
beginning of the put phase. Therefore, the tag, t , is in fact equal to tag(π), the tag
at the beginning of the put phase, by Lemma 6.3.1 and the definition of tag(π). The
Virtual Object Layer guarantees that at some point between the invocation and the
response, the put transition was executed on the object’s state, thus ensuring that
the tag of the object is no smaller than t.

We conclude, then, by Lemma 6.3.2, that for each object, obj ∈ P , tag(π) ≤
obj .tag after operation π completes.

We now consider the case where put-rip(π) = true. Assume, then, that π is a
two-phase read operation or a write operation. In this case, the precondition for
the put phase ending is that for every configuration c′, there exists a put-quorum
P ∈ put-quorums(c′) such that P ⊆ op.acci (see Figure 6-7, line 37, Figure 6-8,
line 58). Fix c′ = c.

By the same argument as before, we can conclude that for every object, obj ∈ P ,
tag(π) ≤ obj .tag when operation π completes.
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When put-rip is true there is a stronger version of this lemma for read and write
operations: there exists at least one put-quorum for each configuration where every
object in the put-quorum has a tag no smaller than the tag of the operation.

Lemma 6.3.4. Let π be a two-phase read operation or a write operation, and assume
it occurs at node i. If put-rip(π) = true, then for every c ∈ M , there exists a
put-quorum, P ∈ put-quorums(c), such that for every object, obj , in quorum P ,
tag(π) ≤ obj .tag anytime after π completes.

Proof. This lemma follows from the termination condition of the put phase of an
operation. Assume that when the put phase of π begins (i.e., immediately after the
write, read-2, or recon-2 event), p = 〈current-port-number , put, i〉, the port that is
used throughout the phase. Fix any arbitrary c ∈M .

The precondition for the put phase ending is that there exists a put-quorum
P ∈ put-quorums(c) such that P ⊆ op.acci (see Figure 6-7, line 37, Figure 6-8,
line 58).

An object, obj is added to op.acc only when a respond(put-ack, . . .)obj ,p event oc-
curs (see Figure 6-5, lines 57–67). The Virtual Object Layer guarantees that each
respond event is caused by a unique preceding invoke event: invoke(put, t , v , c)obj ,p.
Since this invocation occurs on port p, this means that it must occur after the be-
ginning of the put phase. Therefore, the tag, t , is in fact equal to tag(π), the tag at
the beginning of the put phase, by Lemma 6.3.1 and the definition of tag(π). The
Virtual Object Layer guarantees that at some point between the invocation and the
response, the put transition was executed on the object’s state, thus ensuring that
the tag of the object is no smaller than t.

We conclude, then, by Lemma 6.3.2, that for each object, obj ∈ P , tag(π) ≤
obj .tag after operation π completes. Since for every c ∈ M there exists such a put-
quorum, P , the lemma holds.

We next show that a get phase effectively retrieves information on the tags from
a quorum of a certain configuration.

Lemma 6.3.5. Let π be a two-phase read operation that occurs at node i. Then there
exists a get-quorum, G, in get-conf (π) such that for every object, obj in G, obj .tag
when π begins is ≤ tag(π).

Proof. This lemma is similar to Lemma 6.3.3, and follows from the termination con-
dition of the get phase of an operation.

Assume that when the get phase begins (i.e., immediately after the read event),
p = 〈current-port-number , get, i〉, the port that is used throughout the phase. Also,
assume that configuration identifier cid = get-conf-id(π) = 〈∗, ∗, c〉.

We divide the proof into two subcases: the case where get-rip(π) = false, and
where get-rip(π) = true.

First, consider the case where get-rip(π) = false. Recall that cid , the get-conf-id(π),
is equal to the configuration identifier conf-id i when the get phase of the operation
completes. (Notice that our use of c is consistent with the notation used in Figure 6-7,
line 20.)
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Then the precondition for the get phase ending is that there exists a get-quorum
G ∈ put-quorums(c) such that G ⊆ op.acci (see Figure 6-7, line 24).

An object, obj is added to op.acc only when a respond(get-ack, t, v, . . .)obj ,p event
occurs (see Figure 6-5, lines 40–55). The Virtual Object Layer guarantees that each
respond event is caused by a unique preceding invoke event: invoke(get, . . .)obj ,p.

Since the invocation takes place on port p, this means that it must occur after
the beginning of the get phase. The Virtual Object Layer guarantees that the get
transition occurs sometime after the invocation and prior to the response. Therefore,
the tag t in the response is greater than or equal to obj .tag when the invocation occurs.
We therefore conclude, by observing Figure 6-5, lines 44–45, that obj .tag ≤ tag(π)
when the phase begins.

We now consider the case where get-rip(π) = true. In this case, the precondition
for the get phase ending is that for every configuration c′, and in particular for the case
where c′ = c, there exists a get-quorum G ∈ get-quorums(c′) such that G ⊆ op.acci

(see Figure 6-7, line 22).

By the same argument as before, we can conclude that for every object, obj ∈ G,
obj .tag ≤ tag(π) when the phase begins.

Again, in the case where get-rip(π) is true, we can show a stronger property: the
get phase retrieves tag information from at least one get-quorum of each configuration.

Lemma 6.3.6. Let π be a two-phase read operation that occurs at node i. If recon-ipi =
true at the end of the get phase, then for every configuration c ∈ M , there exists a
get-quorum, G ∈ get-quorums(c) such that for every object, obj in G, obj .tag when
π begins is ≤ tag(π).

Proof. This lemma is similar to Lemma 6.3.4, and follows from the termination con-
dition of the get phase of an operation.

Assume that when the get phase of operation π begins (i.e., immediately after the
read event occurs), the port p = 〈current-port-number , get, i〉, the port that is used
throughout the phase. Fix any arbitrary c ∈M .

The precondition for the get phase ending is that there exists a get-quorum G ∈
get-quorums(c) such that G ⊆ op.acci (see Figure 6-7, line 22).

An object, obj is added to op.acc only when a respond(get-ack, t, v, . . .)obj ,p event
occurs (see Figure 6-5, lines 40–55). The focal point object model guarantees that
each respond event is caused by a unique preceding invoke event: invoke(get, . . .)obj ,p.

Since the invocation takes place on port p, this means that it must occur after
the beginning of the get phase. The Virtual Object Layer guarantees that the get
transition occurs sometime after the invocation and prior to the response. Therefore,
the tag t in the response is greater than or equal to obj .tag when the invocation occurs.
We therefore conclude, by observing Figure 6-5, lines 44–45, that obj .tag ≤ tag(π)
when the phase begins. Since for every c ∈M there exists such a get-quorum, G, the
lemma holds.
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6.3.4 Outline of the Operation Manager Proof

Our goal is to show that if we have two operations, π1 and π2, and π1 completes
before π2 begins, then π2 ⊀ π1. We break this proof into a number of cases:

1. Operation π2 is a write operation (Lemma 6.3.7).

2. Operation π2 is a read operation and operation π1 is either a two-phase read
operation or a write operation.

(a) put-ip(π1) ∨ get-ip(π2) = true.
Either the put phase of π1 or the get phase of π2 detects a reconfiguration
in progress (Lemma 6.3.8).

(b) put-ip(π1) ∨ get-ip(π2) = false.
Neither the put phase of π1 nor the get phase of π2 detect a reconfiguration
in progress.

i. put-conf-id(π2) = get-conf-id(π2).
The put configuration identifer of π2 is equal to the get configuration
identifer of π2 (Lemma 6.3.9).

ii. put-conf-id(π1) > get-conf-id(π2).
The put configuration identifier of π1 is strictly larger than the get
configuration identifier of π2 (Lemma 6.3.11).

iii. put-conf-id(π1) < get-conf-id(π2).
The put configuration identifier of π1 is strictly smaller than the get
configuration identifier of π2 (Lemma 6.3.12).

3. Operation π2 is a read operation and operation π1 is a one-phase read operation
(Lemma 6.3.14).

6.3.5 Proving the Operation Manager Correct

We now proceed to examine the various cases, as outlined above.

Case 1: Write Operation. We first consider the case where π2 is a write operation:

Lemma 6.3.7. If π1 is a read or write operation, and π2 is a write operation, and
π1 completes before π2 begins, then π1 ≺ π2.

Proof. Assume that operation π2 occurs at node i. The result follows immediately
by the choice of tag(π2). The tag op.tag i is chosen during the write(v)i action (see
Figure 6-8, line 52). It is chosen using the real-time clock (along with a process
identifier to break ties). The tag of π1 must have been chosen at the beginning of a
prior write operation, or must be the initial value. If the tag of π1 is the initial value,
then the tag of π2 is necessarily larger. Assume, then, that the tag of π1 originates
with a prior write operation.

This prior write operation must take some time strictly greater than zero to com-
plete, since the write operation requires performing at least one invocation on a virtual
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object and receiving a response from that invocation. The virtual object model guar-
antees that each operation consisting of an invocation and a response on a virtual
object takes some time to complete: the invocation and the response do not occur at
the same time. Therefore the write operation must take some time strictly greater
than zero to complete. Since π2 begins after π1 ends, it begins at some time strictly
greater than zero after the prior write operation begins.

This ensures that tag(π1) < tag(π2), which immediately implies that π1 ≺ π2, as
desired.

For the rest of the proof we assume that π2 is a read operation.

Case 2: Two-Phase Read and Write Operations. We now consider the case
where π1 is either a two-phase read operation or a write operation, and π2 is a read
operation. We postpone until later the case where π1 is a one-phase read operation.

There are two subcases to consider, depending on whether at least one of the flags
put-rip(π1) or get-rip(π2) is true (Case 2(a)), or both flags are false (Case 2(b)).

We first consider the case where at least one of the put phase of π1 or the get
phase of π2 detects a reconfiguration in progress (Case 2(a)). That is, if i initiates
operation π1 and j initiates π2, then we assume that at least one of the following two
conditions holds:

• At the end of the put phase of π1, op.recon-ipi = true.

• At the end of the get phase of π2, op.recon-ipj = true.

Lemma 6.3.8 (Case 2(a)). Assume operation π1 is a two-phase read or write oper-
ation at node i. Assume that π2 is a read operation initiated at node j, and that π1

completes before π2 begins. Assume that at least one of the following is true:

• put-rip(π1) = true, or

• get-rip(π2) = true.

Then tag(π1) ≤ tag(π2), and as a result π2 ⊀ π1.

Proof. In this case, at least one of the two nodes detects a reconfiguration in progress:
node i during the put phase and/or node j during the get phase. We divide this case
into two subcases, depending on whether it is node i or node j that detects the
reconfiguration.

Subcase 1: First, assume that put-rip(π1) = true . This implies that node i detects
the reconfiguration during the put phase of π1.

Choose c′ = get-conf (π2). Lemma 6.3.4 guarantees that there exists a put-quorum,
P ∈ put-quorums(c′), such that for every object, obj ∈ P , tag(π1) ≤ obj .tag when π1

completes (since it guarantees this for every c′ ∈M).
Lemma 6.3.5 guarantees that there exists a get-quorum, G, in get-quorums(c′),

the get configuration of π2, such that for every object, obj ∈ G, obj .tag ≤ tag(π2)
when π2 begins.
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Then there must exist an object, obj ∈ G ∩ P , since both are quorums of the
same configuration c′ and one is a get-quorum and the other is a put-quorum.

We already know that tag(π1) ≤ obj .tag when π1 completes. And obj .tag when π2

begins is ≤ tag(π2). Since π1 completes before π2 begins, we conclude that tag(π1) ≤
tag(π2).

Subcase 2: Next, assume that get-rip(π2) = true . This implies that node j detects
the reconfiguration during the get phase of π2.

Choose c′ = put-conf (π1). Lemma 6.3.6 guarantees that for every c′ ∈ M , there
exists a quorum, G ∈ get-quorums(c′), such that for every object, obj ∈ G, obj .tag ≤
tag(π2) when π2 begins (since it guarantees this for every c′ ∈M).

Lemma 6.3.3 guarantees that there exists a put-quorum, P , in put-quorums(c′),
the put configuration of π1, such that for every object, obj ∈ P , tag(π1) ≤ obj .tag
when π1 completes.

Then there must exist an object, obj ∈ G ∩ P , since both are quorums of the
same configuration c′ and one is a get-quorum and the other is a put-quorum.

We already know that tag(π1) ≤ obj .tag when π1 completes. And obj .tag ≤
tag(π2) when π2 begins. Since π1 completes before π2 begins, we conclude that
tag(π1) ≤ tag(π2).

In the next case (Case 2(b)), we assume that neither the put phase of operation
π1 nor the get phase of operation π2 detects the reconfiguration in progress. Thus
for the next set of lemmas, we assume that put-rip(π1) and get-rip(π2) are both false.
This case has three subcases, depending on the relationship of the put configuration
identifier of π2 and the get configuration identifier of π1. First, we assume that these
configurations identifiers are the same.

Lemma 6.3.9 (Case 2(b).i). Assume that operation π1 is a two-phase read operation
or a write operation at node i, and that π2 is a read operation at node j. Assume that
π1 completes before π2 begins.

Also, assume that the flags put-rip(π1) and get-rip(π2) are both false and that
the identifier put-conf-id(π1) = get-conf-id(π2). Then we conclude that tag(π1) ≤
tag(π2), and as a result, π2 ⊀ π1.

Proof. Let cid = put-conf-id(π2) = get-conf-id(π1). Assume that cid = 〈∗, ∗, c〉.
Lemma 6.3.3 guarantees that there exists a put-quorum, P such that for every

object, obj ∈ P , tag(π1) ≤ obj .tag when π1 completes.

Lemma 6.3.6 guarantees that there exists a get-quorum, G ∈ get-quorums(c) such
that for every object, obj ∈ G, the tag obj .tag ≤ tag(π2) when π2 begins.

Since P is a put-quorum and G is a get-quorum of the configuration identified by
c, there must exist some object, obj ∈ P ∩G.

We already know that tag(π1) ≤ obj .tag when π1 completes. And obj .tag ≤
tag(π2) when π2 begins. Since π1 completes before π2 begins, we conclude that
tag(π1) ≤ tag(π2).

137



We now consider the case (Case 2(b).ii) where the put configuration identifier of
π1 is larger than the get configuration identifier of π2. That is, we consider the case
where put-conf-id(π1) > get-conf-id(π2). It turns out that this case cannot occur.

We first need to show that when the recon-ip flag at node i is set to false, this cor-
rectly indicates that the configuration identified by conf-id is fully installed, meaning
that the reconfiguration that created conf-id has completed.

Since we assume in this case (Case 2(b).ii) that the flag get-rip(π2) is false, this
lemma shows that the configuration identified by get-conf-id(π2) is fully installed
prior to the start of π2.

Lemma 6.3.10. Let α′ be a prefix of α, and let c be some configuration that is not
the initial configuration:

c 6= 〈0, i0, c0〉 .

Assume that at the end of α′, conf-id i = cid = 〈∗, ∗, c〉 and recon-ipi = false. Then
for some node j, a recon-ack(cid)j event occurs in α′.

Proof. Assume, without loss of generality, that α′ is the shortest prefix of α such that
for any node k, conf-idk = cid and recon-ipk = false at the end of α′.

There are only two ways in which i can have configuration identifier conf-id i =
cid and flag recon-ipi set to false: either i performs a recon-ack(cid)i action (see
Figure 6-8, line 92), or i receives a put-ack or get-ack response from an object spec-
ifying configuration c and new-rip = false (see Figure 6-5, lines 50 and 64). (The
recon(c)i event does result in conf-id i = cid , however recon-ipi is set to true.)

Assume, however, that i receives a put-ack or get-ack from some object, obj ,
specifying configuration new-cid and flag new-rip set to false. Then we know that an
invocation event, invoke(recon-done, new-cid)obj ,〈∗,j′〉, must occur prior to the put-ack
or get-ack from obj , as this is the only event that can set obj .recon-ip to false.

But we assumed that i was the first node to be in this state (i.e., α′ is the shortest
prefix ending with some node i in this state), so this recon-done invocation cannot
occur. Therefore i must perform a recon-ack(cid)i. The node i, then, satisfies the
required properties of node j.

We can now show that the get configuration identifier of π2 is always greater than
or equal to the put configuration identifier of π1. Therefore, the second case (Case
2(b).ii) can never occur.

Lemma 6.3.11 (Case 2(b).ii). Assume operation π1 occurs in α at node i before
operation π2 begins at node j. Assume that π1 is a two phase read or write operation,
and π2 is a read operation.

Assume that put-rip(π1) and get-rip(π2) are both false. Then put-conf-id(π1) ≤
get-conf-id(π2).

Proof. If put-conf-id(π1) = 〈0, i0, c0〉 (the smallest possible value for a configuration
identifier), then clearly this result is true. Assume, therefore, that put-conf-id(π1) >
〈0, i0, c0〉.
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It is clear that recon-ipi is false at the end of the put phase of π1, since op.recon-ipi =
false: whenever recon-ipi is set to true, so is op.recon-ipi, and op.recon-ip is not reset
to false until the phase is completed.

Lemma 6.3.10 then implies that for some node, k, a reconfiguration acknowledg-
ment, recon-ack(put-conf-id(π1))k, occurs prior to the end of the second phase of π1.
In particular, the recon-ack occurs prior to the beginning of π2.

In order for the recon to complete, a recon-2 must occur. This event completes
the get phase of reconfiguration. The precondition of recon-2 requires that for every
configuration c′ ∈ M , there exists a quorum P ∈ put-quorums(c′) such that P ⊆
op.acc. This implies that each object in quorum P responds to a get invocation in
the first phase of the recon operation. (Notice that during a reconfiguration, there
are get invocations made on objects in put-quorums. This is the one exception to
the general rule that get operations are invoked on objects in get quorums and put
operations are invoked on objects in put quorums.)

Choose c′ = get-conf (π2), and let the put-quorum P ∈ put-quorums(c′) be the
put-quorum (described above) contacted by node k prior to the recon-2 event, and
therefore prior to the start of operation π2.

When the get phase of π2 completes, there exists some put-quorum of objects,
G ∈ put-quorums(get-conf (π2)), such that every object, obj ∈ G has responded to a
get invocation during the first phase of π2.

There must be some object obj in G ∩ P , as both G and P are quorums of
the same configuration, get-conf (π2), and one is a get-quorum and the other is a
put-quorum.

Recall that the reconfiguration is installing the configuration put-conf-id(π1). As
a result of the invocation of object obj during the get phase of the reconfiguration, it
is clear that at the end of the get phase, put-conf-id(π1) ≤ obj .config-id .

As a result of the response of object obj during the get phase of π2, it is clear that
obj .config-id ≤ get-conf-id(π2) at the beginning of the get phase.

We thus conclude: put-conf-id(π1) ≤ get-conf-id(π2).

The next case to consider is when the put configuration identifier of π1 is strictly
smaller than the get configuration identifier of π2. This is the most complicated part
of the proof, and relies on showing that an intervening reconfiguration operation –
the one that creates configuration get-conf-id(π2) – relays information from π1 to π2.

Lemma 6.3.12 (Case 2(b).iii). Assume operation π1 is a two-phase read or write
operation at node i. Assume that π2 is a read operation initiated at node j, and that
π1 completes before π2 begins.

Also, assume that put-conf-id(π1) < get-conf-id(π2). Finally, assume that put-rip(π1)
and get-rip(π2) both equal false. Then tag(π1) ≤ tag(π2), and as a result π2 ⊀ π1.

Proof. Some reconfiguration must occur in order to create configuration get-conf-id(π2).
We first identify the reconfiguration, ρ, that creates the new configuration. We then
show that tag(ρ) ≤ tag(π2). Finally, we show that tag(π1) ≤ tag(ρ), concluding the
proof.
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Notice that get-conf-id(π2) 6= 〈0, i0, c0〉, since it is strictly larger than put-conf-id(π1),
and 〈0, i0, c0〉 is the smallest possible value for configuration identifier put-conf-id(π1).

Since op.recon-ipj = false at the end of the get phase of π2, this means that
recon-ipj = false at the beginning of the get phase of π2: this is because no action
resets op.recon-ipj to true during an operation.

Consider the prefix α′ of α whose last event is the read event that begins π2. Then
by Lemma 6.3.10, there exists some node k that performs a recon-ack(get-conf (π2))k

in α′, that is, prior to the readj of π2. Let ρ be the recon operation concluding with
this recon-ack event.

We now show that tag(ρ) ≤ tag(π2). Lemma 6.3.3 guarantees that there exists
some put-quorum, P , in the put configuration of ρ such that for each object, obj ∈ P ,
tag(ρ) ≤ obj .tag at the end of the reconfiguration. Note that P is in put-quorums(c),
where c is a part of the put and get configuration identifiers; that is, 〈∗, ∗, c〉 =
put-conf-id(ρ) and 〈∗, ∗, c〉 = get-conf-id(π2).

Lemma 6.3.5 guarantees that there exists some get-quorum, G ∈ get-quorums(c)
such that for every object, obj ∈ G, obj .tag ≤ tag(π2) when π2 begins.

Since G is a get-quorum and P is a put-quorum of the configuration identified by
get-conf-id(π2), there exists an object, obj1 ∈ G ∩ P .

We have already shown that tag(ρ) ≤ obj1 .tag when ρ completes. And we have
already shown that obj1 .tag when π2 begins is ≤ tag(π2). Since ρ completes before
π2 begins, we conclude from Lemma 6.3.2 that tag(ρ) ≤ tag(π2).

We next show an ordering of the tags, i.e., that tag(π1) ≤ tag(ρ). Consider the
following reconfiguration event recon-2(get-conf-id(π2))k that occurs as part of recon-
figuration ρ, ending the get phase of the reconfiguration. The precondition for the
recon-2 action requires that for every configuration c′ ∈M , there exists a get-quorums
G ∈ get-quorums(c′) such that G ⊆ op.acck when the event occurs. This implies that
for every object, obj ∈ G, an invoke(get, . . .)obj ,p event and a respond(get-ack, . . .)obj ,p
event occur during the get phase, where p is the port number during the get phase
of the reconfiguration. As part of this get operation, a perform event occurs at the
automaton for obj .

Choose c′ = put-conf-id(π1), and let quorum G be the get-quorum determined by
the end of the get phase of the reconfiguration. Lemma 6.3.3 guarantees that there
exists some put-quorum, P ∈ put-quorums(c′) such that for every object, obj ∈ P ,
tag(π1) ≤ obj .tag at the end of π1.

Since G is a get-quorum of the configuration identified by c′ and P is a put-quorum
of the configuration identified by c′, there exists some object, obj2 ∈ G ∩ P . We
know that tag(π1) ≤ obj2 .tag when π1 completes, since an invocation during the put
phase ensure that obj2 .tag is at least tag(π1). And we know that obj2 .tag ≤ tag(ρ)
when ρ begins.

At this point, however, we do not know which event came first: the invocation
during the put phase of π1 or the response during the get phase of ρ.

Since obj2 is an atomic object, it must process these two invocations – doing
perform steps in the canonical automaton – in one order or the other. Assume that
obj2 processes the invocation by ρ first, that is, the perform step in response to ρ
precedes the perform step in response to π1. In this case, the response to π1 includes
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a configuration identifier no smaller than get-conf-id(π2), the configuration being
installed by ρ. As a result: put-conf-id(π1) ≥ get-conf-id(π2). This contradicts our
assumption that the put configuration identifier of π1 is less than the get configuration
identifier for π2.

Therefore, we can conclude that the invocation of obj2 for π1 precedes the response
of obj2 for π2. It follows, then, that tag(π1) ≤ tag(ρ). Combining the two inequalities,
we conclude that tag(π1) ≤ tag(π2), which implies that π2 ⊀ π1.

Case 3: One-Phase Read Operations. We now address the case of single-phase
read operations. We assume that π1 is a one-phase read operation, that is, it does
not have a put phase.

Notice that in Lemma 6.3.12, we depended significantly on π1 propagating its tag
to a put-quorum of objects. Since a one-phase read operation has no put phase, we
cannot use this.

Instead, we rely on the fact that a one-phase read operation, π occurs only when
the tag of operation π is confirmed, indicating that another two-phase operation, π′

has already propagated the tag of π to a put-quorum.
We first need a lemma showing that if a tag, t, is confirmed, then there exists a

two-phase operation that propagated tag t to a put-quorum.

Lemma 6.3.13. Let α′ be a prefix of α, and assume that at some node i, at the
end of α′, the tag t ∈ confirmed i. Then there exists an operation, π, in α′ such that
tag(π) = t and π is either a two phase read-operation or a write operation.

Proof. Without loss of generality, assume that execution α′ is the shortest prefix of
α such that at the end of α′, for some node i, t ∈ confirmed i.

There are two ways in which a tag can be added to the confirmed set of i: either a
response from some object indicates that a tag is confirmed (see Figure 6-5, line 54),
or i itself completes a two-phase operation and adds t to the confirmed set (Figure 6-8,
lines 43 and 64).

In the first case, this implies that there exists some object, obj , that has t ∈
obj .confirmed-set at some point in α′. However, this would imply that some other
node k had performed a confirm invocation on obj (Figure 6-3, line 27) in α′, as this
is the only way in which a tag can be added to an object’s confirmed set.

This, then, implies that t ∈ confirmedk in α′, when the confirm invocation occurs.
This violates the assumption that α′ is the shortest prefix to end with some node, i,
containing t in confirmed i.

Therefore, node i must perform a read-acki or write-acki in α′ that adds t to
confirmed i (Figure 6-8, lines 43 and 64). The value op.tag i must be equal to t,
because t is added to confirmed i. Further, if the operation is a read operation, then a
precondition of the read-acki is that op.phase = put, implying that it is a two-phase
read operation. The node i, then, satisfies all the required properties of node j.

Now we can show that with one-phase reads, the partial ordering induced by the
tags is consistent with the real ordering of the operations:
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Lemma 6.3.14 (Case 3). Assume operation π1 is a one-phase read operation, and
occurs at node i. Assume that π2 is a read operation initiated at node j, and that π1

completes before π2 begins. Then tag(π1) ≤ tag(π2), and as a result π2 ⊀ π1.

Proof. Since π1 is a one-phase read operation, the associated tag is confirmed (tag(π1) ∈
confirmed i) when the read-acki event occurs (Figure 6-7, line 14). Recall that the tag,
tag(π1), is the value of tag i when the read-acki event occurs.

By Lemma 6.3.13, a two-phase operation π′ must complete prior to the read-acki

event of π1 and tag(π1) = tag(π′), the tag i when the read-acki event occurs.
Since π′ completes before the end of π1, it also completes before π2 begins. There-

fore, by Lemma 6.3.12, tag(π′) ≤ tag(π2); as a result, tag(π1) ≤ tag(π2).

Main Result. Combining the lemmas from all the various cases (that is, Lemma 6.3.7,
Lemma 6.3.8, Lemma 6.3.9, Lemma 6.3.11, Lemma 6.3.12, and Lemma 6.3.14), we
conclude:

Theorem 6.3.15. If π1 and π2 are two operations, and π1 completes before π2 begins,
then π2 ⊀ π1.

We now claim that the Operation Manager, composed with the virtual objects,
the ReconClients, and a well-formed environment, implements a read/write atomic
object.

Theorem 6.3.16. Let U be a well-formed environment. Let S be the composition
of the Operation Manager, the virtual objects, and the ReconClients, where all input
and output actions are hidden except for read, read-ack, write, and write-ack. Let A
be the canonical atomic read/write object, an object of the variable type presented in
Figure A-1. Then traces(S × U) ⊆ traces(A× U)).

Proof. First, notice that S has the appropriate input and output actions. Next, we
go through the three conditions required by Theorem A.3.3:

1. Follows from the uniqueness of the tags: each is chosen by examining the local
clock, and using process identifiers to break ties.

2. Follows from Theorem 6.3.15.

3. Follows from the way in which the partial order is defined, as a read operation
is ordered directly after the write operation whose value it returns.

Finally, we observe that if we execute the Operation Manager and virtual objects
in the context of a Virtual Object Layer implemented as per the Virtual Object
Emulator in Chapter 4, then the result is a correct implementation of an atomic
object:
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Theorem 6.3.17. Let U be a well-formed environment. Let S be the composition of
the Operation Manager, the ReconClients, and the Virtual Object Emulator (described
in Chapter 4, instantiated with virtual objects of the put/get variable type, where all
input and output actions are hidden except for read, read-ack, write, and write-ack. Let
A be the canonical atomic read/write object, an object of the variable type presented
in Figure A-1. Then: traces(S × U) ⊆ traces(A× U)).

Proof. This follows immediately from Theorem 6.3.16 and Theorem 4.2.6.

6.4 Performance Discussion

The performance of the GeoQuorums Operation Manager depends on the performance
of the underlying Virtual Object Layer.

We first examine the performance of read and write operations, as executed by
the Operation Manager. Assume that the Virtual Object Layer guarantees that all
invocations result in a response within time T , if a mobile node at location ` invokes
an operation on a correct virtual object h and remains within a small distance of `
for sufficiently long.

Then if no more than f virtual objects fail, each read or write operations takes
at most time 2T : each operation requires at most two phases, and each phase can be
completed in time T , as all the objects can be invoked concurrently. A write operation,
however requires on a single phase. Similarly, many read operations only require a
single phase. These operations require at most time T . Similarly, a reconfiguration
operation takes at most time 2T .

If the Virtual Object Layer is implemented by the Virtual Object Emulator de-
scribed in Chapter 4 in an underlying physical model described in Chapter 2, and if
the underlying model delivers GeoCast messages within time dgeo and fpcast messages
within time dfp, then Theorem 4.3.1 indicates that T ≤ 2dgeo + dfp.

We then conclude that if a mobile node i initiates a read or write operation and
remains near to the location at which it initiated the operation for sufficiently long,
and if no more than f virtual objects fail, then the operation completes within time
8(dgeo +dfp). A write operation, or a one-phase read operation, completes within time
4(dgeo + dfp).

The algorithm as specified also allows the implementation to trade-off message
complexity and latency. In each phase of a read or write operation, the node initi-
ating the operation must perform invocations on a quorum of virtual objects; each
invocation is going to cause message traffic in the network. It can achieve this goal
by performing invocations on all virtual objects concurrently, thereby ensuring the
fastest result, at the expense of a high message complexity. Alternatively, the node
can invoke only the virtual objects in a single quorum. If some of these virtual objects
have failed, and they do not all respond, the node can perform invocations on another
quorum, and continue until it receives a response from every object in some quorum.
This leads to lower message complexity, but may take longer.
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6.5 Discussion

In this chapter we have presented an algorithm, the GeoQuorums Operation Manager,
that implements a read/write atomic shared memory using the Virtual Object Layer.

It remains an interesting question to consider how configurations should be chosen,
and when reconfiguration should occur. For example, how many configurations should
the algorithm use? The more configurations that are made available to the algorithm,
the better the performance of read and write operations, if the correct configuration
is installed. On the other hand, more configurations means slower reconfiguration
and slower operations during reconfiguration.

Moreover, if there are many possible configuration, the choice of a configuration
becomes more difficult. Since there are only a finite number of configurations to choose
from, it should be possible for the mobile nodes to determine which configuration
is optimal for a given set of read and write operations. Using the techniques of
competitive analysis it may be possible to determine the optimal configuration for a
sequence of read and write operations, even without knowing the sequence in advance.
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Figure 6-7: Operation Manager Client Transitions for node i

1 Input read()i

2 Effect:
3 current-port-number ← current-port-number +1
4 op ← 〈read, get, ⊥, ⊥, recon-ip, 〈0, i0, c0〉, ∅〉
5

6 Output read-ack(v)i

7 Precondition:
8 conf-id = 〈time-stamp, pid, c〉
9 if op.recon-ip then

10 ∀c′ ∈ M, ∃ G ∈ get-quorums(c′) : G ⊆ op.acc
11 else
12 ∃ G ∈ get-quorums(c) : G ⊆ op.acc
13 〈op.phase, op.type, op.value〉 = 〈get, read, v〉
14 op.tag ∈ confirmed
15 Effect:
16 op.phase ← idle
17

18 Internal read-2()i

19 Precondition:
20 conf-id = 〈time-stamp, pid, c〉
21 if op.recon-ip then
22 ∀c′ ∈ M, ∃ G ∈ get-quorums(c′) : G ⊆ op.acc
23 else
24 ∃ G ∈ get-quorums(c) : G ⊆ op.acc
25 〈op.phase, op.type〉 = 〈get, read〉
26 op.tag /∈ confirmed
27 Effect:
28 current-port-number ← current-port-number +1
29 op.phase ← put
30 op.recon-ip ← recon-ip
31 op.acc ← ∅
32

33 Output read-ack(v)i

34 Precondition:
35 conf-id = 〈time-stamp, pid, c〉
36 if op.recon-ip then
37 ∀c′ ∈ M, ∃ P ∈ put-quorums(c′) : P ⊆ op.acc
38 else
39 ∃ P ∈ put-quorums(c) : P ⊆ op.acc
40 〈op.phase, op.type, op.value〉 = 〈put, read, v〉
41 Effect:
42 op.phase ← idle
43 confirmed ← confirmed ∪ {op.tag}
44

45 Input geo-update(t, l)i

46 Effect:
47 clock ← t
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Figure 6-8: Operation Manager Client Transitions for node i

49 Input write(val)i

50 Effect:
51 current-port-number ← current-port-number +1
52 op ← 〈write, put, 〈clock, i〉, val, recon-ip, 〈0, i0, c0〉, ∅〉
53

54 Output write-ack()i

55 Precondition:
56 conf-id = 〈time-stamp, pid, c〉
57 if op.recon-ip then
58 ∀c′ ∈ M, ∃ P ∈ put-quorums(c′) : P ⊆ op.acc
59 else
60 ∃ P ∈ put-quorums(c) : P ⊆ op.acc
61 〈op.phase, op.type〉 = 〈put, write〉
62 Effect:
63 op.phase ← idle
64 confirmed ← confirmed ∪ {op.tag}
65

66 Input recon(conf-name)i

67 Effect:
68 conf-id ← 〈clock, i, conf-name〉
69 recon-ip ← true
70 current-port-number ← current-port-number +1
71 op ← 〈recon, get, ⊥, ⊥, true, conf-id, ∅〉
72

73 Internal recon-2(cid)i

74 Precondition
75 ∀c′ ∈ M, ∃ G ∈ get-quorums(c′) : G ⊆ op.acc
76 ∀c′ ∈ M, ∃ P ∈ put-quorums(c′) : P ⊆ op.acc
77 〈op.phase, op.type〉 = 〈get, recon〉
78 cid = op.recon-conf-id
79 Effect:
80 current-port-number ← current-port-number +1
81 op.phase ← put
82 op.acc ← ∅
83

84 Output recon-ack(c)i

85 Precondition:
86 cid = op.recon-conf-id
87 cid = 〈time-stamp, pid, c〉
88 ∃ P ∈ put-quorums(c) : P ⊆ op.acc
89 〈op.phase, op.type〉 = 〈put, recon〉
90 Effect:
91 if (conf-id = op.recon-conf-id) then
92 recon-ip ← false
93 op.phase ← idle
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Chapter 7

Virtual Infrastructure and
Local Communication

In this chapter we consider wireless networks that only have the capacity for local
communication. That is, each mobile node can communicate only with its nearby
neighbors. By contrast, the GeoCast service introduced in Chapter 2 allowed for
mobile nodes to send messages across the network to other devices that may be far
away. The fpcast service, though in many ways “local,” also guarantees more than
your typical wireless MAC layers. Thus, in this chapter we assume only a simple local
broadcast service that allows nearby nodes to communicate reliably.

The goal of this chapter is to provide a brief overview of how to modify the
abstractions and protocols described in the previous sections for a wireless network
equipped only with a simple local broadcast service. We begin in Section 7.1 by
describing the behavior of the local broadcast service. (The other attributes of the
physical model remain unchanged.) Next, in Section 7.2, we briefly describe a virtual
infrastructure model that includes only local communication. In Section 7.3, we
describe how to implement the fpcast service (described in Chapter 2) using the simple
local broadcast service. Finally, in Section 7.4, we describe the few modifications to
the emulator algorithm from Chapter 5 needed to implement the local-only virtual
infrastructure model described in this chapter.

There are two reasons to focus on local communication. First, it is a more realistic
model for wireless networks. Most wireless communication is local in nature, and thus
it makes sense to focus on what can be accomplished using only local communication.
Second, a local virtual node layer may enable the construction of many interesting
non-local communication mechanisms. For example, we can build long-distance Geo-
Cast protocols on top of a local virtual node layer; these GeoCast protocols may have
advantages (in terms of simplicity and reliability, say) over GeoCast protocols built
directly on a mobile ad hoc network.
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7.1 Local Broadcast

We begin by considering a modification of the physical model presented in Chapter 2:
instead of a GeoCast service and several fpcast services, we assume only a “local
broadcast” service. All other aspects of the model remain unchanged. Formally, the
lbcast service is part of the RealWorld automaton; we describe it here in terms of its
safety and liveness properties.

The local broadcast service lbcast is parameterized by two values: a radius, Rlb

and a message delay dlb. When some node i performs a lbcast(m)i, the lbcast service
delivers the message—via a lbcast-rcv(m)j—to every mobile node j within a radius
Rlb of the sender; every message is delivered within dlb time. Formally, the service
has the following properties:

Reliable Delivery : Assume that the mobile node i performs a lbcast(m)i in location
` at time t. Then for every mobile node j that is within distance Rlb of location
` at time t and remains non-failed within distance Rlb of location ` until time
t + dlb , a lbcast-rcv(m)j event occurs by time t + dlb , delivering the message to
node j.

Integrity : For any message m and mobile node i, if a lbcast-rcv(m)i event occurs,
then a lbcast(m)j event precedes it, for some mobile node j.

Latency Lower Bound : Each message takes some time > tupd to be delivered.

Intuitively, sending a message using this service should be thought of as making
a single wireless broadcast (with a small number of retries, if necessary, to avoid
collisions). For small Rlb, this service is a reasonable (if simplistic) model of sending
and receiving messages using wireless broadcast.

7.2 Local Virtual Node Layer

We next introduce a virtual infrastructure abstraction that contains only local com-
munication. As in the Virtual Node Layer described in Chapter 3, we consider an
abstraction consisting of clients and virtual nodes. Each client is associated with a
mobile node in I; each virtual node is associated with a focal point in O.

The clients and virtual nodes communicate with each using a virtual lbcast service.
Unlike the Virtual Node Model presented in Chapter 3 in which clients and virtual
nodes could send messages to each other via geocast, in this case, all communication
is local. If a client or a virtual node performs an virtual-lbcast, only nearby clients
and virtual nodes receive the message.

For the purpose of this revised virtual node model, we define the focal points
more specifically. Each focal point is defined in terms of its focal point center—which
may move through the network. The focal point region is defined as a circle of some
fixed radius around the focal point center. Recall that Rlb is the radius of the local
broadcast service, vmax is the maximum velocity of a mobile node, and vfp-max is the
maximum velocity of a focal point. Formally, if, at time t, the focal point center is at
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fp-center(t)h, we define fp-region(t)h as a circle of radius Rlb/2−tupd(vmax+vfp-max). As
in Chapter 2, the additional buffer zone inside the circle defined by the local broadcast
service ensures that nodes can communicate using the lbcast service as long as they
believe they are in a focal point.

7.3 The Focal Point Broadcast Service

A key building block for the protocols presented in Chapters 4 and 5 is the fpcast
service which guarantees reliable delivery of messages in some fixed total order to
mobile nodes in a focal point. Since most real networks are not by default equipped
with such a service, we have describe a local broadcast service lbcast that captures in
a simplified manner the behavior of a reliable wireless MAC layer.

In this section, we show how to implement the fpcast service in networks that
provide only a local broadcast service using a standard ordering technique originally
suggested by Lamport [58]. We fix one focal point h ∈ O for the remainder of this
section, and discuss the implementation of fpcasth.

For the purpose of this section, we assume that tupd is arbitrarily small, i.e., that
each mobile node has access to precisely real time at any instant. Formally, this
is equivalent to restricting our attention to executions in which a geo-update event
occurs immediately prior to every other event. It is relatively straightforward to
extend the claims in this section to tolerate slight inaccuracies in the time.

We now proceed to describe the protocol. Pseudocode for the fpcast protocol can
be found in Figure 7-1.

Implementing fpcast. The lbcast service already guarantees integrity and reliable
delivery. The key property that needs to be enforced is the total ordering property.
This ordering is enforced through the use of timestamps.

Recall that each mobile node receives frequent updates via geo-update events of
the most recent time. Each message is tagged with the time when it is sent. Messages
are delivered in order (with ties broken arbitrarily and deterministically, see Figure 7-
1, lines 41–43) at time dlb after the time at which they are tagged (see Figure 7-1,
line 40). If a mobile node ever moves too far away from the focal point center, i.e., if it
ever exits the focal point, then all waiting messages that have not yet been delivered
are dropped (see Figure 7-1, lines 60–61). If a node ever receives a messages that is
too old, i.e., its timestamp is earlier than t−dlb, where t is the current time according
to the receiving node, then the message is discarded (see Figure 7-1, lines 24–26).
(Notice that a message may be delivered late, despite the reliable delivery deadline,
if, say, the sending node is farther than distance Rlb away, for example.) If a node was
not in the focal point when a message was sent, it is discarded (Figure 7-1, line 25).

It follows immediately that the fpcast service guarantees integrity:

Lemma 7.3.1. fpcasth satisfies the integrity property.

Proof. A message m is delivered only if it is received from the lbcast service, and by
the integrity of the lbcast service we can conclude that m was previously broadcast
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Figure 7-1: Automaton fpcasth for focal point h and client i.

1 Signature:
2 Input:
3 lbcast-rcv(〈m, t, j〉)i, m a message, t ∈ R, j ∈ I
4 fpcast(m)i, m a message
5 geo-update(t, `)i, t ∈ R, `∈ R× R
6

7 Output:
8 lbcast(〈m, t, j〉)i, m a message, t ∈ R, j ∈ I
9 fcast-rcv(m)i, m a message

10

11 Internal:
12 discard-old(〈m, t, j〉)i, m a message, t ∈ R, j ∈ I
13

14 State:
15 lbcast-queue, a queue of 〈m, t, j〉, where m is a message, t ∈ R a tag, and j ∈ I a node
16 waiting-msgs, a set of 〈m, t, j〉, where m is a message, t ∈ R a tag, and j ∈ I a node
17 last-entrance ∈ R
18 time ∈ R
19

20 Transitions:
21

22 Input lbcast-rcv(〈m, t, j〉)i

23 Effect:
24 if (time ≥ t − dlb) then
25 if (t ≤ last-entrance) then
26 waiting-msgs ← waiting-msgs ∪ {〈m, t, j〉}
27

28 Output lbcast(m)i

29 Precondition:
30 m ∈ lbcast-queue
31 Effect:
32 lbcast-queue ← lbcast-queue − {m}
33

34 Input fpcast(m)i

35 lbcast-queue ← lbcast-queue ∪ 〈m, time, i〉
36

37 Output fpcast-rcv(m)i

38 Precondition:
39 〈m, t, j〉 ∈ waiting-msgs
40 t +dlb = time
41 6 ∃ t′ < t : 〈·, t′, ·〉∈ waiting-msgs
42 6 ∃ j′ < j : 〈·, t, j′〉 ∈ waiting-msgs
43 6 ∃ m′ < m : 〈m′, t, j〉 ∈ waiting-msgs
44 Effect:
45 waiting-msgs ← waiting-msgs − {〈m, t, j〉}
46

47 Internal discard-old(m)i

48 Precondition:
49 〈m, t, j〉 ∈ waiting-msgs
50 time > t+dlb

51 Effect:
52 waiting-msgs ← waiting-msgs − {〈m, t〉}
53

54 Input geo-update(t, `)i

55 time ← t
56 if (last-entrance = ⊥) and (`∈ fp-region(t)h) then
57 last-entrance ← t
58 if (last-entrance 6= ⊥) and (`/∈ fp-region(t)h) then
59 last-entrance ← ⊥
60 if (|`− fp-centerh| > Rlb/2 +tupd(vmax +vfp-max)) then
61 waiting-msgs ← ∅
62

63 Trajectories:
64 stops when
65 ∃ 〈m, t, j〉 ∈ waiting-msgs : t +dlb ≤ time
66 or
67 lbcast-queue 6= ∅
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by some node i.

It is also easy to see that messages are delivered in the same order at all mobile
nodes. Specifically, they are delivered in the order specified by their time stamps:

Lemma 7.3.2. fpcasth satisfies the total order property.

Proof. Consider two messages mr and ms tagged with (and sent at) times tr and ts
respectively. Assume without loss of generality that tr ≤ ts, and that some node i
delivers both messages mr and ms. Then we argue that i delivers mr prior to ms.
Specifically, notice that i delivers message ms at time ts + dlb, by the rule on when
i delivers messages. Moreover, i delivers mr only if mr is received no later than
time tr + dlb; otherwise, mr is discarded by the rule discarding late messages. Since
tr ≤ ts, we conclude that i receives mr prior to delivering ms. Thus, because i delivers
messages in order according to timestamps, we conclude that i delivers mr prior to
delivering ms.

Next, we argue that fpcasth guarantees reliable delivery. In particular, we argue
that within time dlb after a message m is broadcast, every nearby node receives it:

Lemma 7.3.3. fpcasth satisfies the reliable delivery property.

Proof. Assume that for some mobile node i and some message m, a fpcast(m)h,i event
occurs at time t, and that i is in focal point h at time t. Moreover, assume that node
j is also in focal point h at time t and remains in focal point h and non-failed through
time t + dlb. We need to show that j delivers message m by time t + dlb.

First, notice that i re-broadcasts the message m with the lbcast service immedi-
ately at time t, and t is thus the tag associated with message m in the local broadcast.
Since focal point h has diameter ≤ Rlb/2, and since i is in focal point h when the
lbcast occurs, and since j is in the focal point through time t + dlb, we conclude from
the reliable delivery property of the lbcast service that by time t + dlb node j receives
the message m via a lbcast-rcvj. Since j has remained in the focal point from the time
at which m was broadcast through time t + dlb, we conclude that last-entrance i ≤ t.
Thus message m is added to waiting-msgs and delivered.

Next, we argue that fpcasth satisfies the consistent delivery property. Specifically,
we show that if some non-failed mobile node i receives messages m1 and m3 and does
not leave the focal point between receiving messages m1 and m3, and if there is some
messages m2 : m1 < m2 < m3 according to the order induced by the tags, then that
mobile node receives messages m2.

Lemma 7.3.4. fpcasth satisfies the consistent delivery property.

Proof. Let m1, m2, and m3 be three messages such that a fpcast(mr) occurs for each
r ∈ {1, 2, 3}. Moreover, assume that the total ordering property induces an order
m1 < m2 < m3 on these messages. Recall (as was shown in the proof of Lemma 7.3.2)
that this order is induced by the tags t1, t2, t3, respectively, tags associated with each
message when it is rebroadcast using the lbcast survice.
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Assume that some node i delivers messages m1 and m3, and that node i does not
exit the focal point region for h from the point at which i receives m1 through the
point at which i receives m3. We show that i receives message m2.

First, we argue that i is in the focal point when m2 is sent. There are three cases
depending on when m2 is sent with respect to when m1 is first received by i, and
when m1 is delivered. Consider the case where m2 is broadcast prior to m1 first being
received by i: then we know that last-entrance i < t, and hence i last entered the
focal point prior to m1 and m2 being broadcast. Next, consider the case where m2 is
broadcast after m1 is received by i but before m1 is delivered by i: we know that i
does not exit the focal point during this interval, since it discards all the waiting-msgs
when it exits the focal point. Finally, consider the case where m2 is broadcast after m1

is delivered by i: then by assumption i remains in the focal point until m3 is delivered;
since t1 ≤ t2 ≤ t3, we know that m2 is broadcast prior to m3 being delivered.

Next, notice that i remains in the focal point through time t2 + dlb, i.e., long
enough for m2 to be delivered. Specifically, we know that i does not exit the focal
point prior to t3 + dlb, or m3 would be discarded, and t2 ≤ t3. We therefore conclude
that by the reliable delivery property of the fpcast service in Lemma 7.3.3, message
m3 is delivered.

7.4 Remaining Implementation Details

In this section we discuss the remaining changes that need to be made to the Virtual
Node Emulator described in Chapter 5 in order to emulate the Local Virtual Node
Layer. We have already shown in Section 7.3 how to implement the fpcast service.
The Virtual Node Emulator also makes use of a geocast service—which is not available
in the revised model.

Notice, however, that the emulator only uses the geocast service to forward mes-
sages from the VNE-Client automata to the VNE-Server automata. Instead, we use
the lbcast service to transmit messages between these components of the emulator.
As a result, a message broadcast by a client (in the abstraction) is only received by
a VNE-Server in the emulation if the client is near to the focal point.

This, however, satisfies exactly the local communication property desired of the
revised virtual infrastructure abstraction. The analysis of the resulting protocol is
exactly identical to that described in Chapter 5, with the only modification being the
revised “reliable delivery” argument: the emulator ensures reliable delivery since if a
client is close to a focal point, then its message reaches a gen-server and the argument
proceeds as before.
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Part II

Virtual Infrastructure:
Collision-Prone Networks
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Introduction

There are several challenges associated with developing algorithms for ad hoc net-
works. In the first part of this thesis, we proposed the idea of virtual infrastructure
to address the difficulties arising from unreliable devices and unpredictability. In this
second part of the thesis, we address the problem of unreliable communication. We
begin in Chapter 8 by introducing a new model for wireless networks that includes
unreliable communication, as well as node failures and mobility. We then define a
new type of virtual infrastructure in Chapter 9. Next, we present an algorithm that
implements this form of virtual infrastructure (Chapter 10), and prove that the al-
gorithm is correct (Chapter 11). The possibility of lost messages introduces several
difficulties, and leads to a much more involved emulation algorithm1.

Overview

It is an unfortunate fact that communication in wireless networks is unreliable: col-
lisions and other wireless interference cause significant message disruption in real
deployments of ad hoc wireless networks. Several recent experimental studies [37,52,
105, 108] suggest that even with sophisticated collision avoidance mechanisms (e.g.,
802.11 [1], B-MAC [86], S-MAC [107], and T-MAC [101]), and even under low traffic
loads, the fraction of messages being lost can be as high as 20− 50%.

By contrast, the virtual infrastructure algorithms presented in Part I of this thesis
depend significantly on reliable communication. Recall that in order to implement a
virtual node (or even a virtual object), the state of the virtual node is replicated at
a set of mobile nodes, and the mobile nodes run a replicated-state-machine protocol
in order to maintain a consistent replicated state. The main protocol depends on
the reliable dissemination of messages in order to ensure that each replica receives
the same set of messages. Moreover, the replicated-state-machine protocol in Part I
depends on an even stronger property: it assumes that messages are delivered to
each mobile node in the same order; alternatively (as is discussed in Chapter 7),
it assumes that messages are delivered in a timely fashion. Real wireless networks
provide neither of these guarantees.

Thus we conclude that, while the idea of virtual infrastructure, as proposed in
Part I, may be effective at coping with unreliable mobile devices and unpredictable

1Notice that although the emulation algorithm itself is quite involved, the abstraction presented
to the developer building applications atop the virtual node layer remains relatively simple, much
as in Part I of this thesis.
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patterns of mobility, the actual implementations of virtual infrastructure presented
in Part I are not directly suitable for deployment in real wireless ad hoc networks.
The primary goal of Part II is to design and implement a virtual infrastructure that
can tolerate unreliable communication, and thus is more suitable for real wireless
networks. We now proceed to present an overview of Part II.

The Basic Model for Wireless Ad Hoc Networks

We begin Part II by introducing (in Chapter 8) a new model for wireless ad hoc net-
works that allows for unreliable communication. As in Part I, the network consists of
a set of mobile nodes moving arbitrarily in the two-dimensional plane. The key differ-
ence from Part I, however, is that the mobile nodes communicate via a synchronous,
unreliable communication service. That is, each mobile node broadcasts and receives
messages in a synchronous, round-based fashion, and messages may be lost.2 Each
mobile node is modelled by a timed I/O automaton.

To cope with unpredictable message loss, we augment the system with receiver-
centric collision detectors. Intuitively, collision detectors attempt to notify a mobile
node when a message that it should have received was lost. Notice that a collision
detector does not provide any information to the original transmitter as to whether
its messages were received. Intuitively, a collision detector monitors the broadcast
medium and attempts to deliver notifications when messages are lost; a simple im-
plementation of a collision detector might be based on “carrier sensing,” a technique
that raises a warning whenever a certain signal threshold is reached. Collision detec-
tors provide no information on the number of lost messages or the identities of the
nodes that send the messages. Moreover, there is no guarantee that a node perform-
ing a transmission can detect collisions. A collision detector answers only the binary
question of whether there appears to have been at least one message lost.

Moreover, we consider collision detectors that are themselves unreliable, as first
introduced in [23, 79]. There are two types of unreliable behavior: false negatives, in
which the collision detector fails to detect a collision, and false positives, when the
collision detector reports a collision inaccurately. In practice, we believe it possible to
detect collisions correctly most of the time. In Part II, we focus primarily on faulty
collision detectors that detect occasional false positives, but eventually stabilize and
become reliable3.

To this point, we have made no assumptions on the reliability of message delivery.
In order for an algorithm to achieve progress, however, eventually some messages must
be delivered. In wireless networks that share a single channel of of the electromagnetic
spectrum, messages can be delivered when there is no interference on the channel.

2Notice that it is possible to view the communication service in Part I as, essentially, synchronous:
the suggested implementation for the the fpcast service relies on a timely communication service,
which is effectively equivalent to a synchronous system.

3As elsewhere in this thesis, when we consider a stabilization point after which the collision
detectors become reliable, in practice we simply require the collision detectors to behave correctly
for sufficiently long, i.e., long enough for our protocols to make progress.
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That is, if only one node in a region broadcasts, there is the possibility that its
message is delivered. We assume that, eventually , if the broadcast contention is low
enough in a given round, then there are no collisions and the message is delivered to
every nearby mobile node. We refer to this property as “eventual collision freedom.”
Since the property holds only in an eventual sense, however, and since the nodes are
unaware of when the network stabilizes, a transmitting node can never be certain
that its messages are received.

Finally, we assume that the nodes have access to a set of contention managers
which provide advice on when a node should broadcast and when a node should be
silent, leaving the channel free for its neighbors to broadcast. Again, the contention
managers are unreliable: they often give bad advice, and there is no guarantee that a
transmitting node that is advised to broadcast will succeed in avoiding interference.
We assume, however, that eventually the contention managers stabilize and provide
good advice.

The Virtual Infrastructure System

In Chapter 9 we present the virtual infrastructure system. Much like the virtual
infrastructure described in Part I, the abstraction consists of virtual nodes, residing
at fixed points in the network, and clients, that move arbitrarily. The clients and
virtual nodes communicate using a broadcast service much like that available to the
underlying mobile nodes: communication is unreliable, and the broadcast service
guarantees eventual collision freedom. Each virtual node and each client receives
feedback from a collision detector as to when messages are lost, and advice from a
contention manager as to when to broadcast and when to be silent. In general, the
virtual infrastructure system strongly resembles the underlying network model, with
the main difference being the existence of additional virtual nodes that are more
reliable and predictable than the underlying mobile nodes. The additional robustness
of the virtual nodes, in contrast to the unreliable mobile nodes, provides significant
benefit to developers attempting to build application atop a virtual infrastructure
layer.

The Emulator Algorithm

In Chapter 10 we present an algorithm to emulate the virtual infrastructure in the un-
derlying network model. The algorithms itself is quite involved, and we introduce it in
a series of steps. The chapter begins with an overview of the algorithm (Section 10.1),
and then proceeds to present the algorithm formally and in more detail (Section 10.2).
The chapter concludes with an argument that the resulting automata are well-formed,
satisfying the appropriate requirements of the basic model (Section 10.3).

As in Part I, each virtual node is emulated by a set of replicas that happen to
be near to the virtual node’s designated location. This replication guarantees fault
tolerance: as mobile nodes enter the virtual node’s region, they join the emulation;
as mobile nodes leave the virtual node’s region, they leave the emulation.
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As in Part I, the key difficulty in implementing virtual infrastructure is maintain-
ing the consistency of the replicas. Unlike in Part I, however, we cannot assume that
the broadcast service is reliable (or that it guarantees totally-ordered message deliv-
ery), and hence a more involved scheme is needed to maintain the replica consistency.

In order to maintain consistency, the replicas participate in repeated instances
of an “agreement protocol”: each instance of the agreement protocol represents one
(virtual) round of the virtual infrastructure emulation. The goal of each instance is for
the replicas to agree on a specific execution for the virtual node up to and including
the (virtual) round associated with that instance. When the agreement protocol
completes successfully, all the replicas share the same virtual node execution, and
hence share the same virtual node state.

Each instance of the agreement protocol takes a fixed number of (basic) rounds.
When the network is “unstable,” agreement may not be reached within the alotted
number of rounds: lost messages, false positives from a collision detector, or bad
contention management advice can result in a failed agreement instance. In this
case, the decision as to the appropriate behavior for the associated (virtual) round is
postponed, and the next agreement instance is begun. Eventually, once the network
has stabilized, the agreement instances complete successfully, and the entire execution
up to the current virtual round—including all previously undetermined rounds—is
determined.

Each replica needs to distinguish (virtual) rounds in which the agreement instance
has completed successfully, and (virtual) rounds in which the agreement instance
has failed. To this end, the agreement protocol is similar, in ways, to “three-phase
commit” protocols (see, e.g., [95,96]): each replica determines a color for each round—
green, yellow, orange, or red—which determines the level of success for that instance
of agreement. At any two replicas, the color differs by at most one shade. Thus,
if a replica determines that a (virtual) round is green, it can safely conclude that
the agreement instance was successful, as no replica designated the round as red.
Similarly, if a replica determines that a (virtual) round is red, it can safely conclude
that the agreement instance failed.

The resulting iterated agreement protocol ensures that at the end of each (virtual)
round, all the replicas behave in a consistent manner, and that eventually, when the
network stabilizes, the virtual node simulated by the replicas successfully broadcasts
and receives messages without inducing collisions.

Proof of Correctness

In Chapter 11 we prove that the protocol presented in Chapter 10, when executed in
the basic model described in Chapter 8, implements the virtual infrastructure system
presented in Chapter 9.

The proof consists of two main parts. In the first part of the proof (Sections 11.2–
11.8), we prove a series of properties about the round colors, and the associated states
of all the replicas. We show that the color of a round at two replicas differs by at most
one shade (Lemma 11.5.9 and Corollary 11.5.7), and that after a “good” round, all
the replicas agree on the state of the virtual node (Lemma 11.7.11). Finally, we show
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that eventually, when the network is stable, all the rounds are good (Lemma 11.8.12).
In the second part of the proof (Sections 11.9–11.15), we explicitly construct the

execution of the virtual infrastructure that is emulated by a given execution of the
emulator protocol. We construct each of the component executions separately, defin-
ing an execution for each virtual node (Section 11.9), for each client and contention
manager (Section 11.10), for the collision detector (Section 11.12), and finally for
the broadcast service (Section 11.13). In the process, we prove that the resulting
executions satisfy a series of necessary properties, such as communication integrity
(Section 11.11). Finally, we “paste” the various components executions together (Sec-
tion 11.14), resulting in an execution of the entire virtual infrastructure system. We
then conclude by proving some properties about the entire system: we show that the
resulting system satisfies eventual collision freedom (Section 11.15), and analyze when
the virtual nodes fail (Section 11.16). Specifically, we show that a virtual node fails
only when it is depopulated by mobile nodes acting as replicas, and that it recovers
when it is repopulated.
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Chapter 8

Modelling a Wireless Ad Hoc
Network

In this chapter, we present a new model for wireless ad hoc networks. This model is
designed to capture the problems that arise from lost messages (caused by collisions),
as well as the challenges that arise from mobility and crash failures. In Section 8.1
we present a general model for wireless networks, and in Section 8.2 we present a
specialized variant of this model, the Basic System, which we use throughout Part II
of this thesis.

8.1 General Systems

In this section, we describe the general class of systems discussed in this thesis. Each
system models a wireless network consisting of a fixed but a priori unknown collection
of nodes that may move on a two-dimensional plane. The nodes communicate using
a synchronous broadcast service. Each node is provided with information from a
“collision detector”, which provides feedback on collisions, and information from a set
of “contention managers”, which help the node to reduce collisions. In this section
we formally define these components, modeling a general system as a composition of
timed I/O automata. See Appendix A for a brief overview of timed I/O automata
theory; for more details, see [45, 46]. In general, the goal of this section is describe
a typical synchronous model (with the addition of collision detection and contention
management) using the TIOA formalism1.

We begin in Section 8.1.1 by enumerating the various parameters that define a
general system: a set of nodes, a set of ports per node, a series of parameters that
determine the behavior of the radio broadcast, a set of processes that run on the
nodes, an algorithm that maps nodes to processes, and a collision detector. In the
rest of this section, we discuss these parameters in more detail, as well as defining the
automata that they parameterize.

1Most prior formalizations of synchronous systems do not include the tools needed in Part II of
this thesis. In particular, they do not include the capacity to compose synchronous automata, or
the capacity to construct simulations across multiple levels of abstraction.
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In Section 8.1.2 we define nodes, processes and algorithms, the basic computa-
tional components of the system. We also present a schema for translating a tradi-
tional synchronous protocol into an algorithm for a general system, and we describe
a toy example algorithm.

In Section 8.1.3, we define collision detectors, and specify certain classes of collision
detectors that will be used throughout this thesis. The main class of collision detectors
defined here is the class of “eventually accurate, always complete” collision detectors
(♦A-C). In Section 8.1.4, we define contention managers, and present the canonical
contention manger. A contention manager provides advice to the nodes on how to
reduce the contention on the broadcast channel, and can be used to encapsulate the
workings of randomized backoff protocols, as well as other methods of contention
resolution.

In Section 8.1.5 we define the broadcast service that is used by the nodes to
communicate. Additionally, the broadcast service maintains some global state as
to the status of the system, such as the location of the nodes, the failure status of
the nodes, etc. We specify the broadcast service as an automaton, and describe its
properties.

In Section 8.1.6, we define general system G which consists of process automata, a
broadcast service, and a set of contention managers. We also define the synchronous
round structure, associating each event with a round number, and discuss finite and
infinite executions of a general system.

In Section 8.1.7, we describe some message-delivery guarantees that are provided
by the general system. Specifically, we discuss integrity, self-delivery, and per-round
delivery properties. We also discuss the relationship between the collision detector
guarantees and the broadcast service message-delivery guarantees.

In Section 8.1.9, we introduce an additional assumption on the broadcast service,
called “eventual collision freedom,” which ensures that eventually, if there is no con-
tention on the broadcast channel, then messages will be delivered (Definition 8.1.56).

In Section 8.1.8, we specify some additional useful properties of a contention
manager. We describe four different properties of contention managers: eventual non-
interference, eventual fairness, eventual contention fairness, eventual regional fairness.
We also specify what it means for a contention manager to be “conservative.”

Finally, in Section 8.1.10, we provide a brief discussion on modifying the general
system to model devices that can control their own motion, such as mobile robots.

8.1.1 Parameters for a General System

A general system is defined by eleven parameters:

Definition 8.1.1. We define the parameters for a general system as follows:

1. I, a non-empty, finite set of node names;

2. process-ports, a non-empty, finite set of port names; we define the broadcast
ports bcast-ports to be I × process-ports; we say that j ∈ bcast-ports is as-
sociated with node i ∈ I if there exists some port p ∈ process-ports such that
j = 〈i, p〉;
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3. part, a partition of the broadcast ports;

4. msgs, a non-empty set of messages;

5. CM-names, a non-empty, finite set of contention manager names;

6. R ∈ R and R′ ∈ R, broadcast and interference radii, respectively, where R >
0, R′ > 0;

7. RndLength ∈ R, the length of a synchronous round, where RndLength > 0;

8. P , a non-empty set of processes for 〈I, process-ports ,msgs ,CM-names〉 (see
Definition 8.1.2);

9. A, an algorithm for 〈I, P 〉, mapping nodes in I to processes in P (see Defini-
tion 8.1.5);

10. CD, a collision detector for bcast-ports (see Section 8.1.3); and

11. {CM d | d ∈ CM-names}, a non-empty, finite set of contention managers for
〈I, process-ports ,msgs ,CM-names〉 (see Section 8.1.4).

A general system, which we define formally in Definition 8.1.19, is a set of com-
posed automata that are defined by these parameters, specifically (1) a set of (remapped)
processes, as defined in Definition 8.1.9, Section 8.1.2, (2) a broadcast service, parame-
terized by 〈R,R′,msgs ,RndLength, bcast-ports , part ,CD〉, as defined in Section 8.1.5,
and (3) a set of contention managers, {CM d | d ∈ CM-names}, as defined in Sec-
tion 8.1.4.

8.1.2 Nodes, Processes, and Algorithms

In this section, we describe the nodes that constitute a system, the processes that
execute on the nodes, and the algorithms that specify the behavior of the nodes.

Informally, a system consists of a set of fault-prone physical devices. These devices
may be mobile and may move in an arbitrary manner, with only the limitation that
their velocity is bounded by vmax. The algorithms running on a node may provide
control information to guide the motion, as in the case of mobile robots, or may have
no control over the motion.

Each physical device executes a “process” (i.e., a restricted TIOA), which captures
the computational capacity of the device. We therefore think of an “algorithm” as
assigning a process to each device. When a device fails, the associated process takes
no further (locally-controlled) steps. A device may also recover at some later time,
reset to its initial state. For the most part, we will assume that nodes do not recover.
(A recovered node can simply be treated as a new node that has just arrived in
the region.) We include the possibility of recovery here as it will be useful later in
Chapter 9 when defining the notion of a “virtual node.”
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In this thesis, we model protocols that are unaware of the number of devices in the
system: while the universe of possible devices may be known a priori, an unknown,
arbitrarily large, subset may have failed at the very beginning of the execution.

We also model “anonymous” protocols, in which the nodes in the system do
not have unique identifiers. By separating processes—which may not have unique
identifiers—from nodes—which have unique names—we are able to capture both
anonymous and name-aware protocols.

Processes

In this section, we define a process, which models the computation executed by
a particular mobile node in the physical system. Formally, a process is defined to
be a timed I/O automaton [45, 46]; furthermore, we assume that a process TIOA is
internally progressive, which means that in any finite interval of time, if there are only
a finite number of inputs, then there are only a finite number of locally-controlled
actions.

A process is parameterized by three of the general system parameters: process-ports ,
msgs , and CM-names . The set process-ports represents the a set of communication
ports used by the process; msgs is the communication alphabet; and CM-names
names the contention managers that the process may utilize.

Definition 8.1.2. A process for 〈process-ports ,msgs ,CM-names〉 is an internally
progressive timed I/O automaton A that satisfies the following restrictions:

Static Restrictions:

1. (Input actions) Automaton A must have two types of input actions:

– recv(M, cd , cm, loc)i, where M ⊆ msgs is a set of messages, cd ∈
{±, null}, cm ∈ {active, passive}, loc ∈ (R×R), and i ∈ process-ports;

– fail().

In addition, automaton A may have a third type of input action:

– recover().

Automaton A has no other type of input action.

2. (Output actions) Automaton A must have one type of output action:

– bcast(m, cm)i, where m ∈ msgs⊥ is a message or ⊥, cm ∈ CM-names⊥,
and i ∈ process-ports.

Automaton A has no other type of output action.

3. (Discrete variables) Automaton A has only discrete state variables, imply-
ing that all trajectories of A are constant2

Dynamic Restrictions:

2A trajectory defines how an analog variable evolves with time in between discrete actions. See
Appendix A for a brief review, or [45,46] for more details.

164



4. (Immediate response) For any execution α of automaton A, the following
two conditions hold for each i ∈ process-ports:

(a) Each bcast(. . .)i event in α is preceded by a recv(. . .)i event, and there
is no other intervening bcast(. . .)i event.

(b) If a recv(. . .)i event occurs at time t ≥ 0, and `time(α) > t, then either:
(i) α contains a bcast(. . .)i event at time t, after the recv(. . .)i event,
or (ii) α contains a fail() event at some time ≤ t and no intervening
recover() event.

(See, for example, Figure 8-6; notice that the round 4 bcast event immedi-
ately follows the round 3 recv event.)

5. (Failure) In any execution α of automaton A, no locally-controlled action
is preceded by a fail event with no intervening recover event.

6. (Recovery) In any execution α of automaton A, if a recover event occurs
in α, then immediately after the recover event, state ∈ start.

The first three restrictions are static restrictions on the form of the automaton,
while the last three restrictions limit its dynamic behavior, enforcing a round-based,
failure-respecting execution.

Restrictions 1 and 2 on input and output actions ensure that a process has the
typical broadcast/receive interface. The parameters of the broadcast and receive
actions are described later in Sections 8.1.3, 8.1.4 and 8.1.5, where we discuss the
collision detector, contention manager, and broadcast service, respectively.

Informally, when a process performs a bcast(m, cm), it is attempting to broadcast
message m, and indicating an attempt to “contend” using contention manager cm in
the following round; that is, the process is requesting that contention manager cm
advise it to be active in the following round. If m = ⊥, the process is indicating that
it has no message to send. If cm = ⊥, the process is indicating that it does not want
to contend; that is, every contention manager should advise it to be passive.

Informally, when a recv(M, cd , cm, loc)i event occurs, the broadcast service de-
livers a set of messages M and collision information cd ; it advises the process to be
either active or passive in the following round, depending on the value of the “advice”,
cm; the last parameter, loc reflects the current location of the process.

The fail and recover inputs described in Restriction 1 control when the process has
failed and recovered:

Definition 8.1.3. A process p is recoverable if it has an input action recover. Oth-
erwise, it is unrecoverable.

In Section 8.2, we will restrict our attention to “basic systems” in which processes
running on nodes are unrecoverable. In Chapter 9, however, we will consider systems
containing processes running on virtual nodes that may recover.

Definition 8.1.4. For an execution α of unrecoverable process p, we say that p is
correct in α if no fail event occurs in α. Otherwise, we say that p is faulty in α.
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Restriction 3—variables are discrete—captures the assumption that state is up-
dated only when discrete events occur: recall (see Appendix A) that a discrete variable
in TIOA is one that does not change as time passes. That is, for every trajectory,
the variable is constant.

Restriction 4 ensures that for each recv event, a matching bcast event follows
immediately. Restriction 4(a) ensures a one-to-one matching between broadcast and
(preceding) recv events, while Restriction 4(b) ensures that the broadcast event occurs
immediately after the preceding recv event. Together, these conditions ensure that the
process, in cooperation with the broadcast service, maintains an alternating sequence
of bcast and recv events, starting with a recv.

Restriction 5 ensures that a failed process takes no locally-controlled steps. When
a process recovers, it can again take steps. Restriction 6 ensures that a recovered
process restarts in an initial state.

Transformation Schema

In order to illustrate the connection between our description of a synchronous system
and a typical synchronous model, we briefly discuss how to translate a typical syn-
chronous protocol, such as those described in [70], Chapters 2–6, into our model. Syn-
chronous algorithms are often described in terms of two functions: (1) a recv-function
which takes the current state and the current set of messages and produces a new
state for the next round, and (2) a bcast-function which takes the current state and
produces the message to send in the next round. (See, for example, our prior work on
consensus in wireless networks [23,79].) The automaton in Figure 8-1 illustrates how
to translate a synchronous automaton specified in this manner into a legal process
meeting the restrictions described above. (Assume, for the purpose of the example,
that the set states represents the states of the synchronous automaton, and start is
an initial state.)

Example Process

As another example, Figure 8-2 presents a simple toy process, CounterProcess, which
illustrates one way to describe a process syntactically using TIOA formalism. Note
that this simple process does little of interest; it is for illustrative purposes only. For
the purpose of this example, CM-names = {CM}. The CounterProcess maintains a
simple counter. Whenever it receives a set of messages and no collisions (line 21,
Figure 8-2), it adds the values of the messages to its count (lines 22–23, Figure 8-2).
When it is active (line 42, Figure 8-2), it broadcasts its count (line 43, Figure 8-2);
otherwise, it broadcasts ⊥ (line 44, Figure 8-2). Occasionally, non-deterministically,
it resets its count (lines 49–54, Figure 8-2).

First, we argue that the automaton in Figure 8-2 is a timed I/O automaton,
specifically, that it is input-enabled and time-passage enabled. The former is im-
mediate, as input actions have no preconditions in TIOA syntax. Observe that the
automaton is time-passage enabled since whenever the stopping condition in the tra-
jectories (line 58, Figure 8-2) is true, then the bcast(m, cm) event is enabled for some
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Automaton SynchronousSchema

1 State:
2 discrete s ∈ states, initially s ∈ start
3 discrete do-bcast ∈ {true, false}, initially false
4 discrete failed ∈ {true, false}, initially false
5

6 Signature:
7 Input:
8 recv(M, cd, cm, loc)i, M ⊆ msgs, cd ∈ {±, null}, cm ∈ {active, passive}, loc ∈ R× R
9 fail()i

10 recover()i

11 Output:
12 bcast(m, cm)i, m ∈ msgs⊥, cm ∈ CM-names⊥ = {CM, ⊥}
13

14 Transitions:
15

16 Input recv(M, cd, cm, loc)i

17 Effect:

18 s← recv-function(s, M, cd, cm, loc)

19 do-bcast ← true
20

21 Input fail()i

22 Effect:
23 failed ← true
24

25 Input recover()i

26 Effect:
27 s ← s′ : s′ ∈ start
28 do-bcast ← false
29 failed ← false
30

31 Output bcast(m, cm)i

32 Precondition:

33 m = bcast-function(s)

34 do-bcast = true
35 cm = CM
36 failed = false
37 Effect:
38 do-bcast ← false
39

40 Trajectories:
41 stops when
42 (do-bcast = true) and (failed = false)

Figure 8-1: An automaton schema for transforming a classical synchronous automaton
into a process, i.e., a synchronous device in a general system as described in this chap-
ter. In this case, the port set process-ports = {i}, and the set of CM-names = {CM}.
Assume that the function bcast-function indicates which message should be sent, and
that the function recv-function indicates how to update the state upon receiving a
set of messages, collision detection information, and contention management infor-
mation. The set states is the set of possible states, and start is the initial state. The
boxes indicate the key transition functions that define the synchronous automaton.
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m and cm. Specifically, when do-bcast = true and failed = false, if the local variable
active = true, then bcast(count , CM) is enabled; otherwise bcast(⊥, CM) is enabled.

Next, we argue that the example in Figure 8-2 meets the additional restrictions of
a process. First, note that it has the requisite signature, consisting of broadcast and
receive actions, along with fail and recover actions. It is recoverable and movement
oblivious. There is an additional internal reset action, reset, which is allowed. As per
Restriction 3, all the variables are discrete.

Restriction 4 is enforced by the flag do-bcast . Whenever a recv event occurs, the
flag is set to true. The stops when condition in the trajectories (line 58, Figure 8-2)
ensures that if the do-bcast flag is set and the automaton has not failed, then no time
can pass. The precondition for bcast ensures that a broadcast event occurs only when
the do-bcast is set.

Restriction 5 is enforced by the failed flag, which is set by the fail input, unset by
the recover input, and checked by the precondition of each locally-controlled action.
Restriction 6 is met by the recover action, which resets each variable to an initial
state.

Finally, notice that the automaton is internally progressive. Specifically, the inter-
nal event reset and the output event bcast can only happen once for every recv event:
the reset event can occur only when count > 0, and only a bcast can increment the
count; the bcast event can occur only in response to a recv event as per Restriction
4 discussed above. Thus if there are a finite number of input events in an execution,
then there are also a finite number of locally-controlled events, which implies that the
automaton is internally progressive.

Algorithms

An algorithm specifies how the processes in P execute on the mobile nodes I. For-
mally, we define an algorithm as a mapping from I to P , which assigns a process to
each mobile node.

Definition 8.1.5. An algorithm for 〈I, P 〉 is a mapping from I to processes in P .

Notice that if all mobile nodes in I are mapped to the same process, then the
algorithm is effectively “anonymous,” as all the processes are identical:

Definition 8.1.6. We say that algorithm A is anonymous if for all i, j ∈ I, A(i) =
A(j).

By contrast, if each mobile node i ∈ I is mapped to a distinct process, then the
processes may contain unique identifiers that indicate which mobile node each process
is running on. In this thesis, we mainly consider anonymous algorithms that do not
require unique identifiers.

For the purposes of modelling a system, we want to disambiguate which automata
are associated with which nodes, even when the system is anonymous, i.e., the nodes
are executing identical automata. Thus, we need to identify the actions of each
process with the mobile node that maps to it. We thus rename the actions as follows:
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Automaton CounterProcess

1 State:
2 discrete count ∈ N0, initially 0
3 discrete active ∈ {true, false}, initially false
4 discrete do-bcast ∈ {true, false}, initially false
5 discrete failed ∈ {true, false}, initially false
6

7 Signature:
8 Input:
9 recv(M, cd, cm, loc), M ⊆ msgs, cd ∈ {±, null}, cm ∈ {active, passive}, loc ∈ R× R

10 fail()
11 recover()
12 Output:
13 bcast(m, cm), m ∈ msgs⊥, cm ∈ CM-names⊥ = {CM, ⊥}
14 Internal:
15 reset()
16

17 Transitions:
18

19 Input recv(M, cd, cm, loc)
20 Effect:
21 if (cd 6= ±) then
22 for all m ∈ M do
23 count ← count +m
24 active ← cm
25 do-bcast ← true
26

27 Input fail()
28 Effect:
29 failed ← true
30

31 Input recover()
32 Effect:
33 count ← 0
34 active ← false
35 do-bcast ← false
36 failed ← false
37

38 Output bcast(m, cm)
39 Precondition:
40 do-bcast = true
41 cm = CM
42 if active = true
43 then m = count
44 else m = ⊥
45 failed = false
46 Effect:
47 do-bcast ← false
48

49 Internal reset()
50 Precondition:
51 count > 0
52 failed = false
53 Effect:
54 count ← 0
55

56 Trajectories:
57 stops when
58 (do-bcast = true) and (failed = false)

Figure 8-2: An example process. In this simple example, the process is designed to
maintain a counter, which is occasionally reset to 0. Whenever it receives a message,
if there is no collision then it adds every value received to its count. When it is active,
it broadcasts its count.
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Definition 8.1.7. Given a process p and a node i ∈ I, the function Remap(p, i)
produces a new automaton q in which each action a ∈ p is renamed to ai in q.

As a typographic convention, if action a already contains subscripts, we will place
the node identifier as the first subscript. For example, if a = bcast(m, cm)v, then we
will write the remapped action ai as bcast(m, cm)i,v.

A “remapped process” is the result of remapping a process to a mobile node:

Definition 8.1.8. We say that q is a remapped process if there exists some process
p and some node i ∈ I such that q = Remap(p, i). In this case, we say that automaton
q is remapped from process p and associated with node i.

The system as a whole will contain the set of remapped processes as defined by A:

Definition 8.1.9. Let P (A, I) = {Remap(A(i), i) : i ∈ I}.

Notice that given an algorithm A and a set of mobile nodes I, the set of remapped
processes P (A, I) is compatible (see Definition A.2.10, Appendix A), and thus can be
composed.

8.1.3 Collision Detectors

We assume that every node i receives collision detector information that indicates
when messages are lost3. The collision detector may not be wholly reliable, and it
delivers relatively limited information. Yet the addition of even unreliable collision
detection capacity significantly expands the set of problems that can be solved in
a wireless network. (See, for example, [23, 79].) In this section, we formally define
a collision detector. The definitions and notation used here were first introduced
in [23,79]. We discuss the integration of collision detection into the broadcast service
in Section 8.1.7.

Formally, we define a collision detector rule CD-rule as follows:

Definition 8.1.10. A collision detector rule for bcast-ports is a function from
bcast-ports × N× N0 × N0 × N0 × N0 to {±, null}.

A collision detector rule will be invoked in the context of a synchronous broadcast
service; the six arguments, intuitively, are used to communicate the behavior of some
particular round of the broadcast service. In more detail, the six arguments of CD-rule
are as follows:

1. i ∈ bcast-ports , a port,

2. rnd ∈ N, a round number,

3. num-sent ∈ N0, intuitively, the number of messages sent by nodes within dis-
tance R of port i in round rnd ,

3The definitions and notation from this section were originally developed in [23,79]
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4. num-rcved ∈ N0, intuitively, the number of messages received by port i in round
rnd that were sent by nodes within distance R of port i in round rnd .

5. num-sent-interfere ∈ N0, intuitively, the number of messages sent by nodes
within distance R′ of port i in round rnd ,

6. num-rcved-interfere ∈ N0, intuitively, the number of messages received by port
i in round rnd that were sent by nodes within distance R′ of port i in round
rnd .

Notice that the difference between num-sent and num-sent-interfere is related to the
radius of interest: num-sent will be used with respect to messages sent by nodes
within radius R, the broadcast radius; num-sent-interfere will be used with respect
to messages sent by nodes with radius R′, the interference radius. (The same holds
for num-rcved and num-rcved-interfere.)

For a given collision detector rule, the output depends only on the number of
messages sent and received in a specific round, irrespective of the contents of those
messages, and irrespective of the prior history.

Definition 8.1.11. A collision detector CD for bcast-ports is a non-empty set of
collision detector rules for bcast-ports.

We classify collision detectors based on completeness—lack of false negatives, and
accuracy—lack of false positives. Completeness measures the reliability with which
collisions are detected: a complete collision detector will detect every lost message.
Accuracy measures the reliability with which non-collisions are detected: an accurate
collision detector will report a collision only when a message is lost. More formally:

Definition 8.1.12. We say that collision detector rule CD-rule is complete if the
following property holds:

• For every rnd ≥ 0, for every i ∈ bcast-ports, for num-sent ∈ N0, num-rcved ∈
N0:
if num-sent > num-rcved ≥ 0, then CD-rule(i, rnd , num-sent , num-rcved , ·, ·) =
{±}.

Notice that completeness depends on messages sent within radius R, the broadcast
radius: the detector should warn of messages sent by nearby nodes that are lost. That
is, completeness depends on num-sent and num-rcved .

Definition 8.1.13. We say that collision detector rule CD-rule is accurate if the
following property holds:

• For every rnd ≥ 0, for every i ∈ bcast-ports, for num-sent-interfere ∈ N0,
num-rcved-interfere ∈ N0:
if num-sent-interfere ≤ num-rcved-interfere,
then CD-rule(i, rnd , ·, ·, num-sent-interfere, num-rcved-interfere) = {null}.
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Accuracy depends on messages sent within radius R′: if a message is sent by a node
within distance R′, and that message is not received, then the detector may raise an
alarm. Thus, accuracy depends on num-sent-interfere and num-rcved-interfere.

Due to occasional false positives, it may be hard to guarantee perpetual accuracy.
Thus, we also define collision detectors that guarantee eventual accuracy:

Definition 8.1.14. We say that collision detector rule CD-rule is eventually ac-
curate if the following property holds:

• There exists a round racc such that for every round rnd ≥ racc, for every i ∈
bcast-ports, for num-sent-interfere, num-rcved-interfere ∈ N0:
if num-sent-interfere ≤ num-rcved-interfere,
then CD-rule(i, rnd , ·, ·, num-sent-interfere, num-rcved-interfere) = {null}.

In this thesis, we will focus on collision detectors that are complete and eventually
accurate:

Definition 8.1.15. We say that a collision detector CD is in the class ♦A-C if every
rule CD-rule ∈ CD is complete and eventually accurate.

8.1.4 Contention Managers

We model randomized backoff protocols as playing the role of a contention manager ,
which provides advice to each broadcast port as to whether it should be active—that
is, broadcast—in a round. In each round, each contention manager receives input
from each broadcast port as to whether it wants to perform a broadcast, that is,
whether it wants to contend for the channel. The goal of a contention manager is
to guarantee that if some port contends for long enough, then some port is given
exclusive access to the channel. Some contention managers might guarantee fairness
properties: if some port contends for long enough, then that specific port gains access
to the channel.

We assume that the system is equipped with a set of contention managers, each of
which may be responsible for some aspect of the protocol, some subset of the nodes,
or some specific region of the network. We assume that CM-names is a non-empty
set of contention manager names, and that CM-names does not include the special
symbol ⊥.

Formally, a contention manager is defined as follows:

Definition 8.1.16. A contention manager with name d ∈ CM-names is a pro-
gressive, timed I/O automaton A, along with a set of liveness properties, satisfying
the following restrictions:

1. Automaton A has one type of input action, bcast(m, cm)i, where m is a message
or ⊥, cm ∈ CM-names⊥, and i ∈ bcast-ports.

2. Automaton A has one type of output action: cm-advice(i, a)d, where port i ∈
bcast-ports and a ∈ {active, passive}.
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3. For any execution α of automaton A, each cm-advice(i, ·)d event in α is preceded
by a bcast(·, ·)i event, and there is no other intervening cm-advice(i, ·)d event.

4. For any execution α of automaton A, if a bcast(·, ·)i event occurs at time t in
α, and `time(α) > t, then a cm-advice(i, ·)d event occurs at time t, after the
bcasti event.

The first two restrictions define the signature of a contention manager. When a
broadcast port performs a bcast(·, cm)i in round r, it indicates to contention manger
cm that it wants access to the channel in the following round r + 1, if cm 6= ⊥;
otherwise, if cm = ⊥, it indicates that it does not want access to the channel.

The contention manager guarantees—as per Restrictions 3 and 4—that each event
bcast(·, ·)i is followed immediately by a cm-advice(i, ·)d event.

Figure 8-3 presents the canonical contention manager automaton, canonicalCM, a
simple automaton which, together with the empty set of liveness properties, satisfies
the definition of a contention manager. The canonical contention manager places
no constraints on what advice is output. In Chapters 9 and 10, we will consider
contention managers that consists of the canonicalCM automaton, combined with a
set of liveness properties that restrict the set of executions.

8.1.5 Synchronous Broadcast Service

The mobile nodes communicate using a synchronous broadcast service. In this section,
we describe the broadcast service, discuss its parameters, and present a TIOA model
for its operation. In Section 8.2, we assume that such a broadcast service exists in
the underlying mobile network; in Chapter 10, we show how to emulate such a thesis
as part of a virtual infrastructure system.

The broadcast service, when combined with a set of remapped processes, guaran-
tees a round-based synchronous execution.

Definition 8.1.17. For all r ∈ N, we define round r as the closed interval of real
time [(r − 1) · RndLength, r · RndLength].

For example, if RndLength = 1, then round 1 is the interval [0, 1], round 2 is the
interval [1, 2], etc. See Figure 8-6 for an illustration of how an execution is divided
into rounds of length RndLength.

From the perspective of a process—which has no continuous clock to measure
rounds—the first round begins at time 0 when the broadcast service delivers an initial
(dummy) recv event. At this point, the process knows that the first round has begun.
For each process, then, each round consists of two parts:

1. (Broadcast) The process broadcasts a message m in msgs or the symbol ⊥, in-
dicating no message. The broadcast event, bcast(m, cm), includes an extra con-
tention management parameter: cm ∈ CM-names⊥, which indicates whether
the process wants to broadcast in the following round, and if so, with which
contention manager it wants to contend. As per Restriction 4 on processes (Def-
inition 8.1.2), the broadcast occurs in response to the recv from the previous
round.
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Figure 8-3: Automaton canonicalCM : Canonical Contention Manager

1 State:
2 discrete waiting ⊆ bcast-ports, initially ∅
3

4 Signature:
5

6 Input:
7 bcast(m, cm)i, m ∈ msgs, cm ∈ CM-names, i ∈ bcast-ports
8

9 Output:
10 cm-advice(i, cm), i ∈ bcast-ports, cm ∈ {active, passive}
11

12 Trajectories:
13 stops when:
14 waiting 6= ∅
15

16 Input bcast(m, cm)i

17 Effect:
18 waiting ← i
19

20 Output cm-advice(i, cm)
21 Precondition:
22 i ∈ waiting
23 Effect:
24 waiting ← waiting − {i}
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Figure 8-4: Automaton Bcast(R,R′,RndLength, bcast-ports, part ,CD),
State, Signature, and Trajectories

1 State:
2 System State:
3 analog time ∈ R, initially 0
4 analog location[ ], an array of R× R with one entry per bcast-port , initially the initial location of each port
5 discrete failed ⊆ bcast-ports, initially ∅
6 constant function CD-rule : bcast-ports × R× N0× N0→ {±,null},
7 fixed initially to an arbitrary collision detector execution from the collision detector CD
8

9 Broadcast State:
10 discrete round ∈ N, initially 0
11 discrete M[ ], array indexed by round number ∈ N0,
12 where M [r] ⊆ msgs⊥ × bcast-ports⊥ × (R× R), initially [〈∅,⊥, 〈0, 0〉〉, 〈∅,⊥, 〈0, 0〉〉, . . .]
13 discrete beginRound[ ], an array of R× R with one entry per bcast-port , initially [〈0, 0〉, 〈0, 0〉, . . .]
14 discrete doneP ⊆ bcast-ports, initially ∅
15 discrete advice[ ], map from bcast-ports to {active, passive}, initially ∀p ∈ bcast-ports, advice[p] = passive
16

17 Derived Variables:
18 discrete M[r ].msgs = {m : ∃ i ∈ bcast-ports, `∈ 〈R× R〉: 〈m, i, `〉∈ M-locs[r ]}

array indexed by round number ∈ N0, where M [r].msgs ⊆ msgs⊥
19

20 Signature:
21 Input:
22 bcast(m, cm)i, m ∈ msgs⊥, cm ∈ CM-names⊥, i ∈ bcast-ports
23 cm-advice(i, cm)d, i ∈ bcast-ports, cm ∈ {active, passive}, d ∈ CM-names
24 Output:
25 fail()i, i ∈ bcast-ports
26 recover()i, i ∈ bcast-ports
27 recv(some-msgs, cd, cm, loc)i, some-msgs ⊆ msgs, cd ∈ {±, null}, cm ∈ {active, passive}, loc ∈ R× R, i ∈

bcast-ports
28 Internal:
29 next-round()
30

31 Trajectories:
32 stops when
33 time = round ·RndLength
34 or
35 ∃ j,k ∈ bcast-ports, ∃ i ∈ I : j and k are associated with node i and 〈j,time〉 ∈ failed and 〈k,time〉 /∈ failed
36 evolves:
37 d(time) = 1
38 |d(location[i ])| ≤ vmax, ∀i ∈ bcast-ports
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Figure 8-5: Automaton Bcast(R,R′,RndLength, bcast-ports, part ,CD), Transitions

1 Input bcast(m, cm)i

2 Local State:
3 r ∈ N
4 Effect:
5 r ← btime/RndLengthc+ 1
6 M[r ] ← M[r ] ∪ 〈m, i, beginRound[i ] 〉
7

8 Input cm-advice(i, cm)d

9 Effect:
10 if (cm = active) then
11 advice[i ] ← cm
12

13 Internal next-round()
14 Precondition:
15 doneP ∪ failed = bcast-ports
16 time = round ·RndLength
17 Effect:
18 round ← round +1
19 doneP ← ∅
20 ∀i ∈ bcast-ports: beginRound[i ] ← location[i ]
21

22 Output fail()i

23 Precondition:
24 6 ∃ t ∈ N: 〈i,t〉 ∈ failed
25 Effect:
26 advice[i ] ← passive
27 failed ← failed ∪ 〈i, time〉
28

29 Output recover()i

30 Precondition:
31 ∃ t such that 〈i, t〉 ∈ failed
32 time ≥ t +RndLength
33 Effect:
34 failed ← failed − 〈i, t〉
35

36 Output recv(some-msgs, cd, cm, loc)i

37 Local State:
38 sentM ⊆ msgs
39 rcvedM ⊆ msgs
40 sentMinterfere ⊆ msgs
41 rcvedMinterfere ⊆ msgs
42 Precondition:
43 time = round ·RndLength
44 some-msgs ⊆ M[round ].msgs − {⊥}
45 if 〈m, i, ·〉∈ M[round ] then
46 m ∈ some-msgs
47 i /∈ doneP
48 i /∈ failed
49 let sentM = {m 6= ⊥: ∃ j ∈ bcast-ports, 〈m, j, ·〉∈ M[round ], |beginRound[j ] − beginRound[i ]| ≤ R}
50 let rcvedM = sentM ∩ some-msgs
51 let sentMinterfere = {m 6= ⊥: ∃ j ∈ bcast-ports, 〈m, j, ·〉∈ M[round ], |beginRound[j ] − beginRound[i ]| ≤ R′}
52 let rcvedMinterfere = sentMinterfere ∩ some-msgs
53 cd = CD-rule(i, round, |sentM|, |rcvedM|, |sentMinterfere|, |rcvedMinterfere|)
54 cm = advice[i ]
55 loc = location[i ]
56 Effect:
57 advice[i ] ← passive
58 doneP ← doneP ∪ i
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2. (Receive) Messages are delivered to the process via the action recv(M, cd , cm, loc),
where M ⊆ msgs is a set of messages; cd ∈ {±, null} and cm ∈ {active, passive}
are related to collision detection and contention management, respectively, and
are discussed later in the section; loc ∈ (R× R) is the location of node i.

Along with coordinating the synchronous round structure, the broadcast service
here also models portions of the environment; specifically, it is responsible for main-
taining general execution information, such as the real time and the location of the
mobile nodes. It is convenient to model this global state as part of the broadcast
service4. Thus, the broadcast service notifies nodes when they fail, as well as simply
delivering messages.

We now discuss the parameters that define the broadcast service. The formal
TIOA specification of the broadcast service is presented in Figures 8-4 and 8-5. We
then describe the state maintained by the broadcast service, and present an overview
of the operation of the broadcast service. Finally, we argue that the broadcast service
is a progressive timed I/O automaton.

In Section 8.1.7, we present some additional liveness properties that may be asso-
ciated with the Bcast automaton.

Broadcast Service Parameters

The broadcast service is defined by six parameters:

1. R ∈ R>0, a broadcast radius governing the range of the wireless broadcast.

2. R′ ∈ R>0, R′ ≥ R, an interference radius governing how far away broadcasting
nodes must be to guarantee non-interference. When R = R′ = 1, this describes
the model commonly referred to as the “unit-disc model.” When R < R′ = 1,
this describes the model commonly referred to as the “quasi-unit-disc model.”

3. RndLength ∈ R>0, the length of a round. The round length should be long
enough to allow a single device to broadcast a single message. For the basic
broadcast service, RndLength = 1. The virtual broadcast service will have a
larger RndLength.

4. bcast-ports , the set of broadcast ports.

5. part , a partition of broadcast ports into non-intersecting sets. Conceptually,
broadcasts by ports in different sets of the partition should not interfere with
each other. One could imagine different sets in the partition representing dif-
ferent wireless frequencies, or different slots in a pre-allocated time-division
schedule.

6. CD , a collision detector for bcast-ports , as described in Section 8.1.3).

4In Part I of this thesis, we referred to the combined broadcast service and GeoSensor as the
“RealWorld.”

177



Broadcast Service State

Figure 8-4 presents the signature and state for the reference TIOA specification for the
broadcast service. In this section, we describe the state maintained by the broadcast
service.

We divide the state variables into two categories: (1) system state, related to the
general operation of the entire system, and (2) broadcast state, related to the specific
operation of the broadcast service.

First, we discuss the system state (lines 2–7, Figure 8-4). The broadcast service
maintains information about the ongoing execution, including the current time, the
location of the nodes, the failure status of the nodes, and the collision-detector rule:

• time is the current real time. The evolution clause d(time) = 1 (line 37, Fig-
ure 8-4) indicates that it progresses at exactly the rate of real time.

• location[] is an array that maintains the exact geographical (2-space) location of
each port in the system. These locations evolve non-deterministically, subject
only to the restriction that the nodes may not move too fast, i.e., they have
maximum velocity vmax (line 38, Figure 8-4). Notice that the location of each
node changes continuously; sudden jumps in the location are disallowed.

• failed is the set of nodes that are currently failed, along with the time at which
they failed. Conceptually, a node in the system fails “atomically,” in the sense
that all the automata associated with the same node should receive fail and
recover events at the same real time. The broadcast service, however, interacts
with processes on a per-port basis. The stops when condition in line 35, Figure 8-
4, ensures that all the ports associated with a single node fail and recover
together. Specifically, time cannot pass until either (1) all the ports associated
with a given node are in the set failed , or (2) none of the ports associated with
a given node are in the set failed .

• CD-rule is a specific collision detector rule chosen from the collision detector
CD , a set of collision detector rules. The CD-rule component of the state is
constant, in that it does not change during an execution. At the beginning of an
execution of the broadcast service, a specific execution of the collision detector
is fixed, non-deterministically. This modelling choice provides a simple way to
allow non-determinism in the collision detector.

The second part of the state consists of the broadcast state (lines 9–9, Figure 8-4),
which maintains the current round, the set of messages broadcast in each round, the
set of ports that have received messages in each round, and the contention manager
advice delivered to each port. The broadcast state consists of the following compo-
nents:

• The variable round maintains the current round of the execution. Round 1
begins at time 0, and ends at time 1; in general, round r begins at time (r −
1) · RndLength and ends at time r · RndLength. The internal action next-round
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increments the round number when the previous round is complete. Rounds
are discussed further in Section 8.1.6.

• M [] is an array with one entry for each round of the execution. The entry
M [r] stores the set of messages that are broadcast in round r. Each element
in the array consists of three components: (1) a message m ∈ msgs⊥, (2) a
port i ∈ bcast-ports , indicating which port broadcast message m, and (3) a
location ` ∈ R × R indicating the location of the port (as per location[] in the
system state) which broadcast the message at the time that the message was
sent. These three components provide all the necessary information about the
messages sent in round r. The message array M is updated only when a bcast
action occurs. (See lines 1–6, Figure 8-4.)

We define the derived variable M [r].msgs ⊆ msgs⊥ to be the set of messages
(without the associated port and location information) sent in round r. That
is, M [r].msgs is the set {m : ∃i ∈ bcast-ports , ` ∈ 〈R× R〉 : 〈m, i, `〉 ∈M [r]}.

• beginRound [], is an array that maintains the exact location of each port in the
system at the beginning of the current round. It is useful throughout the round
to remember where the nodes were when the round began.

• doneP is a bookkeeping variable that records the set of ports that have already
received a message in the current round. The doneP set is updated whenever
a recv event occurs, delivering a message to some port. When every port has
either received a message or failed, then the round is complete. That is, when
doneP ∪ failed = bcast-ports and time has reached the end of the current round,
then a next-round action can occur. (See lines 13–20, Figure 8-4.)

• advice maintains the current information on which nodes should be active, ac-
cording to the contention managers. Each contention manager provides input
to the broadcast service via cm-advice(i, cm)d events, where i ∈ bcast-ports and
cm ∈ {active, passive}. (See lines 8–11, Figure 8-4.) Each such event indicates
that port i should either be active or passive in the following round. This advice
is then passed to the port itself during a recv event. (See line 54, Figure 8-4.)

Broadcast Service Transitions Overview

In this section, we provide an overview of the broadcast service transitions in Figure 8-
5. We begin with the two input actions, bcast and cm-advice, followed by the internal
action next-round, and concluding with the output actions fail, recover, and recv.

Input Actions:

• The primary purpose of the broadcast service is to allow a node on some
port i ∈ bcast-ports to broadcast a message: bcast(m, cm)i (lines 1–6,
Figure 8-5), where m is a message in msgs⊥ and cm ∈ CM-names⊥ is a
request to a contention manager. First, the broadcast service calculates
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the round r in which the message should be delivered (line 5, Figure 8-
5), and then adds that message to the set of messages M [r]. The round
structure is described further in Section 8.1.6.

• The input cm-advice(i, cm)d (lines 8–11, Figure 8-5) allows the contention
manager CM d to pass information to the broadcast service. Specifically, it
provides advice cm ∈ {active, passive} with respect to port i ∈ bcast-ports .
If any contention manager advises a node to be active in round r, then
advice[i] is set to active; otherwise, it remains set to passive

Internal Actions:

• The internal action next-round (lines 13–20, Figure 8-5) advances the round
when two criteria are met: first, the broadcast service has delivered mes-
sages for the previous round to every non-failed node, as checked by ensur-
ing that every port is represented in the set doneP ∪ failed , and second, it
is the correct real time for the next round to begin. This action increments
the round number, resets doneP to ∅, and records the locations of all the
ports. It is useful throughout the round to keep track of where the nodes
were at the beginning of the round.

Output Actions:

• The output actions faili (lines 22–27, Figure 8-5) and recoveri (lines 29–34,
Figure 8-5) cause port i to fail and recover, respectively. Any port that is
not failed—as determined by the failed set and checked by the precondition
of the fail action—may fail at any time. Similarly, any port that has failed
more than time RndLength ago may recover. When a faili event occurs,
the advice[i] is reset to passive, preparing for the possibility that node i
will recover in a later round.

Notice that both fail and recover events can only happen with finite fre-
quency: each port can only fail and recover once in every round. Also,
notice that fail and recover outputs occur at ports, while in the real world,
one might expect all the ports associated with a given node should fail
and recover at the same time. This property is enforced by the stops when
condition on line 35 of Figure 8-4, which ensures that two ports associated
with the same node share the same failure/recovery status.

• Finally we describe the receive output action which delivers messages,
along with other information, at the end of each round. Specifically, the
receive action recv(some-msgs , cd , cm, loc)i (lines 36–58, Figure 8-5) deliv-
ers messages and other information to port i ∈ bcast-ports . The receive
event happens precisely at the end of each round (see Section 8.1.6). The
recv action has the following properties, as a result of its preconditions:

– The recv event occurs exactly at the end of the round (line 43, Figure 8-
5).
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– some-msgs is some subset of the messages that should be delivered in
the current round (line 44, Figure 8-5).

– If port i sends a message in round r, then port i receives its own
message in round r (lines 45–46, Figure 8-5).

– Messages are delivered only once in a round (line 47, Figure 8-5), and
only if port i has not failed (line 48, Figure 8-5).

– cd ∈ {±, null} indicates whether there is a collision, as determined
by the given collision detector execution (lines 49–53, Figure 8-5).
The local variable sentM calculates the set of messages broadcast in
round r by a node that was nearby at the beginning of the round.
Specifically, for a recvi event, it includes all messages sent by a node j
where |location[i]− location[j]| ≤ R at the beginning of round r. The
local variable sentMinterfere calculates the set of messages broadcast
in round r by a node in the interference radius at the beginning of
the round, that is, all messages sent by a node j where |location[i] −
location[j]| ≤ R′ at the beginning of round r. The local variable
rcvedM calculates the subset of sentM that is delivered by the recv
event, while rcvedMinterfere calculated the subset of sentMinterfere
that is delivered by the recv event.

– cm ∈ {active, passive} passes the appropriate contention management
advice to the process (line 54, Figure 8-5). Recall that the variable
advice[i] stores the most recent advice from a contention manager.

– loc ∈ (R × R) is the current location of the port when the recv event
occurs (line 55, Figure 8-5).

When a recvi action occurs, two state variables are modified: first, the
advice[i] is reset to passive, in preparation for the next round advice; sec-
ond, the port i is added to the set doneP , which ensures that only one
recvi event can occur in the round.

In addition, we will assume that the broadcast service guarantees eventual
collision freedom, which can roughly be interpreted as guaranteeing that
eventually, if only one message is sent by all neighbors of port i, then port i
receives that message. For more information on eventual collision freedom,
see Section 8.1.9.

Progressive Timed Automaton

Before proceeding, we argue that the broadcast service is a progressive timed I/O
automaton (see Definition A.2.8):

Lemma 8.1.18. Automaton Bcast(R,R′,RndLength, bcast-ports , part ,CD , update-loc)
is a progressive TIOA.

Proof. First, we argue that the broadcast automaton is a TIOA. Specifically, we have
to show that it is time-passage enabled (see Definition A.2.5). (It is immediate from
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the TIOA syntax that it is input enabled.) There are two trajectories that result in
time stopping. In each case, we show that some action is enabled.

First, consider the case when: time = round ·RndLength (line 33, Figure 8-4). In
this case, either doneP ∪ failed = bcast-ports , in which case next-round() is enabled,
or recvi is enabled for i /∈ doneP ∪ failed . Specifically, notice that the action recvi is
enabled when some-msgs = M [round ]− {⊥}, and cd and cm are set as per CD-rule
and advice[i].

Second, consider the case when:

∃j, k ∈ bcast-ports ,∃i ∈ I : j and k are associated with node i

and 〈j, time〉 ∈ failed

and 〈k, time〉 /∈ failed

(line 35, Figure 8-4). Specifically, the following invariant holds in every execution:
∀t < time, if j and k are ports associated with some node i ∈ I, then 〈j, t〉 ∈ failed
if and only if 〈k, t〉 ∈ failed . This invariant follows immediately from the stops
when condition: consider the last time at which the invariant holds in a prefix of
the execution, and notice that time = t until the invariant is true. Thus, assume
that j and k are ports associated with some node i ∈ I, and 〈j, time〉 ∈ failed and
〈k, time〉 /∈ failed . We know that for all t′ < time, 〈k, t′〉 ∈ failed if and only if
〈j, t′〉 ∈ failed . Since 〈j, time〉 ∈ failed , we know that 〈j, t′〉 /∈ failed , and hence
k , t ′ /∈ failed . Thus, the event failk is enabled.

Next, we argue that the automaton is progressive (Definition A.2.8). Consider
some finite interval of time [t1, t2]. Notice that the recvi action can only happen
once for each time when time = round · RndLength. Thus there are at most d(t2 −
t1)/RndLengthe + 1 receive outputs for each i ∈ bcast-ports . Since bcast-ports =
I × process-ports , and the sets I and process-ports are finite, bcast-ports is also finite,
resulting in a finite number of receive actions. Similarly, the next-round action can
occur only once for every interval of time of length RndLength. Finally, notice that
for each port, the number of fail events can be at most one greater than the number of
receive events; moreover each port can only recover once every round: the precondition
ensures that if a port failed at time t, it can only recover after time t + RndLength.
Hence there are at most a finite number of fail and recover events.

8.1.6 General System Definition

In this section we formally define the general system as a composition of three types
of automata: processes, a broadcast service, and a set of contention managers:

Definition 8.1.19. The general system

G(I, process-ports ,msgs ,CM-names , P, A,R,R′,RndLength, part ,CD ,CM ) ,

consists of the composition of the following automata:

1. P (A, I), the set of remapped processes for 〈A, I〉,
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2. B(R,R′,msgs ,RndLength, bcast-ports , part ,CD), the broadcast service, where
bcast-ports = I × process-ports.

3. {CM d ∈ CM |d ∈ CM-names}, the set of contention managers.

Throughout the rest of this section, we occasionally refer to a general system G,
omitting the list of parameters that has already been specified above. We begin by
noting that a general system as a whole is progressive:

Lemma 8.1.20. Every general system G is a progressive timed I/O automaton.

Proof. First, notice that each individual component is a TIOA: the broadcast ser-
vice, the (remapped) processes, and the contention managers. Next, notice that the
broadcast service and the contention manager are progressive. The composed set
of (remapped) processes is internally progressive, since they share no input/output
actions. Thus we can conclude that the composition of the (remapped) processes,
the broadcast service, and the contention managers is internally progressive by Theo-
rem A.2.11. However, the final composed automaton has no input actions, since each
has been matched with an output action during the composition. Thus the resulting
automaton is progessive.

Synchronous Round Structure

A general system implements a round-based synchronous model. In this section we
discuss the precise resulting round structure, associating each event in an execution of
general system G with a round number. Throughout this section, recall that a round
r is defined as the closed interval of time [(r − 1) · RndLength, r · RndLength], as per
Definition 8.1.17. Recall also that if α is an execution of a timed I/O automaton, we
say that an event e occurs at time t in α if `time(α′) = t, where α′ is the prefix of α
including all the events and trajectories preceding event e.

Broadcast and Receive Events. The broadcast service delivers messages pre-
cisely at the end of each round:

Definition 8.1.21. For execution α of a general system G, we say that a recv(. . .)i

event at port i ∈ bcast-ports is a round r receive event if it occurs in α at time
r · RndLength.

Since the broadcast service delivers messages only at the end of a round, every
receive event is thus assigned a round number. The processes broadcast messages at
the beginning of each round:

Definition 8.1.22. For execution α of a general system G, we say that a bcast(. . .)i

event at port i ∈ bcast-ports is a round r broadcast event if it occurs in α at time
(r − 1) · RndLength.

See Figure 8-6 for an illustration of how bcast and recv events are assigned to rounds.
Since each broadcast happens in response to a preceding receive event (Restriction 4
of processes), every broadcast event is thus assigned a round number. Notice that the
round r + 1 broadcast events occur at the same time as the round r receive events.
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Contention Manager Events. We proceed to classify the cm-advice events by
round:

Definition 8.1.23. For execution α of a general system G, for r ≥ 2, we say that
a cm-advice(i, cm)d event is a round r advice event if it occurs in α at time
(r − 2) · RndLength.

Notice that round r advice actually arrives at the beginning of round r− 1. This
event is the only type of event that does not occur in the round to which it is assigned.
However, a round r cm-advice event provides advice for behavior in round r, and
therefore it is assigned to round r, despite occurring in round r − 1. See Figure 8-6
for an illustration of how cm-advice events are assigned to rounds.

Next Round Events. We next classify the next-round events:

Definition 8.1.24. For execution α of a general system G, we say that a next-round
event is a round r next-round event if it occurs in α at time (r− 1) ·RndLength.

Thus, the round r next-round event occurs at the beginning of round r. See
Figure 8-6 for an illustration of how next-round events are assigned to rounds.

Failure and Recovery Events. We next assign the failure and recover events to
rounds:

Definition 8.1.25. For execution α of a general system G, we say that a faili event
is a round r fail event if r is the largest round such that it occurs after a round
r next-round event. If it occurs prior to the first next-round event, i.e., the round 1
next-round event, we refer to it as a round 0 fail event.

Definition 8.1.26. For execution α of a general system G, we say that a recoveri
event is a round r recover event if r is the largest round such that it occurs after
a round r next-round event. If it occurs prior to the first next-round event, i.e., the
round 1 next-round event, we refer to it as a round 0 recover event.

See Figure 8-6 for an illustration of how fail and recover events are assigned to rounds.

Other Events. It remains to assign the internal events of processes to rounds:

Definition 8.1.27. For execution α of a general system G, let e be an event in α
that is an action in the signature of some automaton p in P (A, I), and not classified
by Definitions 8.1.21–8.1.26. Let i ∈ I be the mobile node identifier associated with
automaton p.

Let r be the largest integer > 0 such that for some port j ∈ process-ports, e occurs
either after a round r broadcast or after a round r recover event in α on port 〈i, j〉.
If no such r exists, let r = 0. We say that e is a round r process event.
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We use the broadcast events, rather than the next-round events, to classify the events
that are local to a process so that it remains possible to assign rounds to events even
when examining a an execution restricted only to a single process automaton.

The following straightforward lemma claims that every event is assigned to some
round:

Lemma 8.1.28. Let α be an execution of a general system G. Let e be an event in
α. Then there is some round r ∈ N such that e is a round r event.

Proof. If e is a recv(. . .)i event, for some port i, then e is classified by Definition 8.1.21,
since all receive events occur at some time r ·RndLength, by the precondition in line 43
of Figure 8-5.

If e is a bcast(. . .)i event, for some port i, then there is some preceding recv(. . .)i

event—with no intervening broadcast event—according to Restriction 4(a) on pro-
cesses. This preceding receive event must occur at some time r · RndLength, as just
discussed. There are two cases: (1) `time(α) = r · RndLength, in which case the
broadcast event must occur at time r · RndLength; (2) `time(α) > r · RndLength,
in which case Restriction 4(b) on processes indicates that the broadcast event must
occur at time r ·RndLength. In either case, the broadcast event is assigned to round
r + 1.

If e is a cm-adviced event, it is assigned to a round by Definition 8.1.23, since all
cm-adviced events occur immediately after bcast events, with no time passage, as per
Restrictions (3) and (4) on contention managers. That is, the preceding broadcast
event specified by Restriction (3) must occur at some time r · RndLength, as just
discussed. There are two cases: (1) `time(α) = r · RndLength, in which case the
advice event occurs at time r · RndLength; (2) `time(α) > r · RndLength, in which
case Restriction (4) on contention managers indicates that the broadcast event must
occur at time r ·RndLength. In either case, the advice event is assigned to round r+2
by Definition 8.1.23.

If e is a next-round event, it must occur at time r · RndLength, for some r, as
ensured by the precondition in line 16 of Figure 8-5.

If e is a faili or a recoveri event, it must either occur after some next-round event,
or prior to all next-round events, and hence is assigned a round by Definition 8.1.25
or Definition 8.1.26.

If e is not one of the preceding events, it must be an event in the signature of a
remapped process, and not covered by the previous cases. Thus it is assigned a round
by Definition 8.1.27.

Finite and Infinite Executions

We will often be interested in executions containing at least r rounds, for some r ≥
1. Thus, we say that α is an “r-round execution” when the broadcast service has
completed round r and advances to the next round:

Definition 8.1.29. For execution α of general system G, for r ∈ N, we say that α is
an r-round execution if a next-round(r + 1) event occurs in α.
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Notice that an r-round execution may contain events for rounds > r; when we say
that an execution α is an r-round execution, it indicates that α includes at least r
rounds.

We also consider infinite executions of a general system G:
Definition 8.1.30. We say that α is an infinite execution of a general system G
if it is an execution of G and also an infinite sequence of trajectories and events.

Since G is progressive, this implies that `time(α) =∞, and also that the number
of rounds in α is unbounded.

Lemma 8.1.31. Execution α is an infinite execution of a general system G if and
only if it is an execution of G and `time(α) =∞.

Proof. First, assume α is an infinite execution, i.e., an unbounded sequence of tra-
jectories and actions. Since a general system is progressive, by Lemma 8.1.20, the
execution must have infinite limit time.

Next, assume α has infinite limit time. Since the round length is finite and a
next-round event occurs every round, there must be an infinite number of next-round
events, and hence an infinite number of events and trajectories in the sequence α.

Failure and Recovery

We can now refer to the round in which a process fails:

Definition 8.1.32. For any r ∈ N, for an r-round execution α of general system G,
we say that node i ∈ I fails in round r if there is a round r faili event in α.

(Recall that a round r fail event for node i ∈ I occurs between the round r next-round
and round r+1 next-round events for node i.) Similarly, a node can recover in a given
round:

Definition 8.1.33. For any r ∈ N, for an r-round execution α of general system G,
we say that node i ∈ I recovers in round r if there is a round r recoveri event in α.

Thus, for any given round, a node is either failed or non-failed:

Definition 8.1.34. For any r ∈ N, for any r-round execution α of general system G,
we say that node i ∈ I is failed in round r if, for some rfail ≤ r, the following two
conditions hold:

1. Node i fails in round rfail .

2. For all rounds r′ such that rfail < r′ < r, node i does not recover in round r′.

For example, in Figure 8-6, we say that i is failed in rounds 4 and 5.
There are two facts to note. First, if node i fails in some round rfail , it cannot

recover until round rfail + 1, due to the restriction that a node can only recover time
> RndLength after it fails (line 32, Figure 8-5). Second, notice that even if node i
recovers during round r, we consider node i to be failed in round r. This is because
even if node i recovers in round r, it does not really participate in round r as it does
not broadcast a round r message. (In the example in Figure 8-6, this corresponds to
the fact that there is no round 5 bcasti event.)
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8.1.7 Message Delivery Guarantees

A reliable synchronous broadcast service should guarantee that a message is delivered
in round r if and only if it was broadcast in round r. In a wireless network, the broad-
cast service may not be reliable: sometimes a message from round r may be lost. In
fact, communication is prone to collisions when two nearby processes broadcast at
the same time. As a result of a collision, each node can lose an arbitrary subset of
messages that were broadcast in a round. Moreover, collisions may affect nodes in a
non-uniform way: when a node broadcasts a message, some nodes may receive the
message while others may not. To this point, we have formally described a general
system and specified TIOA automata to model the various general system compo-
nents. In this section, we discuss the precise guarantees related to which messages
are delivered.

We now discuss the basic message delivery guarantees provided by the broadcast
service: integrity, self-delivery, and per-round delivery. Then we discuss the collision
detection properties that a general system guarantees, and prove two lemmas relating
the completeness and accuracy of message delivery to the completeness and accuracy
of the collision detector.

Integrity, Self-Delivery, and Per-Round Delivery

First, the broadcast service provides a basic integrity guarantee:

Lemma 8.1.35 (Integrity). For ever r ∈ N, for every r-round execution α of a
general system G, for every port i ∈ bcast-ports, if recv(M, . . .)i is a round r receive
event in α, then for every m ∈ M , a round r bcast(m, ·)j event precedes it for some
port j ∈ bcast-ports.

Proof. This property is guaranteed by line 44, which ensures that each message de-
livered in round r has been stored in M [r]; line 5 ensures that each message stored
in M [r] was broadcast in round r.

The broadcast service also guarantees that if node i broadcasts a message in round
r, it receives its own message in round r (lines 45–46).

Lemma 8.1.36 (Self-delivery). For every r ∈ N, for every r-round execution α of a
general system G, for every port i ∈ bcast-ports, if a round r bcast(m, ·)i event and a
round r recv(M, . . .)i event occurs in α, then m ∈M .

Finally, as is typical in a synchronous broadcast service, the broadcast service
delivers messages only once in each round to each non-failed port. Thus, it should
not perform two recv(. . .)i events in the same round.

Lemma 8.1.37 (Per-round delivery). For any r ∈ N, for any r-round execution
α of general system G, there is at most one round r recv(. . .)i event for each port
i ∈ bcast-ports; there is exactly one if i is non-failed in round r.
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Proof. First, we argue that there is at most one such receive event. The set doneP
tracks the set of nodes that have already been delivered messages. In line 47, the
broadcast service checks that a node has not already received messages for the current
round. In line 58, the broadcast service adds i to doneP . Finally, in line 19, the
broadcast service resets doneP to empty in preparation for the next round, and
increments the round number. Therefore there is at most one round r recv(. . .)i event
for each port i ∈ bcast-ports .

Next, we argue that there is at least one such recv event: notice that the next-round
action cannot execute until i ∈ doneP ∪ failed , as per the precondition in line 15.
Thus, if i is non-failed, the round is not incremented until a round r recv occurs.
Since α is an r-round execution, there is a r + 1 next-round event, and thus there is
some round r recv(. . .)i event, for each port i ∈ bcast-ports .

In combination with Restriction 4 of processes, Lemma 8.1.37 implies that each
non-failed port performs one broadcast in each round:

Lemma 8.1.38. For every r ∈ N, for every r-round execution α of a general system
G, for each port i ∈ bcast-ports, there is at most one round r bcast(. . .)i for port i.
Moreover, if the node associated with port i does not fail in or prior to round r, then
there is exactly one such broadcast event.

If the node associated with port i is correct, we can therefore refer to the unique
round r bcast on port i and the unique round r recv on port i.

Collision Detector Properties

In this section, we relate the completeness and accuracy of the broadcast service to
the completeness and accuracy of the collision detector. We begin by defining what
it means for a process to detect a collision in a given round, and then present two
basic lemmas regarding when a process must detect a collision, and when a process
may detect a collision.

Detecting a Collision. Collision detection information is delivered by the broad-
cast service to each mobile node as part of the recv event:

Definition 8.1.39. For every r ∈ N, for every r-round execution α of a general
system G, we say that port i ∈ bcast-ports detects a collision in round r when α
contains a round r recv(·,±, ·, ·)i event.

A collision detection in round r provides an indication that some message that
node i should have received in round r was lost. It does not provide any information
with respect to the number of lost messages or the identities of their senders.

Completeness. The broadcast service provides the following collision detection
guarantees, which reflect the completeness and eventual accuracy guarantees of the
collision detector:
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Lemma 8.1.40 (Completeness). Assume that CD ∈ ♦A-C. For every r ∈ N, for
every r-round execution α of a general system G, for i, j ∈ bcast-ports be two broadcast
ports:

If there exists a round r bcast(m, . . .)j event for j in α and a round r recv(M, cd , . . .)i

event for i in α, and i and j are within distance R at the beginning of round r5 and
j does not fail prior to the end of round r, then either (1) m ∈M , or (2) cd = ±.

Proof. Assume m /∈ M . Consider lines 49 and 53 of the recv action: notice that
m ∈ sentM , but m /∈ rcvedM , hence |sentM | < |rcvedM |. Since CD-rule is complete,
this implies that cd = ±.

That is, in each round, if two nodes are within the broadcast radius at the begin-
ning of the round and one of them broadcasts a message, then either the other node
will receive that message or it will detect a collision.

This assumption of “perfect” completeness is quite strong. Previously [23,79], we
have examined weaker notions of completeness, such as “majority completeness” and
“zero completeness.” It seems likely that all the algorithms described in this thesis
can be adapted for a majority complete collision detector6. Lower bounds in [23, 79]
suggest that it is likely impossible to adapt the algorithms in this thesis for zero
complete collision detectors. Specifically, we know that with only a zero-complete,
eventually accurate collision detector, it is impossible to solve consensus efficiently;
every consensus protocol requires at least a logarithmic number of rounds. We can
also conclude that it would be impossible to adapt the algorithms in this thesis for an
“eventually complete” collision detector, as it is impossible to solve consensus with
such a collision detector.

Accuracy. For eventual accuracy, we define the stabilization round racc(α), which
is the round at which the collision detector becomes stable. From racc(α) onwards,
the collision detector reports a collision only when a message was, in fact lost.

Definition 8.1.41. For every infinite execution α of a general system G, define
racc(α) to be the smallest round such that for every r ≥ racc(α):

• If there exists a round r recv(M,±, . . .)i event in α for some i ∈ bcast-ports,
then there exists a port j ∈ bcast-ports and m ∈ msgs such that:

1. There exists a round r bcast(m, . . .)j event in α.

2. Port j is within distance R′ of i at the beginning of round r.

3. Message m /∈M .

If no such racc(α) exists, then we define racc =∞.

5Recall that the velocity of a node is bounded by vmax, and hence this limits their distance from
each other at the end of the round. In Section 8.2, we relate this maximum velocity to the broadcast
radius.

6In [23, 79] we have shown that the problem of consensus can be solved efficiently (i.e., in O(1)
time) if a system is equipped with a majority-complete, eventually accurate collision detector.
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It then follows from the definition of eventual accuracy that such a stabilization
round exists:

Lemma 8.1.42 (Eventual Accuracy). Assume that CD ∈ ♦A-C. For every infinite
execution α of a general system G, racc(α) is finite.

Proof. According to the definition of accuracy, there is some racc such that for all
r ≥ racc, CD-rule(·, r, ·, ·, p, p) = null, for all p ∈ N0. Consider some round r ≥
racc, and assume there exists a round r recv(M,±, . . .)i event in α for some i ∈
bcast-ports . From the way in which cd is set in lines 51 and 53, we can conclude that
|sentMinterfere| < |rcvedMinterfere| in round r. Thus there exists some message
that was broadcast in round r by some node j that is within distance R′ of i at the
beginning of round r that is not received by node i in round r, as required. Thus
racc(α) = racc.

This lemma implies that, eventually, if a node detect a collision, then it did not
receive some message sent by an interfering node.

8.1.8 Contention Manager Properties

The goal of the contention manager is to advise certain broadcast ports to be active,
and other broadcast ports to be passive. The canonical contention manager—with the
empty set of additional properties—defined in Section 8.1.4 simply guarantees that
some advice is given in each round. We will be interested in this thesis in contention
managers that provide further guarantees as to which ports are advised to be active.
In this section, we begin by defining what it means for a port to contend in a given
round, and then discuss desirable properties of contention managers.

Contending

When a port requests that a particular contention manager advise it to be active, we
say that that port is “contending:”

Definition 8.1.43. For round r ∈ N, for an r-round execution α of general system G,
we say that port i ∈ bcast-ports contends for CM d in round r of α if α contains
a round r − 1 broadcast event bcast(·, d)i.

Definition 8.1.44. For round r ∈ N, for an r-round execution α of general system
G, we say that port i ∈ bcast-ports contends in round r of α if it contends for
some CM d, d ∈ CM-names.

The contention manager observes the broadcast events of the processes, and can
thus determine which ports are contending in a given round.
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Advising

Recall that the contention manager outputs advice as to whether a port i should be
active or passive via cm-advice(i, cm)d output events. This information is provided
to the broadcast service, which then passes it to the broadcast ports along with the
messages from the current round (line 54). We have already associated each cm-advice
event with a particular round (see Definition 8.1.23). For example, a cm-advice event
at time r · RndLength is providing advice for round r + 2 (which begins at time
(r + 1) · RndLength). When a contention manager produces a cm-advice event, we
say that it is advising a port to be active or passive:

Definition 8.1.45. For round r ∈ N, for an r-round execution α of general system G:

• We say that CM d advises i to be active in round r when there is a round r
cm-advice(i, cm)d event where cm = active.

• We say that CM d advises i to be passive in round r when there is a round
r cm-advice(i, cm)d event where cm = passive.

If any contention manager advises a broadcast port to be active in a round, we
say that the port is advised to be active:

Definition 8.1.46. For round r ∈ N, for an r-round execution α of general system G:

• We say that broadcast port i ∈ bcast-ports is advised to be active in round r
if for some d ∈ CM-names, CM d advises i to be active in round r.

• Otherwise, we say that port i is advised to be passive in round r.

Interference and Nearby Nodes

When discussing contention managers, it is often useful to consider the set of ports
that may be near to a given location during a given round:

Definition 8.1.47. For any ` ∈ (R×R), r ∈ N, and S ∈ part, the set near(`, r , S)
is the set of ports k ∈ S such that |location[k]− `| ≤ R/4 at the beginning of round r.

When discussing a range of rounds, we are interested in ports that are nearby in all
the relevant rounds:

Definition 8.1.48. For any ` ∈ (R × R), r1, r2 ∈ N, and S ∈ part, the set
near(`, [r1 , r2 ], S) is the set of ports:⋂

r∈[r1,r2]

near(`, r, S) .

Notice these definitions refer to ports that are nearby at the beginning of one or
more rounds. Recall that a port’s location is potentially changing continuously, and
maintained by the broadcast service in the location variable. However, the velocity
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of a mobile node is bounded by vmax, and hence by assuming that two nodes are close
at the beginning of a round, we can conclude that they are not too far apart at the
end of a round.

We may also be interested in the nodes close enough to “interfere” with a given
port’s broadcasts.

Definition 8.1.49. For any ` ∈ (R×R), r ∈ N, and S ∈ part, the set interfere(`, r , S)
is the set of ports k ∈ S such that |location[k]− `| ≤ 2R′ at the beginning of round r.

Non-Interfering and Fair Contention Managers

We begin by describing a powerful—and useful—class of contention managers that
guarantee two strong properties: eventual non-interference and eventual fairness. In-
tuitively, a non-interfering contention manager guarantees that it will advise only one
port in a region to be active; a fair contention guarantees that each port will get
repeated turns to be active.

Non-Interference. Ideally, only broadcast ports that are sufficiently far apart
should be activated by a contention manager. Specifically, a contention manager
should ensure that, eventually, it never advises two ports withing distance 2R′ to
be active in the same round. With a non-interfering contention manager, all colli-
sions can, eventually, be avoided simply by following the advice of the contention
manager; this follows as a result of eventual collision freedom, which is discussed in
Section 8.1.9.

Definition 8.1.50. Assume S ∈ part, a set of ports, and that CM is a contention
manager in some general system G. We say that a contention manager CM is even-
tually non-interfering for S if it guarantees the following property:

• For every infinite execution α of G, there exists some round rcm such that for
every round r ≥ rcm :

- For every pair of broadcast ports i, j ∈ S, if i and j are advised by CM to
be active in round r, then i /∈ interfere(location[j], r, S).

Fairness. A second desirable property of a contention manager is that it should
eventually guarantee that each broadcast port is occasionally advised to be active.
Consider the following notion of an “eventually fair” contention manager that gives
each port repeated turns to broadcast:

Definition 8.1.51. Assume d ∈ N, S ∈ part, and that CM is a contention manager
in some general system G. We say that CM is eventually fair for S with delay d
if it guarantees the following property:

• For every infinite execution α of G, there exists some round rcm such that for
every round r ≥ rcm :
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- If port i ∈ S is not failed in rounds [r, r + d], then there exists a round
r′ ∈ [r, r + d] such that contention manager CM advises port i to be active
in round r′ in α.

In this case, each non-failed port—that remains non-failed for sufficiently long—is
guaranteed that every so often it will be designated as active. Notice that this con-
tention manager does not distinguish between contending and non-contending ports;
it simply gives each port turns. If the contention manager CM is also non-interfering,
it guarantees that when the port is advised to be active, no other interfering port will
be activated.

Contention Fairness. A weaker notion of fairness ensures that if a broadcast port
contends for long enough, it will get a turn, i.e., it will get several consecutive rounds
in which to broadcast. We therefore define a fairness property that is parameterized
by two integers 〈a, b〉: each port that contends for a consecutive rounds (without
failing) will be activated for b consecutive rounds. (Typically, b is much smaller
than a.)

Definition 8.1.52. Assume that CM is a contention manager in some general system
G, that a, b ∈ N, a > b, and that Rdistance > 0 ∈ R is a radius. We say that CM
is eventually (a, b)-contention fair for set S ∈ part with radius Rdistance if it
guarantees the following property:

• For every infinite execution α of G, there exists some round rcm such that for
all rounds r ≥ rcm :

– If j ∈ bcast-ports contends for CM in rounds [r, r+a−1] and j is non-failed
in rounds [r, r + a− 1], then there exists some round r′ ∈ [r, r + a− b− 1]
such that CM advises j to be active in rounds [r′, r′ + b− 1], and advises
every non-failed port within distance Rdistance of j to be passive in rounds
[r′, r′ + b− 1].

Notice that in the preceding definition, since r′ ∈ [r, r+a−b−1], we can conclude
that r′+b ∈ [r, r+a−1], and hence that port j is contending and non-failed throughout
the interval [r′, r′ + b− 1].

Regional Contention Manager

In this section, we consider another contention manager that guarantees only a “re-
gional” notion of eventual fairness. A regional contention manager is responsible only
for ports in a certain geographic region of the network. This contention manager
appears easier to implement in real systems than a fair, or (a, b)-far contention man-
ager, in that it only resolves contention among nodes in a single specific region, that
is, nodes that can communicate with each other.

Let ` be a location in the plane. We begin by defining what it means for an
execution to satisfy “`-restricted contention.” Conceptually, a regional contention
manager is designed to reduce contention in some specific area of the network. Thus,
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it will yield useful advice only when the contending ports are in that particular area
of the network. Thus, we say that an execution satisfies “`-restricted contention”
when only ports near location ` contend:

Definition 8.1.53. For some ` ∈ R × R, we say that an execution α of a general
system G with contention manager CM satisfies `-restricted contention for CM
if for every round r > 0, for every set S ∈ part, for every port j ∈ S, port j contends
for CM in round r only if j ∈ near(`, r − 1, S).

We now define a “regional” contention manager, which (informally) guarantees
that eventually, if an execution satisfies `-restricted contention, then whenever a port
contends in a region, some port is advised to be active:

Definition 8.1.54. Assume ` ∈ (R×R) and S ∈ part, and that CM is a contention
manager in some general system G. We say that CM is an eventual `-regionally
fair contention manager for S if it guarantees the following property:

• For every infinite execution α of general system G, if α satisfies `-restricted
contention, then there exists some round rcm such that for every round r ≥ rcm :

1. At most one port is advised by CM to be active in round r.

2. If some port i ∈ near(`, [r, r + 1], S) contends for CM in round r, and port
i does not fail prior to the beginning of round r +1, i.e., through the bcasti
event in round r + 1, then there exists a port j ∈ S such that:

(a) Port j contends for CM in round r.

(b) Port j does not fail prior to the beginning of round r + 1, i.e., prior
to the bcastj event in round r + 1.

(c) Port j ∈ near(`, [r, r + 1], S).

(d) Contention manager CM advises port j to be active in rounds r and
r + 1.

Thus, an `-regionally fair contention manager guarantees that if an execution
satisfies `-restricted contention, then eventually it satisfies the following property: if
some port near location ` contends for some round r, and does not fail for d subsequent
rounds, then some contending port that is near to ` (though not necessarily the same
one), and that does not fail for d rounds, is advised to be active in round r. At the
same time, it guarantees that all other potentially interfering ports are advised to be
passive in round r.

Notice that this almost guarantees that the contention manager is eventually non-
interfering; however, it guarantees non-interference only when the execution satisfies
`-restricted contention, and only when some appropriate port is contending. As a
result, an `-regional contention manager reduces contention only among ports near
to a location `; some other method must be used to reduce contention among ports
that are farther away.
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Conservative Contention Managers

Finally, we will sometimes want to ensure that the contention managers advise a
broadcast port to be active only if that port wants to be active. Notice that a fair
contention manager is not “conservative” in that it activates ports in some partition
S regardless of whether they contend or not.

Definition 8.1.55. Assume that CM is a contention manager in some general system
G. We say that a contention manager CM is conservative if for every r > 0, for
every r-round execution α of G, CM advises a port to be active in round r only if it
contends for CM in round r.

8.1.9 Eventual Collision Freedom

To this point, we have no reliability guarantees on the broadcast service. In this
section, we discuss a limited reliability guarantee: eventually, if only one message is
sent by a neighbor of port i or i itself, then i receives that message. In fact, the
guarantee is somewhat stronger in that it ensures that ports in different sets in the
partition part can broadcast at the same time without interfering with each other.

We now define the basic eventual collision freedom property. This property says
that if a port j broadcasts a message in round r, and no interfering port broadcasts
a message in round r, then all nearby ports will receive the message:

Definition 8.1.56. We say that an infinite execution α of a general system G satisfies
eventual collision freedom if there exists a round rcf such that for every round
r ≥ rcf :

For all i, j ∈ bcast-ports, S ∈ part, m ∈ msgs:

– If the following conditions hold:

1. Port j broadcasts a message: A round r bcast(m, . . .)j occurs in α.

2. Port j is a neighbor of port i: |location[j] − location[i]| ≤ R at the
beginning of round r.

3. No interfering port broadcasts a message: For every port k ∈
interfere(location[i], r, S), k 6= j, a round r bcast(⊥, . . .)k occurs in α.

– Then, if a round r recv(M, . . .)i occurs in α, m ∈M .

Notice that we only focus on the location of a node at the beginning of a round; since
the maximum velocity of each node is bounded, this is sufficient to limit its location
throughout the round.

We also introduce a slightly weaker version of eventual collision freedom, called
“Eventual Collision Freedom with Good Advice” (ECF[GA]). The only difference is
that ECF[GA] guarantees successful message delivery only when the broadcasting
node complies with the advice of the contention manager; when the broadcasting
node ignores the contention manager advice, there is no reliability guarantee.
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Definition 8.1.57. We say that an infinite execution α of general system G satisfies
eventual collision freedom with good advice if there exists a round rcf such
that for every round r ≥ rcf :

For all i, j ∈ bcast-ports, S ∈ part, m ∈ msgs:

- If the following conditions hold:

1. Port j broadcasts a message: A round r bcast(m, . . .)j occurs in α.

2. Port j is a neighbor of port i: j ∈ near(location[i], r, S)

3. No interfering port broadcasts a message: For every port k ∈
interfere(location[i], r, S), k 6= j, a round r bcast(⊥, . . .)k occurs in α.

4. Port j is advised to be active: Port j is advised to be active in round
r.

- Then, if a round r recv(M, . . .)i occurs in α, m ∈M .

We will focus our attention on executions of the basic system that guarantee
eventual collision freedom. In Chapter 9, we will discuss a virtual infrastructure
system in which every execution guarantees ECF[GA].

Notice that the eventual collision freedom property is not guaranteed by the BCast
automaton. Since it is a property that holds “eventually,” rather than perpetually, we
restrict the set of executions of Bcast to satisfy Definition 8.1.56 or Definition 8.1.57.

8.1.10 A Note on Motion-controlled Devices

Throughout this section, we have defined a class of general systems in which the
devices have no control over their own motion. In some practical situations, however,
a mobile device may in fact be able to control its motion. For example, a mobile
robot can direct its own motion in a suitable fashion; a vehicle may choose its own
velocity; machines in a factory may have some autonomous control over their actions.

Moreover, some of the most compelling uses for the virtual infrastructure paradigm
presented in this thesis are those in which devices may have some control over their
motion. For example, consider a battlefield scenario where a set of tanks wish to
coordinate their motion according to some predetermined formation; in this case, the
tanks might use virtual nodes to coordinate their motion. (See [69] for an example
of using virtual infrastructure to solve a basic coordination problem among mobile
robots.)

The model as presented in Chapter 8, however, provides no mechanism for a
process to influence the location of a node, as maintained by the broadcast service.
It is relatively straightforward to augment the general system model presented here
to include motion control. We briefly list the places in the formal model that must
be modified.

• Process definition: First, it is necessary to augment the definition of a process
(Definition 8.1.2) to include an output action, such as move(. . .), which produces
motion control signals. This information may be in the form of a velocity
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vector, a target waypoint, or any other desired form of motion control signal.
In practice, the most common such signal is acceleration.

• Broadcast service signature: Next, the broadcast service, which maintains the
location information, must be modified to receive the move events as inputs, and
update the location continuously in response. For example, if the move action
outputs a velocity vector, then the broadcast service should maintain the current
velocity of each node, and update the location correctly as a function of time.

• Broadcast service behavior: A final complication is that the moving entity is a
mobile node, while the broadcast service maintains the location of ports ; thus
it is necessary to translate mobile node motion to port locations.

Everything else remains unchanged. Moreover, since the current model allows for any
arbitrary motion, any algorithm for the general systems described herein should work
correctly in a model containing motion control.

8.2 Basic Systems

In this section we define the basic wireless model used throughout Part II of this
thesis, which we refer to as the “Basic System.” The basic system models networks
of physical devices communicating by wireless radio broadcast. Each device executes
a process, the basic unit of computation. The nodes coordinate their communication
using contention managers, and receive feedback on the success or failure of com-
munication from collision detectors. An example instantiation of the basic system is
illustrated in Figure 8-7.

Communication in the basic system proceeds in synchronous rounds. In each
round, each node chooses whether to broadcast a message. This decision is based
on the current state of the process, which may include information received from the
contention managers in the previous round. Eventually, when contention is sufficiently
low, communication is reliable: if only one message is sent by a neighboring node,
then that message is received. When messages are lost, a collision detector provides
(potentially unreliable) feedback that a problem occurred: the collision detector may
indicate that a message that should have received was lost.

The basic system BS (process-portsB,msgsB,CM-namesB, PB, AB,CM B) is pa-
rameterized by six values: a set of ports, a message alphabet, a set of contention
manager names, a set of processes, an algorithm, and a set of contention managers.
(As a general convention, the subscript B refers to the basic system.) In this section,
we define the basic system as a specific type of general system in which some of the
parameters are fixed.

8.2.1 Parameter Definitions

We now fix for the remainder of Part II the following values: IB, RB, R′B, and
RndLengthB.
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• The set of nodes:

Definition 8.2.1. Fix IB as a finite, non-empty alphabet of names for the
physical mobile nodes.

• The broadcast and interference radii:

Definition 8.2.2. Fix RB and R′
B where RB ≤ R′B and RB ≥ 20vmax .

Notice in particular the assumption that nodes cannot move too fast. Specifi-
cally, we assume a relationship between their maximum velocity and the broad-
cast radius RB. Thus, in five rounds, for example, a node can most a distance
of at most RB/4.

• The round length:

Definition 8.2.3. Fix RndLengthB = 1.

This normalizes the round length to 1.

• The collision detector:

Definition 8.2.4. Fix CDB to be an eventually accurate, complete collision
detector, that is, one in the class ♦A-C.

8.2.2 Basic System Definition

In this section, we formally define the basic system as a specific type of general system:

Definition 8.2.5. Given the following parameters:

• process-portsB, a non-empty set of port identifiers,

• msgsB, a non-empty set of messages,

• CM-namesB, a finite, non-empty set of contention manager names,

• PB, a finite, non-empty set of non-recoverable processes for:

〈IB, process-portsB,msgsB,CM-namesB〉 ,

• AB, an algorithm for 〈IB, PB〉,

• CM B = {CMd : d ∈ CM-names}B, a finite, non-empty set of contention man-
agers.

Define the following terms:

• Let bcast-portsB = IB × process-portsB.
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• Let partB = {bcast-portsB}, set containing a single set of all the broadcast ports
in the basic system.

The basic system BS (process-portsB,msgsB,CM-namesB, PB, AB,CM B) is defined
to be general system:

G(IB, process-portsB,msgsB,CM-namesB, PB, AB, RB, R′B,RndLengthB, partB,CDB,CM B) .

Since all the processes in PB are non-recoverable, we restrict our attention in this
thesis to executions α in which for all i ∈ IB, there is at most one faili event in α.
Clearly, this is without loss of generality.

We also restrict our attention to executions of the basic system that satisfy even-
tual collision freedom (Definition 8.1.56).
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Figure 8-6: Example illustrating the timing of events in a round. The diagram depicts
the first five rounds of an execution, and the dotted arrows indicate events that occur
at three particular points in the execution: the end of round 2, the end of round
3, and during round 5. (Other intervening events are omitted.) The index i refers
to an arbitrary port in bcast-ports , and the solid arrows indicate a partial ordering
on events that occur at the same instant in time. For example, the round 2 recv
event for node i necessarily precedes the round 3 bcast event for node i. Notice that
round r lasts from time (r − 1) · RndLength through time r · RndLength. The bcast,
recv, and cm-advice events occur at the round boundaries. For example, at the end
of round 2 (i.e., at time 2 · RndLength), the following sequence of events occurs for
each port i ∈ bcast-ports : a round 2 recv event for i, a round 3 bcast event for i,
and a round 4 cm-advice event for i. The events occurs in this order (though not
necessarily consecutively). The next-round events occur at the beginning of their
respective rounds, and necessarily follow all the recv events of the preceding round.
The faili event at time 3 · RndLength is classified as a round 4 fail event as it follows
the round 3 next-round event. The recoveri event in round 5 is classified as a round
5 recover event as it follows the round 5 next-round event (not depicted). Notice also
that the round 4 bcasti event necessarily precedes the round 4 faili event, as a failed
process does not perform a bcast event.
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Figure 8-7: An example instantiation of the basic system, our model for wireless ad
hoc networks. This example system consists of four processes, that is, I = {1, 2, 3, 4}.
Each process accesses the basic broadcast service via a set of process ports. In this
case, each process has three ports, that is, process-portsB = {1, 2, 3}. The basic
system has two contention managers, that is, CM-names = {1, 2}.
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Chapter 9

Virtual Infrastructure Systems

In this chapter we describe a virtual infrastructure system, the virtual infras-
tructure abstraction being discussed in Part II of this thesis. A virtual infrastructure
system consists of clients interacting with virtual nodes via a (virtual) broadcast
channel. Virtual nodes are different from clients in two main ways. First, they are
static: they remain in a fixed location throughout the execution. Second, virtual
nodes are also recoverable: if they fail, they can resume operation at a later point, if
circumstances allow. Our goal is that overall, virtual nodes should be more reliable
and predictable.

In many ways, however, a virtual infrastructure system is quite similar to a basic
system: each client and virtual node executes a process; the clients and virtual nodes
communicate using a wireless broadcast service; the virtual nodes and clients receive
advice from a contention manager on how to use the broadcast channel efficiently1;
the clients and virtual nodes receive feedback from a collision detector when messages
are lost.

An example virtual infrastructure system containing four clients and two virtual
nodes is illustrated in Figure 9-1. It is particularly instructive to compare the system
in Figure 9-1 to the basic system illustrated in Figure 8-7; notice that the resulting
structure is quite similar, with the primary difference being the existence of virtual
nodes.

We begin in Section 9.1 by defining a virtual infrastructure system. In Section 9.2,
we present an example of how to design an application in the virtual infrastructure
model. (In this case, we use the example of implementing a simple tracking service.)
Finally, in Section 9.3, we discuss what it means for a protocol to implement virtual
infrastructure.

1Notice that the contention managers in the virtual system can be used much like the contention
managers in the basic system to decide when a node should broadcast and when a node should
remain silent.
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Figure 9-1: An example of a virtual infrastructure system. This example con-
sists of four clients and two virtual nodes. In this case, IV = {v1, v2}. Notice
that each process has one port with which to access the broadcast service, that is,
process-portsV = {∗}. Also notice that there are two contention managers, that is,
CM-namesV = {client, virtual}. These contention managers give advice to the clients
and to the virtual nodes.
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9.1 Defining Virtual Infrastructure

The virtual infrastructure system VS (IV ,msgsV , PV , AV , locV ) is parameterized by
five values: a finite set of virtual node identifiers, a message alphabet, a set of pro-
cesses, an algorithm, and a mapping designating the static location of each virtual
node. (As a general convention, the subscript V refers to the virtual infrastructure
system parameters.) In this section, we formally define the virtual infrastructure to
be a type of general system in which some of the parameters are fixed.

9.1.1 Parameter Definitions

Recall that we have already fixed certain constants in Section 8.2: IB, RB, R′B, and
RndLengthB. In this section, we fix an additional set of values, those associated
with the virtual infrastructure system, specifically, RV , R′V , process-portsV , CDV ,
CM-namesV , and CM V .

• The broadcast and interference radii:

Definition 9.1.1. Fix RV and R′
V where RV ≤ R′V such that:

– RV = RB/2

– R′V = RB/2 + R′B .

• The ports available to each node:

Definition 9.1.2. We fix process-portsV = {∗}, that is, the set containing
the single element ∗.

• The collision detector CDV :

Definition 9.1.3. Fix CDV to be the set of all eventually accurate, complete
collision detector rules.

Notice that, by definition, CDV is in the class ♦A-C.

• The contention manager names:

Definition 9.1.4. Fix CM-namesV = {virtual, client}.

Thus, the virtual infrastructure system contains two contention managers: one
contention manager for the set of virtual nodes and one contention manager for
the set of client nodes.

• The contention managers:

Definition 9.1.5. Fix CMvirtual to be the canonical contention manager au-
tomaton (see Figure 8-3) with two liveness properties: eventual non-interference,
and eventual fairness for the set of ports IV × {∗}.
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Definition 9.1.6. Fix CMclient to be the canonical contention manager au-
tomaton (see Figure 8-3) with no additional liveness properties.

Notice that we do not a priori assume any liveness guarantees for the client
contention manager. There may, however, be a subset of executions in which
the client contention manager satisfies additional liveness properties.

The virtual infrastructure implementation discussed in Chapter 10 has the
property that if the basic system’s contention managers satisfy a stronger live-
ness property, then the client contention manager also satisfies a stronger live-
ness property. As an example, we show that if a basic system contains a
“global” contention manager guaranteeing (a, b)-contention fairness, then our
implementation of virtual infrastructure guarantees that the client contention
manager satisfies (a′, b′)-contention fairness for port set IB × {∗}, where a′ =
da/RndLengthV e and b′ = bb/RndLengthV c. More generally, we will show that
if the basic system contains a “global” contention manager, then the client
contention manager is a “sampling” of that contention manager, as per Defini-
tion 11.10.9 in Chapter 11.

9.1.2 Scheduling the Virtual Nodes

One of the advantages provided by virtual infrastructure is that virtual nodes are
more predictable than real nodes; specifically, in Part II of this thesis, they are static,
remaining at a fixed location throughout the execution. One use for this fact is that
we can schedule the virtual nodes a priori so as to avoid collisions between nearby
virtual nodes. (This schedule will be useful, for example, in constructing the virtual
contention manager.) Notice that only virtual nodes are included in the schedule;
clients, which move unpredictably, might be hard to schedule efficiently.

The length of the schedule will depend on the density of the virtual node locations:
if there are many virtual nodes in a small area, then the schedule will need to be longer
so that each virtual node gets a turn to broadcast.

Let schedule[0..s − 1] be an array in which each entry in the array is a set of
virtual nodes in some arbitrary set IV , and let loc be a function mapping virtual
nodes in IV to a location in R×R. The integer s is the number of entries in the array.
The schedule is “non-conflicting” with respect to IV and loc if no two “neighboring”
virtual nodes are scheduled to broadcast at the same time:

Definition 9.1.7. We say that schedule[0..s − 1] is non-conflicting with respect
to IV and loc if it satisfies the following property: ∀i ∈ [0, s − 1],∀v, v′ ∈ IV , if
v, v′ ∈ schedule[i], then |loc(v)V − loc(v′)V | > 2R′V .

That is, if virtual nodes v and v′ are in schedule[i], for some i, then virtual nodes v
and v′ are not too close together. We say that the schedule is “complete” with respect
to IV and loc if it includes each virtual node exactly once:

Definition 9.1.8. We say that schedule[0..s− 1] is complete with respect to IV if it
satisfies the following property: ∀v ∈ IV , there exists a unique i ∈ [0, s− 1] such that
v ∈ schedule[i].

206



That is, every virtual node appears exactly once somewhere in the schedule. When
discussing a schedule within the context of some particular virtual infrastructure
in which IV and loc are fixed parameters, we simply refer to the schedule as non-
conflicting or complete, where IV and loc are clear from context.

Definition 9.1.9. We say that the size of schedule[0..s− 1] is s.

Finding a complete, non-conflicting schedule is relatively straightforward: consider
the graph that contains nodes IV and an edge between two nodes v and v′ if v and
v′ are within distance 2R′V ; any coloring of this graph is exactly a non-conflicting,
complete schedule. Assume, for example, that we have a coloring of the graph with s
colors. Then we define a schedule as follows: for i ∈ [0, s− 1], schedule[i] contains all
the nodes v ∈ IV of color i. If the degree of the graph is ∆, then finding a (∆ + 1)-
coloring is straightforward. Such colorings can be found in a distributed manner
using, for example, techniques found in [3, 67].

9.1.3 Formal Definition

In this section, we formally define the virtual infrastructure system as a specific type
of general system:

Definition 9.1.10. Given the following parameters:

• IV , a non-empty set of identifiers,

• msgsV , a message alphabet,

• PV , a non-empty set of processes for 〈IB∪IV , process-portsV ,msgsV ,CM-namesV 〉,
where:

– at least one process in PV is recoverable and deterministic,

– at least one process in PV is non-recoverable,

• AV , an algorithm for 〈IB ∪ IV , PV 〉 where:

– for all i ∈ IB, process AV (i) is non-recoverable,

– for all v ∈ IV , process AV (v) is recoverable and deterministic,

• locV : IV → R× R, a mapping from virtual nodes to locations.

Define the following terms:

• Let S1 = IB × {∗}.

• Let S2 = IV × {∗}.

• Let partV = {S1, S2}.

• Let schedule be a schedule that is complete with respect to IV and non-conflicting
with respect to IV and locV . Let SMAX be the size of the schedule.
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• Let RndLengthV = SMAX + 10.

The virtual infrastructure system VS (IV ,msgsV , PV , AV , locV ) is defined to be
general system:

G(IB∪IV , process-portsV ,msgsV ,CM-namesV , PV , AV , RV , R′V ,RndLengthV , partV ,CDV ,CM V ) ,

subject to the following additional assumptions:

• The locations of the virtual nodes are constant: for v ∈ IV , the location of IV is
equal to loc(v)V .

Notice that there are two specific restrictions made on virtual nodes that are
not required of nodes in IB: (1) Their location is static, unchanging throughout the
execution, and (2) they are deterministic. Thus, given the current state of a virtual
node, there is exactly one message that it is enabled to broadcast. We claim that this
is not a severe restriction, as a non-deterministic process can be made deterministic
by specifying a schedule that determines which transitions to make in which states.

Notice also that the virtual round length RndLengthV is some positive integer
value that depends on SMAX, and thus on the density of the virtual node locations:
if there are many virtual nodes in a small area, then the round length will be longer;
if the virtual nodes are sparsely distributed, then the round length will be shorter.

9.2 Example Virtual Infrastructure Application

In this section, we give a simple example of how to design an application for the
virtual infrastructure system. We focus on the problem of tracking the locations of
the clients (i.e., mobile nodes). Note that this example is only for didactic purposes—
the result is not particularly efficient, nor does it guarantee desirable properties like
locality of update. For a more careful location tracking system built on a (somewhat
different) virtual infrastructure platform, see [35,83]2. The main goal of this example
is simplicity: it demonstrates that a relatively powerful application can be designed
with a minimum of effort.

The tracking service provides two actions with which it interacts with clients:
query(j), an input which initiates a query for node j ∈ IB, and respond(j, `), an
output which reports the most recent known location ` of node j.

The server component, running on the virtual nodes, supports two functions: a
query, indicating that a client has received a query for the location of node j ∈ IB,
and update(j, `), which notifies the service of the new location ` of node j ∈ IB. The
service fulfills these requests on a best-effort basis: when the location of a node is
known, and if this location is not too out of date, it returns the value; when the
location of a node is unknown, then it returns nothing. Under certain assumptions,
we can conclude that when the system stabilizes, each query will receive a response.

2Specifically, they focused on a virtual infrastructure layer similar to that presented in Chap-
ter 5, except that the virtual nodes are timed, rather than asynchronous. They also focus on
self-stabilization as an important property for an infrastructural layer.
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Figure 9-2: Virtual Infrastructure Example: Automaton VI

1 Signature:
2 Input:
3 recv(M, cd, cm, loc), M ⊆ msgsV , cd ∈ {±, null}, cm ∈ {active, passive}, loc ∈ (R× R)
4

5 Output:
6 bcast(〈gossip, cl, ct〉, cm), cl an array of of locations, ct an array of integers, cm ∈ {client, virtual}
7 bcast(〈response, j, `〉, cm), j ∈ IB , `∈ (R× R), cm ∈ {client, virtual}
8 bcast(〈query-error〉, cm), cm ∈ {client, virtual}
9 bcast(⊥, cm), cm ∈ {client, virtual}

10

11 State:
12 query-set ⊆ IB , the current set of active queries
13 client-loc, an array indexed by IB of locations in R× R
14 client-time, an array indexed by IB of integers in N0, initially [0, 0, . . . , 0]
15 cm-advice ∈ {active, passive}, the current advice of the contention manager
16 query-error ∈ {true, false}
17 turn ∈ {gossip, query-response}, the next action by the virtual node, initially, gossip
18 do-bcast ∈ {true, false}, the broadcast flag
19

20 Constants:
21 vn-timeout ∈ N, the virtual node update timeout

23 Input recv(M, cd, cm, loc)
24 Effect:
25 if (M = {〈update, `, j〉}) then
26 client-loc[j ] ← `
27 client-time[j ] ← vn-timeout
28 else if (M = {〈query, j〉}) then
29 query-set ← query-set ∪ j
30 else if (M = {〈gossip, cl, ct〉}) then
31 for every j ∈ IB such that ct[j ] > client-time[j ] do
32 client-loc[j ] ← cl[j ]
33 client-time[j ] ← ct[j ]
34 for all j ∈ IB do
35 if (client-time[j ] > 0) then
36 client-time[j ] ← client-time[j ] − 1
37 if (cd = ±) then
38 query-error ← true
39 cm-advice ← cm
40 do-bcast ← true
41

42 Output bcast(⊥, virtual)
43 Precondition:
44 turn = query-resposne
45 cm = active
46 query-error = false
47 (query-set = ∅) or (∀j ∈ query-set : client-time[j ] = 0)
48 do-bcast = true
49 Effect:
50 turn ← gossip
51 do-bcast ← false
52

53 Output bcast(⊥, virtual)
54 Precondition:
55 (cm = passive)
56 do-bcast = true
57 Effect:
58 do-bcast ← false

60 Output bcast(〈gossip, cl, ct〉, virtual)
61 Precondition:
62 turn = gossip
63 cm = active
64 cl = client-loc
65 ct = client-time
66 do-bcast = true
67 Effect:
68 turn ← query-response
69 do-bcast ← false
70

71 Output bcast(〈response, j, `〉, virtual)
72 Precondition:
73 turn = query-response
74 cm = active
75 j ∈ query-set
76 client-time[j ] > 0
77 `= client-loc[j ]
78 do-bcast = true
79 Effect:
80 query-set ← query-set − {j}
81 turn ← gossip
82 do-bcast ← false
83

84 Output bcast(〈query-error〉, virtual)
85 Precondition:
86 turn = query-response
87 cm = active
88 query-error = true
89 do-bcast = true
90 Effect:
91 query-error ← false
92 do-bcast ← false

94 Trajectories:
95 stops when: (do-bcast = true)
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Figure 9-3: Virtual Infrastructure Example: Automaton client(i), where i ∈ IB

1 Signture:
2 Input:
3 recv(M, cd, cm, loc)i, M ⊆ msgsV , cd ∈ {±, null}, cm ∈ {active, passive}, loc ∈ (R× R)
4

5 Input:
6 query(j)i, j ∈ IB

7

8 Output:
9 bcast(〈update, current-location, j〉, cm)i, current-location ∈ (R× R), j ∈ IB , cm ∈ {client,virtual}

10 bcast(〈query, j〉, cm)i, j ∈ IB , cm ∈ {client,virtual}
11 bcast(⊥, cm)i, cm ∈ {client, virtual}
12 response(j, `)i, j ∈ IB , `∈ (R× R)
13

14 State:
15 sleep ∈ N0, how long until the next update should be sent.
16 query ∈ IB ∪ ⊥, a client whose location is being queried, or ⊥.
17 waiting ∈ {true, false}, an indication that the query is waiting for a response.
18 cm-advice ∈ {active, passive}, the current advice of the contention manager.
19 current-location ∈ R× R, the current location of i.
20 client-loc, an array indexed by IB of locations in R× R.
21 do-bcast ∈ {true, false}, the broadcast flag.
22

23 Constants:
24 client-timeout ∈ N, the client update timeout

26 Input recv(M, cd, cm, loc)i

27 Effect:
28 if (M = {〈response, query, `〉}) then
29 client-loc[query ] ← `
30 waiting ← false
31 else if (M = {〈query-error〉}) then
32 waiting ← false
33 if (sleep > 0) then
34 sleep ← sleep − 1
35 if ((cd = ±) and (waiting = true)) then
36 waiting ← false
37 cm-advice ← cm
38 current-location ← loc
39 do-bcast ← true
40

41 Input query(j)i

42 Effect:
43 query ← j
44 client-loc[query ] ← ⊥
45 waiting ← false
46

47 Output bcast(〈update, current-location, i〉, cm)i

48 Precondition:
49 sleep = 0
50 cm-advice = active
51 if ((query 6= ⊥) and (waiting = false)) then
52 cm = client
53 else
54 cm = ⊥
55 do-bcast = true
56 Effect:
57 sleep ← client-timeout
58 do-bcast ← false

60 Output bcast(〈query, j〉, ⊥) i

61 Precondition:
62 sleep 6= 0
63 cm-advice = active
64 query = j
65 waiting = false
66 do-bcast = true
67 Effect:
68 waiting ← true
69 do-bcast ← false
70

71 Output bcast(⊥, cm)i

72 Precondition:
73 (cm-advice = passive)
74 or
75 ((sleep 6= 0) and ((query = ⊥) or (waiting = true)))
76 if (waiting = true) or (sleep = 0) then
77 cm = client
78 else
79 cm = ⊥
80 do-bcast = true
81 Effect:
82 do-bcast ← false
83

84 Output respond(j, `)i

85 Precondition:
86 j = query
87 client-loc[j ] = `
88 Effect:
89 client-loc[j ] ← ⊥
90 waiting \ets false
91 query ← ⊥

93 Trajectories:
94 stops when: (do-bcast = true)
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Specifying the Virtual Infrastructure System

Before proceeding to discuss the protocol in more detail, we must specify the pa-
rameters for the virtual infrastructure system. We assume that the virtual nodes are
deployed to form a grid. Assume, for ease of discussion in this section, that RV = 1,
that is, normalize the units of distance such that the broadcast radius in the virtual
infrastructure system is 1. We then assume that IV = {〈x, y〉 : x, y ∈ N0}, and that
loc(〈x, y〉)V = (x, y). That is, we assume a virtual node at each integer grid-point in
the plane.

The processes are defined in Figures 9-2 and 9-3. The first, Figure 9-2, contains the
pseudocode for the process that executes on each virtual node; the second, Figure 9-3,
contains the pseudocode for the process that executes on each client. In this case, the
clients are not anonymous: each has a unique identifier from the set IB. Figure 9-3
defines a set of processes: {client(i) : i ∈ IB}. By contrast, the virtual nodes all
execute the same (identical) process. We define the set of processes:

PV = {client(i) : i ∈ IB} ∪ {VI} .

We define the algorithm A(i)V , for i ∈ IB ∪ IV , as follows:

A(i)V =

{
client(i) i ∈ IB,

VI i ∈ IV .

Finally, we define the message alphabet msgsV implicitly as the set of messages sent
by the automata in Figures 9-2 and 9-3.

Overview of the Tracking Service

The basic idea behind this simple protocol is to use the virtual nodes to form on
overlay network over which the current location of each node is distributed. Every so
often, each client sends an update of its current location to the nearest virtual node.
The information is then flooded through the virtual node overlay network, which
keeps track of how recently the information has been updated. When a virtual node
receives a query, it sends back the most recent known location of the specified client,
or nothing, if no recent information is known.

The Virtual Node Process. In more detail, we first examine Figure 9-2, the
process executed by each virtual node. Each virtual node maintains the following
state: query-set , a set of queries awaiting responses; client-loc, an array tracking the
most recent known location for each j ∈ IB; an array client-time that tracks how
many rounds remain before the location information for a node is too out of date;
cm-advice, the last advice received from the contention manager; query-error , a flag
that indicates whether there has been a collision; turn, a flag indicating whether to
use the next round for flooding gossip through the overlay, or for responding to a
query; and do-bcast , a broadcast flag the enforces the “immediate response” property
of a process, that is, enforcing that each recv event is followed immediately by a bcast
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event.
We now examine the behavior of the recv transition. A virtual node may receive

three types of messages: update messages, query messages, and gossip messages.

• The update messages contain the most recent location of some node j ∈ IB. The
new location is stored in client-loc[j], and the round counter in client-time[j]
is reset to vn-timeout , the length of time the virtual node will consider the
location information to be “recent” enough.

• Each query message contains a request for the location of some node j ∈ IB. In
this case, j is added to the query set.

• Finally, gossip messages contains the client-loc and client-time arrays of a neigh-
boring virtual node. The virtual node integrates this information into its own
client-loc and client-time arrays, taking for each node j ∈ IB the value that has
a later deadline, i.e., a longer remaining expiration time.

Next, the recv transition decrements the time remaining in client-time for each
client whose location is known. If a collision is detected, then the query-error flag
is set, indicating that some query might have been lost. The contention manager
advice is stored in cm-advice, and the broadcast flag do-bcast is set, leading to a
bcast transition immediately following the completion of the recv transition.

We now describe the bcast transitions. The virtual node broadcasts three types of
messages: gossip messages, response messages, and query-error messages. The virtual
node alternates rounds in which it sends gossip messages and rounds in which it sends
response/query-error messages, as controlled by the turn variable.

• Each gossip message includes the client-loc and the client-time arrays, which
include the location and expiration times for some subset of the nodes.

• The response messages include the location of some particular node j ∈ query-set ,
after which j is removed from the query-set . When the virtual node detects a
collision, as recorded in the query-error , it sends a query-error message instead of
the usual response message, indicating that there was a problem with the most
recent query. This notifies the clients to rebroadcast any queries that were lost.

The remaining broadcast transition (lines 53–58) is enabled only when the other bcast
transitions are disabled, and handles the cases where the virtual node chooses not to
send a gossip or a response message.

The Client Processes. We next discuss the processes running on the clients (Fig-
ure 9-3) which provide an example of clients interacting with the tracking service,
making requests and receiving responses. Clients maintain the following state: sleep,
a count determining how long until the next location update should be sent to the
tracking service; query , the ongoing query to the tracking service; waiting , a flag
indicating that the client is awaiting a response from the service; cm-advice, the most
recent advice from the contention manager; current-location, the current location of

212



node i; client-loc remembers the locations of the virtual nodes, as per the most re-
cent queries; and do-bcast , a broadcast flag the enforces the “immediate response”
property of a process, that is, enforcing that each recv event is followed immediately
by a bcast event.

We now describe the recv transition. A client receives two types of messages from
the server process running on the virtual nodes: response messages and query-error
messages.

• The response messages indicate that a query is complete, returning the result
of a location query. In this example, these responses are stored in the client-loc
array.

• The query-error messages indicate that the virtual node has detected a collision;
thus, if there is an ongoing query, it may not have received the query. Thus, in
this case, the query is resent, as is indicated by setting waiting to false.

Next, the clients update the sleep counter, decrementing it by one. (The sleep counter
controls the frequency with which the clients update the virtual nodes with their
location.) Next, clients use their collision detectors to determine whether a response
from a virtual node has been lost. When a client detects a collision, it resends the
query to the virtual node, in case the virtual node sent a response that was lost due
to a collision.

We now describe the bcast transitions. Clients broadcast two types of messages:
update messages and query messages.

• Periodically, clients send update messages to the tracking service. When the
variable sleep reaches zero, then it is time to send a new update. The maximum
value of sleep is client-timeout , which determines the frequency of the periodic
updates. Notice that messages are sent only when the contention manager
designates the node as active.

• Every so often, a client may receive a query input, which sets query to some
arbitrary node j ∈ IB, and sets waiting to false, thus initiating a query. At this
point, the client sends a query message to the server component of the tracking
service. Notice that the query message is sent only in a round in which sleep 6= 0,
that is, in a round that is not already designated for an update message, and
also only if the contention manager designates the node as active.

The remaining bcast transition (lines 71–82) is enabled only when the other bcast
transitions are disabled, and handles the cases where the client chooses not to send a
query or an update message.

Performance of the Simple Tracking Application

Under certain assumptions, the tracking application guarantees that eventually, once
the network stabilizes, each location query gets a response containing the approximate
location of the queried node. We first enumerate the relevant assumptions. Notice
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that to a large extent these numbers are chosen arbitrarily. It matters only that the
vn-timeout is large enough with respect to the client-timeout , the diameter of the
network, and the delays of the two contention managers.

• First, assume that the size of the network is bounded by some D (for diameter);
specifically, assume that there are no mobile nodes outside of the square in the
real plane defined by 〈(0, 0), (D, D)〉. Thus, each message can travel from one
end of the network to the other in time ≤ 2D.

• Assume that the client contention manager guarantees eventual (50D, 1)-cont-
ention fairness (see Definition 8.1.52).

• Assume that R′V = 4.

• Assume that the virtual contention manager is eventually fair with delay 25
(see Definition 8.1.51). (Notice that it is easy to construct a schedule for the
virtual nodes of size 25, since the virtual node network is a grid, and R′V = 4.)

• Assume that client-timeout ≤ 50D.

• Assume that vn-timeout > 200D.

• Assume that none of the virtual nodes fail.

In this case, we can conclude that eventually, each query receives a response.
First, notice that once the network stabilizes, we can conclude that some virtual
node receives a location update from each node every 100D rounds. Specifically, the
client-timeout ensures that after 50D rounds, the client begins to request access to
the broadcast channel; since the channel is (50D, 1)-contention fair, we can conclude
that within a further 50D rounds, the client receives authorization to broadcast with
no interference. By eventual collision freedom, we can conclude that the virtual node
receives this messages. Thus every 100D rounds, some virtual node receives a location
update for each client.

Next, we notice that it takes a further 100D rounds for the information to dis-
seminate through the network. Each virtual node broadcasts a gossip message at
least once every 50 rounds: it receives a turn from the fair contention manager every
25 rounds, and it broadcasts a gossip message every two turns. Again, by eventual
collision freedom we can conclude that this gossip message is received. Within 2D
hops, the gossip message propagates throughout the network. Since each hop takes
at most 50 rounds, we can conclude that within 100D rounds, the gossip has spread
throughout the network.

Thus we conclude that every 200D rounds, every virtual node receives an update
for each client’s location. Since the vn-timeout > 200D, this is sufficient to ensure
that each virtual node maintains a valid estimate of each client’s location.

The overall delay for a query of the tracking service depends on how many con-
current queries occur: recall that the virtual node only responds to one query in a
round in which it sends a response. (A simple optimization, of course, would allow
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the virtual node to send multiple query responses in one round.) Assume there are no
concurrent queries; a query will then complete after stabilization in 50D +50 rounds:
within 50D rounds, the client is authorized by the contention manager to broadcast
its query; within a further 50 rounds, the virtual node sends a response. Assuming
there are at most k concurrent queries, the delay is 50D + 50k rounds.

Finally, notice that given a bound on the velocity of a client, we can calculate
the accuracy of the location information. Specifically, we know that |location[i] −
query(i)| ≤ 200D · vmax .

9.3 Simulating Virtual Infrastructure

Our goal in building virtual infrastructure is to emulate a virtual system using a
basic system. Thus, given values for the parameters which specify a virtual infras-
tructure system—IV , PV , AV , locV ,msgsV —we want to construct a basic system—
process-portsB,msgsB,CM-namesB, PB, AB,CM B—that is, in a sense, indistinguish-
able from the virtual infrastructure system. For the remainder of this thesis, we fix the
set of virtual infrastructure parameters: IV , msgsV , PV , AV , locV , and we fix a spe-
cific instantiation of the virtual infrastructure system VS (IV ,msgsV , PV , AV , locV ).
In this section, we discuss what it means to correctly simulate the virtual infrastruc-
ture system in a basic system.

First, recall that, informally, a virtual infrastructure system consists of clients and
virtual nodes communicating using a virtual broadcast channel. Formally, we refer
to the set of processes running on nodes in IB as “clients”:

Definition 9.3.1. Given a virtual infrastructure system, the set of client processes
is {AV (i) : i ∈ IB}.

We refer to the set of processes running on virtual nodes as “virtual processes:”

Definition 9.3.2. Given a virtual infrastructure system, the set of virtual pro-
cesses is {AV (w) : w ∈ IV }.

Our goal in simulating virtual infrastructure is to ensure that client processes
believe that they are operating in a virtual infrastructure system. Each client broad-
casts and receives messages as if the system contains actual virtual nodes; an emulator
acts as an intermediary between the client and the basic broadcast service, providing
the illusion that virtual nodes really exist. Figure 9-4 depicts the situation in which
each client interacts with an emulator (depicted as Ai in the figure), and together
the clients and emulators form processes that communicate using the basic broadcast
service. In Sections 10.1 and 10.2, we present an “emulator” of this sort.

The emulator should guarantee a “trace inclusion” property for the clients: for
every “trace” of the clients in the basic system, there should exist an execution of the
virtual infrastructure system with the same “trace.”

We now discuss the notion of trace inclusion in more detail. Given an execution of
a virtual infrastructure system GV , consider the events observable by the clients with
the real times at which they occur. In other words, consider a timed execution of
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Figure 9-4: An overview of the emulator system. Emulator E is an algorithm that
implements the virtual infrastructure system (depicted in Figure 9-1) on top of the
basic system (depicted in Figure 8-7). Each client is composed with emulator E to
form a process, and these processes are executed in the basic system. We say that
emulator E implements the specified virtual infrastructure system if the clients cannot
distinguish whether they are executing in the basic system, as in the figure above,
or in the virtual infrastructure system (Figure 9-1). That is, emulator E implements
the virtual infrastructure system when every trace of the clients in the basic system
is a trace of the clients in the virtual infrastructure system.
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the virtual system, consisting of clients, virtual nodes, the broadcast service, and the
contention managers, in which all the events except the client broadcast and receive
events are hidden. We define the set of hidden actions as follows:

HV = GV .actions − {bcasti,∗ : i ∈ IB} − {recvi,∗ : i ∈ IB} .

Notationally, we refer to the set of externally-visible, timed client traces as the fol-
lowing: traces(hideHV

(GV )). Thus, the only actions visible in the trace are bcasti,∗ :
i ∈ IB and recvi,∗ : i ∈ IB.

Similarly, given an execution of the basic system GB, consider the events observable
by the clients with the real times at which they occur. In this case, we are considering
a timed execution of the clients, the emulator automata, the broadcast service, and
the contention managers, with all events except the client broadcast and receive events
hidden. We define the set of hidden actions as follows:

HB = GB.actions − {bcasti,∗ : i ∈ IB} − {recvi,∗ : i ∈ IB} .

Notationally, we refer to the set of externally-visible, timed client traces as the fol-
lowing: traces(hideHB

(GB).
When we say that the clients cannot distinguish between the basic system and the

virtual infrastructure system, we mean that every event observed in the basic system
is consistent with an execution of the virtual infrastructure system. Formally, then,
we want to show that:

traces(hideHB
(GB) ⊆ traces(hideHV

(GV )) .

Finally, we want our emulator to have certain good properties. For example, a
legal behavior in the virtual infrastructure system is for all the virtual nodes to fail
at time 0 and never recover. We will show in Chapter 11 under what conditions our
emulator guarantees virtual nodes to be alive. We also want the emulator to send
small messages and introduce limited communication overhead. We discuss these
desiderata in more detail when presenting the emulator algorithm.
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Chapter 10

Emulating Virtual Infrastructure

In this section we present an algorithm that implements a virtual infrastructure sys-
tem. We begin in Section 10.1 with an overview of the basic algorithm. In Sec-
tion 10.2, then, we present a detailed description of the emulator protocol. The
pseudocode for the algorithm is presented in Figure 10-2–13.

10.1 Algorithm Overview

In order to emulate a single virtual node at location `, we replicate the virtual node at
every device within distance RB/4 of location `.1 By replicating the data at each of the
participating nodes, we guarantee robustness in a dynamic, fault-prone environment.
As mobile nodes join and leave the system, and as they enter and leave the relevant
region near to `, they participate—and cease participating—in the emulation. We
refer to mobile nodes that are active in the simulation of some virtual node v—along
with the emulator processes that execute on them—as replicas for v.

The key difficulty in emulating some particular virtual node v is maintaining
consistency among the replicas of v. In an ideal world, the replicas responsible for
emulating virtual node v would maintain identical copies of the virtual node’s state.
When the execution begins, this is trivially accomplished: each replica is initialized
with the initial state of virtual node v. As the execution progresses and the virtual
node sends and receives messages, the replicas must remain consistent.

Recall that in each (virtual) round, clients broadcast messages to the virtual
node, and the virtual node broadcasts messages to the clients. If all the replicas
receive the same set of messages in a (virtual) round, then they can maintain identical
copies of the virtual node’s state: since the virtual node is deterministic, if all the
replicas receive the same messages in a round, each replica can process the messages
and consistently update the replicated state. (In Part I of this thesis, we presented
a strategy for implementing virtual infrastructure that operates along these lines.)
Unfortunately, as has been discussed in Part II of this thesis, the wireless broadcast

1In the terminology from Part I, we would refer to the circle of radius RB/4 around location `
as the focal point region.
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channel is unreliable. As a result, we cannot be sure that replicas receive the same
messages in a round: some replicas may receive a message, others may not.

10.1.1 Consensus
and the Impossibility of Perfect Consistency

One way to maintain consistency among the replicas of a virtual node would be to run
a consensus protocol for each round of the virtual node; the replicas could then agree
on which messages the virtual node receives (and sends) in each (virtual) round. In
the same way, they could agree on the other parameters that are part of a recv action,
i.e., the collision detection information cd and contention management information
cm for the virtual node. By repeatedly running consensus, the replicas could emulate
a sequence of rounds. Moreover, as was described in [23,79]2, there is a very efficient
algorithm for consensus when collision detectors guarantee (perfect) completeness and
eventual accuracy. In fact, each instance of consensus terminates in 3 rounds once the
network has stabilized, that is, after eventual collision freedom (round rcf ), eventual
accuracy (round racc), and eventually good contention management (round rcm).

Unfortunately, the consensus protocol is efficient only after the network has stabi-
lized. Thus, the virtual infrastructure will behave poorly prior to stabilization since
the length of a virtual round depends on the length of the consensus protocol. Specif-
ically, the length of a (virtual) round would vary unpredictably. (Recall in Chapter 9,
we present a virtual infrastructure in which virtual rounds have a constant length.)

This unpredictability would have many negative consequences. First, it would
complicate the synchronization among virtual nodes in the virtual infrastructure layer.
If the (virtual) rounds have a fixed length, it is easy to ensure that all virtual nodes are
executing the same (virtual) round at the same time. On the other hand, if virtual
rounds have an unpredictable length, then some virtual nodes may execute much
more rapidly than others, leading to added complexity in programming the virtual
infrastructure. Instead of emulating a synchronous abstraction, the result would be
an asynchronous (virtual) network, possibly with some variety of eventual synchrony
guarantees.

A second negative consequence would be the difficulty in implementing timing-
dependent algorithms. Many applications for virtual infrastructure involve interac-
tions with the real world: for example, coordinating mobile nodes, collecting sensor
data, or controlling tiny actuators. These real-world tasks are highly-timing depen-
dent, and often have real-time deadlines. If (virtual) round lengths are unpredictable,
it is much more difficult (and sometimes impossible) to implement such algorithms.
For example, if a virtual node is attempting to collect data from a sensor, and needs
to correlate the stream of sensor data with other virtual nodes, it is important that
the sensor readings be taken at appropriate intervals of time. If some sensor readings
cannot be measured (due to collisions and other network instability), it is often better
to record the fact that the measurement failed, rather than sampling the sensor at

2In [23], see Algorithm 1, and a performance evaluation in Figure 1(a). In [79], see Algorithm 1,
Section 7.1.
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the wrong time. Similarly, in the case of coordinating actuators, it is often better to
respond to instability (perhaps by performing some reasonable default action), than
to simply wait for the network to stabilize.

A natural question, then, is whether some improved consensus algorithm could
guarantee constant-round termination even during the unstable parts of the execu-
tion. Unfortunately, as was shown in [23, 79], it is impossible in the wireless setting
to achieve consensus in a constant number of communication rounds while collisions
continue to occur. Yet in order to implement a virtual infrastructure as described in
Chapter 9, we require every simulated round to terminate in a constant number of
communication rounds. That is, we want the RndLengthV for the virtual broadcast
service to be constant. Thus, using consensus as a black-box building block is infeasi-
ble. Moreover, the protocol presented in this chapter implements each virtual round
in a constant number of basic rounds (specifically, SMAX + 10 basic rounds); thus we
can conclude that the protocol will not be able to guarantee that the replicas agree
on the state of a virtual node at the end of each virtual round.

10.1.2 Agreeing on Virtual Node Executions

To overcome this seeming impossibility, we consider a weaker notion of consistency.
Instead of trying to ensure consistency at the end of each virtual round, we allow some
disagreement among the replicas, particularly during periods when the network is
unreliable. We guarantee consistency only when the network is stable. This weakened
guarantee is sufficient to build a virtual infrastructure that appears consistent from
the clients’ perspective, as the clients receive messages from the virtual nodes only
when the network is stable. This realization is one of the key insights in circumventing
the seeming impossibility.

In Section 10.1.1, we discussed a strategy in which the replicas attempt in each
round to agree on a set of messages to receive in that round. The algorithm presented
in this chapter uses a slightly different approach. Instead of agreeing only on a set of
messages in each round, the replicas for each virtual node attempt to agree on a (finite)
execution of the virtual node. (Recall from Appendix A that an execution is simply a
sequence of trajectories and actions, satisfying appropriate properties.) Moreover, our
goal is to design an agreement protocol that uses only a bounded number of rounds in
the emulation of each virtual round. At the end of the agreement protocol—i.e., after
some bounded number of rounds—a replica may be in one of three states: it may
be certain that agreement has been achieved; it may be certain that agreement has
not been achieved; or it may be uncertain as to whether or not agreement has been
achieved. The key requirement is that the executions agreed upon in each round—
when agreement occurs—converge to a single execution. (This property is captured
by Lemma 11.7.19 in Chapter 11.)

There is one further aspect of the agreement protocol worth noting at a high level.
Unlike a traditional consensus protocol which requires that some node broadcast a
complete proposal, the agreement protocol does not require the replicas to send a
proposal containing the entire execution. A proposal of this sort would, obviously, be
much too large. Instead, the agreement protocol broadcasts information only on the
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current (virtual) round, and a small amount of summary information regarding prior
virtual rounds. This compressed proposal is an important technical tool which makes
this protocol feasible, and the constant-sized protocol messages are a key contribution
of this protocol.

Thus, the main technical challenge solved by the protocol in this paper is to agree
sequentially on the outcome of each (virtual) round, that is, to agree on an execution,
by performing a series of constant-round agreement instances, one for each round,
while sending only constant-sized messages, and yet guaranteeing that eventually the
replicas converge to a single execution that is consistent for all the replicas.

10.1.3 Outline of the Protocol

The emulation protocol for a single virtual node consists of eleven phases. Ten of
these phases are implemented using a single basic round each; one of these phases
is implemented using SMAX basic rounds, where SMAX is the size of a complete,
non-conflicting schedule for the virtual nodes (see Definitions 9.1.7–9.1.9; recall that
the schedule is only for virtual nodes). This results in a virtual round length of
RndLengthV = 10 + SMAX, as specified in Chapter 9.

We now briefly describe the eleven phases. For the purpose of this description,
consider the case where the replicas are emulating some virtual round r for some
virtual node v. In this case, the agreement protocol is trying to agree on an execution
up until the end of round r, and at the same time is trying to ensure that all the
replicas have enough information about round r for the use of future instances of
the agreement protocol. The protocol divides into four sections: the message pro-
tocol (phases 1–2), the scheduled agreement instance (phases 3–5), the unscheduled
agreement instance (phases 6–8), and the join protocol (phases 9–11):

The Message Protocol:

1. client: In the client phase, each client broadcasts its message for the current
virtual round r.

2. vn: In the vn phase, emulators for virtual node v decide whether v should
broadcast a message in virtual round r, and under certain conditions, broadcast
that message. This decision depends on the outcome of the prior agreement
protocols, the contention manager, etc.

The Scheduled Agreement Instance:

3. scheduled-ballot: This phase begins the first of two agreement instances that
occur during virtual round r. Each replica participates in only one of the two
agreement instances, depending on the schedule: if v ∈ schedule[r mod SMAX]3,

3The attentive reader may notice that, since rounds start with 1, while the schedule begins with
an index of 0, that the first round actually uses the second slot in the schedule. This anomaly
introduces no problems, and we leave it for simplicity of notation.
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then v’s replicas participate in the scheduled-ballot instance; otherwise they par-
ticipate in the unscheduled-ballot instance. In this phase, the replicas partici-
pating in the first agreement instance may broadcast a “ballot,” which contains
information about round r, along with some summary information about prior
rounds.

4. scheduled-veto-1: This phase is the second round in the first agreement instance.
In this phase, replicas for v broadcast veto messages if the agreement protocol
appears to be failing.

5. scheduled-veto-2: This phase is the last round in the first agreement instance.
In this phase, replicas for v again broadcast veto messages if the agreement
protocol appears to be failing.

The Unscheduled Agreement Instance:

6. unscheduled-ballot: This phase begins the second of two agreement instances
that occur during virtual round r. Replicas that did not participate in the sched-
uled agreement instance participate in the unscheduled agreement instance.
That is, if v /∈ schedule[r mod SMAX], then v’s replicas participate in the un-
scheduled instance. In this phase, the replicas participating in this agreement
instance may broadcast a ballot. This phase is implemented by SMAX basic
rounds. The replicas for virtual node v participate in only one of these basic
rounds, however. Specifically, fix rb ∈ [0, SMAX − 1, where rb identifies the
current basic round within the unscheduled-ballot phase; if v ∈ schedule[rb], and
if v /∈ schedule[r mod SMAX − 1], then the replicas for virtual node v partic-
ipate in the rth

b basic round in the unscheduled-ballot phase. During the other
basic rounds in the unscheduled-ballot phase, the replicas for virtual node v do
nothing.

7. unscheduled-veto-1: This phase is the second round in the second agreement
instance. In this phase, replicas for v broadcast veto messages if the agreement
protocol appears to be failing.

8. unscheduled-veto-2: This phase is the last round in the second agreement in-
stance. In this phase, replicas for v again broadcast veto messages if the agree-
ment protocol appears to be failing.

The Join Protocol:

9. join: This phase begins the join protocol. A replica for virtual node v may
broadcast in this round if it wants to join the emulation.

10. join-ack: This phase is the second round of the join protocol. A replica that has
already joined virtual node v may send a join response in this round, providing
critical information to joining nodes.
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11. join-veto: This phase is the last round of the join protocol. In this phase, a
replica for virtual node v can determine whether the virtual node should be
reset. A virtual node should be reset only when there are no replicas that have
already completed the join protocol, which indicates that the virtual node has
failed.

In Sections 10.1.5–10.1.7, we describe each of these phases in more detail. First,
however, we discuss a critical aspect of the system: the implementation of the virtual
contention managers.

10.1.4 The Virtual Contention Managers

Along with delivering messages and collision information, the virtual broadcast service
also delivers contention management information to the clients and virtual nodes. Re-
call (from Chapter 9) that the virtual infrastructure system has two contention man-
agers: a global contention manager for the clients, and a virtual contention manager
for the virtual nodes. Implementing the client contention manager is straightforward,
and will be discussed later: the broadcast service simply delivers to the clients the
advice from one of the contention managers in the basic system (the “client contention
manager”), sampling the advice from the basic contention manager once per virtual
round—during the client phase.

The virtual contention manager, however, is emulated by the protocol presented
in this chapter. Recall that the virtual contention manager should be fair and non-
interfering: each virtual node should get a turn every so often to be active, and no
two nearby virtual nodes should be active at the same time.

We build this contention manager using the schedule that we have already as-
sumed: since the virtual nodes reside at known, pre-determined locations, we can
explicitly schedule them in advance. Since the schedule is non-conflicting, the re-
sulting contention manager is non-interfering. Since the schedule is complete, the
resulting contention manager is fair.

Given such a schedule, we fix an ideal and fair contention manager as follows:
virtual node v is advised to be active in virtual round r if and only if v ∈ schedule[r
mod SMAX]. It is easy to verify that the resulting contention manager has the de-
sired properties. Moreover, it is easy for the emulator at each replica to calculate
exactly what the advice should be for the virtual node, independent of the success—
or failure—of communication with the other replicas.

The schedule determines which agreement instance replicas participate in: if v is
“scheduled”, then virtual node v is advised to be active in round r and the replicas for
v use the scheduled agreement instance; if v is “unscheduled”, then virtual node v is
advised to be passive in round r and the replicas for v use the unscheduled agreement
instance.

10.1.5 The Message Protocol

The purpose of the first two phases is for the clients and the replicas to broadcast
the messages that are intended to be broadcast in a given virtual round, according
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to the process automata. In the client phase of virtual round r (i.e., the first phase),
each client broadcasts its message for round r, or nothing (⊥), if it has no round r
message.

In the vn phase, each emulator for each virtual node v decides whether v should
broadcast a message in round r. Throughout the execution, each emulator for v
maintains a preferred execution for v. During good periods, when agreement holds,
the replicas will all have the same preferred execution; during intervals when the
network is unstable, the preferred executions may differ.

In order to decide whether to broadcast in the vn phase, a replica examines its
preferred execution, and determines whether the virtual node is enabled to broadcast
in the last state of that execution, and if so, what message it is enabled to broadcast.
(Since the virtual node is deterministic, this is a deterministic choice based only on
the state of the virtual node at the end of the preferred execution.)

A replica also examines two other factors related to contention management: (1) Is
the replica itself advised by the basic system contention manager to be active in the
current basic round? (2) Is the virtual node advised to be active in the current virtual
round r?

If virtual node v is scheduled, a replica for v broadcasts a message m during the
vn phase under the following conditions:

• The replica is advised to be active by a contention manager.

• The state of the virtual node, as calculated according to the replica’s “preferred
execution,” is such that the virtual node is enabled to broadcast the message m.

If virtual node v is not scheduled, however, then the replica’s decision as to whether to
broadcast does not depend on the advice of the contention managers. That is, if the
state of the virtual node, as calculated according to the replica’s preferred execution,”
is such that the virtual node is enabled to broadcast the message m, then the replica
broadcasts message m in the vn phase.

This rule may seem counterintuitive, as it ignores the contention manager when
the virtual node is unscheduled4. This is almost guaranteed to result in a collision
during the vn phase, which may seem undesirable and inefficient. However, this
behavior is consistent with the ECF[GA] guarantee that the emulator is providing in
its implementation of the virtual broadcast service: since the virtual node is enabled
to broadcast a message, and since the virtual node is deterministic, the virtual node
will broadcast a message in the current virtual round; since this violates the advice of
the contention manager, the broadcast service is not required to deliver the message.
Specifically, recall that the virtual broadcast service guarantees to deliver messages
reliably only when virtual nodes comply with the advice of the contention manager.

4An alternate and seemingly simple solution would be to require nodes to follow the advice of
the contention manager. However, it is often quite useful for protocols to sometimes ignore the
contention manager. For example, in the protocol presented in this chapter, the contention manager
is sometimes ignored—specifically in the veto rounds.
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10.1.6 The Scheduled and Unscheduled Agreement Instances

The emulation protocol consists of two agreement instances: the scheduled and un-
scheduled agreement instances. As mentioned previously, the emulator for virtual
node v participates in the scheduled agreement instance if v is scheduled for round r,
and in the unscheduled agreement instance otherwise. In both instances of the agree-
ment protocol, the primary purpose is to agree on which messages to receive, and
whether or not to detect a collision. In the case of the scheduled agreement instance,
an additional outcome is a decision as to whether or not the virtual node should
broadcast a message. Finally, when agreement is reached, all incomplete agreement
instances from previous rounds are resolved.

The agreement protocol is a modified version of the consensus protocol in [23,79]
that provides more information on the status of other replicas, and is amenable to
smaller message sizes. The basic wireless consensus protocol in [23, 79] uses two
rounds: a data round, in which the proposal is broadcast, and a veto round in which
a negative acknowledgment is broadcast if anything went wrong in the data round.
The agreement protocol here uses three rounds: a data round and two veto rounds.

In some ways, the agreement protocol can be seen as an implementation of “three-
phase commit” (3PC), a classic protocol for atomic commit first introduced in [95,96].
In the language of three-phase commit, in each instance of the agreement protocol
the nodes try to “commit” to that virtual round, or “abort” the round. When the
protocol “commits” or “aborts” successfully, every participating node is aware of the
result. On the other hand, in some instances, due to lost messages, the protocol
may not “commit” or “abort.” The result is that some nodes end the round in
an intermediate state, unsure of whether the round will eventually be accepted or
rejected. If there were only two phases (i.e., one veto phase), then it would not be
possible to later reconstruct a consistent commit/abort decision for the round. The
third phase allows a later “recovery” protocol to retroactively determine whether the
round was accepted or rejected.

This analogy is not exact for several reasons. The main difference is that the
agreement problem is somewhat different from classical atomic commit. First, the
goal is to agree on some set of messages (and other information) for the round, rather
than to simply commit or abort a transaction; in that sense, the agreement problem is
more similar to consensus. Second, the goal is to agree on the behavior in a sequence
of virtual rounds. Unlike in traditional three-phase commit, where the system is
suspended to run the recovery protocol, in the agreement protocol presented here,
the “recovery” protocol is integrated into the main protocol itself: virtual rounds
continue to be emulated, even as prior virtual rounds are still being resolved. This
leads to additional difficulties, since the result of earlier virtual round affects the
outcome of later virtual rounds.

We now continue to describe the protocol in more detail. Each agreement instance
begins with a ballot phase in which zero, one, or more, replicas broadcast a “proposal.”
A replica’s proposal is in fact a compact representation of its preferred execution; we
discuss later the details of this representation.

To gain additional information about the success or failure of the agreement in-
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stance, the virtual node emulator uses two veto rounds, instead of one. (Thus, there
are three phases total.) The status of each virtual round is determined by the success
(or failure) of these veto rounds. Each replica designates the status of each virtual
round by one of four colors: green, yellow, orange, or red.

• Green: A green round indicates that agreement has been achieved, and that
the replicas have agreed on an execution of the virtual node. In this case, the
virtual broadcast service may deliver messages to the clients. If an emulator
designates a round as green, it can be certain that the round is “successful.”
(This is analogous to a “commit” in the case of atomic commit.)

• Yellow: A yellow round indicates that every replica at least received the current
proposal, which is guaranteed to be unique, but replicas may still disagree on
the execution. Even so, it is acceptable for a replica to include messages from
the current round in its preferred execution (which may become the proposal in
future rounds). If an emulator designates a round as yellow, it cannot determine
whether or not the round is “successful.”

• Orange: An orange round indicates that some replicas may have received the
current proposal, but some may not have. When a replica designates a round as
orange, it may not include messages from that round in its preferred execution,
as some other replicas may not have received the proposal and thus may not have
those messages. If these messages were used in a future proposal, it would be
impossible to represent the proposal compactly. On the other hand, if a replica
designates a round as orange, then it remains possible that some other replica
may in the future propose an execution including messages from this round. If
an emulator designates a round as orange, it cannot determine whether or not
the round is “successful.”

• Red: Finally, a red round indicates that the current agreement instance failed,
and no messages from this round will be included in any future execution.
In particular, some replicas—perhaps all—may not have received the current
proposal. If an emulator designates a round as red, it can be certain the round
is not “successful.” (This is analogous to an “abort” in the case of atomic
commit.)

Thus, the round color reflects each replica’s local knowledge about the other replicas’
knowledge of the emulated virtual rounds. The two veto phases, along with the ballot
phase, determine the color designation of the round. If a replica receives exactly
one ballot, no veto messages, and there are no collisions in any of the rounds, then
the replica designates the virtual round as green. Conversely, if a replica does not
receive exactly one ballot or detects a collision in the ballot round, then the replica
designates the virtual round as red. Intermediate levels of success result in the yellow
and orange designation: if there is a collision or veto in the first veto round, then the
replica designates the round as orange; if there is a collision or veto in the second
veto round, then the replica designates the round as yellow. This is summarized in
Figure 10-1.
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ballot veto-1 veto-2 Replica Color
√ √ √

Green
√ √

X Yellow
√

X X Orange
X X X Red

Figure 10-1: Table indicating how a node responds to collisions in the different phases
of the algorithm: ballot/veto-1/veto-2. A check (

√
) indicates that the node receives

a message in that round, and no collisions or veto indications are received. An
X indicates that the node does not correctly receive the message in that round.
The Color column indicates the designated color for a round. Green/yellow rounds
indicate (tentatively) that a message may be processed, while orange/red rounds
indicate (tentatively) that the virtual node has detected a collision.

One of the key invariants of our protocol is that any two replicas disagree on
the color designation by at most one shade. For example, if replica i designates
a round as green, then every other replica must designate the round as green or
yellow. Similarly, if replica i designates a round as red, then every other replica must
designate the round as orange or red. This limited form of disagreement is key to the
correctness of the emulation protocol.

A final issue related to the agreement instances is the composition of the ballots:
one of the key properties of the protocol is that the ballot does not have to be too
big, even though it is proposing agreement on some execution history. The ballot,
then, includes two pieces of information: (1) information about the current virtual
round, including any messages received in the client and vn phases, and any collision
detected in the client and vn phases, and (2) a pointer to the most recent seemingly
“good” round, that is, the most recent virtual round designated by the replica as
green or yellow.5

When a set of replicas executes a sequence of such agreement instances, one for
each virtual round, they can use this information to construct a preferred execution
of the virtual node. In rounds that are “good,” the preferred execution includes a
recv event containing the messages specified by the ballot; in rounds that are “bad,”
the preferred execution includes a recv event containing an empty set of messages,
and a collision. The replicas use the previous-round pointer in the ballots to deter-
mine which rounds are “good” and which rounds are “bad.” These pointers create
a “linked-list” of pointers in the ballot history, and when two replicas agree on this
linked-list of pointers, they agree on their preferred execution.

5When considering analogies to three-phase commit, there are some similarities between the
additional information included in the ballot, and the additional information introduced by Dolev
and Keidar in their “Enhanced Three Phase Commit” protocol [47]. In their protocol, each node
maintains a variable last-elected , which keeps track of the most recent recovery attempt that the
node coordination, and last-attempt , the most recent recovery attempt in which the node attempted
to commit or abort.
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Scheduled Agreement Instance. We have already discussed above the overview
of the agreement protocol. The scheduled agreement instance is a straightforward
instantiation of this protocol: the scheduled-ballot phase implements the ballot phase,
and the scheduled-veto-1 and scheduled-veto-2 phases implement the veto phases. An
emulator for virtual node v participates in the scheduled agreement instance if v
is scheduled for the current virtual round. It includes in its proposal the following
elements: (1) all the messages received during the client and vn phases; (2) a flag
indicating whether or not a collision is detected during the client phase; similarly, a
flag indicating whether or not a collision is detected during the vn phase; and, (3) the
previous-round pointer.

Moreover, since the schedule ensures that no two nearby virtual nodes are sched-
uled in the same virtual round, we can be sure that no nearby virtual nodes will
interfere with the scheduled agreement instance. Thus, the only contention during
the scheduled agreement instance arises from replicas of the virtual node in question,
and these replicas use a regionally-fair contention manager to reduce their contention.

Emulators for unscheduled virtual nodes, however, listen passively to the scheduled
agreement instance. Consider, for example, the case where v is an unscheduled virtual
node, and v′ is a scheduled virtual node. If v′ decides to broadcast a message in the
current virtual round, then (perhaps) some replica for v′ may choose to broadcast
that message during the vn phase and the scheduled-ballot phase. If virtual node v′ is
successful in broadcasting this message, then virtual node v, the unscheduled virtual
node, should receive this message. Thus the replicas for v must listen attentively
during the scheduled agreement instance to determine which virtual nodes are sending
messages, and which virtual nodes are successful.

Thus, an emulator for an unscheduled virtual node v listens passively during the
scheduled agreement instances, and maintains its own view on the color of the virtual
round. It does not broadcast veto messages, however; it simply listens. If the emulator
for the (unscheduled) virtual node v believes that the round is a green round for the
(scheduled) virtual node v′, it includes that message in its set of messages to receive
in the round; otherwise, it omits it. By the same invariant discussed above regarding
the color of the rounds, if the emulator for v believes that the round is green for v′,
then each emulator for v′ has designated the round either green or yellow.

Unscheduled Agreement Instance. The unscheduled agreement instance uses
SMAX+2 basic rounds. The unscheduled ballot phase uses SMAX rounds and is the
only phase to use more than one basic round. This use of multiple rounds is necessary
to avoid contention: unlike in the case of the scheduled agreement instance, without
the use of the schedule, there is no guarantee that two nearby virtual nodes will not
interfere with each other.

Of the SMAX basic rounds used to implement the ballot phase, each virtual node
is assigned exactly one by the schedule. For basic round rb ∈ [0, SMAX − 1] within
the unscheduled-ballot phase, emulators for virtual node v use basic round rb if v ∈
schedule[rb]. Since the schedule is non-interfering, each virtual node can be assured
that nearby virtual nodes will not interfere with its ballot phase.
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All the virtual nodes share the same two veto phases. Thus when a virtual node
fails to reach agreement, it may also interfere with its neighboring virtual nodes.

The ballot and veto phases then proceed as discussed above in the scheduled agree-
ment instance. The ballot includes all the messages received and collisions detected
in the client phase, along with the messages received in the vn phase. (In fact, the
set of messages received is modified by the outcome of the scheduled ballot instance.)
That is, as in the scheduled ballot instance, the replicas are agreeing on the set of
messages to receive and whether or not to detect a collision.

10.1.7 The Join and Restart Protocols

The last three phases are dedicated to the join protocol, which allows new replicas to
join in the emulation, and also allows replicas to reset the virtual node when it has
failed.

In order to join a virtual node emulation, a new replica must synchronize with
the existing replicas. A node chooses to join the virtual node emulation when it is
within distance RB/4 of the virtual node location. (In practice, a hysteresis zone is
recommended, though not necessary, as it prevents frequent entrance and departure
by nodes near the edge of a region.) In the join phase of the protocol, a node broad-
casts a request to join the emulation. If a replica that has already joined receives
a join request, and if the contention manager advises that replica to be active, then
it broadcasts its current protocol state in the join-ack phase, thus giving the joining
node an up-to-date snapshot of the current status of the emulation.

As before, we must contend with the interference between different replicas for
nearby virtual nodes. Imagine that two physical nodes try to join two different
virtual nodes in the same region. These two nodes may interfere with each other.
We therefore use the schedule to mediate between the different virtual nodes, so that
emulators for neighboring virtual nodes do not disrupt each other’s join protocols,
ensuring that each emulator receives an opportunity to join its virtual node.

Occasionally, a virtual node may fail when all the replicas leave the region. We
want the virtual node to restart in a default initial state when some mobile nodes
reenter the region. Moreover, we want to ensure that the replicas maintain a consistent
state, despite the occasional restart.

The key difficulty here is ensuring that the virtual node really is uninhabited;
if some replica is active, and a new mobile node attempts to “restart” the virtual
node, then there is a risk that the virtual node’s state is unnecessarily lost, and the
possibility of inconsistency. By resetting a virtual node only if it is abandoned (i.e.,
failed), it is relatively easy to maintain a consistent state among the replicas.

We use the join-veto phase to detect a failed virtual node. Specifically, in the
join-veto phase, each node that has already joined broadcasts a message. (This is
in fact likely to cause a collision, if there is more than one participating replica.) A
new joining node is then aware that it should not reset the virtual node. (One might
consider an optimized version of the protocol that reduces the number of join-veto
messages by requiring replicas to broadcast in the join-veto phase only when some
node wants to perform a reset.)
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One additional detail is needed: a reset can occur only in a round in which virtual
node v is scheduled. This means that each virtual node has a chance to execute its
join-veto round without interference from nearby virtual nodes and nearby join-veto
messages. Thus, a functioning virtual node will not prevent a neighboring virtual
node from being reset.

10.2 Virtual Infrastructure Emulator

In this section, we discuss the detailed implementation of the virtual infrastructure
emulator. We first discuss the basic structure of the emulator, and its interface
with clients and the broadcast service (see Section 10.2.1). We then discuss the
state maintained by the virtual node emulator (see Section 10.2.2). Next, we de-
tail the main algorithm itself (see Section 10.2.3). Then, we present some helper
functions used by the algorithm (see Section 10.2.4), and an auxiliary component,
the virtual node multiplexer (see Section 10.2.5). We conclude (Section 10.2.6) with
the full specification of the emulator basic system, that is, we fix the parameters
PB, process-portsB,msgsB, AB,CM-namesB,CM B.

10.2.1 Virtual Infrastructure Emulator:
Structure and Signature

Our goal is to build an emulator that acts as an intermediary between the clients and
the broadcast service, and emulates a virtual infrastructure system. To this end, the
main purpose of this section is to describe such an emulator automaton E.

In order to build a basic system that emulates a virtual infrastructure system, each
client process is composed with emulator E, forming a new process that is executed
in the basic system. (See Figure 9-4 for an illustration of the emulator automaton
composed with a client to form a process.) Thus, the emulator provides a single
broadcast/receive port to the client, and interacts with a set of broadcast/receive
ports provided by the broadcast service BB. Recall that the port set of the virtual in-
frastructure system, process-portsV = {∗}; thus, each client has a broadcast port with
the subscript ∗. The emulator’s port to the client, then, has the same subscript, ∗.

The emulator itself is a composition of two types of a components: individual
“virtual node emulators”, each of which emulates one virtual node, and a “multi-
plexer” which connects the virtual node emulators to the client. (See Figure 10-3 for
an illustration of the emulator components, their ports, and their interactions with
the client.) We refer to the first automaton as E(v), for v ∈ IV , and the second as
Multiplexer .

The main body of this section is presenting the emulator process(es). (If the
virtual system being emulated is anonymous, there will be only one process.) Recall
that a system is instantiated by remapping processes, disambiguating the automata
based on the nodes on which they are running. Thus, the process specification does
not include any reference to a particular node i ∈ IB.
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Figure 10-2: Automaton E(v): Virtual Node Emulator —
Signature and Data Structures

94 Signature:
95 Input:
96 recv(allM, cd, cm, loc)v , allM ⊆ msgsB , cd ∈ {±, null}, cm ∈ {true, false}, loc ∈ R× R
97 fail()
98

99 Output:
100 vn-client-output(vnm-out, vnCD-out)v , vnm-out ∈ {〈vn, m, `〉: m ∈ msgsV , `∈ R× R}⊥, vnCD ∈ {±, null}
101 bcast(m, cm)v , m ∈ msgsB , cm ∈ CM-namesB ∪ {⊥}
102

103 State:
104 Emulator Data Structures:
105 rnd ∈ N0, initially 0
106 phase ∈ {client, vn, scheduled-ballot, scheduled-veto-1, scheduled-veto-2, unscheduled-ballot, unscheduled-veto-1,
107 unscheduled-veto-2, join, join-ack, join-veto, initially client
108 ballot[ ], an array indexed by N of ⊥ or records with the following fields:
109 prev-rnd ∈ (N0)⊥, initially ⊥
110 clientM ⊆ msgsB , initially ∅
111 clientCD ∈ {±, null}, initially null
112 vnM ⊆ msgsB , initially ∅
113 vnCD ∈ {±, null}, initially null
114 round-status[ ], array indexed by N of 〈green, yellow, orange, red,⊥〉, initially [⊥,⊥, . . . ,⊥]
115 last-reset ∈ N0, initially 0
116 last-good-state ∈ states, initially startv , the initial state for virtual node v
117 prev-rnd ∈ N0⊥, initially ⊥
118

119 Round-Specific Data Structures:
120 clientM ⊆ msgsB , initially ∅
121 vnM ⊆ msgsB , initially ∅
122 clientCD ∈ {±, null}, initially null
123 vnCD ∈ {±, null}, initially null
124 roundCM ∈ {active, passive}, initially passive
125 vnphaseBcast ∈ {true, false}, initially false
126 reset ∈ {true, false}, initially false
127 scheduled ∈ {true, false}, initially false
128 scheduled-status ∈ {green, yellow, orange, red, ⊥}, initially ⊥
129

130 Control Data Structures:
131 outgoing-msg ∈ msgsB ∪ {⊥}, initially ⊥
132 do-net-bcast ∈ {true, false}, initially false
133 do-client-recv ∈ {true, false}, initially false
134 unscheduled-ballot-rnd ∈ [0, SMAX ], initially 0
135 failed ∈ {true, false}, initially false
136

137 Join Protocol Data Structures:
138 joined ∈ {true, false}, initially false
139 join-req ∈ {true, false}, initially false
140

141

142 Constants:
143 δv , transition function for virtual node v ∈ IV

144 loc(v)V : IV → R× R, location of virtual node v ∈ IV

145 RB ∈ R, broadcast radius for basic broadcast service
146 RB

′ ∈ R, interference radius for basic broadcast service
147 RV ∈ R, broadcast radius for virtual broadcast service
148 R′V ∈ R, interference radius for virtual broadcast service
149 schedule[0..SMAX-1 ], schedule array, where schedule[r ] ⊆ IV and
150 (1) ∀r ∈ [0..SMAX-1 ], ∀v,w ∈ schedule[r ], |loc[v ] -loc[w ]| ≥ 2R′

151 (2) ∀v ∈ IV , ∃ r ∈ [0..SMAX-1 ] such that v ∈ schedule[r ]
152

153 Trajectories:
154 stops when:
155 ((do-net-bcast = true) or (do-client-recv = true))
156 and
157 (failed = false)
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Figure 10-3: Detailed view of a process in the emulator system. The emulator E
consists of two types of components: (1) a set of virtual node emulators E(v), each
of which is responsible for emulating one virtual node V ∈ IV , and (2) a multiplexer
that mediates communication between the client and the virtual node emulators. The
emulator is composed with the client to form the process that is executed in the basic
system.
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Virtual Node Emulator. Each individual virtual node emulator E(v) is respon-
sible for replicating one particular virtual node v ∈ IV . See the signature of E(v) on
lines 94–101 in Figure 10-2. Each individual virtual node emulator has access to one
port on the wireless broadcast service:

• Input recv(. . .)v,

• Output bcast(. . .)v

Each virtual node emulator also outputs information to the client, acting as a
filter between the broadcast channel and the client. Specifically, the virtual node
emulator sends information via vn-client-output(. . .)v events to the multiplexer, which
amalgamates the information from the various virtual node emulators, and passes it
on to the client process itself.

An individual virtual node emulator has one other input, fail, which indicates
when the mobile node on which the process executes has failed.

Multiplexer. The multiplexer relays the client’s broadcasts to the broadcast ser-
vice, and collects information from the virtual node emulators to pass on to the client.
The signature of the multiplexer can be found in Figure 10-13 on lines 637–646. The
multiplexer communicates with the client via a broadcast/receive port:

• Input bcast(. . .)∗

• Output recv(. . .)∗.

(Recall that the index “∗” is a special literal, that is, process-portsV = {∗}.) Similarly,
it communicates directly with the broadcast service via another broadcast/receive
port:

• Output bcast(. . .)0

• Input recv(. . .)0.

Finally, it receives information from the virtual node emulators:

• Input vn-client-output(. . .)v.

The multiplexer also has an input fail.
In Sections 10.2.2, 10.2.3 and 10.2.4, we discuss the virtual node emulator. In

Section 10.2.5, we discuss the multiplexer.

10.2.2 Virtual Node Emulator Data Structures

In this section, we present the various data structures used by the virtual node em-
ulator. The pseudocode can be found in Figure 10-2 on lines 104–150. Throughout
this section, we discuss the individual virtual node emulator E(v) for virtual node
v ∈ IV .
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Emulator Data Structure:

• rnd : The main goal of the virtual node emulator is to determine which messages
should be sent and received by the virtual node in a given round. The variable
rnd keeps track of the current (virtual) round being emulated. (The actual
round number in the underlying basic system is larger, as per the correspondence
discussed in Section 10.1.) Initially, rnd = 0.

• phase: The protocol executes in phases, and the variable phase keeps track of
the current phase. There are eleven different phases:

1. client, 2. vn,
3. scheduled-ballot, 4. scheduled-veto-1,
5. scheduled-veto-2, 6. unscheduled-ballot,
7. unscheduled-veto-1, 8. unscheduled-veto-2,
9. join, 10. join-ack,
11. join-veto.

Initially, phase = client. These phases can be divided into four groups: the first
two phases are for the clients and replicas to perform their broadcasts for the
virtual round; the next three phases are for the scheduled agreement protocol;
the next three phases are for the unscheduled agreement protocol; the final three
phases are for the join protocol.

• ballot : The primary task of the virtual node emulator is to agree on an ac-
ceptable execution history. The key data structure in maintaining the different
viable execution histories is the ballot array (see lines 108–113, Figure 10-2).
Each entry in the array holds a record containing information about a single
simulated round. Each record contains five fields:

– prev-rnd , a round number,

– clientM , a set of messages,

– clientCD , either ± or null,

– vnM , a set of messages, and

– vnCD , either ± or null.

The record for simulated round r, which we refer to as a ballot, is stored in
ballot [r]. That is, the array of ballots is indexed by N.

The ballot specifies which messages the virtual node v should receive from clients
in round r in the clientM field, and collision detection information related to
nodes in the “client” set of the partition for round r in the clientCD field. The
ballot specifies which messages the virtual node v should receive from other
virtual nodes in round r in the vnM field, and collision detection information
for nodes in the “virtual nodes” set of the partition for round r in the vnCD
field.
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Each ballot also contains some additional information to specify one particu-
lar execution history. The pointer ballot [r ].prev-rnd points to the most recent
“good” round which precedes r in the virtual node history, if any. That is, it
is the most recent round designated as either green or yellow by the replica
broadcasting the ballot.

In each simulated round, a replica for a given virtual node v participates in either
the scheduled or the unscheduled agreement instance, depending on whether
v ∈ schedule[rnd mod SMAX]. (Notice that since the first round is 1, the
protocol begins with the second slot in the schedule; since the schedule is ac-
cessed cyclically, this does not matter.) Thus, in whichever agreement instance
is appropriate, either zero, one or more replicas for virtual node v broadcast a
ballot. If no ballot is received, or if more than one ballot is received, a replica
designates the round as red. Otherwise, the replica stores the ballot, along with
other information about the (virtual) round, in the ballot array. The ballot
contains a proposal as to what should take place during the specific round, as
well as a proposed execution history.

• round-status : During the simulation of the virtual round, the virtual node emu-
lator associates a color with the round. The status of each simulated round
is designated using four colors: red, orange, yellow, and green, ordered as
red < orange < yellow < green. The information about round r’s color is
kept in the round-status [r] variable. All the rounds are initially marked as ⊥.
The “default” status for a round is green, and the color is lowered as information
is discovered during the execution of the protocol.

• last-reset : The variable last-reset maintains the most recent round in which the
virtual node has been reset. More generally, this variable serves to remember
a round in which the replicas are known to be in agreement (if such a round
exists); the last round in which the virtual node was reset is a conservative
estimate. Initially, last-reset = 0.

• last-good-state: The variable last-good-state stores the state of the virtual node
after the round last-reset . Thus, in this case, last-good-state is always equal to
start , the initial state of the virtual node.

• prev-rnd : The variable prev-rnd maintains the most recent round that the
replica designates as either green or yellow. Initially prev-rnd = ⊥, indicat-
ing that there has been no preceding green or yellow rounds.

Round-Specific Data Structures:

• clientM , vnM : The variables clientM and vnM store messages sent by the
clients and replicas during the client and vn phases respectively, for the vir-
tual round currently being simulated. Initially, both sets are empty.
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• clientCD , vnCD : The variables clientCD and vnCD store the collision detec-
tion information related to the messages broadcast in the client and vn phases
respectively. Initially, both are set to null.

• roundCM : The variable roundCM stores the advice given to the emulator.
Initially, the advice is passive.

• vnphaseBcast : The variable vnphaseBcast remembers whether the emulator
detects any broadcast in the vn phase of the virtual round. If the emulator
receives a message or detects a collision in the vn phase, then vnphaseBcast ←
true; otherwise, vnphaseBcast ← false.

• reset : The variable reset indicates whether the replica is involved in an ongoing
reset of the virtual node. Initially, reset is false.

• scheduled : The flag scheduled ∈ {true, false} indicates whether the virtual node
is scheduled or not, according to the schedule, in the current virtual round. This
determines whether the replica participates in the scheduled or unscheduled
agreement instance; each replica participates in only one of the two agreement
instances. Initially, scheduled is false.

• scheduled-status : The variable scheduled-status indicates the success level of the
scheduled agreement instance, i.e., its color. Both scheduled and unscheduled
virtual nodes observe this value. At the end of the scheduled agreement instance,
this is stored in round-status if the replica is emulating a scheduled virtual node.
Otherwise, it is used to determine whether to receive the message that was
broadcast by the scheduled virtual node. Initially, scheduled-status is ⊥.

Control Data Structures:

• outgoing-msg : The variable outgoing-msg stores the message to send in the next
round by the emulator. Whenever the emulator executes a recv action, the next
outgoing-msg is set. Initially, it is set to ⊥.

• do-net-bcast , do-client-recv : The flags do-net-bcast and do-client-recv indicate
when a message should be broadcast over the network or delivered to a client.
These flags are used to restrict the trajectories of the emulator: whenever one
of these flags is set, the appropriate event must occur immediately with no time
passage (see lines 153–157, Figure 10-2). Initially, each of these flags is false.

• unscheduled-ballot-rnd : This variable is used to count the SMAX ballot rounds
that occur during the unscheduled agreement instance. Unlike all the other
phases of the protocol, which take only one basic round, the unscheduled-ballot
requires SMAX phases in order that replicas from each virtual node get a chance
to broadcast their ballots. This variable is responsible for keeping track of how
many basic rounds have been executed during the unscheduled-ballot phase.
Initially, this is set to 0.
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• failed : The flag failed indicates whether the mobile node to which the process
is assigned has failed. Initially, the failed flag is false.

Join Protocol Data Structures:

• joined : The flag joined tracks whether the join protocol has completed. When
the flag is false, it indicates that the emulator has not yet joined the emulation,
that is, the replica is not active in replicating the virtual node. Conversely,
when the flag is true, the replica is participating actively in the replication.
Initially, this flag is false.

• join-req : The flag join-req indicates that a join has been requested by some
emulator process (potentially the same process). Initially, this flag is false.

Constants: The virtual node emulator also uses a set of universally known con-
stants.

• δv: The transition function δv is the transition function for virtual node v.

• loc(v)V : The location loc(v)V represents the location of virtual node v, which
is fixed statically in advance.

• RB, R′B: The constant RB is the broadcast radius of the basic broadcast service,
while R′B is the interference radius of the basic broadcast service.

• RV , R′V : The constant RV is the broadcast radius of the virtual broadcast
service, while R′V is the interference radius of the virtual broadcast service.

• schedule: The constant schedule is a non-conflicting, complete schedule of size
SMAX.

10.2.3 Virtual Node Emulator

In this section, we provide a detailed description of the emulator automaton E(v), the
process component responsible for emulating a single virtual node v. The pseudocode
is presented in Figures 10-4–12. The first piece of pseudocode in Figure 10-4 describes
how the emulator delivers messages to the multiplexer and the broadcast service.
The main logic of the protocol is captured in Figure 10-5–9, which describe how
the emulator processes incoming messages from the broadcast service. Figures 10-10
and 10-11 show how the replicas reconstruct an execution history from a sequence
of ballot. Finally, Figure 10-12 includes pseudocode for calculating which message a
virtual node should send or receive in a given round.

Throughout this discussion, we will refer to virtual node v as the virtual node
being emulated. When, for the purpose of exposition, we discuss the behavior of the
remapped process, we will refer to node i (or replica i) as the node executing the
emulator process.
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Figure 10-4: Automaton E(v): Virtual Node Emulator 1 —
Delivering Messages to the Network / Client

158 Output bcast(m, cm)v

159 Precondition:
160 failed = false
161 do-net-bcast = true
162 do-client-recv = false
163 m = outgoing-msg
164 if (joined = true) then
165 cm = v
166 else
167 cm = ⊥
168 Effect:
169 outgoing-msg ← ⊥
170 phase ← phase +1
171 do-net-bcast ← false
172

173 Output vn-client-output(vnm-out, vnCD-out)v

174 Precondition:
175 failed = false
176 do-client-recv = true
177 if (round-status[rnd ] = green) then
178 if (v ∈ schedule[rnd mod SMAX ]) then
179 if (∃ 〈vn, v, m〉 ∈ ballot[rnd ].vnM : m ∈ msgsV ) then
180 Choose 〈vn, v, m〉 ∈ ballot[rnd ].vnM
181 vnm-out = 〈vn, m, loc(v)V 〉
182 vnCD-out = null
183 else if (vnphaseBcast = true) then
184 vnm-out = ⊥
185 vnCD-out = ±
186 else
187 vnm-out = ⊥
188 vnCD-out = null
189 else if (v /∈ schedule[rnd mod SMAX ]) then
190 if (vnphaseBcast = true) then
191 vnm-out = ⊥
192 vnCD-out = ±
193 else if (round-status[rnd-1 ] ∈ {green, ⊥}) then
194 vnm-out = ⊥
195 vnCD-out = null
196 else if (ballot[rnd ].vnCD = ±) or (vnCD = ±)then
197 vnm-out = ⊥
198 vnCD-out = ±
199 else
200 vnm-out = ⊥
201 vnCD-out = null
202 else if (round-status[rnd ] = ⊥) then
203 vnm-out = ⊥
204 vnCD-out = null
205 else
206 vnm-out = ⊥
207 vnCD-out = ±
208 Effect:
209 do-client-recv ← false
210

211 Input fail
212 Effect:
213 failed ← true
214 scheduled ← false
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Figure 10-5: Automaton E(v): Virtual Node Emulator 2 —
Message Protocol

215 Input recv(allM, cd, cm, loc)v where (phase = client)
216 Local State:
217 next-vn-msg ∈ msgsV ∪ {⊥}
218 out-req ∈ CM-namesV

219 temp-state ∈ statesv
220 temp-status[ ], array of 〈green, yellow, orange, red〉, initially [⊥, bot, . . . ,⊥]
221 Effect:
222 do-net-bcast ← true
223 if (|loc − loc(v)V | > RB/4) then
224 joined ← false
225 outgoing-msg ← ⊥
226 phase ← vn
227 clientM ← {〈client, m, `〉∈ allM : |`− loc(v)V | ≤ RV }
228 clientCD ← cd
229 roundCM ← cm
230 rnd ← rnd+1
231 if (v ∈ schedule[rnd mod SMAX ]) then
232 scheduled ← true
233 else
234 scheduled ← false
235 temp-status ← calculate-status(rnd− 1, prev-rnd, ballot, last-reset)
236 〈temp-state, ·〉← calculate-state(rnd− 1, temp-status, last-reset, last-good-state)v

237 〈temp-state, next-vn-msg, out-req, ·〉← do-bcast(temp-state)v

238 if (next-vn-msg 6= ⊥) and (rnd 6= last-reset+1) and (joined = true) then
239 if (roundCM = active) or (scheduled = false) then
240 outgoing-msg ← 〈vn, v, next-vn-msg〉
241

242 Input recv(allM, cd, cm, loc)v where (phase = vn)
243 Local State:
244 nearby-msgs ⊆ msgsB

245 b, a record with the following fields:
246 prev-rnd ∈ N0⊥, initially ⊥
247 clientM ⊆ msgsB , initially ∅
248 clientCD ⊆ {±, null}, initially ∅
249 vnM ⊆ msgsB , initially ∅
250 vnCD ⊆ {±, null}, initially ∅
251 Effect:
252 do-net-bcast ← true
253 if (|loc − loc(v)V | > RB/4) then
254 joined ← false
255 outgoing-msg ← ⊥
256 phase ← scheduled-ballot
257 nearby-msgs ← {〈vn, v′, m〉 ∈ allM : |loc(v′)V − loc(v)V | ≤ RV }
258 vnM ← ∅
259 vnCD ← null
260 vnphaseBcast ← false
261 if (|loc − loc(v)V | < RV +RB/4) then
262 if (∃ 〈vn, v, m〉 ∈ nearby-msgs) or (cd = ±) then
263 vnphaseBcast ← true
264 if (|nearby-msgs| > 1)
265 or
266 (cd = ±)
267 or
268 ((∃ 〈vn, v′, m〉 ∈ nearby-msgs : v′ /∈ schedule[rnd mod SMAX ], v′ 6= v)
269 then
270 vnCD ← ±
271 else
272 vnM ← nearby-msgs
273 if (scheduled = true) then
274 if (joined = true) and (roundCM = active) then
275 b ← 〈prev-rnd, clientM, clientCD, vnM, vnCD〉
276 outgoing-msg ← 〈vn, v, b〉
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Figure 10-6: Automaton E(v): Virtual Node Emulator 3 —
Scheduled Agreement Instance

277 Input recv(allM, cd, cm, loc)v where (phase = scheduled-ballot)
278 Local State:
279 M ⊆ msgsB

280 my-ballots ⊆ msgsB

281 all-ballots ⊆ msgsB

282 ballot-msgs ⊆ msgsB

283 nearby-vn-msgs ⊆ msgsB

284 nearby-msgs ⊆ msgsB

285 near-scheduledV ⊆ IV

286 Effect:
287 do-net-bcast ← true
288 if (|loc − loc(v)V | > RB/4) then
289 joined ← false
290 outgoing-msg ← ⊥
291 phase ← scheduled-veto-1
292 my-ballots ← {b : 〈vn, v, b〉 ∈ allM}
293 all-ballots ← {b : v′ ∈ IV , 〈vn, v′, b〉 ∈ allM}
294 ballot-msgs ← {〈vn, v′, m〉 ∈ b.vnM : v′ ∈ IV , b ∈ all-ballots}
295 nearby-vn-msgs ←
296 {〈vn, v′, m〉 ∈ ballot-msgs : |loc(v′)V − loc(v)V | ≤ RV }
297 nearby-msgs ←
298 {〈vn, v′, m〉 ∈ nearby-vn-msgs : |loc(v′)V − loc| ≤ RV +RB/4}
299 vnM ← vnM ∩ nearby-msgs
300 near-scheduledV ← {v′ ∈ IV :
301 (1) v′ is scheduled,
302 (2) |loc− loc(v′)V | ≤ RV + RB/4}
303 scheduled-status ← ⊥
304 if (|loc − loc(v)V | > RV +RB/4) then
305 vnM ← ∅
306 else (near-scheduledV = ∅) then
307 vnM ← ∅
308 else choose unique v′ ∈ near-scheduledV :
309 if (cd = ±)
310 or
311 (|{b : 〈vn, v′, b〉 ∈ allM| > 1)
312 then
313 scheduled-status ← red
314 vnM ← ∅
315 if (v = v′) and (scheduled = true) and (joined = true) then
316 if (∃ b ∈ my-ballots) then
317 ballot[rnd ] ← b ∈ my-ballots
318 else
319 scheduled-status ← red
320 if (scheduled-status 6= ⊥) then
321 outgoing-msg ← 〈vn, v, veto〉
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Figure 10-7: Automaton E(v): Virtual Node Emulator 3 —
Scheduled Agreement Instance

322 Input recv(allM, cd, cm, loc)v where (phase = scheduled-veto-1)
323 Effect:
324 do-net-bcast ← true
325 if (|loc − loc(v)V | > RB/4) then
326 joined ← false
327 outgoing-msg ← ⊥
328 phase ← scheduled-veto-2
329 vnM ← vnM −
330 {〈vn, v′, m〉 ∈ vnM : v′ ∈ IV , |loc − loc(v′)V | > RV +RB/4}
331 if (|loc − loc(v)V | > RV +RB/4) then
332 vnM ← ∅
333 ballot[rnd ] ← 〈⊥, ∅, ∅, ∅, ∅〉
334 if (〈vn, v′, veto〉 ∈ allM) or (cd = ±) then
335 if (scheduled-status 6= red) then
336 scheduled-status ← orange
337 if (scheduled-status ∈ {red,orange})
338 and
339 (joined = true)
340 and
341 (scheduled = true) then
342 outgoing-msg ← 〈vn, v, veto〉
343

344 Input recv(allM, cd, cm, loc)v where (phase = scheduled-veto-2)
345 Effect:
346 do-net-bcast ← true
347 if (|loc − loc(v)V | > RB/4) then
348 joined ← false
349 outgoing-msg ← ⊥
350 phase ← unscheduled-ballot
351 vnM ← vnM −
352 {〈vn, v′, m〉 ∈ vnM : v′ ∈ IV , |loc − loc(v′)V | > RV +RB/4}
353 if (|loc − loc(v)V | > RV +RB/4) then
354 vnM ← ∅
355 if (〈vn, v, veto〉 ∈ allM) or (cd = ±) then
356 if (scheduled-status /∈ {orange, red}) then
357 scheduled-status ← yellow
358 if (scheduled = true) then
359 if (scheduled-status = ⊥) and (|loc − loc(v)V | ≤ RV ) then
360 round-status[rnd ] ← green
361 else
362 round-status[rnd ] ← scheduled-status
363 if (round-status[rnd ] ∈ {yellow, green}) then
364 if (joined = true) then
365 prev-rnd ← rnd
366 else if (scheduled-status 6= ⊥) then
367 vnM ← ∅
368 vnCD ← ±
369 unscheduled-ballot-rnd ← 0
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Figure 10-8: Automaton E(v): Virtual Node Emulator 4 —
Unscheduled Agreement Instance

370 Input recv(allM, cd, cm, loc)v where (phase = unscheduled-ballot)
371 Local State:
372 my-ballots ⊆ msgsB

373 Effect:
374 do-net-bcast ← true
375 if (|loc − loc(v)V | > RB/4) then
376 joined ← false
377 outgoing-msg ← ⊥
378 if (scheduled = false) and (joined = true) then
379 if (unscheduled-ballot-rnd > 0) and (v ∈ schedule[unscheduled-ballot-rnd − 1 ]) then
380 my-ballots ← {b : 〈vn, v, b〉 ∈ allM}
381 if (my-ballots = ∅) or (|my-ballots| > 1) then
382 round-status[rnd ] ← red
383 if (cd = ±) then
384 round-status[rnd ] ← red
385 if (round-status[rnd ] 6= red) then
386 ballot[rnd ] ← b ∈ my-ballots
387 if (unscheduled-ballot-rnd < SMAX) then
388 if (v ∈ schedule[unscheduled-ballot-rnd ]) then
389 b ← 〈prev-rnd, clientM, clientCD, vnM, vnCD〉
390 if (cm = active) then
391 outgoing-msg ← 〈vn, v, b〉
392 else if (unscheduled-ballot-rnd = SMAX) then
393 if (round-status[rnd ] = red) then
394 outgoing-msg ← 〈vn, v, veto〉
395 if (unscheduled-ballot-rnd = SMAX) then
396 phase ← unscheduled-veto-1
397 else unscheduled-ballot-rnd ← unscheduled-ballot-rnd +1
398

399 Input recv(allM, cd, cm, loc)v where (phase = unscheduled-veto-1)
400 Effect:
401 do-net-bcast ← true
402 if (|loc − loc(v)V | > RB/4) then
403 joined ← false
404 outgoing-msg ← ⊥
405 phase ← unscheduled-veto-2
406 if (scheduled = false) and (joined = true) then
407 if (〈vn, v, veto〉 ∈ allM) or (cd = ±) then
408 if (round-status[rnd ] 6= red) then
409 round-status[rnd ] ← orange
410 if (round-status[rnd ] ∈ {orange,red}) then
411 outgoing-msg ← 〈vn, v, veto〉
412

413 Input recv(allM, cd, cm, loc)v where (phase = unscheduled-veto-2)
414 Effect:
415 do-net-bcast ← true
416 if (|loc − loc(v)V | > RB/4) then
417 joined ← false
418 outgoing-msg ← ⊥
419 phase ← join
420 if (scheduled = false) then
421 if (joined = true) then
422 if (〈vn, v, veto〉 ∈ allM) or (±∈ cd) then
423 if (round-status[rnd ] /∈ {orange, red}) then
424 round-status[rnd ] ← yellow
425 if (round-status[rnd ] = ⊥) and (|loc − loc(v)V | ≤ RV ) then
426 round-status[rnd ] ← green
427 if (joined = true) and (round-status[rnd ] ∈ {yellow, green}) then
428 prev-rnd ← rnd
429 if (round-status[rnd ] = red) then
430 ballot[rnd ] ← 〈⊥, ∅, ∅, ∅, ∅〉
431 if (|loc − loc(v)V | ≤ RB/4) then
432 if (joined = false) and (v ∈ schedule[rnd mod SMAX ])then
433 outgoing-msg ← 〈vn, v, join〉
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Figure 10-9: Automaton E(v): Virtual Node Emulator 5 — Join Protocol

434 Input recv(allM, cd, cm, loc)v where (phase = join)
435 Effect:
436 do-net-bcast ← true
437 if (|loc − loc(v)V | > RB/4) then
438 joined ← false
439 outgoing-msg ← ⊥
440 phase ← join-ack
441 join-req ← false
442 if (v ∈ schedule[rnd mod SMAX ]) then
443 if (allM 6= ∅) or (cd = ±)then
444 join-req ← true
445 if (joined = true) and (cm = active) then
446 outgoing-msg ← 〈join, v, 〈ballot, round-status, prev-rnd, vnphaseBcast, last-good-state, last-reset〉 〉
447

448 Input recv(allM, cd, cm, loc)v where (phase = join-ack)
449 Local State:
450 join-msgs ⊆ msgsB

451 Effect:
452 do-net-bcast ← true
453 if (|loc − loc(v)V | > RB/4) then
454 joined ← false
455 outgoing-msg ← ⊥
456 phase ← join-veto
457 join-msgs ← {m : 〈join, v, m〉 ∈ allM}
458 if (|loc − loc(v)V | ≤ RB/4) then
459 if (joined = false) then
460 if (join-msgs 6= ∅) then
461 Choose m ∈ join-msgs.
462 〈ballot, round-status, prev-rnd, vnphaseBcast, last-good-state, last-reset〉 ← m
463 joined ← true
464 else if (cd = ±)then
465 outgoing-msg ← 〈vn, v, veto〉
466 reset ← false
467 if (v ∈ schedule[rnd mod SMAX ] then
468 if (joined = true) then
469 outgoing-msg ← 〈vn, v, veto〉
470 else if (|loc − loc(v)V | ≤ RB/4) then
471 reset ← true
472

473 Input recv(allM, cd, cm, loc)v where (phase = join-veto)
474 Effect:
475 do-net-bcast ← true
476 if (|loc − loc(v)V | > RB/4) then
477 joined ← false
478 outgoing-msg ← ⊥
479 phase ← client
480 if (|loc − loc(v)V | ≤ RB/4) and (v ∈ schedule[rnd mod SMAX ]) and (reset = true) then
481 if (joined = false) and (〈vn, v, veto〉 /∈ allM) and (cd 6= ±)then
482 joined ← true
483 join-req ← false
484 last-good-state ← startv , the initial state of virtual node v
485 last-reset ← rnd
486 prev-rnd ← rnd
487 for all r ≤ rnd: ballot[r ] ← 〈⊥, ∅, ∅, ∅〉
488 for all r ≤ rnd: round-status[r ] ← ⊥
489 do-client-recv ← true
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Figure 10-10: Virtual Node Emulator 6 — calculate-status function

490 function calculate-status(temp-rnd, temp-prev, temp-ballots, temp-last-reset)
491 Signature:
492 temp-rnd, temp-last-reset ∈ N0

493 temp-ballot[ ], an array indexed by N of records with the following fields:
494 prev-rnd ∈ N0, initially 0
495 clientM ⊆ msgs, initially ∅
496 clientCD ⊆ {±, null}, initially ∅
497 vnM ⊆ msgs, initially ∅
498 vnCD ⊆ {±, null}, initially ∅
499 Local State:
500 temp-status[ ], array indexed by N of 〈green, yellow, orange, red,⊥〉, initially [⊥,⊥, . . . ,⊥]
501 r, p ∈ N0

502 Code:
503 r = temp-rnd +1
504 p ← temp-prev
505 while r > temp-last-reset +1 do
506 r ← r − 1
507 if (r = p) then
508 temp-status[r ] ← green
509 p ← temp-ballots[p ].prev-rnd
510 else
511 temp-status[r ] ← red
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Figure 10-11: Virtual Node Emulator 7 — calculate-state function

512 function calculate-state(temp-rnd, temp-status, temp-ballot, temp-last-reset, temp-state)v

513 Signature:
514 temp-rnd, temp-last-reset ∈ N0

515 temp-status[ ], array indexec by N of 〈green, yellow, orange, red,⊥〉
516 temp-ballot[ ], an array indexed by N of records with the following fields:
517 prev-rnd ∈ N0, initially 0
518 clientM ⊆ msgs, initially ∅
519 clientCD ⊆ {±, null}, initially ∅
520 vnM ⊆ msgs, initially ∅
521 vnCD ⊆ {±, null}, initially ∅
522 temp-state ∈ states
523 Local State:
524 i ∈ N0

525 temp-msg ∈ msgsV

526 inCD ∈ {±, null}
527 inCM ∈ {active, passive}
528 exec, execution, initially empty
529 e-frag-bc, execution, initially empty
530 e-frag-rcv, execution, initially empty
531 Constants:
532 δv , transition function for virtual node v
533 loc(v′) ∈ R× R, ∀v′ ∈ V, location of virtual node v′

534 Rv ∈ R, broadcast radius for virtual node v
535 schedule[1..SMAX ], schedule array, where schedule[r ] ⊆ V and
536 (1) ∀r ∈ [0..SMAX-1 ], ∀v,w ∈ schedule[r ], |loc[v ] -loc[w ]| ≥ 2R′

537 (2) ∀v ∈ V, ∃ r ∈ [0..SMAX-1 ] such that v ∈ schedule[r ]
538 Code:
539 exec ← τ0, a point trajectory
540 for r = temp-last-reset +1 to temp-rnd do
541 if (v ∈ schedule[r +1 mod SMAX ]) then
542 inCM ← active
543 else
544 inCM ← passive
545 if (temp-status[r ] = green) then
546 if (temp-ballot[r ].clientCD = ±) or (temp-ballot[r ].vnCD = ±) then
547 inCD ← ±
548 else
549 inCD ← null
550 inM ← {m : 〈client, m, ·〉∈ temp-ballot[r ].clientM} ∪ {m : 〈vn, v′, m〉 ∈ temp-ballot[r ].vnM, v′ 6= v}
551 if (r = temp-last-reset+1) then
552 e-frag-bc ← ⊥
553 else
554 〈temp-state, temp-msg, ·, e-frag-bc〉 ← do-bcast(temp-state)v

555 inM ← inM ∪ {temp-msg}
556 〈temp-state, e-frag-rcv〉 ← do-recv(temp-state, inM, inCD, inCM)v

557 exec ← exec . e-frag-bc . e-frag-rcv
558 else if (temp-status[r ] = red) then
559 inM ← ∅
560 inCD ← ±
561 if (r = temp-last-reset+1) then
562 e-frag-bc ← ⊥
563 else
564 〈temp-state, temp-msg, ·, e-frag-bc〉 ← do-bcast(temp-state)v

565 inM ← inM ∪ {temp-msg}
566 〈temp-state, e-frag-rcv〉 ← do-recv(temp-state, {temp-msg}, ±, inCM)v

567 exec ← exec . e-frag-bc . e-frag-rcv
568 return 〈temp-state, exec〉
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Figure 10-12: Virtual Node Emulator 8 — do-bcast and do-recv functions

569 do-bcast(temp-state)v

570 Signature:
571 temp-state ∈ states
572 Local State:
573 next-vn-msg ∈ msgs
574 out-req ∈ {active, passive}
575 a ∈ internal
576 s′ ∈ states
577 exec, a timed execution, initially empty
578 Constants:
579 δv , transition function for virtual node v
580 loc(v′) ∈ R× R, ∀v′ ∈ V, location of virtual node v′

581 Code:
582 while 6 ∃ s′ ∈ states, nxt-msg ∈ msgs⊥, req ∈ CM-names⊥ s.t. 〈tmp-state, bcast(nxt-msg, req)v,∗, s′〉 ∈ δvdo
583 Choose a ∈ internal and s′ ∈ states (deterministically) such that: 〈tmp-state, a, s′〉 ∈ δv

584 exec ← exec . 〈tmp-state, a, s′〉
585 tmp-state ← s′

586 Choose nxt-msg ∈M⊥, req ∈ CM-names⊥, s′ ∈ states such that:
587 〈tmp-state, bcast(nxt-msg, req)v,∗, s′〉 ∈ δv

588 exec ← exec . 〈tmp-state, bcast(nxt-msg, req)v,∗, s′〉
589 tmp-state ← s′

590 return 〈tmp-state, nxt-msg, req, exec〉
591

592 do-recv(temp-state, M, cd, cm)v

593 Signature:
594 temp-state ∈ states
595 M ⊆ msgs
596 cd ∈ {±, null}
597 cm ∈ {active, passive}
598 Local State:
599 a ∈ internal
600 s′ ∈ states
601 timepassage ∈ R
602 t ∈ R
603 exec, a timed execution, an initially empty
604 Constants:
605 δv , transition function for virtual node v
606 loc(v′) ∈ R× R, ∀v′ ∈ V, location of virtual node v′

607 Code:
608 timepassage ← RndLengthV

609 Choose t ≤ timepassage to be the maximum value such that in state temp-state time passage t is enabled.
610 while timepassage > 0 do
611 while (t = 0) do
612 Choose a ∈ internal and s′ ∈ states (deterministically) such that: 〈temp-state, a, s′〉 ∈ δv

613 exec ← exec . 〈temp-state, a, s′〉
614 temp-state ← s′

615 Choose t ≤ timepassage to be the maximum value such that in state temp-state time passage t is enabled.
616 exec ← exec . τ(t) where τ(t) is a trajectory of length t
617 timepassage ← timepassage − t
618 Choose s′ ∈ states such that:
619 〈temp-state, recv(M, cd, cm, loc[v ])v,∗, s′〉 ∈ δv

620 exec ← exec . 〈temp-state, recv(M, cd, cm, loc[v ])v,∗, s′〉
621 temp-state ← s′

622 return 〈temp-state, exec〉
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Figure 10-13: Multiplexer Automaton

623 State:
624 phase ∈ {in, out}, initially out
625 rnd ∈ N0, initially 0
626 clientBcast ∈ {true, false}, initially false
627 inVNs ⊆ V, initially ∅
628 inM ⊆ msgsB , initially ∅
629 inCD ∈ {±, null}, initially null
630 inCM ∈ {active, passive}, initially ⊥
631 inLoc ∈ R× R, initially 〈0, 0〉
632 bgnRnd ∈ R× R, initially 〈0, 0〉
633 outM ⊆ msgsV , initially ∅
634 outCM ∈ {global, ⊥}, initially ⊥
635 failed ∈ {true, false}, initially false
636

637 Signature:
638 Input:
639 vn-client-output(vnm, vnCD)v , vnm ∈ {〈vn, m, `〉: m ∈ msgsV , `∈ R× R}⊥, vnCD ∈ {±, null}
640 bcast(m, cm)∗, m ∈ msgsV , a ∈ CM-namesV ∪ {⊥}
641 recv(M, cd, cm, loc)0, M ⊆ msgsB , cd ∈ {±, null}, cm ∈ {active, passive}, loc ∈ R× R
642 fail()
643

644 Output:
645 bcast(m, cm)0, m ∈ msgsB , cm ∈ CM-namesB ∪ {⊥}
646 recv(inM, inCD, inCM, inLoc)∗, inM ⊆ msgsV , inCD ∈ {±, null}, inCM ∈ {active, passive}, inLoc ∈ R× R
647

648 Transitions:

648 Input vn-client-output(vnm, vnCD)v

649 Effect:
650 if (vnm 6= ⊥) and (vnm = 〈vn, ·, ·〉)then
651 inM ← inM ∪ {vnm}
652 if (±= vnCD) then
653 inCD ← ±
654 inVNs ← inVNs ∪ v
655

656 Output recv(M, inCD, inCM, inLoc)∗
657 Local State:
658 M-c ⊆ msgsV , initially ∅
659 M-vn ⊆ msgsV , initially ∅
660 Precondition:
661 inVNs = IV

662 phase = out
663 rnd mod RndLengthV = 0
664 M-c = {m : `∈ R× R, 〈client, m, `〉∈ inM, m 6= ⊥, |`-bgnRnd| ≤ RV }
665 M-vn = {m : `∈ R× R, 〈vn, m, `〉∈ inM, m 6= ⊥, |`-bgnRnd| ≤ RV }
666 if (inCD = null) then
667 M = M-c ∪ M-vn
668 else
669 M = ∅
670 failed = false
671 Effect:
672 inVNs ← ∅
673 inM ← ∅
674 bgnRnd ← inLoc
675 inLoc ← 0
676

677 Input bcast(m, cm)∗
678 Effect:
679 outM ← m
680 outCM ← cm
681 clientBcast ← true

682 Output bcast(m, cm)0
683 Precondition:
684 phase = out
685 rnd 6= 0
686 if (rnd mod RndLengthV 6= 0)
687 then
688 m = ⊥
689 else
690 clientBcast = true
691 if (outM = ⊥) then
692 m = ⊥
693 else
694 m = 〈client, outM, bgnRnd〉
695 if (outCM = client) then
696 cm = global
697 else
698 cm = ⊥
699 failed = false
700 Effect:
701 phase ← in
702 clientBcast ← false
703 outM ← ⊥
704

705 Input recv(M, cd, cm, loc)0
706 Effect:
707 if (rnd mod RndLengthV = 0) then
708 inM ← inM ∪ {m : 〈client, m, ·〉∈ M}
709 inCD ← cd
710 inCM ← cm
711 inLoc ← loc
712 rnd ← rnd+1
713 phase ← out
714 clientBcast ← false
715

716 Input fail()i

717 Effect:
718 failed ← true

719 Trajectories:
720 stops when:
721 phase = out and failed = false
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Delivering Messages to the Network/Client

Figure 10-4 describes two types of behavior: broadcasting messages to other nodes/pro-
cesses, and delivering messages to the client via the multiplexer. It also includes the
fail input transition.

The bcast(m, cm)v action (lines 158–171) transmits a previously prepared message.
The first two preconditions ensure that the emulator, when composed with a client
process, satisfies the dynamic restrictions of a process. Specifically, Restriction 5 of a
process (Definition 8.1.2) requires that a process perform no external actions after a
fail input event. The flag failed—see line 160—ensures that the (external) broadcast
event does not occur in this case. Restriction 4 of a process requires that it perform
a broadcast immediately upon receiving a message, and that broadcasts occur only
in response to receive events. This is enforced by the do-net-bcast flag, which is set
to true only when a message is received (e.g., line 222, Figure 10-5) and reset to false
when a broadcast occurs. The next precondition checks the do-client-recv flag; when
this flag is set to true, a vn-client-recv event can deliver messages to the client.

The remaining preconditions determine which message to transmit, and whether
to contend in the following (basic) round. If some message has been prepared, i.e.,
outgoing-msg 6= ⊥, then that message is broadcast. Otherwise, no message is broad-
cast, as indicated by the outgoing-msg = ⊥ symbol. Finally, the replica contends
for contention manager v if it has successfully completed the join protocol, i.e.,
joined = true.

The second part of Figure 10-4 is the vn-client-output(vnm-out , vnCD-out)v action
(lines 173–209), which delivers messages to the client (via the multiplexer, to be
discussed later). The vn-client-output event occurs at the end of each virtual round,
triggering the client to begin the next virtual round.

As usual, the failed flag in the precondition ensures that such events occur only
when the process has not failed. The flag do-client-recv plays a similar role as the
do-net-bcast flag: it ensures that the client receives its messages at exactly the correct
time at the end of the virtual round. This flag is set by the last recv in the virtual
round (line 489, Figure 10-5), and no further time can pass until the vn-client-output
event occurs (see Figure 10-2, Trajectories). This flag ensures that the vn-client-output
event precedes the bcast event at the end of the (virtual) round.

The next set of preconditions (lines 177–207) determines the data to send to the
client. This decision depends on a series of questions: (1) Is round rnd designated as
green, ⊥, or otherwise? (2) Is v scheduled for virtual round rnd? (3) Does the round
r ballot indicate that v broadcast a message, as determined by the ballot [rnd ].vnM
state variable? (4) Does vnphaseBcast indicate that some node sent a message on
behalf of virtual node v in the vn phase? (5) Is round r − 1 designated as green? (6)
Does the round r ballot indicate a collision among virtual nodes, as determined by
the ballot [rnd ].vnCD state variable? These conditions result in a series of cases:

• Round status is green, v is scheduled, and there exists some message in the
ballot for the current round, i.e., ballot [rnd ].vnM : In this case, the message is
delivered, and no collision is detected. This is the only case in which a message
is delivered to the client, via the multiplexer.
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• Round status is green, v is scheduled, there is no message specified by the ballot,
and the vnphaseBcast flag is set: In this case, no message (⊥) is delivered;
however, a collision is detected, as the vnphaseBcast flag is used to indicate
that some message may have been sent, but not received.

• Round status is green, v is scheduled, there is no message specified by the ballot,
and the vnphaseBcast flag is not set: In this case, no message (⊥) is delivered,
and no collision is detected.

• Round status is green and v is not scheduled: There are four sub-cases. First,
if vnphaseBcast = true, then no message is delivered, and a collision is detected.
(This is the second of four cases in which a collision is detected.) Second, if the
preceding round rnd − 1 is designated as either green or ⊥, then no message is
delivered and no collision is detected. Third, if either the ballot or the vnCD
variable indicates a collision in the current virtual round, then no message is
delivered and a collision is detected. (This is the third of four cases in which
a collision is detected.) Finally, in all other cases, no message is delivered, and
no collision detected.

• Round status is ⊥: In this case, no message is delivered, and no collision is
detected. This case indicates that the current node is not involved with the
round emulation.

• Round status is neither green nor ⊥: In this case, no message is delivered, and
a collision is detected, as the algorithm can not determine whether a message
was sent or not. (This is the last of four cases in which a collision is detected.)

The effect of the vn-client-output transition is to reset the do-client-recv flag to
false, indicating that the event has completed.

The last transition defined in Figure 10-4 is the fail action which sets the flag
failed to true.

Processing Messages

Figures 10-5–10-9 contain the main portion of the protocol, the recv transition def-
initions, which processes messages received from the broadcast service. The recv
transition is broken up into cases, one for each phase of the protocol. That is, the
choice of which recv transition to invoke depends on the phase of the protocol, as
determined by the local state of the emulator. For example, when phase = vn, the
recv transition on lines 242–276 (Figure 10-5) is invoked.

There are four main portions to the protocol: the broadcast portion—phases client
and vn (see Figure 10-5), the scheduled agreement portion—phases scheduled-ballot,
scheduled-veto-1, scheduled-veto-2 (see Figures 10-6 and 10-7), the unscheduled agree-
ment portion—phases unscheduled-ballot, unscheduled-veto-1, unscheduled-veto-2 (see
Figure 10-8), and the join portion—phases join, join-ack, join-veto (see Figure 10-9).
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The purpose of the broadcast portion of the protocol is to allow the clients an op-
portunity to broadcast messages, and to allow the replicas an opportunity to broad-
cast messages on behalf of the virtual node. The remainder of the two agreement
protocols is, essentially, agreeing on which of these messages to receive. Notice that
the clients and replicas broadcast their messages in separate rounds, ensuring non-
interference.

The scheduled agreement portion of the protocol is designed to allow the replicas
for “active” virtual nodes to run the agreement protocol, that is, it is designated for
replicas for virtual nodes advised to be active in that virtual round. Since no two
nearby virtual nodes are scheduled in the same virtual round, we can conclude that
there is no interference caused by neighboring virtual nodes during this portion of the
protocol. That is, the replicas for each scheduled virtual node can run the scheduled
agreement portion of the protocol free from interference from other replicas for other
virtual nodes.

The unscheduled agreement portion of the protocol is designed to allow the replicas
for “passive” virtual nodes to run the agreement protocol, that is, it is designated for
replicas for virtual nodes advised to be passive during that virtual round. In order
to prevent virtual nodes from interfering with each other during the unscheduled
agreement portion, we use the schedule to determine which virtual nodes participate
in which (basic) rounds. Thus, the unscheduled agreement portion of the protocol
requires SMAX rounds so that replicas for each virtual node have a chance to broadcast
a ballot with no interference.

Both the scheduled and unscheduled instantiations of the agreement protocol im-
plement the rules in Figure 10-1. They use the veto phases to ensure that no two
replicas differ in color by more than one shade.

The three join phases allow a replica to join in the emulation. The replica sends
a join request and receives in response a copy of the replicated state. When there are
no other replicas that have already joined, the virtual node can be reset; the last join
phase ensures that the virtual node is reset only when it has previously failed.

We now proceed to describe each recv transition definition—and each of the
phases—in more detail. Each recv transition begins with some preliminary steps
that are common to all of them: first, setting the flag do-net-bcast to true, ensuring
that a response is broadcast immediately; second, checking if the replica is still close
enough to participate in the emulation; third, initializing outgoing-msg to ⊥; fourth,
updating the phase flag to the next phase, thus ensuring that in the next (basic)
round, the correct recv transition is invoked. (The only exception to this fourth step
is in the unscheduled-ballot phase, where the phase is updated only after SMAX basic
rounds.) Each recv transition then continues to implement the specific requirements
of the phase. The last set of steps in a phase are to prepare the message to be sent
in the following phase.

Broadcast Phases: (All the line numbers here refer to Figure 10-5.)

• client phase: (lines 215–240) The first phase of the protocol is the client
phase. In the client phase, the clients broadcast their messages. They do
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this directly (via the multiplexer) and hence the virtual node emulator does
not broadcast anything in this round. The replica does, however, perform
some bookkeeping to prepare for the rest of the virtual round emulation.
We begin describing the behavior on line 227 after the shared initial four
steps described above:

– First, the emulator records the messages received from nearby clients
in clientM , and any collision detection information in clientCD . This
information is used throughout the virtual round; a subset of these
messages is received, conceptually, by the virtual node. (Messages
from clients that are far away can be safely discarded.) The emulator
also saves the contention management information in roundCM . This
contention information is used through the remainder of the current
virtual round.

– Next, the emulator increments the virtual round number rnd (line 230).

– Next, the replica examines the schedule to determine whether its vir-
tual node is scheduled in this round; it stores the result of this calcu-
lation in the scheduled flag. This flag determines whether the replica
participates in the schedule or unscheduled instance of the agreement
protocol.

– Next, the replica determines whether the virtual node being emulated
should broadcast a message in the current virtual round. Using the
emulator variables prev-rnd , ballot , last-reset , and last-good-state, the
replica calculates the current state for the virtual node. Recall that the
replica actually maintains a set of possible executions; the functions
calculate-status and calculate-state determine one preferred execution.
(These functions will be discussed in further detail in Section 10.2.4).
The replica then calls the do-bcast function, which calculates whether,
in the current state, the virtual node should broadcast a message.

– If there is some message to broadcast (next-vn-msg 6= ⊥), and if the
virtual node was not just reset (rnd 6= last-reset+1) , and if the replica
has completed the join protocol (joined = true), then the replica may
choose to broadcast the message in the vn phase which follows (see
line 238). If the replica is emulating a scheduled virtual node, then
it broadcasts the message only if the regional contention manager is
advising the replica itself to be active. Otherwise, if the replica is
emulating an unscheduled virtual node, then it broadcasts the message
regardless of the advice of the contention manager. (See line 239.)
This may well cause a collision, as the contention manager is being
ignored. The message broadcast in this latter case will not be received,
regardless: recall that in the vn-client-output transition, a message is
delivered from a virtual node v only if v is scheduled for the round.
This is sufficient to guarantee the ECF[GA] property of the virtual
broadcast service.

• vn phase: (lines 242–276) In this phase, the emulator chooses which mes-
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sages sent by virtual nodes are to be received by the virtual node v in the
virtual round being emulated. Replicas broadcast messages on behalf of
their virtual nodes in the vn phase. If exactly one neighboring virtual node
is scheduled and broadcasts a message (via exactly one of its replicas), then
this message is set to be received by virtual node v; otherwise, virtual node
v is set to detect a collision in the virtual round being emulated. The recv
transition for the vn phase begins with the same four initial steps. it then
proceeds as follows:

– First, the emulator records the incoming messages sent by virtual
nodes that are near to virtual node v (nearby-msgs).

– Next, vnM and vnCD are initialized to ∅ and null, respectively. Also,
vnphaseBcast is initialized to false.

– Next (line 261), the emulator checks whether the replica is close enough
to v to proceed. If j is within distance RV + RB/4 of loc(v), then the
emulator proceeds to calculate the sets vnM andvnCD and the flag
vnphaseBcast .

– The emulator then attempts to determine the appropriate value for the
vnphaseBcast flag. If there is some message from v in nearby-msgs ,
then the flag is set. Alternatively, if cd = ±, i.e., if the emulator
detects a collision, then the flag is set. From the completeness and
accuracy properties of the collision detector we can determine that if
a message is sent in the vn phase by a replica within distance RB, this
flag is set; if, after “stabilization” this flag is set, then some replica
within distance R′B sent a message.

– The emulator then checks a series of conditions which determine whether
any of the messages from the nearby virtual nodes can be received, and
whether a collision should be detected. If more than one message is re-
ceived from a nearby node, or if a collision is detected, or if a message
is received from some unscheduled virtual node (6= v), then a collision
is reported (vnCD ← ±), and no messages are received, i.e. vnM re-
mains ∅. Otherwise, vnM is set to nearby-msgs , that is, virtual node v
should receive all the messages sent by nearby nodes. Notice that this
ideal situation occurs only when exactly one message is received from
a nearby virtual node, that virtual node is scheduled, and no collision
is detected in the vn phase.

– Finally, the emulator assembles the ballot b, and prepares the message
outgoing-msg for the following phase. A ballot is sent only if virtual
node v is scheduled, only if the emulator has completed the join pro-
tocol, and only if the contention manager has advised the emulator to
be active. In this case, outgoing-msg is set to 〈vn, v, b〉, where ballot b
consists of the following components:

∗ prev-rnd , the most recent yellow or green round,

∗ clientM , the set of messages broadcast by clients in the current
virtual round,
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∗ clientCD , the collision detection information for the client phase,

∗ vnM , the set of messages broadcast by replicas on behalf of virtual
nodes in the current virtual round,

∗ vnCD , the collision detection information for the virtual node
phase,

The result of the ballot will (eventually) be a decision as to which
messages the virtual node should recv in that virtual round.

Scheduled Agreement Phases: (All the line numbers here refer to Figures 10-6
and 10-7.)

• scheduled-ballot phase: (lines 277–321) In this phase, the replica records the
current ballot, and begins the process of choosing a color for the current
round. The recv transition begins with the usual four steps, and then
proceeds as follows:

– First (lines 292–293), we consider certain sets of ballots derived from
allM , the set of messages received in the current basic round. The set
my-ballots contains all the ballots broadcast on behalf of virtual node
v. The set all-ballots contains all the ballots broadcast on behalf of
any virtual node. (It is clear that my-ballots ⊆ all-ballots .)

– Next (lines 294–298), we derive from the set of ballots, the sets of
messages that virtual node v may choose to receive in this virtual
round. The set ballot-msgs is the entire set of messages received in any
ballot from any virtual node. The set nearby-vn-msgs is the restricted
set of messages sent by a virtual node v′ that is near to v. The set
nearby-msgs is the further restricted set of messages sent by a virtual
node v′ that is near to the current location of the replica. As a result,
every message in nearby-msgs is (1) included in a ballot in allM , (2)
broadcast by a virtual node v′ near to v, and (3) broadcast by a virtual
node v′ near to the location of the replica.

– Recall that previously, in the vn phase, we established a set of mes-
sages vnM that the virtual node can receive in the current virtual
node. At this point, we further restrict this set of messages, taking
the intersection of this set with nearby-msgs . Thus, for a virtual node
to receive a message in a virtual round from another virtual node, the
emulator must both receive that message in the vn phase, and also
find the message in a ballot received during the scheduled-ballot phase.
This ensures that the message is part of the proposal received by all
the replicas.

– Next (lines 300–302), we calculate the set of virtual nodes that are near
to v and also scheduled. This is stored in the variable near-scheduledV .

– The scheduled-status is initialized to ⊥. As the round proceeds, the
color will be further determined; it remains ⊥ at the end of the virtual
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round only if the emulator is too far away from virtual node v to
determine a color for the round.

– The first case to consider is where the node running the emulator is
too far away from v. In this case, vnM is set to ∅: no messages are to
be received. Notice that scheduled-status remains ⊥.

– The second case to consider is when nearby-scheduledV = ∅, that is,
there is no virtual node v′ such that v′ is scheduled and v′ is close to
the node executing the emulator. Notice that if v is scheduled, then
this case is never reached; this covers the case where v is unscheduled,
the node executing the emulator is close enough to v, but there is
no scheduled virtual node nearby. In this case too, no message is
received, i.e., vnM ← ∅. When the vnM variable is next examined in
the unscheduled-ballot phase, the emulator will conclude that there are
no messages to be received from a nearby virtual node.

– In the third case, the emulator is near enough to a scheduled virtual
node to potentially receive messages. There is at most one element in
the set nearby-scheduledV , since the schedule is non-conflicting. We
choose v′ as the unique nearby scheduled virtual node. (Notice that v′

may equal v.) If cd = ±, that is, if the emulator detects a collision in
the scheduled-ballot phase, then the scheduled-status is set to red, the
set of messages to receive vnM is emptied, and a collision is set to be
detected by the virtual node (as per vnCD). Similarly, if more than
one ballot is received from v′, the status is set to red, no messages
are received by the virtual node, and a collision is detected. Notice
that if v is unscheduled, this information will next be used in the
unscheduled-ballot phase.
At this point, we proceed to fix the ballot and, possibly, prepare a veto
message if the following three conditions hold: v = v′, v is scheduled,
and the emulator has completed the join protocol. If there exists a
ballot b in my-ballots , then that ballot is recorded in the ballot data
structure. If there is no ballot, however, then we designate the round
as red. Next, the replica performs a veto if anything has gone wrong.
That is, if the scheduled-status is not ⊥, then it broadcasts a veto
message in the following phase. Notice that only replicas that have
completed the join protocol participate in broadcasting veto message.

• scheduled-veto-1 phase: (lines 322–342) In the first veto phase, if the replica
receives a veto message or detects a collision, it downgrades the color of
the round from green or yellow to orange. (If it is already designated as
orange or red, the color remains unchanged, of course.) It then prepares
to broadcast a veto, if necessary.

First, (after the usual initial four steps), the replica removes any messages
from vnM that are sent by virtual nodes that are (now) too far away. If at
any point during the virtual round, the replica exceeds a certain distance
from virtual node v′, then it should not propose receiving any messages
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from v′.

Next, the replica checks whether it is near enough to v to continue to
participate. If not, the set of message vnM is set to ∅, and the ballot is
cleared.

Next (line 334) the emulator checks whether it has received a veto message
or detected a collision. If so, then the scheduled-status is downgraded to
orange (if it is not already red).

Finally, the emulator prepares to veto in the second veto phase if the
round is currently designated as red or orange. This veto ensures that if
the replica designates the round as orange, then all other replicas designate
the round as at best yellow. The replica vetos only if it has completed the
join protocol and is representing a virtual node that is scheduled.

• scheduled-veto-2 phase: (lines 344–369) In the second veto phase, if the
emulator receives a veto phase or detects a collision, it downgrades the
color of the round from green to yellow. If it is already yellow or orange
or red, the color is of course left unchanged.

As in the scheduled-veto-1 phase, the recv transition begins (after the usual
initial four steps), by removing any messages from vnM that are sent by
virtual nodes that are (now) too far away, and then by checking whether
it is near enough to v to continue to participate.

Next (line 355) the emulator checks whether it received a veto message or
detects a collision. If so, the scheduled-status is downgraded to yellow, if
it is not already orange or red.

If the replica represents a virtual node that is scheduled, then the color
of the round is now determined, and the replica updates the round-status
array to reflect this new determination. Specifically, if the scheduled-status
remains unmodified at ⊥, and if the replica is sufficiently close to v, then
the round-status is set to green. Otherwise, the round-status is updated
to equal the calculated scheduled-status . The emulator then updates the
prev-rnd pointer, if the round is green or yellow, and if the replica has
completed the join protocol. This maintains the invariant that prev-rnd
refers to the most recent round locally designated as green or yellow.

If, on the other hand, the replica represents a virtual node that is unsched-
uled, then the emulator prepares for the unscheduled agreement portion of
the protocol. Notice that the replica has observed the scheduled agreement
phases, even though it has not participated. Recall that it has updated
scheduled-status , even though it has not performed vetos. If it believes the
status is green, then is prepares to receive whatever messages were broad-
cast during the scheduled portion of the protocol. Otherwise, it throws
away any messages in vnM , and decides to detect a collision. In more
detail, if the scheduled-status has been downgraded, i.e., is no longer ⊥
(line 366), then the emulator determines that it should not receive any
messages from virtual nodes (i.e., vnM ← ∅), and that it should detect a
collision (i.e., vnCD ← ±).
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Finally, it sets unscheduled-ballot-rnd to zero, preparing for the unsched-
uled agreement phases.

Unscheduled Agreement Phases: (All the line numbers here refer to Figure 10-
8.)

• unscheduled-ballot phase: (lines 370–397) The unscheduled ballot phase
lasts for SMAX basic rounds; it is the only phase that takes more than a
single basic round. The code for the unscheduled-ballot phase is divided
into three parts: first, the node receives and processes messages; then it
prepares to broadcast a message in the next (basic) round; finally, it checks
if the phase is complete.

As there are SMAX rounds in the unscheduled-ballot phase, the variable
unscheduled-ballot-rnd keeps a count of basic rounds that have elapsed dur-
ing the phase. The schedule determines which virtual nodes use which basic
rounds. If v ∈ schedule[unscheduled-ballot-rnd ], then a replica for v may
choose to broadcast a ballot in the next basic round (if it chooses to broad-
cast a ballot). If virtual node v ∈ schedule[unscheduled-ballot-rnd−1], then
a replica for v processes a ballot in the current basic round. (Notice, then,
that all messages associated with virtual node v are broadcast and received
in the basic round where v ∈ schedule[unscheduled-ballot-rnd − 1].)

The recv transition begins (after three of the usual four initial steps), by
checking whether virtual node v is scheduled, and whether the replica
has completed the join protocol. As this is the unscheduled instance, the
emulator proceeds only if virtual node v is not scheduled. We also proceed
only if the replica has completed the join protocol. (Notice that this is
unlike the scheduled agreement portion, in which some preparation must
be made for the later unscheduled portion, regardless of whether the v
is scheduled or unscheduled, and regardless of whether the replica has
completed the join protocol.) The emulator then proceeds as follows:

– In the first part, a replica processes ballots received in a basic round
where virtual node v ∈ schedule[unscheduled-ballot-rnd−1] (see lines 379–
386. The emulator begins by checking whether unscheduled-ballot-rnd >
0, and then proceeds to determine whether virtual node v is selected
by the schedule, i.e., if

v ∈ schedule[unscheduled-ballot-rnd − 1] ;

this determines whether virtual node v is using this basic round as its
ballot round. If so, my-ballots is assigned the set of ballots received
for virtual node v in the current round. If my-ballots = ∅, then there
is no ballot, and the round is designated as red. Similarly, if there is
a collision (i.e., cd = ±), then the round is designated as red. Finally,
if the round is not designated as red, then the ballot is recorded.
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– In the second part, a replica prepares to broadcast a ballot in the
following basic round, under certain circumstances (lines 387–394).
The emulator first checks that this is the appropriate basic round, i.e.,
unscheduled-ballot-rnd < SMAX and virtual node v is selected by the
scheduled:

v ∈ schedule[unscheduled-ballot-rnd ] .

Next, ballot b is formed from the prev-rnd , clientM , vnM , and vnCD
variables. (Notice that the vnM and vnCD variables were prepared in
the vn and scheduled-ballot phases above; the clientM and clientCD
variables were prepared in the client phase.) The ballot is broadcast,
then, only if the replica is designated by the contention manager to
be active. (Recall we have already assumed that the replica has com-
pleted the join protocol.) In the case where unscheduled-ballot-rnd =
SMAX, the replica prepares a message for the following phase, the
unscheduled-veto-1 phase. In this case, if the round status has been
downgraded to red, then outgoing-msg is set to 〈vn, v, veto〉, i.e., a veto
message is prepared.

– In the third part, the phase is updated (lines 395–397). If the phase is
not yet complete, i.e., if unscheduled-ballot-rnd < SMAX, then the ba-
sic round count is incremented. Otherwise, if unscheduled-ballot-rnd =
SMAX, then the unscheduled-ballot phase is complete, and the phase
is advanced to the unscheduled-veto-1 phase.

• unscheduled-veto-1 phase: (lines 399–411 In the first veto phase, if the
replica receives a veto message or detects a collision, it downgrades the
color of the round to orange. (If it is already designated as red, it remains
red, of course.)

First (after the usual four steps), the emulator checks that virtual node
v is unscheduled, and that the replica has completed the join protocol.
Otherwise, the replica does not participate in this veto phase.

Next, the emulator determines whether a veto message has been received,
or a collision detected. If so, the round status is downgraded to orange, if
it is not already red.

Finally, if the round is currently designated as red or orange, the replica
prepares to veto in the second veto phase, thus ensuring that all other
replicas designate the round as, at best, yellow.

• unscheduled-veto-2 phase: (lines 413–433) In the second veto phase, if the
emulator receives a veto message or detects a collision, it downgrades the
color of the round to yellow. If it is already orange or red, the color is of
course left unchanged.

First (after the usual four steps), the emulator checks that virtual node v
is unscheduled, and that the replica has completed the join protocol. In
this case, if the replica receives a veto message, or detects a collision, then
the round status is downgraded to yellow, if it is not already red or orange.
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Next (and even if the replica has not completed the join protocol), the
round status is finally determined: if the round-status [rnd ] remains ⊥,
meaning that it has not been downgraded, and if the replica is close enough
to v, then the round status is designated as green.

In all cases, the color of the round is now determined. Therefore, the
replica updates the prev-rnd pointer: if the round is green or yellow, the
replica stores the current round in prev-rnd . This maintains the invariant
that prev-rnd designates the most recent round locally designated to be
green or yellow.

Next, if the round status is red, the ballot is emptied. Since the round is
red, we cannot rely on any information received in the ballot.

The final part of the unscheduled-veto-2 phase prepares the message for the
join phase. Specifically, the mobile node broadcasts a join request under
the following conditions: (1) the mobile node hosting the replica process is
within distance RB/4 of the virtual node, (2) the replica has not completed
the join protocol, i.e., joined = false, and (3) virtual node v is scheduled
for the current virtual round, i.e., v ∈ schedule[rnd mod SMAX].

Join Phases: (All the following line numbers here refer to Figure 10-9.)

• join phase: (lines 434–446) In the join phase, a node that has not yet
completed the joined protocol may broadcast a join request. This join
request is received and processed by nodes that have already joined, and
these nodes then send a join response.

First (after the usual four steps), join-req is initialized to false. Under the
following circumstances, it is set to true: (1) Virtual node v is scheduled
for the current virtual round; this ensures that any join request comes from
a replica for virtual node v. (2) Either allM 6= ∅, indicating some replica
sent a join request, or cd = ±, indicating that either some replica sent
a join request or the collision detector returned a false positive. Thus, if
some replica for virtual node v broadcast a join request, join-req is set to
true.

Under these circumstances, since there is a join request, the replica sends a
join response in the next phase if it has, itself, completed the join protocol,
and if cm = true, indicating that the current replica has been designated
active for this basic round.

The resulting join response includes all the state associated with the replica.
Specifically, notice that all the input parameters to calculate-status and
calculate-state are included in the join response, with the exception of rnd
(which each replica can calculate on its own).

• join-ack phase: (lines 448–471) In this phase, nodes sent responses to the
join requests. These responses are received by the unjoined nodes, which
process these responses and join the emulation.

259



The set join-msgs represents the set of join responses for virtual node v.
After the usual initial four steps, this set is derived from allM , the set of
messages received in the join-ack phase. If the replica is within distance
RB/4 of virtual node v, and has not yet completed the join protocol, and if
it has received a join response, then it adopts the replica state from the join
response. If the set of join-msgs is empty, but cd = ±, then some replica
attempted (unsuccessfully) to send a join response; the replica broadcasts
a veto in the following join-veto phase, preventing the virtual node from
being accidently reset.

Finally, the replica prepares for the join-veto phase. It begins by initialize
reset to false. If v is scheduled for the current virtual round and if the
replica has completed the join protocol, then it broadcasts a veto in the
following join-veto phase, thus ensuring that the virtual node is not acci-
dently reset. Alternatively, if the replica has not successfully completed
the join protocol, and yet is still close to virtual node v, then it indicates
that a reset is desirable, setting reset to true.

• join-veto phase: (lines 473–489) If there is no veto in the join-veto phase,
then a joining replica knows that no other replica has completed the join
protocol, and thus the virtual node must be reset. After the usual initial
four steps, the emulator determines whether a reset is appropriate, exam-
ining the following conditions: (1) the replica is within distance RB/4 of
the virtual node v, (2) virtual node v is scheduled for the current virtual
round, (3) the reset flag is set to true, indicating that a reset is desirable,
(4) the replica has not yet itself completed the join protocol, (5) the replica
does not receive a veto message, and (6) the replica does not detect a col-
lision. The last two conditions ensure that no other replica broadcast a
veto message.

Notice that a reset occurs only if v is scheduled; this is because it is only in
virtual rounds where v is scheduled that the join protocol for v is invoked;
hence we can determine that the join protocol has failed only in such
rounds. Also, notice that the reset flag is used to determine whether a
reset is desirable. The reset flag is set in the join-ack phase when a join is
unsuccessful.

When a reset has occurred, the replica sets its joined flag to true, the
join-req flag to false, and resets its replica state as per lines 482–488.

Finally, the replica ensures that messages are delivered to the client at the
end of the virtual round by setting the do-client-recv flag, which forces a
vn-client-output to occur immediately afterwards (as per the Trajectories
in Figure 10-2).

10.2.4 Virtual Node Emulator Helper Functions

In this section we discuss the helper functions used by the virtual node emulator to
construct an execution of the virtual node.
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Calculating the Round Status

The calculate-status helper function in Figure 10-10 calculates the status of each round.
It takes as input the following parameters:

• temp-rnd , the current virtual round number,

• temp-prev , a copy of prev-rnd , the most recent round locally designated as
yellow or green,

• temp-ballot , a copy of the ballot array,

• temp-last-reset , a copy of last-reset , the most recent green round.

The goal of this helper function is to decide which virtual rounds to accept and which
to reject. When a virtual round is accepted, the virtual node receives the messages
designated by the ballot in that round. When a virtual round is rejected, the virtual
node detects a collision, regardless of the information in the ballot. Thus, the output
of the calculate-status function is the temp-status array in which each round has been
designated as either green or red. This status array is then used by the calculate-state
function to determine the current state of the virtual node.

The status is calculated backward, first starting with the current virtual round,
temp-rnd , and counting backwards to temp-last-reset , the most recent time the virtual
node was reset to its initial state. The variable r acts as the loop counter.

In the beginning, the pointer p = temp-prev , the most recent “good” round ≤ r.
Thus, all rounds larger than p should be designated as red: as we count backwards
in the array, until we reach round p, each round is designated as red. When we reach
round p, we designate that round as green, and update p with the prev-rnd designated
in the ballot from round r. We will show that when this happens, the ballot from
round r always contains a valid entry.

We will show in Corollary 11.6.7 that if two replicas share the same prev-rnd , then
the calculate-status helper function will calculate the same status for each round. Thus
in any green round, every replica will designate the round as green or yellow, resulting
in all the replicas agreeing on the prev-rnd , and as a result agreeing on the status of
all prior rounds.

Calculating the Replicated State

The calculate-state helper function in Figure 10-11 calculates the current state of the
virtual node. It reconstructs one plausible execution of the virtual node, based on
the following parameters:

• temp-rnd , a copy of rnd , the current round of the virtual node,

• temp-status , an array indicating which rounds have been accepted and which
rejected; this array is the result of the calculate-status helper function,

• temp-ballot , a copy of the ballot array,
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• temp-last-reset , a copy of last-reset , the most recent round in which v was reset,

• temp-state, a copy of last-good-state, the state of the replica at the end of
temp-last-reset .

The calculate-state function starts at the round following last-reset , and incrementally
calculates the state of the virtual node. The variable r represents the virtual round
being considered, and hence is iterated from temp-last-reset + 1 to temp-rnd . The
function proceeds as follows:

• First, it calculates the contention management advice to provide to the virtual
node: if v ∈ schedule[r mod SMAX], then v is advised to be active; otherwise,
v is advised to be passive. This information is stored in inCM .

• Next, it breaks into two cases, depending on whether the virtual round is ac-
cepted or rejected, that is, whether the calculate-status function designated this
round as green or red.

Green/Accept:
First, it determines whether the virtual node should detect a collision based
on the information in the ballot. This information is stored in inCD . Next,
it calculates the set of messages the virtual node should receive, based on
the information in the ballot. Specifically, it includes every message from
the clientM field of the ballot, and every message from the vnM field of
the ballot except those initiated by virtual node v. Any message from
v itself will be calculated directly, rather than derived from the ballot:
the next step proceeds to calculate the message broadcast by v using the
do-bcast function. Notice that if the virtual node was just reset, i.e., if
r = temp-last-reset + 1, then virtual node v does not send any messages
in round r. The message calculated (if any) is added to inM , and the
associated execution fragment is stored in e-frag-bc. Finally, it calls the
do-recv function to simulate the virtual node receiving the specified mes-
sages inM , detecting a collision as specified by inCD , receiving contention
management advice as per inCM , and receiving the the (constant) loca-
tion. The fragment of the execution in which the virtual node receives
the message is stored in e-frag-rcv , and hence the entire round execution
fragment consisting of e-frag-bc.e-frag-rcv is appended to exec.

Red/Reject:
In this case, the replica simulates the virtual node receiving only its own
message (if it broadcasts one), detecting a collision, and receiving the cal-
culated contention management information and the (constant) location.
Thus, the set of message, inM is initially set to be ∅, and inCD is set to ±.
As in the previous case, it calculates the message that virtual node v sends
in this case, and adds the message to inM , storing the execution fragment
in e-frag-bc. The receive portion of the execution fragment is calculated
using the do-recv function, and the execution fragments concatenated to
exec. Notice that in this case, no information from the ballot is used.
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At the end of each iteration, i.e., after completing the calculation for round r, the
execution exec consists of a (timed) execution of the virtual node through the end of
round r. In the end, it returns the final state of the virtual node, and the execution
of the virtual node that has been generated. This execution is used primarily in the
proof, and is not needed for the algorithm.

Additional Helper Functions:

The remaining helper function in Figure 10-12 are relatively straightforward.

Broadcasting messages. The function do-bcast calculates which message the vir-
tual node v sends when it is in the state temp-state. It also calculates the resulting
new state, after the message is broadcast, the resulting contention manager request,
and the execution fragment produced by the broadcast event.

The first step in this calculation is to perform any necessary internal actions
such that a broadcast is enabled. The do-bcast function is called only when the last
transition of the virtual node was a recv, and hence the properties of a process ensure
that after some set of internal actions a broadcast will be enabled. (See Lemma 10.3.1
for a slightly more detailed rendition of this argument.) Next, the function calculates
the state after the broadcast, and returns the requisite information.

Receiving messages. The function do-recv calculates the state after receiving a
given set of information: a set of messages M , collision detection feedback cd , and
contention manager advice cm. First, it advances time for one virtual RndLengthV

worth of time. The do-recv function is called immediately after a do-bcast, and hence
time must be advanced to the end of the round, before the recv transition should
occur. Since all the variables are constant with respect to time passage, it is sufficient
to perform whatever internal actions are necessary to allow time to pass. Since
the process is an internally-progressive TIOA, some set of actions are sufficient to
accomplish this; since the process satisfies the immediate response property, none of
the actions will be external output actions. (See Lemma 10.3.2 for a slightly more
detailed rendition of this argument.) Finally, it calculates the resulting state, and
returns it. It also returns the execution fragment which includes the time-passage
events, the necessary internal events, and the recv event.

10.2.5 Virtual Node Multiplexer

The virtual node multiplexer, presented in Figure 10-13, is relatively straightforward.
Its main purpose is to aggregate messages from the virtual node emulators, as well as
the broadcast service, and deliver them to the client. It also acts as an intermediary
between the client and the broadcast service, relaying client messages to the broadcast
service.
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Multiplexer State

The multiplexer contains the following state components:

• phase: specifies whether the multiplexer is relaying information inwards, from
the broadcast service to the clients, or outwards, from the clients to the broad-
cast service. Whenever phase = out, no time is allowed to pass, according to the
restriction on trajectories; this indicates that the multiplexer needs to broad-
cast a message immediately in order to satisfy the requirement that a process
immediately broadcast a message whenever one is received (Definition 8.1.2).

• rnd : stores the current basic round number, which is incremented every time a
message is received from the broadcast service.

• clientBcast : this flag indicates whether the client has broadcast its message yet
for the current virtual round. The multiplexer cannot re-broadcast the client
message until the client has transmitted the message to the multiplexer.

• inVNs : stores the set of virtual nodes that have, so far, delivered information
to the client.

• inM : stores the set of messages to deliver to the client.

• inCD : stores the collision detection information to deliver to the client.

• inCM : stores the contention management information to deliver to the client.

• inLoc: stores the location information to deliver to the client.

• beginRound : stores the location at the beginning of the virtual round.

• outM : stores the messages broadcast by the client.

• outCM : stores the contention management request from the client.

• failed : flag indicating whether the process has failed.

Multiplexer Signature

The multiplexer has the following input and output actions:

• Input vn-client-output(vnm, vnCD)v: receives a message and collision detection
feedback from the emulator on behalf of virtual node v.

• Input bcast(m, cm)∗: receives the broadcast from the client.

• Input recv(M, cd , cm, loc)0: receives messages from the broadcast service on
port 0.

• Input fail: indicates that the process has failed.

• Output bcast(m, cm)0: broadcasts a message using the broadcast service port 0.

• Output recv(m, cd , cm, loc)∗: delivers messages to the client.
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Multiplexer Transitions

The main functionality of the multiplexer is as follows. Each virtual round consists of
a series of basic rounds. A virtual round begins with a client broadcasting a message
during the client phase (when rnd mod RndLengthV = 0), in response to the receive
event from the previous round. The multiplexer receives this bcast∗ event, and relays
this message to the broadcast service via a bcast0 event. Throughout the rest of
the phase, the multiplexer simply receives the messages from the broadcast service,
and ignores them, broadcasting empty messages in response. Finally, when the last
receive event in the virtual round occurs, the multiplexer collects messages from the
virtual node emulators, via vn-client-output events, and delivers them to the client,
along with any other messages received during the client phase, via a recv∗ event. In
more detail:

• Input vn-client-output(vnm, vnCD)v: These input events occur during the last
phase of a virtual round. That is, they occur at exactly the end of a virtual
round. The multiplexer collects the messages from the various virtual nodes
in inM and the collision detection information in inCD . Notice that if any
virtual node notifies the client of a collision, then inCD ← ±. The multiplexer
then adds virtual node v to the set of virtual nodes inVNs that have delivered
information to the client in this virtual round.

• Output recv(M , inCD , inCM , inLoc)∗: These output events deliver information
to the client. They occur at the end of a virtual round. The preconditions ensure
that: (1) every virtual node has delivered information for the current round
(inVNs = IV ), (2) the multiplexer is ready to broadcast a message (phase =
out), (3) the current basic round is the last phase in the virtual round (rnd
mod RndLengthV = 0; recall that the first basic round is numbered 1, and
hence the last basic round in a virtual round is divisible by RndLengthV ), (4)
M-client and M-vn calculate the appropriate messages from the clients and
virtual nodes; only messages sent by nodes that were nearby at the beginning of
the virtual round are received; messages are delivered only if there is no collision
detected, and (5) the process has not failed. On delivering the appropriate
messages, collision detection information, contention management information,
and location information to the client, each of these variables is reset to the ∅.

• Input bcast(m, cm)∗: These input events are the broadcast events for the clients
for a given virtual round. They happen immediately after the recv∗ events,
and initiate the next virtual round. The message being broadcast is stored
in outM , and the contention management request is stored in outCM . The
flag clientBcast is set to true to indicate that the multiplexer is now ready to
broadcast the client’s message.

• Output bcast(m, cm)0: These output events relay the client’s messages to the
broadcast service, during the client phase, and broadcast empty messages in
all other phases. The preconditions ensure that the multiplexer is ready to
broadcast the client’s message, if it is the client phase, or an empty message
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otherwise: First, the multiplexer is ready to broadcast a message (phase = out
and rnd 6= 0); recall that a process does not broadcast a message in the first
round. Next, if the current round is a client phase (as determined by examining
the rnd variable), then the client has broadcast its message (clientBcast = true),
and the message is of the form 〈client, m, `〉, where m is the client’s message,
and ` is the location of the client when the message was sent at the beginning
of the round. (This additional information helps the emulator to process the
message.) Next, The process has not failed (failed = false). After a broadcast
event, the phase is set to in, indicating the multiplexer is now waiting to receive
a message. The flag clientBcast is reset, and the message outM is reset to ⊥.

• Input recv(M, cd , cm, loc)0: These input events deliver messages from the broad-
cast service to the multiplexer. In the client phase, these messages originate at
other clients, and hence are saved, to be delivered to the client at the end of
the virtual round. Similarly, the collision detection and contention manage-
ment information is saved in the client phase. (As the round counter has not
yet been incremented, rndmodRndLengthV = 0 in the client phase recv event.)
The location inLoc is updated in each round, even after the client phase so that
at the end of the virtual round the client receives the most up-to-date loca-
tion estimate. The round counter is then incremented, and the phase is set to
out indicating that the multiplexer needs to broadcast a message immediately.
Lastly, the clientBcast flag is reset to false.

• Input fail: This input action indicates that the process has failed; therefore the
failed flag is set to true.

10.2.6 Putting the Pieces Together

In this section, we assemble the components previously described, and provide the
full specification for the basic system, that is, fixing the parameters

PB, process-portsB,msgsB, AB,CM-namesB,CM B .

First, we define the emulator automaton E to be the composition of the following
automata:

{E(v) : v ∈ IV } ∪ {Multiplexer} .

We continue to use the notation E(v), for v ∈ IV , to refer to the emulator automaton
for v in the composition; similarly E(multiplexer) refers to the multiplexer portion of
the composition.

Next, we define the set of processes, PB. For each client process in the virtual
infrastructure system, we instantiate a new process consisting of the client composed
with the emulator. That is:

PB = {AV (i)× E : i ∈ IB} .

Each process AV (i) is a client process in the virtual infrastructure system, and thus is
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composed with the emulator automaton E to form a new process in the basic system.
We show in Section 10.3 that AV (i)×E is, in fact, a process as per Definition 8.1.2.

Next, we define an algorithm AB which assigns a process to each mobile node.
That is, for each i ∈ IB:

AB(i) = AV (i)× E .

Notice that AB is anonymous if AV is anonymous.

We provide each process with one port per virtual node, and one additional port.
That is:

process-portsB = IV ∪ {0} .

The set of broadcast ports bcast-portsB = IB×process-portsB, as defined in Chapter 8.

We define one contention manager for each virtual node location, along with
one additional “global” contention manager. The contention managers have names
CM-namesB = IV ∪ {global}, and thus

CM B = {CMv : v ∈ IV } ∪ {CMglobal}

We assume that CM v, for v ∈ IV , is an `-regionally fair contention manager for
the port set idbcast− portsB, where ` = loc(v)V . Additionally, we assume that every
contention manager is conservative. We assume that the contention manager CM global

is conservative, but make no further assumptions as to its operation. (In Section 11.10
we discuss further the relationship of CM global in the basic system to CM client in the
virtual infrastructure system.)

Finally, we define the set of messages msgsB to be all the possible messages that
the emulator automaton might send. That is:

• 〈client, m, `〉, ∀m ∈ msgsV , ∀` ∈ R× R,

• 〈vn, v, m〉, ∀m ∈ msgsV , ∀v ∈ IV ,

• 〈vn, v, b〉, for b a ballot, ∀v ∈ IV ,

• 〈vn, v, veto〉, ∀v ∈ IV ,

• 〈vn, v, join〉, ∀v ∈ IV ,

• 〈join, v, 〈b, r, p, f, l, s〉〉, where b is a ballot, r is a round status array, p is a round
number, f is a boolean flag, l is a round number, and s is a state of a virtual
node v.

We refer to the virtual infrastructure system defined by this particular set of param-
eters:

V S(PB, process-portsB,msgsB, AB,CM-namesB,CM B)

as the emulator system.
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10.3 Well-Formedness of the Emulator

Before proceeding to discuss the correctness of the emulator system (in Chapter 11),
we must first establish that the automata presented in Section 10.2 in fact describes a
process. Specifically, we show in Theorem 10.3.7 that for all i ∈ IB, if A is a process,
then A×E is a process, according to Definition 8.1.2. As a result, the set of processes
PB described in Section 10.2.6 is, in fact, a set of processes, and the emulator system
described is reasonable.

In order to verify that automaton A×E is a process, for all processes A, we need
to show that E satisfies a set of basic properties. We begin by showing that all the
transitions in E are finite (Lemma 10.3.4). We then show that E is a TIOA, and
finally that A×E is internally progressive. We are then able to show in Theorem 10.3.7
that A× E is a process.

We begin by showing that the “functions” described in Figures 10-10–10-12 in
fact terminate. First, consider the do-bcast function (Figure 10-12). The function
do-bcast takes one parameter, s, the state of virtual node v. The do-bcast function
terminates when the state represented by s is the last state in an execution fragment
that concludes with a recv event (with no bcast event that follows it). The argument
depends on the requirement that a bcast event occur immediately in response to a
recv event; hence if the do-bcast function is used to extend an execution of v, it is
applicable only when there is an immediately preceding recv event.

Lemma 10.3.1. Let v ∈ IV be a virtual node and γ an execution of v. Let s =
`state(γ) and t = `time(γ). If a recvv,∗ event occurs at time t in γ and no bcastv,∗
event occurs at time t in γ after the recv event, then do-bcast(s)v terminates.

Proof. The key requirement is to show that the initial while loop terminates. At the
beginning of the loop the virtual node v is in state s. The loop terminates as soon as
there exists some next-vn-msg ∈ msgs⊥ and out-req ∈ CM-names⊥ such that virtual
node v is enabled in state s to perform a bcast(next-vn-msg , out-req)v,∗ transition.

Assume for the sake of contradiction that do-bcast does not terminate. We claim,
then, that the infinite while loop continues to add locally-controlled events to execu-
tion fragment exec: Since the automaton at v is a process, and since γ contains a recv
event at time t with no following bcast event, there must be a bcast event prior to any
time-passage event, by Definition 8.1.2. Since the automaton at v is time-passage
enabled, and yet time-passage is not enabled since there has been no bcast event,
there must be some enabled locally-controlled event. Thus the while loop continues
to add an infinite number of locally-controlled events to the execution γ.exec.

Since the process at v is internally-progressive, we know that only a finite number
of locally-controlled events can occur at time t in any execution γ.exec, assuming only
a finite number of input events occur at time t. Notice, however, that the construction
never adds an input event to γ.exec. This contradicts our previous statement that
γ.exec contains an infinite number of locally-controlled events at time t, implying that
the do-bcast function terminates.

Next we show that the do-recv function (Figure 10-12) terminates. Specifically, if
s represents the last state in an execution γ where every recv event has a matching
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bcast event, then do-recv(s, . . .) terminates. (In fact, we are only interested in bcast
and recv events that occur at the last time in γ.) The argument depends primarily
on the fact that a TIOA is time-passage enabled and internally progressive.

Lemma 10.3.2. Let v ∈ IV be a virtual node and γ an execution of v. Let s =
`state(γ) and t′ = `time(γ). Assume that every recvv,∗ event at time t′ in γ is
followed by a bcastv,∗ event at time t′ in γ. Then do-recv(s, . . .)v terminates.

Proof. We argue that the while loop which adds time-passage events terminates.
First, notice that it is always possible on line 612 (Figure 10-12) to find an appropriate
internal action a: by the fact that t = 0, we know that time-passage is not enabled;
however, the automaton at v is time-passage enabled, implying that some locally-
controlled action is enabled; this action cannot be the output action bcast, as a bcast
can happen only in response to a recv event, and we have assumed that every recv
event already has a matching bcast event.

Next, notice that each iteration of the while loop adds a locally-controlled event
to an interval of time no larger than RndLengthV . Since there are only a finite number
of input events during this interval, we know that there are only a finite number of
internal events, since the automaton at v is internally progressive. Therefore we
conclude that the while loop terminates.

We are now able to show that the two calculation functions, calculate-status and
calculate-state, terminate. The argument is a straightforward examination of the loop
constructs used, along with an application of Lemmas 10.3.1 and 10.3.2.

Lemma 10.3.3. The functions calculate-status(. . .) and calculate-state(. . . , temp-state)v

(in Figures 10-10 and 10-11) terminate under the condition that temp-state is the ini-
tial state of virtual node v.

Proof. First, it is relatively straightforward to see that the calculate-status terminates:
the round counter r is decremented during each iteration of the loop, and hence
eventually r ≤ temp-last-reset + 1, at which point the loop terminates.

Second, we examine the calculate-state function. The main loop iterates the round
counter r from temp-last-reset+1 up to temp-rnd . It remains only to show that its use
of do-bcast and do-recv themselves terminate. These two functions are always called
in pairs, thus ensuring that the requisite conditions of Lemmas 10.3.1 and 10.3.2 hold.

In the first iteration of the main while loop, r = temp-last-reset + 1, and hence
no broadcast is included in either branch of the if clause. (See lines 551 and 561.)
Thus in the first iteration, the functions calls do-recv, where the state temp-state is
the initial state of virtual node v, i.e., the last state in an empty execution exec. We
conclude, then, that the call to do-recv terminates, by Lemma 10.3.2, as there are no
recv events in the empty execution exec. After the call to do-recv, and after e-frag-rcv
is concatenated to exec, notice that the last event in exec is a recv event; this property
is maintained throughout the rest of the function execution.

In each later iteration of the main while loop, the calculate-state function invokes
both do-bcast and do-recv. Since temp-state is the last state in exec, and the last
event in exec is a recvv,∗ event, we can conclude that the do-bcast event terminates
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by Lemma 10.3.1. At this point, temp-state is the last state of exec.e-frag-bc, and the
last event in e-frag-bc is a bcastv,∗ event. Thus, by Lemma 10.3.2, the do-recv event
terminates. Again, after the call to do-recv and after the execution fragments are
concatenated to exec, the last event in exec is a recv event, maintaining the requisite
property.

Thus in each iteration, all the calls to do-bcast and do-recv terminate, and thus
the calculate-state function terminates.

We are now able to show that each transition of the emulator algorithm terminates,
that is, that none of the transitions is infinite. The only place where problems may
arise is during the recv transition during the client phase, when the algorithm invokes
the calculate-status, calculate-state, and do-bcast functions. In each case, we show
that the previous lemmas indicate that the function terminates, leading to the desired
conclusion.

Lemma 10.3.4. Each transition in emulator E is finite.

Proof. Since no loop constructs appear in the emulator algorithm, the only potential
problems arise in the use of the various sub-functions. The calculate-status function
is invoked on line 235, Figure 10-5; by Lemma 10.3.3 we know that it terminates,
implying that it is a finite calculation.

Next, consider the calculate-state function that is invoked on line 236, Figure 10-5
(in order to calculate the last state of the proposed execution of v). Notice that
the variable last-good-state is initially the initial state of virtual node v, and is
never changed during an execution of the algorithm. Thus, we can conclude by
Lemma 10.3.3 that calculate-state terminates, implying that it is a finite calculation.

Finally, notice that the do-bcast function is used in the emulation algorithm on
line 237, Figure 10-5 (in order to calculate the next message that virtual node v
should send). In this case, temp-state is the state calculated by calculate-state on
the previous line (line 236, Figure 10-5). Recall that calculate-state also returns an
execution which has temp-state as its last state, and which has recvv,∗ as its last action.
Thus by Lemma 10.3.1 we conclude that the do-bcast function call terminates.

We can now show that emulator E is, in fact, a TIOA. In particular, this requires
showing that E is time-passage enabled.

Lemma 10.3.5. Emulator E is a TIOA.

Proof. We have already shown in Lemma 10.3.4 that each transition in E is finite. We
need to show that E is input enabled and time-passage enabled. The only syntactic
restriction in inputs is the where clauses that restrict the recvv transitions, depending
on the phase. However, for each phase, there is exactly one recv transition enabled.

We now argue that emulator E is time-passage enabled. The trajectories disable
time passage in two circumstances:

• E(v).do-client-recv = true and E(v).failed = false: In this case, under appropri-
ate settings of vnm-out and vnCD-out , the vn-client-output(vnm-out , vnCD-out)v

event is enabled. This transition resets E(v).do-client-recv to false.
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• E(v).do-net-bcast = true and E(v).failed = false: In this case, we can assume
that do-client-recv = false; otherwise, we fall into the previous case. In this
case, under appropriate settings of m and cm, the bcast(m, cm)v transition is
enabled, which resets do-net-bcast to false.

As a result, emulator E is time-passage enabled, and hence E is a TIOA.

The last fact we need to show about the emulator is that, when composed with
another process, i.e., a client, the resulting composed automaton is a process. We
show this fact in two steps: first we show that the composed automaton is internally
progressive; then we show that the automaton meets the other requirements of a
process.

Lemma 10.3.6. If A is a process, then A× E is internally progressive.

Proof. Consider an execution in which each finite interval of time has a finite number
of input actions. We begin by examining the locally-controlled actions of E, and
argue that each finite interval has a finite number locally-controlled actions by E.
Assume for the sake of contradiction that this is not the case. We consider each of
the possible locally-controlled actions of E in turn:

• bcastv: Assume there are an infinite number of bcastv events in some finite
interval of time, for some v ∈ IV . The precondition for the transition is that
do-net-bcast = true (line 161, Figure 10-4), and in the effect, do-net-bcast is
reset to false. Moreover, the only transition which sets do-net-bcast to true is
the recvv input event. Thus, we conclude that for each bcastv event, there is
an intervening recvv event that precedes it. This implies that there are also
an infinite number of recvv input events in the same finite interval of time,
contradicting our assumption.

• bcast0: Assume there are an infinite number of bcast0 events in some finite
interval of time. The argument in terms of bcast0 is almost equivalent, except
with respect to the phase flag (rather than the do-net-bcast flag). Specifically,
a bcast0 occurs only when phase = out, and its effects reset phase to in. The
only event that sets phase to out is a recv0 input event. Thus we conclude that
for each bcast0 event, there is a preceding recv0 event, implying a contradiction.

• vn-client-outputv: Assume there are an infinite number of vn-client-outputv events
in some finite interval of time, for some v ∈ IV . Again, the argument is almost
equivalent, except with respect to the do-client-recv flag. The precondition of
each vn-client-output transition is that do-client-recv = true, and this flag is
reset by the transition’s effects. Moreover, do-client-recv is set to true only by
the recvv input event. Thus we conclude that for each vn-client-outputv event,
there is a preceding recvv event, implying a contradiction.

• recv∗: Assume there are an infinite number of recv∗ events in some finite interval
of time. The precondition of the recv∗ event requires that inVNs = V , and the
set inVNs is reset to ∅ by the transition’s effects. The only transition which
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adds v ∈ IV to inVNs is the vn-client-outputv event. Thus, if there are an infinite
number of recv∗ events in a finite interval of time, there must also be an infinite
number of vn-client-outputv events for some v ∈ IV , contradicting the previous
claim.

Thus we conclude that if there are a finite number of input events in some finite
interval, then there are also a finite number of events controlled by automaton E.
Finally, we examine automaton A. Since automaton A is a process, we know that it
is internally progressive. Since for every finite interval there are a finite number of
events controlled by E, we can conclude that for A, there are a finite number of input
events. Thus, we conclude that there are also a finite number of events controlled by
A. Overall, then, we conclude that automaton A× E is internally progressive.

Finally, we present the main claim of the section: when emulator E is composed
with a process, the resulting composed automaton is also a process.

Theorem 10.3.7. If A is a process, then A× E is a process.

Proof. First, since A is a TIOA and E is a TIOA (Lemma 10.3.5), we conclude that
A × E is a TIOA. Next, we conclude by Lemma 10.3.6 that A × E is internally
progressive. It is immediately clear that A × E satisfies the static restrictions of a
process: Its input actions are recvp for port p ∈ process-portsB, and fail; its output
actions are bcastp for port p ∈ process-portsB. (Recall that process-portsB = IV ∪{0}.)
Additionally, all of the variables of E are discrete; since A is a process, all of the
variables of A are discrete. Thus all the variables of A × E are discrete. It thus
remains only to show that A × E satisfies the dynamic restrictions of a process:
immediate response and failure.

We first notice that each bcastv event follows a recvv event, with no intervening
bcastv event: The precondition for the bcastv event requires that E(v).do-net-bcast =
true, and the flag is reset during the transition’s effects. The only event which sets
the E(v).do-net-bcast flag true is recvv, implying that each bcastv event follows a recvv

event.
By essentially the same argument, a bcast0 event follows a recv0 event, with no

intervening bcast0 event: the precondition of the bcast0 event requires that phase =
out; this flag is set only by a recv0 event.

We next show that each recvv event is followed immediately by a bcastv event or
a fail event. The recvv event sets the E(v).do-net-bcast flag to true. According to the
restrictions on the trajectories, time cannot continue until either the flag is reset or
E(v).failed = true. Thus, if time passes further, either a bcastv event or a fail event
immediately follows the recvv event.

By essentially the same argument, each recv0 event is followed immediately by a
bcast0 event. The restriction on trajectories ensures that time cannot continue until
either phase = in or failed = true. Thus, if time passes further, either a bcast0 event
or a fail event immediately follows the recv0 event.

We next consider the failure property: no locally-controlled event occurs after a
fail event. Notice that in each automaton described, the fail event sets a flag failed
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to true; each locally-controlled action is only enabled when failed = false. Since
automaton A is also a process, the same failure property holds immediately, and no
locally-controlled events in A occurs after a fail event.

Thus we conclude that A× E satisfies all the requirements for a process.
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Chapter 11

Proof of Correctness

In this chapter we show that the protocol presented in Chapter 10 implements a
virtual infrastructure system. Fix execution α to be an infinite length execution of the
emulator system (which is equivalent to an infinite time execution, see Lemma 8.1.31)
in which the basic broadcast service satisfies eventual collision freedom. (We are
interested only in executions that satisfy eventual collision freedom.) Our main goal
in this chapter is to construct an execution γ of the virtual infrastructure system
VS (IV ,msgsV , PV , AV , locV ). We will then show that the execution γ satisfies the
appropriate liveness properties with respect to eventual collision freedom with good
advice, collision detector accuracy, and contention management. The following is an
outline of this chapter:

• Section 11.1 contains an overview of the proof.

• Section 11.2 describes the basic round structure.

• Section 11.3 presents lemmas describing which nodes are participating in the
emulation and which are not. In addition, we define an “updown” sequence
which describes when a virtual node is up and down.

• Section 11.4 analyzes the effects of a virtual node being reset.

• Section 11.5 defines good and bad rounds, as well as green and red rounds. It
then proves some basic properties about non-red rounds, particularly related to
the agreement among ballots.

• Section 11.6 proves a series of lemmas related to the calculate-status helper
function.

• Section 11.7 proves a series of lemmas related to the calculate-state helper func-
tion. A major conclusion of this section is that in a good round, the emulators
of a virtual node agree on an execution.

• Section 11.8 shows that eventually, after the basic system stabilizes, every round
is a green round. The claims in this section depend on the fact that the under-
lying execution guaranteeing eventual collision freedom.
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• Section 11.9 constructs an execution γv for every v ∈ IV .

• Section 11.10 constructs an execution γi for every i ∈ IB, as well as executions
for the virtual contention managers.

• Section 11.11 shows that the traces defined in Sections 11.9 and 11.10 are con-
sistent with a virtual broadcast service that guarantees integrity.

• Section 11.12 defines the virtual collision detector rule. Section 11.12.2 shows
that the virtual collision detector rule is complete. Section 11.12.3 shows that
the virtual collision detector rule is eventually accurate.

• Section 11.13 constructs an execution γbc of the virtual broadcast service.

• Section 11.14 pastes together all the sub-executions into a single execution γ of
the virtual infrastructure system, thus concluding the proof.

• Section 11.15 shows that execution γ of the virtual system satisfies the eventual
collision freedom with good advice (ECF[GA]) property. This section depends
on the underlying execution guaranteeing eventual collision freedom.

• Section 11.16 discusses under what conditions a virtual node is failed, and un-
der what conditions a virtual node is not failed. This section depends on the
underlying execution guaranteeing eventual collision freedom.

11.1 Overview of the Proof

Recall that an emulator system contains the following automata:

• remapped processes P (AB, IB), where each process is an automaton AV (i)×E,
for some i ∈ IB,

• broadcast service BB, and

• contention managers {CM v : v ∈ IV } ∪ {CMclient}.

Throughout this section, as a slight abuse of terminology, we refer to the process
Remap(A(i)B, i) associated with name i ∈ IB as node i. By a similar abuse of
terminology, when talking about the virtual infrastructure system, we refer to the
process Remap(A(i)V , i) associated with name i ∈ IB as client i, and the process
Remap(A(v)V , v) associated with name v ∈ IV as virtual node v.

Recall that the automaton AB(i) itself consists of two composed automata: the
client automaton, AV (i), and the emulator E. Further, recall that the emulator is
the composition of individual emulators for each virtual node v ∈ IV , which we refer
to as E(v), and a multiplexer, which we refer to as E(multiplexer).

The main part of the proof involves constructing an execution γv of each virtual
node v ∈ IV . We extract from execution α the individual executions of each of the
clients; we then construct an execution for each of the virtual contention managers.
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Finally, we use the traces of these constructed executions to produce a trace of the
broadcast service, and from there construct an execution of the broadcast service.
The key lemma in this part of the proof, Lemma 11.13.1, shows that the resulting
construction is in fact an execution of the broadcast service. Once we have constructed
individual executions for each of the components in the virtual infrastructure system,
we conclude by pasting the various executions together to form γ, which we then
show has the desired properties.

The main technical challenge, then, is correctly constructing the individual exe-
cutions γv so that the resulting execution-pasting works. Consider some particular
virtual node v. We begin by identifying in which rounds virtual node v is “up,” i.e.,
not failed, and which rounds virtual node v is “down,” i.e., failed. Next, we show how
to extract from the state of the replicas a set of executions for virtual node v that
are consistent with execution α: We define exec(r1, r2, i)v as the preferred execution
fragment for rounds [r1, r2] according to replica i for virtual node v from round r1 to
round r2. This execution is constructed in a two-step process: first, the calculate-status
function is used to determine from the ballot i,v data structure which virtual rounds
are “good” and which virtual rounds are “bad.” Then, the calculate-status function
is used to produce the actual execution fragment. We define execs(r1, r2)v to be the
set of all possible executions for all “participating” replicas i.

We need to show that each execution in execs(r1, r2)v has certain properties.
First and foremost, whenever there is some externally-visible behavior, the executions
should agree. Thus, a key lemma (Corollary 11.7.12), shows that if any node receives
a message from virtual node v in some round r ∈ [r1, r2], then |execs(r1, r2)v| = 1,
i.e., there is only one possible execution among all the replicas. This ensures that
when we later construct the execution of the virtual broadcast service, the “integrity”
property will be maintained. Other externally visible behavior relates to the detec-
tion of collisions: Lemma 11.12.10 shows that if any execution in execs(r1, r2)v of
virtual node v includes the broadcast by v of a message in some round r ∈ [r1, r2],
and if client i does not receive that message in γi in round r, then client i receives
a collision in γi in round r, where γi is the execution constructed for client i in the
virtual infrastructure system. This leads to the completeness property.

Once we have constructed the various execution fragments, we can concatenate
them together—with appropriate time passage events to simulate failed rounds—
to arrive at an infinite execution γv. Finally, we show that the construction of γv

results in certain liveness properties. The key lemma, in this case, is Lemma 11.8.12,
which shows that every virtual round ≥ rgst , where rgst is some round in the virtual
infrastructure system, is a “green” round, meaning that the replicas successfully agree
on the next portion of the virtual node execution. As a result, we can conclude that
the virtual infrastructure system guarantees eventual collision freedom with good
advice (ECF[GA]), eventual accuracy, and appropriate contention management.
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11.2 Rounds, Phases, and Other Preliminary Def-

initions

We begin with some preliminary lemmas and definitions that elucidate virtual rounds,
phases, and other terminology that will be used throughout the proof. We focus in
particular on how rounds are designated and how rounds are counted. Throughout
this proof, we occasionally refer to a sequence of rounds: the set of rounds [r1, r2],
where r2 ≥ r1, is defined as {r ∈ N0 | r1 ≤ r ≤ r2}.

11.2.1 Round Length

Recall (from Chapter 9) that the RndLengthV , as specified in the virtual infrastructure
system specification, is in fact equal to 10 + SMAX, which is the number of phases
in the emulator protocol. Since a virtual round, by assumption, is the time interval
[(r− 1) ·RndLengthB , r ·RndLengthV ], and a basic round is, by assumption, the time
interval [r − 1, r], we can conclude:

Lemma 11.2.1. Virtual round r is equivalent to basic rounds [(r−1)(RndLengthV )+
1, (r)(RndLengthV )].

There is, therefore, a straightforward translation between virtual rounds and basic
rounds. As the emulator protocol operates in “phases,” and since in most cases (other
than the unscheduled-ballot phase) each phase corresponds to exactly one basic round,
for the sake of clarity we will occasionally to use the term “phase” to refer to a basic
round, thus distinguishing it from a virtual round. We will use the full terms “basic
round” and “virtual round” when it is otherwise unclear.

We often refer to some particular phase of the emulator protocol associated with
virtual round r. For example, when we refer to the vn phase associated with virtual
round r, we are referring to the basic round (r − 1)(RndLengthV ) + 2, since the vn
phase is the second phase in the virtual round.

Definition 11.2.2. The following is the translation between phases of virtual round
r and basic rounds:

client phase of round r: (r − 1)(RndLengthV ) + 1
vn phase of round r: (r − 1)(RndLengthV ) + 2
scheduled-ballot phase of round r: (r − 1)(RndLengthV ) + 3
scheduled-veto-1 phase of round r: (r − 1)(RndLengthV ) + 4
scheduled-veto-2 phase of round r: (r − 1)(RndLengthV ) + 5
unscheduled-ballot phases of round r: [(r − 1)(RndLengthV ) + 6,

(r − 1)(RndLengthV ) + SMAX + 5]
unscheduled-veto-1 phase of round r: (r − 1)(RndLengthV ) + SMAX + 6
unscheduled-veto-2 phase of round r: (r − 1)(RndLengthV ) + SMAX + 7
join phase of round r: (r − 1)(RndLengthV ) + SMAX + 8
join-ack phase of round r: (r − 1)(RndLengthV ) + SMAX + 9
join-veto phase of round r: (r − 1)(RndLengthV ) + SMAX + 10
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Notice that each phase of the emulator protocol corresponds to exactly one basic
round in the virtual round, with the exception of the unscheduled-ballot-phase, which
lasts for SMAX basic rounds.

11.2.2 Emulator State at the Beginning and End of a Round

We next need some terminology to refer to the state of the emulator process at various
points in the execution. In particular, we will be interested in the state of the emulator
at the end of each basic round, and at the end of each virtual round. (Notice that it
makes sense to talk about the end of a virtual round in α, since virtual rounds are
simply defined by intervals of time, not events; hence the virtual round ends when
the last basic round associated with the virtual round ends.) Since rounds are simply
defined in terms of time, however, the state of a process at the “end of a round” is so
far ill-defined, as multiple events may modify its state at that exact instant in time.
Throughout this proof, then, when we refer to the state at the end of a round, we
mean the state of a node immediately after the receive event associated with that
round:

Definition 11.2.3. • The state of node i ∈ IB at the end of basic round r is
the state of i immediately after the round r receive event.

• The state of node i ∈ IB at the end of virtual round r is the state of i at the
end of the last basic round in virtual round r.

• The state of node i ∈ IB at the beginning of basic round r is the state of i
at the end of basic round r − 1, or the initial state if r = 1.

• The state of node i ∈ IB at the beginning of virtual round r is the state of
i at the end of virtual round r − 1, or the initial state if r = 1.

11.2.3 The Current Round

The emulator process for virtual node v keeps track of the current virtual round in
the state variable E(v).rnd i. (Recall that the notation E(v).rnd i refers to the rnd
state component of the individual virtual node emulator E(v) associated with node
i.) By simple counting, it is immediately clearly that the emulator correctly counts
virtual rounds:

Lemma 11.2.4. For all i ∈ IB, if i has not failed by the end of basic round ra, where
ra is part of virtual round r, then E(v).rnd i = r at the end of basic round ra.

Proof. This lemma follows immediately from the fact that RndLengthV = 10+SMAX,
and that there are exactly 10+SMAX basic rounds in the protocol: every client phase
increments E(v).rnd i by 1.

Notice that this lemma says nothing about the actual behavior of the virtual node;
the beginning and end of a virtual round are defined simply by the times at which
the round starts and finishes, which is itself derived from RndLengthV .
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Lemma 11.2.5. At the beginning of every basic round ra ∈ N, for all i ∈ IB, for
virtual node v ∈ IV , E(v).rnd i = dr − 1/RndLengthV e.

Proof. There are RndLengthV = 10 + SMAX basic rounds in the phase progression:
one basic round for each of:

1. client,
2. vn,
3. scheduled-ballot,
4. scheduled-veto-1,
5. scheduled-veto-1,
6. unscheduled-veto-1,
7. unscheduled-veto-2,
8. join,
9. join-ack, and

10. join-veto;

Additionally, there are SMAX basic rounds for the unscheduled-ballot phase. The
variable E(v).rnd i is incremented in the client phase, and initially E(v).rnd i = 0 at
the beginning of the basic round 1. The expression dr−1/RndLengthV e is incremented
when r = 1,RndLengthV +1, 2(RndLengthV )+1, 3(RndLengthV )+1, . . .; each of these
basic rounds is a client phase.

Corollary 11.2.6. At the beginning of every basic round r, for all i, j ∈ IB, E(v).rnd i =
E(v).rnd j.

Proof. Immediate as a result of Lemma 11.2.5.

We also prove the same claim for the multiplexer:

Lemma 11.2.7. For every i ∈ IB, if i has not failed by the end of basic round ra,
then E(multiplexer).rnd i = ra at the end of basic round ra.

Proof. This lemma follows immediately from the fact that E(multiplexer).rnd i begins
at zero, and is incremented with each recvi,0 event, i.e., with every recv event by the
broadcast service. Since i does not fail prior to the end of ra, there is a recvi,0 event
in every basic round ≤ ra.

11.2.4 Scheduled and Unscheduled Rounds

Recall that we say virtual node is scheduled in virtual round r if v ∈ schedule[r
mod SMAX]; otherwise, we say that v is unscheduled. For node i ∈ IB and virtual
node v ∈ IV , the variable E(v).scheduled i records whether virtual node v is scheduled
in round r.

Lemma 11.2.8. Assume node i ∈ IB has not failed by the end of basic round ra, and
that round ra is part of virtual round r.

Node i ∈ IB has E(v).scheduled i = true at the end of basic round ra in virtual
round r if and only if virtual node v is scheduled for virtual round r.
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Proof. Since i has not failed by the end of ra, we know that a recv event for the
round r client phase occurs, as the client phase is the first phase in r. At the begin-
ning of the client phase, that is, the end of round r − 1, E(v).rnd i = r − 1, as per
Lemma 11.2.4. During the client phase, first E(v).rnd i is incremented to r, and then
the flag E(v).scheduled i is set if and only if v ∈ schedule(E(v).rnd i mod SMAX), that
is, if and only if virtual node v is scheduled for virtual round r. The E(v).scheduled i

flag is not modified during any other phase of round r prior to the end of round ra,
since node i does not fail in a basic round ≤ ra.

We can thus conclude that any two nodes share the same value for the scheduled
flag for the same v at the end of each basic round in a virtual round:

Corollary 11.2.9. Let ra and rb be basic rounds that are part of the same virtual
round. Let i, j ∈ IB be two nodes that have not failed by the end of ra and rb,
respectively. Then at the end of round ra, E(v).scheduled i = E(v).scheduled j, at the
end of round rb.

Proof. Follows immediately from Lemma 11.2.8: if ra and rb are part of virtual round
r, then: if v is scheduled, then both equal true; if v is not scheduled, then both equal
false.

11.3 Participating in a Virtual Node Emulation

Our goal in this section is to determine when a node i “participates” in emulating a
virtual node, and when it does not. We will then show how to construct an “updown”
sequence that indicates in which rounds a virtual node v is up, and in which rounds
virtual node v is down. For every consecutive sequence of rounds in which virtual
node v is up, we will show, in the following sections, how to construct an appropriate
execution segment.

In part, this section implies that the “join protocol” works as expected, in that
it discusses how nodes join the emulation and what can be guaranteed of nodes
participating in the emulation.

11.3.1 Preliminary Definitions

Before discussing node participation, we first need some terminology relating to the
schedule. Recall that in each virtual round, the emulator examines the schedule to
determine whether to simulate a broadcast by the virtual node. We therefore define
the notion of “scheduled” as follows:

Definition 11.3.1. We say that virtual node v is scheduled in virtual round r if
v ∈ schedule[r mod SMAX]. Otherwise, we say that virtual node v is unscheduled
in virtual round r.

When virtual node v is scheduled for some virtual round r, the emulator for v
behaves differently than when v is unscheduled. Specifically, the emulator for virtual
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node v uses the “scheduled agreement instance,” rather than the “unscheduled agree-
ment instance.” Thus, we define the “last agreement phase” as follows, depending on
whether virtual node v is scheduled:

Definition 11.3.2. For virtual node v ∈ IV and virtual round r > 0, we define the
last agreement phase of v in virtual round r as follows:

• If v is scheduled in round r, then the last agreement phase is the scheduled-veto-2
phase.

• If v is unscheduled in round r, then the last agreement phase is the unscheduled-veto-2
phase.

We can now determine whether a replica is participating in the emulation of virtual
node v for some given virtual round r. Specifically, a replica is participating in the
emulation if it has completed the “join protocol” prior to virtual round r and does
not fail until the end of the appropriate agreement instance:

Definition 11.3.3. We say that i ∈ IB participates in virtual node v in virtual
round r if E(v).joined i = true and E(v).failed i = false at the beginning of virtual
round r, and through the end of the last agreement phase of virtual round r.

A related concept is when a given replica “begins” a virtual round; a replica may
begin a virtual round, but fail prior to reaching the end of the agreement instance.
Similarly, we may be interested in the case where a replica “completes” a virtual
round r, which we define to be the same as the case when a virtual round “begins”
the following round r+1; in this case, by the end of virtual round r, i.e., the beginning
of virtual round r + 1, i has completed the join protocol and not failed.

Definition 11.3.4. We say that i ∈ IB begins virtual round r for virtual node v if
E(v).joined i = true and E(v).failed i = false at the beginning of virtual round r. We
say that i ∈ IB completes virtual round r for virtual node v if it begins round r + 1.

Notice that it is immediate from Definition 11.3.3 that if i participates in v in virtual
round r, then i also begins r for v. On the other hand, a node i may complete a
virtual round r for v, and yet not participate in v in round r; for example, a node
may not begin round r for v, but may join v in round r and complete round r for v.

Next, we define what it means for a virtual node to be reset in a given virtual
round. Specifically, we say that a virtual node is reset when the replicas simulate a
reset event in the virtual system:

Definition 11.3.5. We say that node i ∈ IB executes a reset of virtual node v
in virtual round r if automaton E(v)i executes lines 482–488 (Figure 10-9) in virtual
round r.

Next, we define what it means for a replica to join the emulation. Specifically, we
say that a replica joins the emulation when it executes the appropriate lines of code:

Definition 11.3.6. We say that node i ∈ IB joins virtual node v in virtual round r
if automaton E(v)i executes lines 462–463 (Figure 10-9) in virtual round r.
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11.3.2 Defining Up and Down

At this point, we can define what it means for a virtual node to be up or down in a
given virtual round. Specifically, we say that a virtual node v is down in two different
cases: first, v is down if there are no replicas that remain involved in the emulation
of v, i.e., there are no replicas that have joined, not failed, and not left the region at
the end of the round; in this case, the virtual node is down; second, v is down if some
replica executes the reset protocol.

Definition 11.3.7. We say that virtual node v ∈ IV is down in virtual round r > 0
of execution α in either of the following two cases:

1. There exists some i ∈ IB such that i executes a reset of v during virtual round r.

2. For all i ∈ IB, i does not complete virtual round r for v.

We say that virtual node v ∈ IV is up in virtual round r of execution α if it is not
down.

11.3.3 Properties of Participating Nodes

We now prove some basic properties about nodes participating in a given round for
a given virtual node. We begin with a basic lemma on when a node can join the
emulation; the main point of this lemma is to show that if a node i has joined and
not failed at any point in a virtual round prior to the join phase, then i must have
begun the virtual round, since a node cannot join the emulation prior to the join
phase.

Lemma 11.3.8. Let r > 0 be a virtual round, and v ∈ IV a virtual node. If node
i ∈ IB has E(v).joined i = true and E(v).failed i = false at the end of any basic round
prior to the join phase of round r, then i begins round r for v.

Proof. First, since the basic system processes are non-recoverable, we know that
E(v).failed i = false at the beginning of virtual round r, since E(v).failed i = false
after the beginning of virtual round r.

Assume, then, for the sake of contradiction that E(v).joined i = false at the begin-
ning of virtual round r. The first opportunity for node i to set E(v).joined i = true is
line 463, which occurs in the join-ack phase. Thus, E(v).joined i = false through the
beginning of the join phase, contradicting our assumption.

Next, we can conclude from Lemma 11.3.8 that any non-failed node i that has
E(v).joined i = true through the end of the last agreement phase must also partici-
pate in the virtual round, by Definition 11.3.3. This gives us a characterization of
participating nodes for a given virtual node and virtual round: the set of nodes that
have joined and not failed at the end of the last agreement phase. In fact, we show a
slightly stronger result: if a node has joined and not failed at the end of either veto-2
phase, then it has joined and not failed from the beginning of the round up until that
point:
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Lemma 11.3.9. Let r > 0 be a virtual round, and v ∈ IV a virtual node. If node
i ∈ IB has E(v).joined i = true and E(v).failed i = false at the end of either (1)
scheduled-veto-2 phase or (2) unscheduled-veto-2 phase of round r, then, in either
case, i has E(v).joined i = true and E(v).failed i = false from the beginning of virtual
round r through the end of the specified veto-2 phase.

Proof. We can conclude from Lemma 11.3.8 that node i begins round r. Moreover, if
E(v).joined i = false in any phase prior to—or including—the specified veto-2 phase,
then E(v).joined i = false at the end of the veto-2 phase, contradicting our assumption,
as there is no opportunity prior to the join-ack phase for i to reset E(v).joined i to
true. Also, since processes in the basic system are non-recoverable, we know that
E(v).failed i = false in all rounds prior to the last agreement phase. Thus, node i has
E(v).joined i = true and E(v).failed i = false from the beginning of round r through
the end of both the scheduled-veto-2 and the unscheduled-veto-2 phase.

Finally, we prove that the definition of a virtual node being “up” captures some-
thing about the real status of the virtual node. Specifically, we show that if the
virtual node is up, then there is at least some i ∈ IB that is participating in the
round for v. In fact, we show a slightly stronger result, specifically, that some replica
has joined and not failed at least through the end of the unscheduled-veto-2 phase.
(A participating node is only guaranteed to be joined and not failed through the end
of the last agreement phase, which for a virtual node scheduled in round r may be
the earlier scheduled-veto-2 phase.)

Lemma 11.3.10. Let r > 0 be a virtual round, and v ∈ IV be a virtual node that is
up in virtual round r. Then there exists some node i ∈ IB such that (1) i begins round
r for virtual node v, and (2) E(v).joined j = true and E(v).failed j = false through the
end of the join phase of round r.

Proof. First, if there exists any node i ∈ IB such that E(v).joined i = true and
E(v).joined i = false at the end of the unscheduled-veto-2 round of round r, then i
must begin round r, by Lemma 11.3.9, satisfying our claim.

Assume, then, that at the beginning of the join-ack phase, there is no node i ∈ IB

that has E(v).joined i = true and E(v).failed i = false. In this case, the condition on
line 445 (Figure 10-9) is not satisfied by any node during the join phase, and thus
no join-ack messages are broadcast. Thus, no node i ∈ IB joins v in round r. As a
result, virtual node v must be down in round r: either some node j ∈ IB executes the
reset protocol, setting E(v).joined j = true, or at the end of the virtual round there
are no nodes j ∈ IB such that E(v).joined j = true. Either way, v is down in round r,
contradicting the assumption that v is up in round r.

11.3.4 Delineating an Execution

We now define what it means for virtual rounds r1 and r2 to “delineate” an execution:

Definition 11.3.11. Let r1 ∈ N, r2 ∈ N ∪ {∞}, r1 ≤ r2. We say that 〈r1, r2〉 is an
epoch, delineated by [r1, r2], of virtual node v ∈ IV in α if the following properties

284



hold: (1) if r1 > 1, then virtual node v is down in virtual round r1−1; (2) virtual node
v is up in virtual rounds [r1, r2]. We say that an epoch 〈r1, r2〉 is finite if r2 6=∞.

Notice that we do not assume that v is down in round r2 + 1; that is, these are not
necessarily maximal length sequences of rounds in which v is up.

If 〈r1, r2〉 delineates an epoch, then the endpoints of any prefix of the interval
[r1, r2] also delineate an epoch:

Lemma 11.3.12. Assume 〈r1, r2〉 delineates an epoch of virtual node v ∈ IV , and
r ∈ [r1, r2]. Then 〈r1, r〉 delineates an epoch of virtual node v.

Proof. Immediate, by Definition 11.3.11.

11.3.5 UpDown Sequences

We now define an “updown” sequence, which is a sequence of pairs 〈ui, di〉. Each
pair is a maximum-length sequence of rounds in which virtual node v is up. That is,
if 〈ui, di〉 is in the updown sequence, then we can conclude that v is down in round
ui − 1; if di 6=∞, then we can also conclude that v is down in round di + 1.

Definition 11.3.13. Let s be a (possibly infinite) sequence 〈u0, d0〉, 〈u1, d1〉, 〈u2, d2〉, . . ..
We say that s is an updown sequence if it satisfies the following properties:

• (The list of pairs is sorted.) For all i > 0, if 〈ui+1, di+1〉 is in the sequence,
then di < ui+1.

• (Each pair delineates an epoch of v.) For all 〈ui, di〉 in the sequence, 〈ui, di〉
delineates an epoch of v in α.

• (The list of pairs is complete.) For ever round r > 0, if virtual node v is up in
round r, then there exists some 〈ui, di〉 in the sequence such that r ∈ [ui, di].

These properties imply that the updown sequence contains maximum-length se-
quences of rounds in which the virtual node is up. To see this fact, assume instead
that there were some 〈ui, di〉 in the updown sequence for v where v is up in round
di +1: The third property of an updown sequence guarantees that for some 〈u′, d′〉 in
the updown sequence, di + 1 ∈ [u′, d′]. The second property of an updown sequence
implies that v is down in round r′ − 1. The first property of an updown sequence
implies that the pairs are ordered and do not overlap. From this we can conclude
that j′ = di + 1, and thus that v is down in round di. But the second property of an
updown sequence implies that v is up in round di, resulting in a contradiction. From
this we can conclude that there is a unique updown sequence for v. In more detail,
we show that such a sequence always exists, and is unique. (Recall that we have fixed
an execution α.)

Lemma 11.3.14. There is exactly one sequence s = 〈u0, d0〉, 〈u1, d1〉, 〈u2, d2〉, . . . such
that s is an updown sequence.
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Proof. Claim 1: First, we argue that there exists some ui = r if and only if v is down
in round r− 1 and up in round r. If 〈r, di〉 ∈ s, it is immediately clear that v is down
in round r− 1 and up in round r. Assume, then, that v is down in r− 1 and up in r:
then there exists some 〈u, d〉 ∈ s such that r ∈ [u, d]; yet r − 1 /∈ [u, d] since v is up
in every round in [u, d]; thus we conclude that u = r.

Claim 2: Next, we argue that there exists some di = r if and only if v is up in
round r and down in round r + 1. Assume v is up in round r and down in round
r + 1: then there exists some 〈u, d〉 ∈ s such that r ∈ [u, d]; yet r + 1 /∈ [u, d], since
v is up in every round in [u, d]; thus we conclude that d = r. Alternatively, assume
that 〈ui, r〉 ∈ s. It follows immediately that v is up in round r. Assume for the sake
of contradiction that v is also up in round r + 1. Then there is some 〈u′, d′〉 such
that r + 1 ∈ [u′, d′], and where v is down in round u′ − 1. From this we conclude
that r + 1 ≤ d′, and hence r < d′. There are thus two possibilities for u′: either
u′ ≤ u, which contradicts our assumption that the pairs in s are sorted and strictly
increasing, or u < u′, which contradicts the assumption that v is down in orund u′−1.

Claim 3: Finally, we argue that there exists some di = ∞ if and only if there
exists some round r such that v is up in every round ≥ ∞. Assume there exists
some di = ∞. Then by assumption, v is up in every round ≥ ui. Assume instead
that there exists some round r such that v is up in every round ≥ r. Assume for the
sake of contradiction that every di 6= ∞. In this case, there must exist some 〈ui, di〉
were di > r. Moreover, there must exists some 〈ui+1, di+1〉 where di < ui+1. But this
contradicts our assumption that v is down in round ui+1 − 1.

Conclusion: It follows immediately from these three claims that there is exactly
one updown sequence s: Given execution α, we can determine the exact set of ui and
di in the updown sequence; we can construct the updown sequence by sorting the
ui and di and matching them. (No other arrangement of the ui and di can yield an
updown sequence due to the ordering property.)

We thus define updown(v) to be the (unique) updown sequence for v:

Definition 11.3.15. For all v ∈ IV , define updown(v) to be the unique updown
sequence for v.

11.4 Resetting a Virtual Node

In this section, we present a series of lemmas and invariants that describe the state of
the virtual node after it is reset. Most of the lemmas proved in this section are related
to the state variables last-reset and last-good-state. Recall that last-reset stores the
virtual round in which, conceptually, the virtual node was reset; last-good-state stores
the initial state of the virtual node. One of the main conclusions of this section (see
Corollary 11.4.5) is that this intuition is correct: if some 〈r1, r2〉 delineates a finite
epoch of virtual node v, and hence v is down in round r1 − 1, then each node that
begins virtual round r ∈ [r1, r2] has last-reset = r1 − 1 at the beginning of round r.
(In fact, we extend this claim slightly to include the case where r = r2 + 1; that is,
the claim holds at the end of virtual round r2 as well.)
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We begin with a basic lemma relating last-reset and prev-rnd : for each virtual
node emulator, for each node in the system, these values are non-decreasing, and
last-reset ≤ prev-rnd ≤ rnd .

Lemma 11.4.1. For all i ∈ IB, for all v ∈ IV :

1. E(v).last-reset i and E(v).prev-rnd i are non-decreasing.

2. E(v).last-reset i ≤ E(v).prev-rnd i ≤ E(v).rnd i.

Proof. We show this by induction on events in α. Initially, both conclusions are
clearly true. Let e be the first event that causes one of the conclusions to be violated
for any j ∈ IB. Then e must be a recv event, as no other action modifies these state
variables, and e must occur during one of the following phases, which are the only
ones in which these state variables are modified:

• The client phase increments E(v).rnd j by one. Clearly, the invariant is main-
tained.

• The scheduled-veto-2 phase sets E(v).prev-rnd j to E(v).rnd j. Prior to event e,
we know that E(v).prev-rnd j ≤ E(v).rnd j; thus, conclusion (1) is maintained.
Prior to e, E(v).last-reset j ≤ E(v).rnd j; thus, after e we can conclude that
E(v).last-reset j ≤ E(v).prev-rnd j, and hence conclusion (2) is maintained.

• The unscheduled-veto-2 phase sets E(v).prev-rnd j to E(v).rnd j, as in the pre-
viously discussed scheduled-veto-2 phase, hence the invariant is maintained.

• The join-ack updates E(v).prev-rnd j and E(v).last-reset j with data from a
message that was broadcast by some other node k ∈ IB. Since e is the first
event to violate the invariant for any j ∈ IB, we know that the state of k satisfied
the invariant when the message was sent, and hence the values contained in the
message also satisfy the invariant.

• The join-veto sets both E(v).last-reset j and E(v).prev-rnd j to E(v).rnd j, and
thus the invariant is maintained.

We next consider what happens in a virtual round when a virtual node v is reset.
Specifically, we assume that 〈r1, r2〉 delineates a finite epoch of some virtual node v.
This implies that v is down in round r1 − 1. Our goal (informally) is to show that
during each of the virtual rounds in the range [r1, r2], for each emulator of virtual node
v, the last-reset variable is set to round r1−1. That is, the last-reset variable reflects
the most recent round in which the virtual node is reset. This requires a sequence
of lemmas. First, we show in Lemma 11.4.2 that this fact is true at the beginning
of round r1. Second, we extend Lemma 11.4.2 to show that last-reset ≥ r1 − 1 not
only at the beginning of round r1, but also in every round ≥ r1. Third, we show an
invariant that is, loosely, the converse of the preceding lemmas: if last-reset is set to
some value r, then the virtual node is down in virtual round r. Finally, we conclude

287



with a corollary proving the main claim that last-reset always reflects the most recent
round in which virtual node v was reset.

Notice that this sequence of lemmas plays a key role in showing that the “reset
protocol” works correctly. For example, from this argument, we can conclude that
all the nodes emulating v at the beginning of virtual round r1 are in agreement that
virtual node v was reset in virtual round r1−1. This set of lemmas therefore precludes
the possibility that some node was participating in the emulation, and yet was not
aware that the “reset” protocol was being invoked.

We begin by arguing that at the beginning of virtual round r1, if v is down in
round r1 − 1 and the reset protocol has worked correctly, then the last-reset variable
of each node that begins round r1 is set to r1 − 1. We also show that prev-rnd is set
to r1 − 1 at the beginning of round r1 − 1. The prev-rnd pointer, intuitively, keeps
track of the last “locally good” round, and is discussed further in Section 11.5. It is
also set to r1 − 1 during the reset protocol.

Lemma 11.4.2. For virtual round r1 > 1, assume virtual node v ∈ IV is down in
round r1 − 1 in execution α. Assume i ∈ IB begins round r1 for v. Then at the
beginning of round r1:

1. E(v).last-reset i = r1 − 1;

2. E(v).prev-rnd i = r1 − 1 .

Proof. Since virtual node v is down in α in round r1−1 one of two situations occurred
in round r1 − 1, by the definition of “down”:

1. For some k ∈ IB, k resets v in round r1−1. Let J be the set of nodes that reset
v in round r1− 1. (Recall that we say that a node resets a virtual node when it
executes specific lines of pseudocode, described in Definition 11.3.5.) Then for
every j ∈ J , the conclusions of the lemma are immediately satisfied, as the reset
pseudocode occurs during the last phase of round r1−1, the join-veto phase, and
sets the state variables as described. (By Lemma 11.2.4, E(v).rnd j = r1 − 1 at
the beginning and end of the join-veto phase, and hence throughout the join-veto
phase.)

Notice that since at least one node resets v, we know that v ∈ schedule[r1 − 1
mod SMAX]; otherwise, the reset pseudocode cannot be executed in virtual
round r1 − 1.

Assume for the sake of contradiction that there exists some j ∈ IB, j /∈ J ,
where j begins round r1. Thus, at the end of round r1− 1, E(v).joined j = true.
Therefore node j has E(v).joined j = true prior to the recv event for the join-ack
phase for round r1 − 1. (There is no other opportunity for j to set joined to
true, as by assumption j does not execute the reset code.) Since v is scheduled
for round r1− 1 and j has joined set to true, node j sets E(v).outgoing-msg j to
veto, broadcasting a veto message in the join-veto phase.

Since j has E(v).joined j = true at the end of the join-ack phase, node j is within
distance RB/4 of loc(v) at the end of the join-ack phase, i.e., the beginning of the
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join-veto phase. Similarly, i has E(v).reset i = true at the end of the join-veto
phase; otherwise, it would not execute the reset pseudocode. Thus, node i
was within distance RB/4 of loc(v) at the end of the join-ack phase, i.e., the
beginning of the join-veto phase.

Hence, nodes j and k are within distance RB/2 of each other, and the broadcast
service guarantees (by Lemma 8.1.40) that k receives either a collision or a veto
message in the join-veto phase. If node k receives either a collision or veto
message in the join-veto phase, however, then automaton E(v)k would not have
executed lines 482–488, as assumed, leading to a contradiction.

2. For all j ∈ IB, either E(v).failed j = true or E(v).joined j = false at the end of
virtual round r1 − 1, that is, the beginning of round r1. This contradicts our
assumption that node i begins round r1.

The next lemma, Lemma 11.4.3, extends Lemma 11.4.2 in the following manner:
Lemma 11.4.2 shows that immediately after a virtual node is reset, the variable
last-reset is set appropriately for each emulator; Lemma 11.4.3 shows that last-reset
is always at least as large as the most recent round in which the virtual node was
reset. The proof follows from the fact that last-reset is assigned a new value during
the reset pseudocode: during the join pseudocode, its value is copied from another
emulator. This lemma depends primarily on Lemma 11.4.2, along with the claim that
the join protocol works correctly:

Lemma 11.4.3. Let 〈r1, r2〉 delineates a finite epoch of v. If i has E(v).joined i = true
and E(v).failed i = false at the beginning of some basic round ra and ra is part of virtual
round r ≥ r1, then E(v).last-reset i ≥ r1 − 1 at the beginning of basic round ra.

Proof. First, consider the case where ra is the first basic round in virtual round r1:
Lemma 11.4.2 states that if i begins virtual round r1, then E(v).last-reset j = r1 − 1
at the beginning of virtual round r1, and hence at the beginning of the first basic
round in virtual round r1.

Consider, for the sake of contradiction, the first basic round rb associated with
virtual round r′ ≥ r1 in which some node k has joined and not failed at the beginning
of basic round rb and also has E(v).last-resetk < r1 − 1 at the beginning of basic
round rb. There are two phases in which E(v).last-resetk is updated during a basic
round: join-veto and join-ack. There are also the only phases in which E(v).joinedk

is set to true; there are no phases in which E(v).failedk is set to false. Thus it is
sufficient to examine these two phases.

First, E(v).last-resetk and E(v).joinedk are modified during the reset pseu-
docode in lines 482–488 (Figure 10-9). In this case, E(v).last-resetk is set to rnd =
r′ ≥ r1. (As usual, the relationship between rnd and r′ follows from Lemma 11.2.4.)

Second, E(v).last-resetk and E(v).joinedk are modified during the join-ack phase
in lines 460–463 (Figure 10-9). In this case, E(v).last-resetk is set to a value that was
broadcast by some other replica k′ during the join-ack phase. But we know that at the
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beginning of the join-ack phase, node k′ has E(v).joinedk′ = true and E(v).failedk′

= false, since otherwise k′ would not send a join acknowledgment (lines 445–446,
Figure 10-9). Thus, by the inductive hypothesis, E(v).last-resetk′ ≥ r1 − 1 when
k′ broadcasts the join acknowledgment, contradicting our assumption that k sets
E(v).last-resetk < r1 − 1.

The following lemma shows, loosely, the converse of Lemma 11.4.2. Lemma 11.4.2
argues that if v is down in some virtual round r−1 and up in some virtual round r, then
the last-reset state variable has value r − 1 (immediately afterward). The following
invariant argues that if last-reset state variable has value r− 1, then the virtual node
was down in virtual round r − 1. It then follows, as shown in Corollary 11.4.5, that
the virtual node is up in the following virtual round r.

Lemma 11.4.4. If E(v).last-reset i = r, for some i ∈ IB, r ∈ N, then v is down in
virtual round r.

Proof. The proof proceeds by induction on events in α. Assume for the sake of
contradiction that event e is the first event that causes the invariant to be violated
for some j ∈ IB. Then e must be a recv event that updates E(v).last-reset i for some
i ∈ IB. There are two phases in which E(v).last-reset i is modified. First, in the
join-veto phase, E(v).last-reset j is set to E(v).rnd j , which immediately implies
by definition that v is down in round E(v).rnd j . Second, in the join-ack phase,
E(v).last-reset j is set to a value broadcast by another k ∈ IB, specifically the value
of r′ = E(v).last-resetk at the beginning of the join-ack phase. Since prior to event
e the invariant is satisfied, we know that virtual node v is down in virtual round r′,
and thus after event e in E(v).last-reset j. In both cases, the invariant is maintained
after event e, contradicting our assumption.

We can then show the following corollary. This result is perhaps the most frequently
used claim from this section.

Corollary 11.4.5. If 〈r1, r2〉 delineates a finite epoch of v and i begins virtual round
r ∈ [r1, r2 + 1], then E(v).last-reset i = r1 − 1 at the beginning of virtual round r.

Proof. By Lemma 11.4.3, we know that E(v).last-reset i ≥ r1 at the beginning of
virtual round r. Assume, then, for the sake of contradiction that E(v).last-reset i = r′

at the beginning of virtual round r, and virtual round r′ ≥ r1. By Lemma 11.4.4,
virtual node v is down in round r′. We also know that r′ ≤ r − 1 by Lemma 11.4.1,
as E(v).last-reset i ≤ E(v).rnd i at the end of virtual round r − 1. Thus, r1 ≤ r′ ≤ r2

and v is down in round r′. This contradicts the assumption that 〈r1, r2〉 delineates
an epoch in which v is up in each round.

We conclude with one final corollary on the relationship between last-reset at
different emulators for virtual node v:

Corollary 11.4.6. Assume virtual node v is up in virtual round r. For some i, j ∈ IB:

1. If i and j begin virtual round r for v, then E(v).last-reset i = E(v).last-reset j at
the beginning of virtual round r.
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2. If i and j begin virtual round r for v, then E(v).last-reset i = E(v).last-reset j

throughout virtual round r.

Proof. Choose r′ to be the largest round < r such that virtual node v is down in
r′. Then 〈r′ + 1, r〉 delineates a finite epoch of v. Conclusion (1) holds by Corol-
lary 11.4.5: E(v).last-reset i = r′ and E(v).last-reset j = r′. Conclusion (2) follows
since E(v).last-reset is non-decreasing and ≤ r through the end of virtual round r, by
Lemma 11.4.1; thus r′ ≤ E(v).last-reset ≤ r: if E(v).last-reset > r′ at any point dur-
ing virtual round r, then we can conclude by Lemma 11.4.4 that v is down in round
E(v).last-reset , contradicting our prior assumption that v is up for every round in
range [r′ + 1, r]. Thus, E(v).last-reset is equal to r′ throughout virtual round r for
both i and j.

11.5 Round Colors

This section contains some of the key definitions and lemmas used in the proof. We
identify “good rounds” and “bad rounds,” as well as “green rounds” and “red rounds.”
Having assigned colors to rounds, we can then argue about which combinations of
colors can co-exist in a virtual round; much of this proof has a flavor similar to
the analysis of the three-phase-commit protocols. (See [95, 96] and the discussion in
Section 10.1.6 on the similarities.)

We begin in Section 11.5.1 by defining green rounds and red rounds, and also
good rounds and bad rounds. The key definitions here are Definition 11.5.1 and
Definition 11.5.2.

In Section 11.5.2, we take a detour through the analysis of the join protocol to
show that when a node joins the emulation, it correctly receives the ballot and color
information. The key lemma in this argument that is used in later sections of this
proof is Lemma 11.5.3. As a result, we can conclude that the color of a round (i.e.,
whether it is green or red) and the status of a round (i.e., whether it is good or bad)
persist, eventually as nodes join and leave (see Lemmas 11.5.4 and 11.5.5).

In Section 11.5.3, we discuss the relationship between good rounds and green
rounds, showing that all green rounds are good (Corollary 11.5.7), and the rela-
tionship between bad rounds and red rounds, showing that all red rounds are bad
(Lemma 11.5.9). In the process of proving these lemmas, we show that if two replicas
assign a color to a virtual round, then that color differs by at most one shade.

In Section 11.5.4, we relate the value of the prev-rnd pointer (in the emulator state)
to the status of a round. Intuitively, the prev-rnd pointer remembers the most recent
round that a node, locally, believes to be good; globally, across all the emulators, we
can conclude from the results in Section 11.5.3 that the round in prev-rnd is not red,
as is stated in Lemma 11.5.12.

Finally, in Section 11.5.5, we show (in Corollary 11.5.16) that if a round is not red
for some virtual node v, then it has a unique “proposer” and a unique “ballot” (see
Definition 11.5.17). Notice that when combined with the results from Section 11.5.4,
we can conclude that any round stored in the prev-rnd pointer has a unique proposer
and a unique ballot. This fact will be key in reconstructing executions of the virtual
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node from the ballot history. Moreover, since there is a unique ballot for the virtual
round, we can conclude that all the replicas with a round r ballot agree on that ballot.
We show in Corollary 11.5.20 that in fact all the nodes that complete virtual round
r—or any larger round prior to v being down—agree on the ballot for round r.

11.5.1 Definitions

In this section, we define what it means for a round to be a “good round” a “bad
round,” a “green round,” or a “red round.” We begin with the definition of a “green
round.” A green round is, essentially, an ideal round in that at least one of the virtual
node emulators detects no problems and hence designates it as green. A “red round,”
by contrast, is a round in which at least one of the virtual node emulators detects
significant problems, and hence designates it as red.

Definition 11.5.1. Let v ∈ IV be a virtual node, and r > 0 be a virtual round.

• We say that round r is a green round for v if there exists some node i ∈ IB

that participates in round r and has E(v).round-status [r ]i = green at the end of
the last agreement phase of virtual round r.

• We say that round r > 0 is a red round for v if there exists some node i ∈ IB

that participates in virtual round r and E(v).round-status [r ]i = red at the end
of the last agreement phase of virtual round r.

Notice that a round is designated as green or red based on only a single node
locally assigning a virtual round to be red or green. That is, a round is green or red
based on a local observation. By contrast, we designate a round as good or bad based
on the state of all participating nodes. We say that a round is a “good round” if
every participating emulator considers the round to be green or yellow. Similarly, we
designate a virtual round as bad if every participating emulator consider the round
to be red or orange.

Definition 11.5.2. Let v ∈ IV be a virtual node, and r > 0 be a virtual round.

• We say that round r is a good round for v ∈ IV if for every i ∈ IB that partici-
pates in round r, either E(v).round-status [r ]i = green or E(v).round-status [r ]i =
yellow at the end of the last agreement phase of virtual round r.

• We say that round r is a bad round for v ∈ IV if for every i ∈ IB that partici-
pates in round r, either E(v).round-status [r ]i = red or E(v).round-status [r ]i =
orange at the end of the last agreement phase of virtual round r.

11.5.2 Extending the Color Definitions: the Join Protocol,
Revisited

Notice that each of the definitions in Section 11.5.1 specifies the color of some virtual
round r based only on the state of the nodes at the end of the last agreement phase

292



of round r. In fact, the color designated at the end of the last agreement phase
permanently fixes the color designation of a virtual round, until the virtual node is
reset. (After a virtual node is reset, its prior history is no longer relevant.)

This fact follows from the fact that after the last agreement phase of virtual round
r, the color designation of a round is modified only during the join and reset phases;
the join phases simply transmit the already-determined color information to new
nodes; the reset phase only modifies the color information when the virtual node is,
in fact, reset. Thus, this section begins with a technical lemma which shows that the
join protocol acts as expected, and concludes with the claim that the color designation
is unchanged after the last agreement phase.

In more detail, the first lemma here argues, essentially, that if some node i has
some particular setting for the state variable round-status [r], then either node i itself
was participating in virtual round r, or node i received a copy of round-status [r]
(either directly or indirectly) from some node j that itself was participating in virtual
round r. The same property also holds for the state stored in ballot [r].

In the following lemma, the virtual round r represents the virtual round of in-
terest, in terms of round-status [r] and ballot [r] The round r′ ≥ r represents the
“current” virtual round, i.e., the virtual round during which the state of node i is
being observed. Basic round ra is a basic round associated with virtual round r, and
basic round rb is a basic round associated with virtual round r′. More specifically,
basic round ra is the last agreement phase of virtual round r, i.e., the basic round
in which the round-status [r] and ballot [r] data structures are updated. Basic round
rb is the “current” phase, i.e., the the phase after which the state of node i is being
observed. While seemingly a small building block for the main lemmas in this section,
Lemma 11.5.3 is actually used several times in later sections of the proof to show that
the join protocol acts as expected.

Lemma 11.5.3. Assume that 〈r1, r2〉 delineates an epoch of virtual node v ∈ IV in
α, and let r, r′ ∈ [r1, r2] be virtual rounds, r′ ≥ r. Let ra be the basic round associated
with the last agreement phase of virtual round r, and let rb be a basic round in virtual
round r′, rb ≥ ra.

If node i ∈ IB has E(v).joined i = true and E(v).failed i = false at the end of basic
round rb, then there exists some j ∈ IB where j particpates in virtual round r, and:

- at the end of basic round ra, E(v).ballot [r ]i = E(v).ballot [r ]j at the end of basic
round rb;

- at the end of basic round ra, E(v).round-status [r ]i = E(v).round-status [r ]j at
the end of basic round rb.

Proof. We proceed by induction on basic rounds. For the base case, consider round
rb = ra: Since node i itself has E(v).joined i = true and E(v).failed j = false at the end
of round ra, then we choose j = i and the criteria are met since node i participates
in round r by Lemma 11.3.9.

For the sake of contradiction, let rb > ra be the first basic round in which
the lemma fails to be true. Thus, in round rb, node i must have modified ei-
ther E(v).joined i, E(v).ballot [r ]i or E(v).round-status [r ]i. After the last agreement
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phase of round r, i.e., after round ra, there are only two phases in which i modifies
E(v).round-status [r ]i or E(v).round-status [r ]i: when i joins v and when i resets v.
Similarly, these are the only two phases in which i sets E(v).joined i to true. (Since
node i is unrecoverable, it cannot have set E(v).failed i to false.)

First, we can conclude that node i does not reset v in round r′, since r′ ∈ [r1, r2],
and hence by assumption v is up in round r.

Thus, we can conclude that i must join v in basic round rb. In that case, however,
node j received a round rb message from some other node k that had E(v).joinedk =
true and E(v).failedk = false at the beginning of basic round rb; moreover, since i
copied the ballot and round status values from the message, we can conclude that
node k also had ballot or round status values causing the lemma to be violated,
contradicting our assumption that rb is the first such basic round.

We can now conclude that if a round is designated as good or bad at the end of the
last agreement phase, then every node continues to designate the round accordingly,
until the virtual node is reset:

Lemma 11.5.4. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node v ∈ IV

in α. Let r ∈ [r1, r2] be a virtual round. If i ∈ IB completes virtual round r2 for v,
then we conclude the following:

1. If round r is good, then E(v).round-status [r ]i ∈ {green, yellow} at the end of
round r2.

2. If round r is bad, then E(v).round-status [r ]i ∈ {red, orange} at the end of round
r2.

3. If round r is not red, then E(v).round-status [r ]i 6= red at the end of round r2.

Proof. Let basic round ra be the last agreement phase of virtual round r, and let rb

be the last basic round in virtual round r2; thus rb > ra. Since i ∈ IB completes
round r2, we know that E(v).joined i = true and E(v).failed i = false at the end of
basic round rb. Therefore by Lemma 11.5.3, we conclude that there exists some
j ∈ IB where j participates in virtual round r and at the end of basic round ra,
E(v).round-status [r ]j = E(v).round-status [r ]i at the end of round r2.

If round r is good, since j participates in r, we know that E(v).round-status [r ]j =
green or E(v).round-status [r ]j = yellow at the end of round ra by Definition 11.5.2,
which leads to the desired conclusion.

Similarly, if round r is bad, since j participates in round r, we know that the
status E(v).round-status [r ]j = red or E(v).round-status [r ]j = orange at the end of
round ra by Definition 11.5.2, which leads to the desired conclusion.

Similarly, if round r is not red, then since j participates in round r, we know that
E(v).round-status [r ]j 6= red at the end of round r1 by Definition 11.5.1, which leads
to the desired conclusion.

We can also draw conclusions relating to green and red rounds: if a node designates
a round as green or red at the end of a virtual round, then the virtual round is green
or red:
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Lemma 11.5.5. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node v ∈ IV

in α. Let r ∈ [r1, r2] be a virtual round. If i ∈ IB completes virtual round r2, then we
conclude the following:

1. If E(v).round-status [r ]i = green at the end of round r2, then round r is green.

2. If E(v).round-status [r ]i = red at the end of round r2, then round r is red.

Proof. Let basic round ra be the last agreement phase of virtual round r, and let rb

be the last basic round in virtual round r2; thus rb > ra. Since i ∈ IB completes
round r2, we know that E(v).joined i = true and E(v).failed i = false at the end of
basic round rb. Therefore by Lemma 11.5.3, we conclude that there exists some
j ∈ IB where j participates in virtual round r and at the end of basic round ra,
E(v).round-status [r ]j = E(v).round-status [r ]i at the end of round r2.

If E(v).round-status [r ]i = green at the end of round r2, then E(v).round-status [r ]j =
green at the end of the last agreement phase of r, and hence by definition round r is
green.

Similarly, if E(v).round-status [r ]i = red at the end of round r2, then the status
E(v).round-status [r ]j = red at the end of the last agreement phase of r, and hence
by definition round r is red.

11.5.3 Relating Good, Bad, Green, and Red Rounds

In this section, we prove two key lemmas that relate green rounds with good rounds
and red rounds with bad rounds. Specifically, we show the following two properties:

• (Corollary 11.5.7) If a virtual round r is green for virtual node v, then it is good
for v. Recall that a virtual round is green if even one (participating) replica
designates it as green; a virtual round is good only if every participating replica
designates it as green or yellow. This lemma plays a key role in proving that
the protocol has the desired agreement property: in any good round, we will
show that the replicas agree on an execution of the virtual node; however, an
individual emulator may not be able to detect locally whether a round is good
or bad. If, however, an emulator determines (locally) that a round is green, then
this property guarantees that the round is also good. Thus, in later sections
of this proof (for example, Corollary 11.7.12), we use this property to show
that under certain conditions (i.e., when the round is green), an emulator can
have confidence that a round is good, which will imply that agreement has been
reached.

• (Lemma 11.5.9) If a virtual round r is red for virtual node v, then it is bad
for v. As in the first property, a virtual node is red if even one (participating)
replica designates it as red; a virtual round is bad only if every participating
replica designates it as red or orange. In later sections, the contrapositive of this
lemma plays a key role in ensuring that all the replicas have sufficient data to
reconstruct the virtual node execution that has been chosen by the agreement
protocol: we will show (in Corollary 11.5.18) that if a round is not red for some
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round r, then every emulator has the required ballot information about that
round; if any emulator designates a round as green or yellow, then by definition
it is not a bad round; hence by the contrapositive of Lemma 11.5.9, we can
conclude that every emulator has enough data to reconstruct the virtual node
execution.

Our first goal is to show that every green round is a good round. We instead prove
a somewhat more general lemma: instead of assuming that the round is green (which
requires a participating node to designated the round as green), we assume only that
some non-failed node within distance 3RB/4 of loc(v)V designates the round as green.
Note that this node may not be participating in emulating v. The desired result then
follows as an immediate corollary, as in a green round there is a participating node
that satisfies the required conditions.

Lemma 11.5.6. Let v ∈ IV be a virtual node, r > 0 a virtual round, and i ∈ IB a
node that is non-failed through the end of the last agreement phase. If the following
two conditions hold:

1. E(v).round-status [r ]i ∈ {green,⊥} at the end of the last agreement phase of
virtual round r; and

2. node i is within distance 3RB/4 of loc(v)V at the beginning of the last agreement
phase of virtual round r;

Then virtual round r is good for v.

Proof. We need to show for every j ∈ IB, if j participates in virtual round r, then
either E(v).round-status [r ]i = green or E(v).round-status [r ]i = yellow at the end of
the last agreement phase of virtual round r.

Choose some j ∈ IB that participates in virtual round r. Assume, for the sake
of contradiction, that E(v).round-status [r ]j ∈ {red, orange} at the end of the last
agreement of virtual round r. There are two nearly identical cases depending on
whether v is scheduled or unscheduled in virtual round r.

First, assume that v is scheduled in r. At a high level, the argument proceeds
as follows: since j has designated round r as red or orange, we can show that j
broadcasts a veto message in the scheduled-veto-2 phase; as a result, node i either
receives the veto message or detects a collision in the scheduled-veto-2 phase; thus
we conclude that if i believes the round to be green, then i downgrades round r to a
yellow round, resulting in a contradiction. We now proceed in more detail.

The first part of the argument involves showing that j broadcasts a message in
the scheduled-veto-2 phase. Notice that at the end of the scheduled-veto-2 phase, j
sets E(v).round-status [r ]j equal to E(v).scheduled-statusj, from which we conclude
that E(v).scheduled-statusj ∈ {red, orange} at the end of the scheduled-veto-2 phase.

Notice, however, that during the scheduled-veto-2 phase recv event, scheduled-status
can be updated to yellow, but not to red or orange. Thus, we can assume that
E(v).scheduled-statusj ∈ {red, orange} prior to the scheduled-veto-2 phase of round r.
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Specifically, the latest that E(v).scheduled-statusj can be updated to red or orange is
the recv event of the scheduled-veto-1 phase.

We now argue that this fact implies the following: at the end of the scheduled-veto-1
recv event, the message buffer E(v).outgoing-msg j = 〈vn, v, veto〉. In particular there
are three conditions which must be met at the end of the recv event for this to be
true:

• E(v).scheduled-statusj ∈ {red, orange}: as already argued.

• E(v).joined j = true: since j participates in round r, we know that E(v).joined j =
true through the end of the scheduled-veto-2 phase.

• E(v).scheduled j = true: as already assumed.

We know that node j is within distance RB/4 of loc(v) at the beginning of the
scheduled-veto-2 phase, since E(v).joined j = true.

We now argue that this contradicts the assumption that i has designated the
round as green. By assumption, we also know that i is within distance 3RB/4
of loc(v) at the beginning of the last agreement phase, i.e., the scheduled-veto-2
phase. Thus nodes i and j are within distance RB of each other at the begin-
ning of the scheduled-veto-2 phase, and hence by Lemma 8.1.40, node i either re-
ceives the veto message from j, or detects a collision. In either case, however, if
E(v).scheduled-status i ∈ {⊥, green}, then E(v).scheduled-status i is set to yellow.
Thus, we know that E(v).scheduled-status i 6= green, contradicting our assumption
on i.

Next, we consider the case where v is not scheduled in round r. The argument is
identical, except that the scheduled-veto-2 phase is replaced with the unscheduled-veto-2
phase, and the protocol updates round-status [r ] directly, rather than scheduled-status .
In more detail, notice that if E(v).round-status [r ]j is red or orange at the end of the
unscheduled-veto-2 phase, it must be red or orange at the beginning of the unscheduled-veto-2
phase, as it is only updated to yellow in the scheduled-veto-2 recv event. However, if
j has round-status [r] either red or orange by the end of the unscheduled-veto-1 recv
event, then node j broadcasts a veto message in the unscheduled-veto-2 phase, since,
as before, we know that node j has joined set to true, since j participates in round r.
As before, node j and node i are within distance RB of each other, and hence node
i either receives the veto message or detects a collision. Again, in either case, node i
sets round-status [r] 6= green and 6= ⊥, contradicting our assumption on i.

It is then a straightforward corollary that if virtual round r is green, then it is also
good:

Corollary 11.5.7. If virtual round r is green for virtual node v, then virtual round
r is good for virtual node v.

Proof. Since virtual round r is green, there exists some i ∈ IB that participates in
virtual round r and has E(v).round-status [r ]i = green at the end of the last agreement
phase of virtual round r. Thus we can conclude that i is non-failed through the end
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of the last agreement phase, and that node i is within distance RB/4 of loc(v) at the
end of each phase prior to the last agreement phase. (Otherwise, joined is set to false
during the recv event.) Thus, by Lemma 11.5.6, we conclude that round r is good for
virtual node v.

We also show a second corollary which describes the situation at the end of a virtual
round:

Lemma 11.5.8. Let v ∈ IV be a virtual node, r > 0 a virtual round, and j ∈
IB a node that does not fail prior to the end of virtual round r. Assume that
E(v).round-status [r ]j = green at the end of virtual round r. Then round r is good
for v.

Proof. Since E(v).round-status [r ]j 6= ⊥ at the end of round r, we can conclude that
either node j updates E(v).round-status [r ]j directly during the agreement phases, or
node j receives E(v).round-status [r ]j during the join protocol. We thus consider two
subcases:

• Node j joins v in virtual round r: In this case, there exists some node k
that participates in round r for v that broadcasts the join acknowledgment
to j. Thus, we can conclude that at the end of the last agreement phase,
E(v).round-status [r ]k = green. This implies that round r is a green round, and
hence a good round by Corollary 11.5.7.

• Node j does not join v in virtual round r: In this case, node j must have
set E(v).round-status [r ]j = green in either line 360 or line 426 during the last
agreement phase of round r. We can also conclude, then, that node j is within
distance RV = RB/2 of virtual node v at the end of the last agreement phase.
Since the velocity of a node is bounded by RB/4, we can conclude that j is
within distance 3RB/4 at the beginning of the last agreement phase. We thus
apply Lemma 11.5.6 to conclude that round r is good.

Next, we show that every red round is a bad round:

Lemma 11.5.9. If virtual round r is red for virtual node v, then virtual round r is
bad for virtual node v.

Proof. By the definition of a red round, there exists some i ∈ IB that participates in
round r and has E(v).round-status [r ]i = red at the end of the last agreement phase
of virtual round r.

We need to show that for every j ∈ IB, if j participates in virtual round r, then
either E(v).round-status [r ]i = red or E(v).round-status [r ]i = orange at the end of
the last agreement phase of virtual round r. Choose some arbitrary j ∈ IB that
participates in virtual round r.

There are two nearly identical cases, depending on whether v is scheduled in round
r. First, assume that v is scheduled in round r. The high level argument proceeds as
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follows: since i has designated the round as red, i broadcasts a veto message in the
scheduled-veto-1 phase; we can then conclude that node j receives this veto message
or detects a collision in the scheduled-veto-1 phase, and thus downgrades the round
to orange or red, as required. We now proceed in more detail.

Since i has E(v).round-status [r ]i = red at the end of the scheduled-veto-2 phase, we
know that scheduled-status = red at the end of the scheduled-ballot phase: in no other
phase is scheduled-status is set to red, and round-status [r] is set to scheduled-status
in the scheduled-veto-2 phase recv event.

Since E(v).scheduled i = true and E(v).joined i = true by the end of the scheduled-ballot
phase, and since scheduled-status = red, node i sets outgoing-msg equal to 〈vn, v, veto〉.
Since both i and j are participating, we know that both have joined = true at the
end of the scheduled-ballot phase, and hence both are within distance RB/4 of loc(v)
at the beginning of the scheduled-veto-1 phase. Thus, by Lemma 8.1.40, node j either
receives the veto message from node i, or detects a collision in the scheduled-veto-1
phase. In either case, if E(v).scheduled-statusj is not already red, then node j sets
scheduled-status to orange. No later update to scheduled-status results in a color bet-
ter than orange, since during the scheduled-veto-2 phase, the status is only updated
if it is in {⊥, green}. Thus we can conclude that at the end of the scheduled-veto-2
phase, node j has E(v).round-status [r ] equal to either red or orange.

Next, we consider the case where v is not scheduled in round r. The argument is
identical, except that the scheduled-veto-2 phase is replaced with the unscheduled-veto-2
phase, and the protocol updates round-status [r ] directly, rather than scheduled-status .
In more detail, notice that E(v).round-status [r ]i must be equal to red by the end
of the last passive-ballot phase, as there is no later opportunity to set it to red.
In the last passive-ballot phase, when unscheduled-ballot-rnd = SMAX, node i sets
outgoing-msg to broadcast a veto message, and hence broadcasts a veto message in
the unscheduled-veto-1 phase. Since i and j both participate in round r, we can
conclude that they are both within distance RB/4 of loc(v) at the beginning of the
scheduled-veto-1 phase, and hence by Lemma 8.1.40, node j either receives the veto
message from node i or detects a collision. In either case, if E(v).round-status [r ]j is
not red, then node j sets E(v).round-status [r ]j to orange by the end of the unscheduled-veto-1
phase. Moreover, there is no later opportunity for node j to upgrade the color to ei-
ther green or yellow, as round-status is only updated in the unscheduled-veto-2 phase
if it is in {⊥, green}. Thus, at the end of the unscheduled-veto-2 phase, node j has
E(v).round-status [r ]j set to either red or orange, as required.

We conclude with a corollary that combines Corollary 11.5.7 and Lemma 11.5.9
with Lemma 11.5.4 to draw conclusions about the color designation after the last
agreement phase:

Corollary 11.5.10. Assume that 〈r1, r2〉 delineates a finite epoch of v in α, and that
r ∈ [r1, r2] is a virtual round. Assume that node i ∈ IB completes round r2.

• If round r is a green round, then E(v).round-status [r ]i ∈ {green, yellow} at the
end of round r2.
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• If round r is a red round, then E(v).round-status [r ]i ∈ {red, orange} at the end
of round r2.

Proof. If round r is green, then by Corollary 11.5.7 virtual round r is a good round for
virtual node v. Next, we invoke Lemma 11.5.4, to conclude that E(v).round-status [r ]i ∈
{green, yellow} at the end of round r2.

If round r is red, then by Lemma 11.5.9 virtual round r is a bad round for virtual
node v. Next, we invoke Lemma 11.5.4, to conclude that E(v).round-status [r ]i ∈
{red, orange} at the end of round r2.

11.5.4 Tracking of the Previous Round Pointer

Recall from the discussion in Section 10.2.2 that the prev-rnd variable is supposed
to store the most recent round that, locally, appeared to be good. As a result of
Lemma 11.5.9, an emulator can conclude that a round is not bad if it achieves a
status of green or yellow. Thus, whenever a round is either green or yellow, the
prev-rnd variable is updated. The following set of lemmas capture this behavior.
This first lemma argues that prev-rnd always reflects a non-red round. It follows
from the fact that a node updates prev-rnd only when the current round is either
green or yellow.

Lemma 11.5.11. Assume that r > 0 is a virtual round, and that v ∈ IV is up in
round r. If E(v).prev-rnd i = r at the end of any basic round, then r is not a red
round.

Proof. Initially, for all j ∈ IB, node j has E(v).prev-rnd j set to ⊥. We proceed
by contradiction: let ra be the smallest basic round in which any j ∈ IB has
E(v).prev-rnd j = r′ at the end of basic round ra, for some red virtual round r′ in
which v is up. We now proceed to examine the various ways in which E(v).prev-rnd j

is modified during the algorithm, and show that this is impossible. In particular,
there are four different phases in which E(v).prev-rnd j is updated in basic round ra:
the scheduled-veto-2 phase, the unscheduled-veto-2 phase, the join-ack phase, and the
join-veto phase. In the first two of these cases, E(v).prev-rnd j is updated only if the
current round is not red; in the join case, j copies the prev-rnd pointer from another
node; in the last case, the virtual node is reset. In more detail:

1. lines 363–365, ra is a scheduled-veto-2 phase: In this case, E(v).prev-rnd j is set
to E(v).rnd j = r′, the current round. This occurs only if E(v).round-status [r ′]j ∈
{green, yellow}, E(v).joined j = true, and E(v).scheduled j = true in round ra.
We need to show that this is impossible if round r′ is a red round.

First, we show that node j participates in round r′. Notice that E(v).scheduled j =
true, indicating that v is scheduled in round r′, and hence the scheduled-veto-2 is
the last agreement phase of round r′. We can conclude that E(v).failed j = false
at the end of the last agreement phase, since the broadcast service only delivers
receive events to non-failed nodes. Since we already know that E(v).joined j =
true, we conclude that j participates in round r′.
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Now we invoke Lemma 11.5.9. We have assumed, for the sake of contradic-
tion, that round r′ is a red round; we then conclude that round r′ is also
a bad round. From this, we conclude that E(v).round-status [r ′]j = red or
E(v).round-status [r ′]j = orange at the end of the last agreement phase of vir-
tual round r′, which in this case is the scheduled-veto-2 phase. Thus we have a
contradiction.

2. lines 427–428, ra is an unscheduled-veto-2 phase: This case is identical, with
the exception that v is unscheduled. In this case, E(v).prev-rnd j is set to
E(v).rnd j = r′, the current round. This occurs only if E(v).round-status [r ′]j ∈
{green, yellow}, E(v).joined j = true, and E(v).scheduled j = false. We need to
show that this is impossible if round r′ is a red round.

As before, it is clear that j particpates in round r′. Thus, if round r′ were red, as
we have assumed for the sake of contradiction, then by Lemma 11.5.9, round r′

would be bad, implying that E(v).round-status [r ′]j = red or E(v).round-status [r ′]j =
orange, which is a contradiction.

3. Node j joins v in basic round ra: In this case, node j receives the idprev − rnd =
r′ pointer as part of a join-ack message from some other node k. In this case, if
round r′ were red, then node k violated the lemma’s claim at the beginning of
round basic ra, when the join-ack message was sent, contradiction our assump-
tion that ra was the earliest basic round after which the lemma was violated.

4. Node j resets v in basic round ra: This implies immediately that virtual node
v is down in round r′, contradicting our assumption that v is up in round r′.

Our next lemma states that the prev-rnd field of the ballot is also a non-red round.
This lemma follows immediately from the fact that a ballot is constructed by copying
the local prev-rnd state variable.

Lemma 11.5.12. Assume that r, r′ > 0 are virtual rounds, and that virtual node
v ∈ IV is up in round r. If E(v).ballot [r ′].prev-rnd i = r at the end of any basic
round, then r is not a red round.

Proof. Initially, E(v).ballot [r ].prev-rnd i = ⊥, for all r. We proceed by contradiction:
let ra be the first basic round for which there exists some node j ∈ IB such that
E(v).ballot [r1 ].prev-rnd j = r2, where v is up in round r2 and r2 is a red round. There
are five cases to consider in which a ballot is modified:

• Round ra is a vn phase: in this case, E(v).ballot [r1 ].prev-rnd j is set equal to
E(v).prev-rnd j, and Lemma 11.5.11 implies that round r2 is either not a red
round or v is not up in r2.

• Round ra is a scheduled-ballot phase: In this case, the ballot is received as a
message from some other node k; hence E(v).ballot [r1 ].prev-rndk = r2 at the
end of round ra − 1, constradicting our assumptionat that ra is the first round
in which the claim is violated.
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• Round ra is a unscheduled-ballot phase: There are two ways that the ballot [r]
data structure may be updated, either by creating a new ballot (line 389) or by
receiving a ballot (line 386).

In the first case, as in the case of the vn phase, E(v).ballot [r1 ].prev-rnd j is set
equal to E(v).prev-rnd j, and Lemma 11.5.11 implies that round r2 is either not
a red round or v is not up in r2.

In the second case, as in the scheduled-ballot phase, the ballot is received as a
message from some other node k; hence E(v).ballot [r1 ].prev-rndk = r2 at the
end of round ra − 1, constradicting our assumptionat that ra is the first round
in which the claim is violated.

• Node j joins v in basic round ra: In this case, node j receives the ballot data
structure as part of a join-ack message from some other node k. In this case,
if round r2 were red, then node k violated the inductive hypothesis at the
beginning of round basic ra, when the join-ack message was sent, contradiction
our assumption that ra was the earliest basic round after which the inductive
hypothesis was violated.

• Node j resets v in basic round ra: In this case, node j sets E(v).ballot [r ].prev-rnd j

to ⊥.

There are no other phases in which the ballot is updated.

11.5.5 Unique Proposer / Unique Ballot

In this section, we argue about what happens in non-red rounds. The key lemma
in this section is Lemma 11.5.14, which says that each non-red round has a unique
“proposer” (i.e., a node that sends a ballot in a ballot phase) and a unique ballot
(see Definition 11.5.17). From this, we prove a series of lemmas which show that in a
non-red round r, participating emulators will share the same ballot for round r. This
argument begins with Corollary 11.5.18, and culminates in Corollary 11.5.20.

We begin with Lemma 11.5.13, which says that if some virtual round r2 is not
red for some virtual node v, then there is a unique “proposer” and a unique ballot
for that virtual node for round r2. As in Lemma 11.5.6, we prove a slightly stronger
lemma: instead of assuming that round r2 is a red round, we assume only that there
is some non-failed node k that is within distance 3RB/4 of loc(v)V and designates the
round as red. We also assume that node k has a non-⊥ ballot for round r2, as our
goal is to find the unique ballot for round r2.

Lemma 11.5.13. Assume that r2 > 0 is a virtual round, and v ∈ IV is a virtual
node, and that there exists some node k ∈ IB that does not fail prior to the end of the
last agreement phase, and for which the following three conditions hold:

1. E(v).round-status [r2 ]k 6= red at the end of the last agreement phase of virtual
round r2;
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2. E(v).ballot [r2 ]k 6= ⊥ at the end of the last agreement phase of virtual round r2;
and

3. node k is within distance 3RB/4 of loc(v)V at the beginning of the virtual round,
and at the beginning of each phase through the end of the last agreement phase
of virtual round r2.

Then, there is exactly one i ∈ IB where i begins virtual round r2 such that:

1. Node i ∈ IB performs a bcast(m, ·)i,v, m 6= ⊥, in either the scheduled-ballot or
unscheduled-ballot phase of round r2.

2. For every k′ ∈ IB, where k′ is within distance 3RB/4 of loc(v)V at the beginning
of the ballot phase for the appropriate agreement instance and does not fail prior
to the end of the last agreement phase: E(v).ballot [r2 ]k′ = E(v).ballot [r2 ]i at
the end of the last agreement phase of r2.

Proof. In the first part of the proof, we show that there is at most one i ∈ IB that
broadcasts a message for v during a ballot phase of virtual round r2. We argue that
if two nodes, i, j both broadcast during the ballot phase, then by the completeness
of the collision detector, either k will receive both i and j’s message, or k will detect
a collision. In either case, node k then designates the round as red, contradicting
our assumption that k designates the round 6= red. In the second part of the proof,
we show that every k ∈ IB that is nearby and non-failed has the same ballot. This
follows simply from the fact that only one ballot was broadcast in a ballot phase,
and if any node did not receive the ballot, then it designates the round as red, which
results in a contradiction.

Part 1: We first show that there is at most one i ∈ IB that broadcasts a message for
v during a ballot phase of virtual round r2. Assume for the sake of contradiction that
i, j ∈ IB both broadcast messages 6= ⊥ for virtual node v in either the scheduled-ballot
or the unscheduled-ballot phase. We show that k has E(v).round-status [r2 ]k = red at
the end of the last agreement phase, contradicting the hypothesis. (Note that it is
possible that k = i or k = j.)

First, notice that if i broadcasts in the scheduled-ballot phase, j cannot broadcast
in the unscheduled-ballot phase, and vice versa: by Corollary 11.2.9 we know that a
long as i and j have not failed, at the end of each basic round in virtual round r,
E(v).scheduled i = E(v).scheduled j; nodes i and j can only broadcast a ballot in the
scheduled ballot phase when E(v).scheduled = true.

Second, consider the case where both i and j broadcast during the same bal-
lot phase. Both must have E(v).joined = true, and thus remain within distance
RB/4 of loc(v)V at the beginning of the ballot phase. By assumption, node k has
E(v).failedk = false during the ballot phase, and through the end of the agreement
protocol. Also, node k is within distance 3RB/4 of loc(v)V throughout the scheduled
ballot phase.

By Lemma 8.1.40, either k receives messages from both i and j, or k detects
a collision. In either case, k sets E(v).round-status [r2 ]k to red, either directly (in
the unscheduled agreement case), or by setting E(v).scheduled-statusk to red and
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updating E(v).round-status [r2 ]k to red at the end of the scheduled-veto-2 phase. This
implies a contradiction, from which we conclude that at most one i ∈ IB broadcasts
a message for v in a ballot phase.

Since E(v).ballot [r2 ]k 6= ⊥, we can conclude that at least one i ∈ IB broadcast a
ballot, as E(v).ballot [r2 ]k is updated only in the scheduled-ballot and unscheduled-ballot
phases. Since we have already shown that there cannot be more than one node that
broadcasts in a ballot phase, we can thus conclude that there is a unique node i ∈ IB

that broadcasts a message in a ballot phase of virtual round r2.
Part 2: Fix some k′ satisfying the assumptions required for the second conclusion.

The second conclusion follows from noticing that k′ receives the unique ballot message:
as we have argued above, by Lemma 8.1.40, either k′ receives the message from
i or detects a collision; if k′ detects a collision during a ballot phase, then k sets
E(v).round-status [r2 ]k′ to red, contradicting our assumption. Thus k′ receives the
ballot from i, and copies it either in line 317 or line 386, depending on whether v is
scheduled for virtual round r2.

In this next lemma, we consider the special case where a node k is participating in
the virtual node:

Lemma 11.5.14. Assume that r2 > 0 is a virtual round, and v ∈ IV is a virtual
node, and that there exists some node k ∈ IB that participates in virtual round r2

with E(v).round-status [r2 ]k 6= red at the end of the last agreement phase of r2. Then
there is exactly one i ∈ IB where i begins virtual round r2 such that:

1. Node i ∈ IB performs a bcast(m, ·)i,v, m 6= ⊥, in either the scheduled-ballot or
unscheduled-ballot phase of round r2.

2. For every node k′ ∈ IB where k′ is participating in v: E(v).ballot [r2 ]k′ =
E(v).ballot [r2 ]i at the end of the last agreement phase of r2.

Proof. The proof follows from a straightforward application of Lemma 11.5.13. Notice
that since k is participating in virtual node v in round r2, we can conclude that k is
within distance RB/4 of loc(v)V at the beginning of r2 and at the beginning of each
phase through the last agreement phase. Similarly, we conclude that k does not fail
until the end of the last agreement phase.

Next, we need to argue that E(v).ballot [r2 ]k 6= ⊥ at the end of the last agreement
phase. If no ballot is broadcast in the ballot phase (be it scheduled or unsched-
uled), then E(v).round-status [r2 ]k also ends up red, either as a result of line 319
or line 382, depending on whether v is scheduled or unscheduled. Assume node i
broadcasts a ballot in one of the two ballot phases; since node i broadcasts a ballot
only when E(v).joined i = true and E(v).failed i = false, we can conclude that i is
also within distance RB/4 of loc(v)V , and hence by the completeness of the basic
broadcast service, either k receives the ballot or detects a collision. In the latter case,
E(v).round-status [r2 ]k is set to red; thus we can conclude that k receives the ballot.
That is, E(v).ballot [r2 ]k 6= ⊥ at the end of the last agreement phase of r2. We then
invoke Lemma 11.5.13 to conclude the proof.
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We next prove a corollary that is similar to Lemma 11.5.14, with the main differ-
ence that we consider nodes that complete virtual round r2, instead of simply nodes
that participate in round r2. We assume that some node k ∈ IB completes virtual
round r2 and designates the round as non-red, and conclude both that there is a
unique node that broadcasts a ballot, and also that all nodes that complete round
r2 have the same ballot. The proof relies on Lemma 11.5.3 to indicate that the join
protocol works correctly if k does not participate.

Corollary 11.5.15. Assume that r2 > 0 is a virtual round, and v ∈ IV is a virtual
node, and that there exists some node k ∈ IB that completes virtual round r2 with
E(v).round-status [r2 ]k 6= red at the end of round r2. Then there is exactly one i ∈ IB

where i begins virtual round r2 such that:

1. Node i ∈ IB performs a bcast(m, ·)i,v, m 6= ⊥, in either the scheduled-ballot or
unscheduled-ballot phase of round r2.

2. For all k′ ∈ IB where k′ completes virtual round r2: at the end of round r2,
E(v).ballot [r2 ]k′ = E(v).ballot [r2 ]i at the end of the last agreement phase.

Proof. Let r1 be a virtual round such that 〈r1, r2〉 delineates a finite epoch of v. By
Lemma 11.5.3, where r = r′ = r2, ra is the last agreement phase of round r2 and rb

is the last phase of round r2, we can conclude that there exists some j ∈ IB where
j participates in virtual round r and (1) at the end of the last agreement phase,
E(v).ballot [r2 ]j = E(v).ballot [r2 ]k, at the end of round r2, (2) at the end of the
last agreement phase, E(v).round-status [r2 ]j = E(v).round-status [r2 ]k, at the end of
round r2.

Thus, since at the end of the last agreement phase, E(v).round-status [r2 ]k is not
red, we conclude by Lemma 11.5.14 that the conclusions hold for j, and hence by
transitivity for k.

We next prove another corollary extending Lemma 11.5.14 to the case where a
virtual round is not a red round. This follows almost immediately from the definition
of a red round.

Corollary 11.5.16. Assume that r2 > 0 is a virtual round that is not a red round for
virtual node v ∈ IV , and that v is up in round r2. Then there is exactly one i ∈ IB

such that:

1. Node i ∈ IB performs a bcast(m, ·)i,v, m 6= ⊥, in either the scheduled-ballot or
unscheduled-ballot phase of round r2.

2. For all j that participate in virtual round r2, E(v).ballot [r2 ]j = E(v).ballot [r2 ]i
at the end of the last agreement phase of r2.

3. For all j that complete virtual round r2, at the end of r2, E(v).ballot [r2 ]j =
E(v).ballot [r2 ]i at the end of the last agreement phase.

Proof. We discuss each conclusion separately:
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1. By Lemma 11.3.10, there exists some k ∈ IB that participates in virtual round
r2. Choose some such k. Since r2 is not a red round, we can conclude that
E(v).round-status [r2 ]k 6= red. The conclusion then follows from Lemma 11.5.14.

2. Since j participates in virtual round r2, and round r2 is not a red round, we can
conclude that E(v).round-status [r2 ]j 6= red. The conclusion then follows from
Lemma 11.5.14.

3. Since j completes virtual round r2, we conclude by Lemma 11.5.4 that the status
E(v).round-status [r2 ]j is not red at the end of round r2. We thus conclude by
Corollary 11.5.15 that the claim holds.

Since there is a unique “ballot” and a unique “proposer” for each non-red round,
we can define the following terms:

Definition 11.5.17. Assume that r2 > 0 is a virtual round that is not a red round for
virtual node v ∈ IV , and that v is up in round r2. We say that m = 〈p, cM, cCD, vM, vCD〉
is the round r2 ballot if some i ∈ IB broadcasts 〈vn, v, m〉 in a ballot phase of r2.
We say that this node i is the round r2 proposer. (These are unique by Corol-
lary 11.5.16.)

Notice that if i is the proposer for some virtual round r, and virtual round r is not
red, then E(v).ballot [r ]i is equal to the round r ballot at the end of the last agreement
phase.

One immediate conclusion we can draw from this series of lemmas and corollaries
is that at the end of some virtual round r2, every node that completes the round has
the same unique ballot:

Corollary 11.5.18. Assume r2 > 0 is a virtual round that is not a red round for
virtual node v ∈ IV . Assume that v is up in round r, and assume that i, j ∈ IB are a
pair of nodes that complete round r2. Then E(v).ballot [r2 ]i = E(v).ballot [r2 ]j at the
end of round r2.

Proof. The conclusion follows immediately from Corollary 11.5.16: let i′ be the
(unique) proposer for virtual round r2; by Corollary 11.5.16, at the end of the last
agreement phase of r2, E(v).ballot [r2 ]i′ = E(v).ballot [r2 ]i at the end of round r2. The
same equality holds for node j, and hence the conclusion holds.

Corollary 11.5.18 describes the situation at the end of some virtual round r2. In
fact, as long as the virtual node is not reset, any two emulators will continue to agree
on the ballot for an earlier non-red round, even as new nodes join the emulation and
old nodes leave. The main technical tool in this proof is Lemma 11.5.3, which shows
that the join protocol works as expected. Combined with the fact that a ballot is
otherwise not modified after a virtual round is complete, the conclusion follows from
Corollary 11.5.18.
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In more detail, we extend Corollary 11.5.18 to show that if v is up in some non-red
virtual round r, then throughout the interval [r, r2] all the nodes agree on the ballot
for round r at the end of each virtual round. We begin with a preliminary lemma
that compares nodes that complete round r with nodes that complete round r2, and
then give the more general statement as a corollary.

Lemma 11.5.19. Assume 〈r1, r2〉 delineates an execution of virtual node v ∈ IV , and
that r ∈ [r1, r2]. Moreover, assume that i, j ∈ IB are a pair of nodes that complete
rounds r and r2, respectively. If round r, is not a red round, then E(v).ballot [r ]i, at
the end of round r, = E(v).ballot [r ]j at the end of round r2.

Proof. We proceed by backward induction from round r2 back to round r, where at
each stop we decrement ri and show the following: there exists some i′ ∈ IB that
completes round ri and at the end of round ri, E(v).ballot [r ]i′ = E(v).ballot [r ]j at
the end of round r2. At the end, we invoke Corollary 11.5.18 to draw a conclusion for
all i that complete round r.

The base case, where ri = r2, follows immediately where i′ = j. For the inductive
step, assume that the claim holds for virtual round ri + 1 and that r ≤ ri < r2. By
inductive hypothesis there exists some j′ ∈ IB that completes round ri +1 and at the
end of round ri + 1, E(v).ballot [r ]j′ = E(v).ballot [r ]j at the end of round r2.

We now invoke Lemma 11.5.3, where r = r′ = ri+1, ra is the last agreement phase
of ri +1, and rb is the last phase of ri +1. In this case, node j′ has E(v).joined j = true
and E(v).failed j′ = false at the end of round rb (and ri + 1), as required, since j′

completes round ri + 1. Thus we conclude that there exists some i′ ∈ IB where i′

participates in virtual round ri +1 and at the end of basic round ra, E(v).ballot [r ]i′ =
E(v).ballot [r ]j′ at the end of basic round rb. Since node i′ participates in round ri +1,
it also begins round ri + 1, and hence completes round ri. By transitivity, at the end
of round ri, E(v).ballot [r ]i′ = E(v).ballot [r ]j at the end of round r2, proving our
inductive claim.

To complete the proof, let i′ ∈ IB be a node that completes round r and at the end
of round r E(v).ballot [r ]i′ = E(v).ballot [r ]j at the end of round r2; by induction we
have just proved such an i′ exists. Since both i and i′ complete round r, we conclude
by Corollary 11.5.18 that E(v).ballot [r ]i′ = E(v).ballot [r ]i at the end of virtual round
r, concluding our proof.

Corollary 11.5.20. Assume 〈r1, r2〉 delineates an execution of virtual node v ∈ IV ,
and that r′ ∈ [r1, r2]. Moreover, assume that i, j ∈ IB are a pair of nodes that
complete rounds r′ and r2, respectively. If round r ∈ [r1, r

′] is not a red round, then
E(v).ballot [r ]i, at the end of round r′, = E(v).ballot [r ]j, at the end of round r2.

Proof. Since virtual node v is up in virtual round r, there exists some i′ ∈ IB that
completes round r. By Lemma 11.5.19, we can conclude that at the end of round r,
E(v).ballot [r ]i′ = E(v).ballot [r2 ]j at the end of round r2. Since 〈r1, r

′〉 also delineates
a (finite) epoch, we can also conclude by Lemma 11.5.19 that at the end of round r,
E(v).ballot [r ]i′ = E(v).ballot [r2 ]i at the end of round r′. The conclusion follows by
transitivity.
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11.6 Calculating the Round Status and State

In this section, and the following Section 11.7, we define the possible executions for
some virtual node v that can be extracted from α. Specifically, if 〈r1, r2〉 delineates
a finite epoch of v, our goal is to define execs(r1, r2)v, a set of possible executions for
the rounds [r1, r2], starting in the initial state at the beginning of round r1 when v is
reset. In Section 11.9, we will construct a single infinite execution γv of virtual node
v by choosing one execution in execs(ui, di)v for every element 〈ui, di〉 in the updown
sequence, updown(v), where di is finite, and concatenating these executions together,
along with appropriate fail and recover events, as well as appropriate time passage.
(When di is infinite, we make use of the constructed executions in a slightly different
manner.)

We construct each of the executions in execs(r1, r2)v in two steps: first by calling
calculate-status (Figure 10-10) to determine the status of each round, and second by
calling calculate-state (Figure 10-11), which performs the actual construction, based
on the status previously calculated for each round. (Notice that each process also
performs this same two step process in the client phase when determining which
message to broadcast in the vn phase.)

In this section we focus on that first step, calculating the status of each round. The
main result of this section is Corollary 11.6.7, which shows that after a good virtual
round, all the nodes that complete the round calculate the same status array. This
corollary is used in Lemma 11.7.11 (in Section 11.7), along with some facts about the
calculate-state function, to show that eventually there is only one possible execution
in the set execs(r1, r2)v, that is, that the replicas converge on a single execution of
the virtual node.

A second important lemma from this section is Lemma 11.6.8, which states that
if a round is red, then the calculate-status function determines that the round is
red. Notice that whether a round is red depends on global information, while the
calculate-status function is a local calculation.

This section breaks into three main subsections. First, we prove Lemma 11.6.1,
a basic lemma about the calculate-status function which shows certain circumstances
in which two nodes will calculate the same round status: i and j both complete a
virtual round r2, and both have the same previous round pointer: E(v).prev-rnd i =
E(v).prev-rnd j.

The second part of this section, Section 11.6.2, is a sequence of lemmas attempting
to determine when two nodes have the same E(v).prev-rnd pointer. This sequence of
lemmas culminates in Lemma 11.6.6, which shows that in a good round, all partici-
pating nodes have the same value of E(v).prev-rnd at the end of the virtal round.

The third part, Section 11.6.3 contains the two main conclusions of this section:
Corollary 11.6.7 and Lemma 11.6.8.

11.6.1 Analysis of calculate-status

In this section, we show that under certain circumstances, two nodes will calculate
the same status using the calculate-status function. Specifically, we consider the case
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where i and j are two nodes that complete some round r2, and at the end of r2, i and
j have the same value for the E(v).prev-rnd pointer. The main structure of the proof
is an analysis of the calculate-status function (Figure 10-10), showing that at each
iteration of the main loop in calculate-status, i and j perform the same calculations
and produce the same results.

Lemma 11.6.1. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node v, that
i, j ∈ IB complete round r2 for v, and that the following hold at the end of virtual
round r2:

• E(v).prev-rnd i = E(v).prev-rnd j,

• statusi = calculate-status ( E(v).rnd i ,
E(v).prev-rnd i ,
E(v).ballot i ,
E(v).last-reset i ) ,

• statusj = calculate-status ( E(v).rnd j ,
E(v).prev-rnd j ,
E(v).ballot j ,
E(v).last-reset j ) .

Then for all r ∈ [r1, r2], status [r]i = status [r]j.

Proof. Our goal is to show that the two computations of calculate-status produce
equivalent status arrays for the range [r1, r2]. The calculate-status calculation consists
primarily of a single loop that decrements r in each iteration and fixes temp-status [r].
We argue that at each iteration of the loop, i and j calculate the same status for
temp-status [r]. We proceed line-by-line through the loop, showing that certain in-
variants are maintained. The main technical steps involve applying Corollary 11.5.18
to conclude that both calculations have the same ballot for non-red rounds, and
applying Lemma 11.5.12 to conclude that certains rounds are not red.

In more detail, we argue that initially, and after each iteration of the loop, the
following invariants hold:

1. ri = rj,

2. pi = pj,

3. temp-last-reset i = temp-last-reset j .

4. Either v is down in round pi or pi is not a red round; the same holds, naturally,
for pj.

5. For all r ∈ [ri, r2], temp-status [r]i = temp-status [r]j.

The subscript i refers to the variables from the calculation of status i, while the sub-
script j refers to the variables from the calculation of statusj.
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Before proceeding, we note one initial fact. By Corollary 11.4.5, E(v).last-reset i +
1 = r1. Thus, since ri is decremented from E(v).rnd i+1 = r2+1 to E(v).last-reset i+
1 = r1, we can conclude that throughout the calculation, r1 ≤ ri ≤ r2 + 1. By the
same argument, the same holds for rj. When the loop terminates, ri = rj = r1.

First, we argue that these invariants hold initially at the beginning of the while
loop:

1. Notice that E(v).rnd i = E(v).rnd j = r2 by Corollary 11.2.6, and thus initially
ri = rj = r2 + 1 after they are each assigned temp-rnd + 1.

2. By assumption, E(v).prev-rnd i = E(v).prev-rnd j, leading to the initial conclu-
sion pi = pj.

3. By Corollary 11.4.6, E(v).last-reset i = E(v).last-reset j, leading to the initial
conclusion temp-last-reset i = temp-last-reset j.

4. By Lemma 11.5.11, either v is down in E(v).prev-rnd i or the round is not red,
leading to the initial conclusion about pi.

5. ri = r2 + 1 > r2, hence for all r ∈ [ri, r2], the claim about the status array is
trivially true.

Next, we argue that these invariants are maintained by each iteration of the loop.
The first step of the loop is to decrement ri and rj. Thus, after the first step (and
hence at the end of the loop), ri = rj, maintaining Invariant 1. We can also now
conclude that r1 ≤ ri ≤ r2, and thus v is up in round ri (and round rj). As a result,
we can conclude by the inductive hypothesis that round pi (and hence pj) is not a red
round. By Corollary 11.5.18, we know that temp-ballot [pi] = temp-ballot [pj], since
temp-ballot is a copy of E(v).ballot at the end of virtual round r2.

Next, after ri and rj are decremented, the calculation branches, based on whether
ri = pi, and whether rj = pj. Since ri = rj and pi = pj, both calculations proceed
through the same branch of the if clause on line 507.

If they choose the first branch, both pi and pj are updated according to the
temp-ballot [pi].prev-rnd data structure. According to Lemma 11.5.12, if round r =
E(v).ballot [pi ].prev-rndk, then either round r is not a red round or v is down in round
r; thus setting pi = r maintains Invariant 4 on pi. Moreover, since prior to updating
pi and pj, temp-ballot [pi] = temp-ballot [pj], we can conclude that after the update
pi = pj at the end of the loop, maintaining Invariant 2.

The variable temp-last-reset is not modified in either case, and thus Invariant 3 is
maintained.

Finally, temp-statusi and temp-statusj are updated depending on the branch cho-
sen in the loop; as argued above, both calculations choose the same branch in the
loop, and hence temp-status [ri]i = temp-status [rj]j. By induction, we already know
that for r ∈ [ri + 1, r2], temp-status [r]i = temp-status [r]i; thus, we have maintained
Invariant 5.
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11.6.2 Previous Round Pointer Equality

We have concluded that when the prev-rnd pointers are equal, two nodes calculate
the same status. We now need to show under what conditions nodes will choose the
same value for prev-rnd . In particular, we are interested in the case where some round
r is good, and we want to show that in this case, all nodes agree on the prev-rnd
pointer.

Lemma 11.6.2 and Corollary 11.6.3 consider the set of nodes that participate in
round r; Lemma 11.6.4 and Corollary 11.6.5 consider the set of nodes that complete
round r. Thus the primary difference in these two sets of lemmas is that the second set
of lemmas include nodes that join during the virtual round, and hence Lemma 11.6.4
includes an argument about the workings of the join protocol. Lemma 11.6.6 depends
on these previous lemmas, and draws the desired conclusion that in a good round, all
nodes that complete the round agree on the prev-rnd .

Our first goal in this progression is to show that in a good round r, every par-
ticipating node sets prev-rnd to r. In fact, we prove a somewhat stronger claim: if
some node i participates in round r, then i locally designates the round as green or
yellow if and only if E(v).prev-rnd i = r. In this section, we use only one direction of
this claim: if the status is green or yellow, then prev-rnd = r. The reverse direction
(of Lemma 11.6.4, which follows from Lemma 11.6.2) is used later in Lemma 11.7.14.
The proof follows from a straightforward examination of the phases in which prev-rnd
is modified.

Lemma 11.6.2. Assume virtual node v ∈ IV is up in virtual round r > 0, and
that some node i ∈ IB participates in round r. Then, E(v).round-status [r ]i ∈
{green, yellow} at the end of the last agreement phase of r if and only if E(v).prev-rnd i =
r at the end of the last agreement phase of r.

Proof. First, assume that the round status is either green or yellow. Since i partic-
ipates in round r, we know that E(v).joined i = true through the end of the last
agreement phase. Consider the case where v is scheduled: during lines 363–365,
E(v).prev-rnd i is updated to r = E(v).rnd i since the round status is green or yellow.
Similarly, in the case where v is not scheduled: during lines 427–428, E(v).prev-rnd i

is updated to r since the round status is green or yellow.
If the round status is not green or yellow, then E(v).prev-rnd i is not updated

during virtual round r, prior to the last agreement phase. It remains to show that
initially, at the beginning of the virtual round, E(v).prev-rnd i 6= r: by Lemma 11.4.1,
we know that E(v).prev-rnd i < r at the beginning of round r, and hence we can
conclude that at the end of the last agreement phase, E(v).prev-rnd i < r.

We get the following immediate corollary when round r is good:

Corollary 11.6.3. Assume virtual node v ∈ IV is up in virtual round r > 0, and that
round r is good for v. If node i ∈ IB participates in round r, then E(v).prev-rnd i = r
at the end of the last agreement phase of r.

Proof. By definition E(v).round-status [r ]i ∈ {green, yellow} at the end of the last
agreement phase of r, and hence the claim follows by Lemma 11.6.2.
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The previous lemma and corollary describe the behavior of nodes that participate
in some virtual round r. We will be interested, however, not just in nodes that partic-
ipate in a virtual round, but also those that complete the virtual round. Specifically,
some nodes may join the emulation during a virtual round, and the same guarantees
need hold at the end of the virtual round. Thus, we next show that at the end of
every good round, every node that completes the round has set prev-rnd to the cur-
rent round (Corollary 11.6.5). As before, we begin with a somewhat stronger lemma,
Lemma 11.6.4. Notice that these two lemmas essentially extend Lemma 11.6.2 and
Corollary 11.6.3 by including an argument that the join protocol works as expected.

Lemma 11.6.4. Assume virtual node v ∈ IV is up in virtual round r > 0, and that
some node i ∈ IB completes round r. Then E(v).round-status [r ]i ∈ {green, yellow} at
the end of round r if and only if E(v).prev-rnd i = r at the end of r.

Proof. Since E(v).joined i = true at the end of virtual round r, there are two possible
behaviors of node i, both of which can occur: node i participates in v in round r,
and/or i joins v in r. (By assumption, i does not reset v in r2, as v is up in round r2.)

Assume i joins v in virtual round r. Then in the join-ack phase, node i re-
ceives a message from some node k which includes a copy of E(v).prev-rndk and
E(v).round-status [r ]k at the beginning of the join-ack phase. Since k has E(v).joinedk =
true and E(v).failedk = false at the beginning of the join-ack phase, we can con-
clude that k participates in round r, that is, k has joined and not failed from the
beginning of virtual round r through the end of the last agreement phase. By
Lemma 11.6.2, we can conclude that E(v).round-status [r ]k is green or yellow if and
only if E(v).prev-rndk = r. Since both of these values are copied by i, the claim holds
for i at the end of round r.

Assume i does not join virtual node v in virtual round r. Then we can conclude
that i participates in virtual round r. By Lemma 11.6.2, we can conclude directly
that E(v).round-status [r ]i is green or yellow at the end of the last agreement phase
of r if and only if E(v).prev-rnd i = r at the end of the last agreement phase. The
only way that round-status [r ] and prev-rnd change after the last agreement phase,
prior to the end of the virtual round, is if i joins or resets v, which we have assumed
does not occur in this case. Thus, we can conclude that the claim holds for i at the
end of virtual round r.

We get the following immediate corollary when round r is good:

Corollary 11.6.5. If virtual node v ∈ IV is up in virtual round r > 0 and round r is a
good round for v, then for every node i ∈ IB that completes round r, E(v).prev-rnd i =
r at the end of r.

Proof. Choose r1 such that 〈r1, r〉 delineates a (finite) epoch of v. Since round r is
good, we conclude by Lemma 11.5.4 that E(v).round-status [r ]i ∈ {green, yellow} at
the end of virtual round r. We therefore conclude by Lemma 11.6.4 that E(v).prev-rnd i =
r at the end of virtual round r

Finally, it follows immediately from Corollary 11.6.5 that any two nodes that
complete a good round have the same value for prev-rnd :
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Lemma 11.6.6. If virtual round r > 0 is a good round, then for every pair of nodes
i, j ∈ IB that complete round r for virtual node v, E(v).prev-rnd i = E(v).prev-rnd j

at the end of virtual round r.

Proof. For node i, we can conclude by Corollary 11.6.5 that E(v).prev-rnd i = r at
the end of r. Similarly for j, by Corollary 11.6.5, E(v).prev-rnd j = r at the end of r,
leading to the desired conclusion.

11.6.3 Two Conclusions: Calculating the Status

Combining the main lemmas of this section, we can conclude that at the end of any
good virtual round, any two nodes that complete the virtual round calculate the same
status:

Corollary 11.6.7. Assume 〈r1, r2〉 delineates a finite epoch of virtual node v. If
round r2 is a good round, then for every pair of nodes i, j ∈ IB that complete round
r2 for v, if:

• status1 = calculate-status ( E(v).rnd i ,
E(v).prev-rnd i ,
E(v).ballot i ,
E(v).round-status i ,
E(v).last-reset i ) ,

• status2 = calculate-status ( E(v).rnd j ,
E(v).prev-rnd j ,
E(v).ballot j ,
E(v).round-statusj ,
E(v).last-reset j ) .

Then for every r ∈ [r1, r2], status [r]1 = status [r]2.

Proof. Follows immediately from Lemmas 11.6.1 and 11.6.6.

The second conclusion in this section is that the calculate-status function respects
the fact that red rounds are, in fact, red. As mentioned earlier, it is important to
notice that a round is red based on a global condition, while calculate-status performs
a local calculation.

A related fact is that the calculate-status function does not take the round-status
array as a parameter; it infers all the relevant color information directly from the ballot
data structure instead. The round-status array is entirely local: each node calculates
its round status independently of the other nodes. The ballot data structure, on the
other hand, contains information that is shared: a proposer broadcasts a ballot that
is then stored in each node’s ballot data structure. Thus, the calculate-state function
uses the data in the ballot data structure, rather than the local round status array,
in order to approximate a global condition, i.e., whether the round is red or green.

Another relevant fact about this lemma is that it describes the result of a calcula-
tion about some round r′ not only at the end of round r′, but also at the end of some
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later round r2, assuming the virtual node is not reset between rounds r′ and r2. This
fact, however, should be unsurprising, given the already-discussed persistence of the
round color designation (e.g., Lemma 11.5.5).

Lemma 11.6.8. Assume 〈r1, r2〉 delineates a finite epoch of virtual node v, and i
completes virtual round r2. If r′ ∈ [r1, r2] is a red round for v, and at the end of
round r2:

• statusi = calculate-status ( E(v).rnd i ,
E(v).prev-rnd i ,
E(v).ballot i ,
E(v).last-reset i ) ,

then status [r′] = red.

Proof. The proof follows from the way in which calculate-status uses the prev-rnd
pointers in the ballot. In each iteration of the loop, either the previous round pointer
p is left unchanged, or it is updated as follows:

p ← ballot [p].prev-rnd .

Since ballot [p].prev-rnd is always a non-red round (by Lemma 11.5.12), we can con-
clude that round p is always a non-red round. Moreover, in each iteration, status [r]
is set to green if r = p and to red otherwise. Thus if status [r] is green, then the round
is non-red, proving the contrapositive of the desired lemma.

We now proceed in more detail. Assume for the sake of contradiction that
status [r′] = green. (Notice in calculate-status, the returned array contains only red
and green colors.) Moreover, status [r′] = green only if temp-status [r′] = green at the
end of the calculation; temp-status [r′] is set to green only if at some point during the
calculation p = r′. We therefore show that the following invariant holds throughout
the calculate-status calculation: the virtual round p is not red. This claim implies
that at no point during the calculation does p = r′, which results in a contradiction,
proving the lemma.

Initially, the invariant holds since p is set to temp-prev , which is equal to E(v).prev-rnd i

at the end of round r2; by Lemma 11.5.11, we can conclude that p is not a red
round. Inductively, in each iteration of the loop, if p = r, then p is set equal to
temp-ballot [r].prev-rnd . By Lemma 11.5.12, we know that round E(v).ballot [r ].prev-rnd i,
at the end of round r2, is not a red round, from which we conclude that the invariant
holds, which concludes the proof.

11.7 Virtual Node Executions

In this section, we begin the process of constructing executions of virtual nodes. As
described at the beginning of Section 11.6, our goal is to extract from α the possible
executions of each virtual node. In this section, for every 〈r1, r2〉 that delineates a
finite epoch for virtual node v, we define the set execs(rr, r2)v of possible executions
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(Definition 11.7.7). Each node that completes a virtual round may have its own local
view of the virtual node’s execution; the set execs(r1, r2)v contains the local views
of all nodes that complete virtual round r2. When there is only one execution in
execs(r1, r2)v, i.e., when |execs(r1, r2)v| = 1, then all the nodes have converged on a
single execution for v.

We begin in Section 11.7.1 with some preliminaries. We define an [r1, r2]-execution
fragment (Definition 11.7.1), and a [r1, r2]-execution (Definition 11.7.2). An “execu-
tion” is a well-defined TIOA concept; an [r1, r2]-execution is simply an execution
that runs from round r1 through the end of round r2. We then examine how to
construct such an execution. Specifically, the functions do-bcast and do-recv (see Fig-
ure 10-12) together construct a one round execution, which we prove in Lemma 11.7.3.
Thus, when called repeatedly, they can construct a [r1, r2]-execution, as is implied by
Lemma 11.7.5.

In Section 11.7.2, we define a function execv : N × N × IB → executions of v.
Specifically, if 〈r1, r2〉 delineates a finite epoch of virtual node v, and i ∈ IB, then
exec(r1, r2, i)v returns an [r1, r2] execution of virtual node v that is consistent with i’s
local view at the end of round r2. We show in Lemma 11.7.10 that exec(r1, r2, i)v is
in fact an [r1, r2]-execution. We also define (Definition 11.7.7) the set execs(r1, r2)v,
which is the set of all exec(r1, r2, i)v, for all i ∈ IB that complete round r2.

In the rest of Section 11.7, we present various properties of these constructed
executions. In Section 11.7.3, we examine the case where a round is good. We show
that after a good round for virtual node v, every node participating in the emulation
has the same local view of virtual node v’s execution (Lemma 11.7.11). That is,
exec(r1, r2, i)v = exec(r1, r2, j)v, for all i and j that complete round r2. This implies
that |execs(r1, r2)v| = 1 (Corollary 11.7.12).

In later sections of this chapter (e.g., Sections 11.11 and 11.12) we prove a variety
of properties about these executions. For example, along with the client executions,
they satisfy integrity, collision detector completeness, and collision detector eventual
accuracy. In Section 11.7.4, we prove one simple property about the constructed exe-
cutions: they each satisfy the self-delivery property. That is, if a round r bcast(m, ·)v,∗
event occurs in exec(r1, r2, i)v, then message m is received on port 〈v, ∗〉 in round r.

In Section 11.7.5, we prove a series of lemmas regarding these executions and their
extensions. Our eventual goal is to construct a single execution of virtual node v via
successive extension. Thus, in an ideal situation, exec(r1, r2, i)v would be a one-round
extension of exec(r1, r2 − 1, i)v, which itself would extend exec(r1, r2 − 2, i)v, and so
on. In this way, we could construct an entire execution by calling exec repeatedly
to determine the next round. Unfortunately, the emulator cannot guarantee this
desired behavior. For example, i may join the emulation in some round r > r1, and
thus exec(r1, r, i)v cannot extend exec(r1, r−1, i)v. Alternatively, different nodes may
disagree in their local view of virtual node v’s execution; in order for the executions
to converge to a single execution, it may be necessary for some emulators to adopt
other emulators’ executions.

In Section 11.7.5, then, we prove the following key claim: if 〈r1, r2〉 delineates a
finite epoch of virtual node v, and if r2 > r1, then for every i ∈ IB, there exists some
j ∈ IB that completes round r2−1 such that exec(r1, r2, i)v extends exec(r1, r2−1, j)v.
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That is, after round r2, node i’s view of virtual node v’s execution is a one round
extension of some node j’s view of virtual node v’s execution after round r2 − 1.
We prove this claim in two steps, first considering good rounds (Corollary 11.7.15),
and then considering bad rounds (Corollary 11.7.18), before rearching the desired
conclusion in Lemma 11.7.19. This argument is applied inductively in Lemma 11.7.20
to generate multi-round execution extensions.

Finally, in Lemma 11.7.21, we return to considering the behavior of good rounds,
combining Lemma 11.7.19 and Corollary 11.7.15 to show that if a round r is good
and if node i is the round r proposer, then every node extends node i’s view of virtual
node v’s execution up through round r. Thus, in a good round, the proposer fixes
the virtual node’s execution up through round r.

11.7.1 Preliminaries

We begin by defining an [r1, r2]-execution fragment. Recall from Appendix A that
an execution fragment of a TIOA is a (finite or infinite) alternating sequence of
trajectories and actions with certain properties: it begins with a trajectory τ0, each
trajectory τi is a trajectory of the TIOA, and the state at the beginning of each τi,
i > 0, reflects the state at the end of τi−1 and the intervening action. An execution
is simply an execution fragment that begins with an initial state of the TIOA.

We define an [r1, r2]-execution fragment to be an execution fragment of virtual
node v for rounds [r1, r2]. We place two restrictions on the execution fragment: (1)
It must end with a recv event, since the last event in a virtual round is a recv;
and (2) For every virtual round that is included in the execution fragment, there is
exactly one recv event for v, since each virtual round in an execution includes one recv
event. (Notice that we do not need to place any restrictions on bcast events since the
definition of a process, Definition 8.1.2, ensures that each non-terminal recv event is
follows by a bcast event.)

Definition 11.7.1. Let r1, r2 ∈ N, r2 ≥ r1. We define an [r1, r2]-execution frag-
ment γ of virtual node v to be an execution fragment of the automaton Remap(AV (v), v)
with starting time (r1 − 1) · RndLengthV with the following properties:

1. The last event in γ is a round r2 receive event for v.

2. For every r ∈ [r1, r2], γ contains exactly one round r recv for virtual node v,
and no other recv events.

Notice that our definition of an [r1, r2]-execution fragment of v does not specify
whether a round r1 broadcast occurs. (For all rounds r : r1 < r < r2, a round r bcast
event is required, since every execution of a process has a bcast immediately following
every recv event.) We say that a [r1, r2]-execution fragment is broadcast complete
if it includes a round r1 broadcast, and broadcast incomplete otherwise. Every
execution of a process begins with a broadcast incomplete round: a trace of a process
always begins with a recv event (i.e., a dummy message), as it broadcasts a message
only in response to receiving a message from the previous round. (See Section 8.1.5
for an explanation of how the broadcast service drives the round structure.)
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Thus, an [r1, r2]-execution of v is an [r1, r2]-execution fragment that begins in the
virtual node’s initial state, startv and that has no round r1 bcast event.

Definition 11.7.2. Let r1, r2 ∈ N, r2 ≥ r1. An [r1, r2]-execution γ of virtual node v
is a broadcast incomplete [r1, r2]-execution fragment of v in which fstate(γ) = startv.

Throughout the rest of this section, we will be constructing [r1, r2]-executions.
The basic algorithm we use for constructing these executions is to repeatedly call the
functions do-bcastv and do-recvv (see Figure 10-12). The function do-bcastv inserts
a bcastv,∗ event, while the function do-recvv inserts a single round of time passage,
followed by a recvv,∗ event. Together, these two functions construct a one round,
broadcast-complete execution fragment for virtual node v:

Lemma 11.7.3. If s ∈ statesv is a state of virtual node v ∈ IV such that s is the last
state of an execution, γ, which has a recv event as its last action, and if:

• 〈s′, m, r, e1〉 ← do-bcast(s)

• 〈s′′, e2〉 ← do-recv(s′, M, cd , cm) .

Then for every r > 0, e1.e2 is a broadcast-complete [r, r]-execution fragment of v and
s′′ is the last state of e2, i.e., the state of the virtual node at the end of round r.

Proof. The lemma follows immediately by inspection. Notice that do-bcast simulates
virtual node v broadcasting a message, after some number of internal actions. Sim-
ilarly, do-recv simulates one round of time passage (including any internal actions),
followed by v receiving a set of messages. Notice also that both functions terminate,
producing a finite execution, as per Lemmas 10.3.1 and 10.3.2. Thus the criteria for
a [r, r]-execution fragment are met.

Along the same lines, the do-recv function constructs a one round broadcast-incomplete
execution of a virtual node:

Lemma 11.7.4. If s ∈ statesv is a state of virtual node v ∈ IV such that s is the last
state of an execution, γ, which does not end in a recv event, and if:

• 〈s′, e〉 ← do-recv(s, ·, ··) .

Then for every r > 0, e is a broadcast-incomplete [r, r]-execution fragment of v and
s′ is the last state of e, i.e., the state of the virtual node at the end of round r.

Proof. As in the Lemma 11.7.3, the lemma follows immediately by inspection. Notice
that do-recv simulates one round of time passage (including any internal actions),
followed by v receiving a set of messages. Thus the criteria for a broadcast-incomplete
[r, r]-execution fragment are met.

We can thus conclude from Lemma 11.7.4 that if s = startv, the initial state of v,
then do-recv constructs a one round execution of v.

Next, notice that by concatenating executions and execution fragments, we can
construct longer executions:

317



Lemma 11.7.5. If γ is an [r1, r2]-execution of virtual node v, and γ′ is a broadcast-
complete [r2 + 1, r3]-execution fragment of virtual node v, for some r2 ≥ r2 + 1, and
if the last state of γ is equal to the first state of γ′, then γ.γ′ is an [r1, r3]-execution
of virtual node v.

Proof. Immediate by the definition of execution and execution fragment.

11.7.2 Constructing an [r1, r2] Execution

We now show how to construct an [r1, r2]-execution for virtual node v. Specifically,
for every i ∈ IB that completes virtual round r2, we construct node i’s local view of
virtual node v’s execution. We later show, in Section 11.7.3, that after a green round,
all the nodes have the same local view of virtual node v’s execution.

We define the function exec(r1, r2, i)v, which constructs an [r1, r2]-execution frag-
ment for virtual node v, according to node i. The construction process takes two
steps: first, it calls calculate-status (Figure 10-10) to determine the status of each
round, and second, it calls calculate-state (Figure 10-11) to actually construct the ex-
ecution. The calculate-state function calls do-bcast and do-recv repeatedly to construct
the individual rounds.

Definition 11.7.6. Assume 〈r1, r2〉 delineates a finite epoch of virtual node v ∈ IV ,
and i ∈ IB is a node. Define exec(r1 , r2 , i)v as follows, where each variable is
referenced at the end of virtual round r2:

• status = calculate-status ( E(v).rnd i ,
E(v).prev-rnd i ,
E(v).ballot i ,
E(v).last-reset i ) ,

• 〈 s,e 〉 = calculate-state ( E(v).rnd i ,
status,
E(v).ballot i ,
E(v).last-good-state i ,
E(v).last-reset i )v .

Then, exec(r1, r2, i)v = e. We also define the calculate-last state of exec(r1, r2, i)v

to be equal to s, the state returned by the calculate-state function.

There are a few things to note about this definition. First, by Corollary 11.4.5, if
i completes virtual round r2, then r1 = last-reset + 1. (Round r1 does not play any
other role in the calculation.)

Next, notice that in the client phase, when node i decides whether to broadcast
a message in the following vn phase (lines 235–240), it calculates the last state of
exec(r1, r2, i)v using the same two-step process described above, and then calls the
do-bcast function to see if a broadcast is enabled in this state. It is for this reason
that we describe exec(r1, r2, i)v as i’s view of virtual node v’s execution: i bases its
decisions on this constructed execution.

We also define the set of possible executions:
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Definition 11.7.7. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node v in
α. We define execs(r1 , r2)v to be the set of executions:

{exec(r1, r2, i)v : i ∈ IB, i completes round r2} .

Notice the following straightforward observation:

Lemma 11.7.8. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node v in α.
If virtual node v is up in round r2, then execs(r1, r2)v 6= ∅.

Proof. Since virtual node v is up in round r2, there exists some node i ∈ IB that
completes round r2, and hence exec(r1, r2, i) ∈ execs(r1, r2)v.

We proceed to argue that exec(r1, r2, i)v is in fact an [r1, r2]-execution for v. The
key point is that the calculate-statev function always returns an execution for vir-
tual node v, and that this execution contains a recv event for each round. In fact,
calculate-state(r2, ·, ·, ·, r1 − 1)v always returns an [r1, r2]-execution.

At the same time, we also show that the calculated-last state of exec(r1, r2, i)v is
in fact the last state of exec(r1, r2, i)v. That is, the function calculate-state returns
a two-element pair: a state and an execution; in Lemma 11.7.10, we show that the
state returned by the function calculate-state is in fact the last state of the execution
returned by calculate-state.

We first need the following straightforward fact:

Invariant 11.7.9. For all i ∈ IB, for all v ∈ IV , E(v).last-good-state i = startv.

Proof. Immediate, by inspection, as E(v).last-good-state i is never modified through-
out the execution.

We now proceed to prove the claim that exec(r1, r2, i)v is an [r1, r2]-execution of v:

Lemma 11.7.10. Assume 〈r1, r2〉 delineates a finite epoch of v. Assume i completes
round r2. Then exec(r1, r2, i)v is an [r1, r2]-execution of v, and the calculated-last
state of exec(r1, r2, i)v is `state(exec(r1, r2, i)v).

Proof. The proof follows by inspection of calculate-state, Figure 10 − 11. We ob-
serve that the calculate-state function calls do-recv and do-bcast in an alternating
fashion, thus producing a broadcast-incomplete execution fragment of v. That is, the
calculate-state function constructs the [r1, r2]-execution one round at a time, begin-
ning with the empty execution and adding a one round execution fragment for each
round from round r1 up to round r2. We then notice that the initial state of the
execution is the the initial state of v, concluding that the resulting fragment is in fact
an execution.

In more detail, calculate-state operates as follows. Initially, we know that temp-state =
last-good-state = startv (as per Invariant 11.7.9), the state of the virtual node after
an empty execution. Also, notice that initially temp-rnd = E(v).rnd i = r2 (again,
by Lemma 11.2.4). By Corollary 11.4.5, temp-last-reset = E(v).last-reset i = r1 − 1.
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calculate-state begins by constructing a round [r1, r1]-execution by calling do-recv,
as per Lemma 11.7.4, where temp-state is the initial state of v. It proceeds iteratively
from r = r1+1 up to r = r2. At each step, exec maintains the inductively constructed
execution, and temp-state maintains the last state of exec.

For each r ∈ [r1 + 1, r2], the protocol constructs a [r, r]-execution fragment for
v, beginning in the last state of the inductively constructed execution, temp-state.
calculate-state invokes do-bcast, followed by do-recv, creating a broadcast-complete
execution fragment, as per Lemma 11.7.3. (At each step, the last event in the in-
ductively constructed execution is a recv event.) This fragment is then appended
to the inductively constructed execution, as per Lemma 11.7.5. When r = r2, the
construction is complete. It follows immediately that temp-state is the last state of
the execution exec, as required.

Finally, notice that the initial state of exec = startv, the initial state of v, and
hence the fragment exec is an execution.

11.7.3 Only One Good [r1, r2]-Execution

In this section, we show a result that is important in proving that the agreement pro-
tocols converge to a single execution when the system is “well-behaved.” Specifically,
we show that in a good round r, every node that completes round r calculates the
same execution.

Lemma 11.7.11. Assume 〈r1, r2〉 delineates a finite epoch of virtual node v. If round
r2 is a good round, then for every pair i, j ∈ IB that complete round r2 for virtual
node v: exec(r1, r2, i) = exec(r1, r2, j).

Proof. Each exec is calculated in a two-step process by first calling calculate-status
to determine status i and statusj, and then by calling calculate-state. We argue
that the input parameters to calculate-state are identical, with only one exception:
E(v).ballot [r ]i and E(v).ballot [r ]j can differ in red rounds. We argue that the
calculate-status function does not examine the ballot array for red rounds, and hence
the calculations proceed identically despite this difference.

In more detail, consider the parameters to calculate-state:

• temp-rnd : By Corollary 11.2.6, temp-rnd i = temp-rnd j.

• temp-status : By Corollary 11.6.7, for every r ∈ [r1, r2], temp-status [r]i =
temp-status [r]j. The calculate-state function does not access the temp-status
array outside this range.

• temp-ballot : For r ∈ [r1, r2], if temp-status [r]i = green, then temp-ballot [r]i =
temp-ballot [r]j. This claim follows because if temp-status [r]i = green, then we
know by the contrapositive of Lemma 11.6.8 that virtual round r is not red; by
Corollary 11.5.20, we know that if virtual round r is not red, then the ballot
arrays are equal.
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• temp-last-reset : By Corollary 11.4.5, temp-last-reset i = temp-last-reset j = r1−
1.

• temp-state: By Invariant 11.7.9, temp-state i = temp-statej = startv.

We conclude the proof by noticing that the calculate-state function only accesses
temp-ballot [r], for some r > 0, if temp-status [r] = green (see line 545, Figure 10-11).
Thus the two calculations proceed identically, and produce the same execution, as
desired.

We get the following immediate corollary, restating Lemma 11.7.11 in terms of
the set execs :

Corollary 11.7.12. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node v,
and round r2 is green for v. Then |execs(r1, r2)v| = 1.

Proof. By Corollary 11.5.7, we know that round r2 is a good round. By Lemma 11.7.11,
if i and j are participating in round r2 and round r2 is good, then exec(r1, r2, i) =
exec(r1, r2, j), concluding the proof.

11.7.4 Message Self-Delivery

Later in Sections 11.11 and 11.12, we prove a variety of properties of the executions
we have constructed. These later properties, however, involve interactions among
different virtual nodes and clients. Here we prove one simple property involving an
individual virtual node: each execution satisfies the self-delivery property. That is,
if a virtual node v broadcasts a message m in a virtual round r, then it also receives
message m in round r.

Lemma 11.7.13. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node v ∈ IV .
Assume γ ∈ execs(r1, r2)v. If for some m ∈ msgsV , a round r2 bcast(m, ·)v,∗ occurs
in γ, then a round r2 recv(M, . . .)v,∗ event occurs in γ in which m ∈M .

Proof. This lemma follows immediately from the calculate-state function. Fix i such
that γ = exec(r1, r2, i), which is calculated by calling calculate-state at the end of
round r2. Notice that if a bcast event occurs in γ, it is added by a call to do-bcast in
either line 554 or line 564. In both cases, the do-bcast function returns the message
broadcast, temp-msg . When constructing round r2, temp-msg = m. In both cases,
the temp-msg message is added to the inM set, which is then used as a parameter to
do-recv, thus ensures that m is in the set of messages received.

11.7.5 Every Execution Extends an Earlier Execution

A key property of an execution exec(r1, r2, i)v is that if r2 > r1 and if i completes
round r2, then we can conclude that exec(r1, r2, i)v extends execution exec(r1, r2 −
1, j)v, for some j that completes round r2 − 1. As a result of this property, we can
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construction executions of v through successive extension: if we take a sequence of
sets of executions:

〈execs(r1, r1)v, execs(r1, r1 + 1)v, . . . , execs(r1, r2)v〉 ,

then we can conclude that every execution γ ∈ execs(r1, r2)v has a prefix in each of
the sets in the sequence.

In this section, we prove two slightly stronger lemmas that identify exactly which
execution is extended, based on the color that i designates for round r2. We then
conclude with the main result of this section, Lemma 11.7.19, which shows the key
property described above.

First, we consider the case where a node j ∈ IB designates round r2 to be either
green or yellow. As a result, we can conclude that round r2 is not a red round, and
hence has a unique proposer (Corollary 11.5.15), which we designate i. In this case,
we claim that the execution constructed by node j is an extension of the execution
constructed by node i.

Lemma 11.7.14. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node v ∈ IV

and that r2 > r1. Assume j ∈ IB completes round r2 and has E(v).round-status [r ]j ∈
{green, yellow} at the end of r2. Moreover, assume that node i ∈ IB is the round r2

proposer. (See Definition 11.5.17; as result of the existence of i we know that such
an i exists.) Then exec(r1, r2, j)v is a one-round extension of exec(r1, r2 − 1, i).

Proof. Let γi = exec(r1, r2 − 1, i) and γj = exec(r1, r2, j). Our goal is to show
that γi is a prefix of γj. The proof proceeds in three parts. First, we recall the
construction of γi and γj via the calculate-status and calculate-state functions. Second,
we examine the calculate-status function and claim that i and j calculate the same
round status for each of the rounds in the range [r1, r2 − 1]. This second part of
the proof closely resembles the proof for Lemma 11.6.1. Third, we examine the
calculate-state function and claim that as a result, both constructions produce the
same execution prefix from round r1 through round r2 − 1. The main fact used here
is that the invocations to calculate-state differ (primarily) in the ballot data structure;
however calculate-state examines the round r ballot [r] only when round r is not red,
and hence by Corollary 11.5.18, the ballots for i and j are equal.

Part 1: Recall the construction of γi and γj. The two executions γi and γj are
each constructed in two steps: first by calling calculate-status, and then by calling
calculate-state. Specifically, for γi = exec(r1, r2 − 1, i):

• status i =calculate-status ( E(v).rnd i − 1,
E(v).prev-rnd i,
E(v).ballot i,
E(v).last-reset i) ,

• 〈s, e〉 =calculate-state ( E(v).rnd i − 1,
status i,
E(v).ballot i,
E(v).last-good-state i,
E(v).last-reset i)v .
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In this case, each variable is referenced at the end of virtual round r2 − 1. Similarly,
for γj = exec(r1, r2, j):

• statusj = calculate-status ( E(v).rnd j ,
E(v).prev-rnd j ,
E(v).ballot j ,
E(v).last-reset j ) ,

• 〈 s,e 〉 = calculate-state ( E(v).rnd j ,
statusj,
E(v).ballot j ,
E(v).last-good-statej ,
E(v).last-reset j )v .

In this case, each variable is referenced at the end of virtual round r2.
Part 2: Both nodes calculate the same round status. Our first goal is to prove the

following claim: for all r : r1 ≤ r ≤ r2 − 1, status [r]i = status [r]j. That is, for the
rounds in the range [r1, r2 − 1], both nodes i and j calculate the same round status.
This part is the main technical piece of the lemma, and closely resembles the proof
of Lemma 11.6.1.

The calculate-status calculation consists primarily of a single loop that decrements
r in each iteration and fixes temp-status [r]. We argue that at each iteration of the
loop, both i and j calculate the same status for temp-status [r]. We proceed line-
by-line through the loop, showing that certain invariants are maintained. The main
technical steps involve applying Corollary 11.5.18 to conclude that both calculations
have the same ballot for non-red rounds, and applying Lemma 11.5.12 to conclude
that certains rounds are not red.

In more detail, we compare the two calculations in the following manner: we
examine the initial state of the calculation for status i, and the state of the calculation
for statusj after the first iteration of the loop. We show that in this situation, a
set of invariants hold. Moreover, from then onwards, after each iteration of the
loop, the invariants are maintained. Throughout, we are comparing iteration k of
the calculation for i with iteration k + 1 of the calculation for j. We consider the
following invariants:

1. ri = rj,

2. pi = pj,

3. temp-last-reset i = temp-last-reset j .

4. Either v is down in round pi or pi is not a red round; the same holds, naturally,
for pj.

5. For all r ∈ [ri, r2 − 1], temp-status [r]i = temp-status [r]j.

The subscript i refers to the variables from the calculation of status i, while the sub-
script j refers to the variables from the calculation of statusj.
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Consider the initial state of the status i calculation and the state of the statusj

calculation after the first iteration through the calculate-status loop:

1. Round r counter: Initially, ri = r2 = temp-rnd i +1 (by Lemma 11.2.4,as usual);
after the first iteration rj = r2 (by Lemma 11.2.4), as rj has been decremented
once from r2 + 1. Thus ri = rj.

2. Previous round pointer p: Initially, pi = E(v).prev-rnd i at the end of round
r2 − 1; we now argue that pj after the first iteration of the calculate-status loop
is also equal to E(v).prev-rnd i at the end of round r2 − 1.

Initially, temp-prev j = temp-rnd j = r2 by Lemma 11.6.4, since round r2 is a
good round. Thus initially, pj = r2. As discussed above, initially, rj = r2 + 1,
and rj is immediately decremented to equal r2 (line 506, Figure 10-10). Next, in
line 507, pj is compared to rj. Since pj = rj, the first branch of the if statement
is executed, updating pj = ballot [r2].prev-rnd . It thus remains to show that
ballot [r2].prev-rnd = pi.

Recall that i is the unique proposer of a ballot in round r2. (By Corollary 11.5.15
we know that there is only one proposer since round r2 is good.) Thus the ballot
which is broadcast in the ballot phase for v in r2 (whether it is scheduled or
unscheduled) contains E(v).prev-rnd i at the beginning of virtual round r2, i.e.,
the end of virtual round r2 − 1. Therefore, E(v).ballot [r2 ].prev-rnd j at the end
of round r2 is equal to E(v).prev-rnd i at the beginning of round r2, by which
we conclude that pi, initially, is equal to pj, after the first iteration of the loop.

3. Last good round temp-last-reset : In both calculation, temp-last-reset = r1 − 1
both initially and throughout the calculation, as per Corollary 11.4.5.

4. Either v is down in round pi, or round pi is not red: By Lemma 11.5.11, either
v is down in E(v).prev-rnd i or the round is not red, leading to the initial con-
clusion about pi. Since after the first iteration, pj = pi initially, the claim holds
also for pj.

5. Temporary status array temp-status : ri = r2 > r2−1, hence for all r ∈ [ri, r2−1],
the claim about the status array is trivially true.

We argue that although the temp-ballot arrays may differ, in fact the calculations
proceed in an identical manner, and thus the invariants are maintained throughout
the calculation. The argument is nearly identical to that from Lemma 11.6.1.

The first step of the loop is to decrement ri and rj. Thus, after the first step (and
hence at the end of the loop), ri = rj, maintaining Invariant 1. We can also now
conclude that r1 ≤ ri ≤ r2 − 1, and thus v is up in round ri (and round rj).

Next, after ri and rj are decremented, the calculation branches, based on whether
ri = pi, and whether rj = pj. Since ri = rj and pi = pj, both calculations proceed
through the same branch of the if clause on line 507.

If they choose the first branch, both pi and pj are updated according to the
temp-ballot [pi].prev-rnd data structure. Since pi = ri, we can conclude that v is up
in round pi, and hence that temp-ballot [pi] = temp-ballot [pj] by Corollary 11.5.18.
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According to Lemma 11.5.12, if r = E(v).ballot [pi ].prev-rndk, then either round r
is not a red round or v is down in round r; thus setting pi = r maintains Invariant 4
on pi. Moreover, since prior to updating pi and pj, temp-ballot [pi] = temp-ballot [pj],
we can conclude that after the update pi = pj at the end of the loop, maintaining
Invariant 2.

The variable temp-last-reset is not modified in either case, and thus Invariant 3 is
maintained.

Finally, temp-statusi and temp-statusj are updated depending on the branch cho-
sen in the loop; as argued above, both calculations choose the same branch in the
loop, and hence temp-status [ri]i = temp-status [rj]j. By induction, we already know
that for r ∈ [ri+1, r2−1], temp-status [r]i = temp-status [r]i; thus, we have maintained
Invariant 5.

Part 3: Examining calculate-state and the construction of γi and γj. We can now
conclude the proof by examining the calculate-state function. Specifically, we want to
examine the two executions γi and γj constructed by the following:

• 〈·, γi〉 ← calculate-state(r2 − 1, status i, E(v).ballot i, r1 − 1, startv)v .

• 〈·, γj〉 ← calculate-state(r2, statusj, E(v).ballot j, r1 − 1, startv)v .

There are three ways in which these invocations differ. First, γi begins with temp-rnd i =
r2 − 1, while γj begins with temp-rnd = r2. Since temp-rnd controls the num-
ber of times the loop is repeated, this indicates that γj is one round longer than
γi. The second difference is in the status array: we have argued above that for
all r : r1 ≤ r ≤ r2 − 1, status i = statusj; for round outside this range, the ar-
ray may differ. Third, the temp-ballot arrays may differ. As before, if some vir-
tual round r ∈ [r1, r2 − 1] is not red, then we know by Corollary 11.5.20 that
temp-ballot [r]i = temp-ballot [r]j. We argue that despite these differences, from round
r1 through round r2 − 1, both calculations constructs the same [r1, r2 − 1-execution,
and hence γj is a one-round extension of γi.

In more detail, notice that the calculate-state function accesses the ballot ar-
ray only when temp-status [r] = green. By Lemma 11.6.8, however, we know that
temp-status [r] is green only when virtual round r is not red, as temp-status is a result
of the calculate-status calculation. Thus, whenever the two calculations access the
ballot array, the value are the same.

Thus, in each iteration of the for loop, beginning with r = r1 and up until r =
r2−1, the two invocations proceed in the same manner: first, calculating inCM based
on whether v is scheduled in round r; branching, based on whether temp-status [r] is
green or red; if the status is green, they both construct a round based on the ballot
data structures, which are the same; if the status is red, they both construct a round
that does not depend on the ballot data structure.

Thus, when r = r2 − 1, the two executions are the same. Execution γj goes on to
append an additional round, and so we conclude that γi is always a prefix of γj, as
required.

We get the following immediate corollary when round r2 is good:
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Corollary 11.7.15. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node
v ∈ IV and that r2 > r1. If round r2 is good, and i ∈ IB is the round r2 proposer,
then for every j ∈ IB that completes round r2, exec(r1, r2, j)v is an extension of
exec(r1, r2 − 1, i).

Proof. By Lemma 11.5.4, if round r2 is good, then E(v).round-status [r2 ]j ∈ {green, yellow},
and the claim follows by Lemma 11.7.14.

We have just examined the case where a node j (locally) designates a round r to
be green or yellow, and the case where a round r is good. We now proceed to the
case where a node j (locally) designates a round to be orange or red, and the case
where a round r is bad. Specifically, we want to show that for every j ∈ IB that
completes round r2, if j designates the round to be orange or red, then there exists
some i ∈ IB where exec(r1, r2, j)v extends exec(r1, r2 − 1, i)v. (In the case where j
locally designated the round as green or yellow, i was the unique proposer.)

In order to prove this claim, we consider two cases separately: first, the case where
j does not join the virtual node in round r2, i.e., the case where j participates in round
r2 (Lemma 11.7.16); second, the case where j joins v in round r (Lemma 11.7.17). In
this second case, we apply our previous analysis of the join protocol (Lemma 11.5.3)
to show that the desired conclusion holds.

In the following lemma, we assume that a node j (locally) designates a round
as orange or red, and assume that j participates in round r2 and does not join the
emulation of v in round r2. We then claim that node j extends its own round r2 − 1
execution. That is, exec(r1, r2, j)v extends exec(r1, r2−1, j)v. This result is intuitively
what one might expect: in a bad round, it is not possible for j to extend any other
node’s execution of v, as communication has been unreliable; thus the only safe
possibility is for j to extend j’s own execution of v.

Lemma 11.7.16. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node v ∈ IV

and that r2 > r1. Moreover, assume that j ∈ IB participates in round r2 and does
not join v in round r2. If E(v).round-status [r2 ]j ∈ {red, orange} at the end of the last
agreement phase, then execution exec(r1, r2, j)v extends execution exec(r1, r2 − 1, j)v.

Proof. Recall that each execution is calculated in two steps: first, determining the
round status array (calculate-status), and second, constructing the actual execution
(calculate-state). We are comparing two such calculations for node j at the end of
round r2 − 1 and the end of round r2. The main difficulty in the proof is showing
that the round status array for the two different calculations is the same for every
r ∈ [r1, r2 − 1]. In fact, since the round r2 was (locally) designated by j to be red
or orange, we conclude that the E(v).prev-rnd j pointer was unmodified in round
r2, and as a result, the status calculation is also identical. As a result, the inputs to
the calculate-state calculation are identical (for rounds in the range [r1, r2 − 1]); for
example, for every round r ∈ [r1, r2− 1], ballot [r] is the same in both cases. Thus we
conclude the the calculations proceed identically, leading to the desired result.

Let:

sA = calculate-status(E(v).rnd j, E(v).prev-rnd j, E(v).ballot j, E(v).last-reset j)
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at the end of round r2 − 1, and let:

sB = calculate-status(E(v).rnd j, E(v).prev-rnd j, E(v).ballot j, E(v).last-reset j)

at the end of round r2. Notice that sA is the status array used in the calculation of
exec(r1, r2−1, j)v, while sB is the status array used in the calculation of exec(r1, r2, j)v.

Part 1: In the first part of the proof, we show the following: for all r ∈ [r1, r2−1],
s[r]A = s[r]B. As in Lemma 11.7.14, we compare the initial state of the sA calculation
to the state of the sB calculation after the first iteration of the loop. We claim that
in this situation, and after each subsequent iteration of the loop, the local state
calculated is equivalent:

1. rA = rB,

2. pA = pB,

3. temp-last-resetA = temp-last-resetB,

4. for r ∈ [r1, r2 − 1], temp-ballots [r]A = temp-ballots [r]B, and

5. for r ∈ [r1, r2 − 1], temp-status [r]A = temp-status [r]B.

First we compare the initial state of calculation sA to the state of sB after the first
iteration of the loop:

• Round r counter: Initially, rA = temp-rndA+1 = r2 (by Lemma 11.2.4,as usual).
Initially, rB = temp-rndB + 1 = r2 + 1, and hence after the first iteration of
calculation sB, rB = r2 (by Lemma 11.2.4), as rj has been decremented once
from r2 + 1. Thus rA = rB.

• Previous round pointer p: We first argue that E(v).prev-rnd j is not modified
during virtual round r2. Prior to the last agreement phase, E(v).prev-rnd j is
not modified, since since E(v).round-status [r2 ]j is red or orange. After the last
agreement phase, E(v).prev-rnd j is not modified, since j does not join or reset
v in round r2. Thus, E(v).prev-rnd j is unchanged in virtual round r2. From
this we conclude that initially pA = pB.

Next, we argue that pB is not modified during the first iteration of the calcu-
lation of sB. In particular, pB is only modified if rB = pB. Yet we have just
argued that pB is not modified in virtual round r2; at the beginning of virtual
round r2, pB < r2, by Lemma 11.4.1. Thus, pB 6= rB, and after the first iteration
pB = pA initially.

• Last good round temp-last-reset : In both calculation, temp-last-reset = r1 − 1
both initially and throughout the calculation, as per Corollary 11.4.5.

• Temporary status array temp-status : Initially, for all r ≤ r2, temp-status [r ]A =
temp-status [r ]B = ⊥. In the first iteration, the statusB calculation updates only
temp-status [r2]; thus for all r < r2, temp-status [r]j = ⊥.
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• Temporary ballot array temp-ballot : During virtual round r2, for every r < r2,
E(v).ballot [r ]j is unmodified: prior to the last agreement phase, this follows im-
mediately; after the last agreement phase, this follows since j does not join or
reset v. Thus, for every r ∈ [r1, r2− 1], E(v).ballot [r ]j is the same at the begin-
ning and end of round r2, and hence initially, temp-ballot [r ]A = temp-ballot [r ]B.
Moreover, temp-ballot [r] is never modified during the calculate-status calcula-
tion, and hence they remain equal after the first iteration of the calculation
of sB.

Since the initial state of calculation sA and the state of calculation sB after the first
iteration are equivalent, except for array values outside the range [r1, r2 − 1], and
since neither calculation accesses an array entry outside of the range [r1, r2 − 1], we
conclude that the calculations proceed identically in both instances, and as a result,
when the calculation terminates, for every r ∈ [r1, r2 − 1], s [r]A = s [r]B.

Part 2: The proof concludes by examining the calculate-state function. All the
input parameters are equal in the two calculations, with the following exceptions: (1)
array entries outside the range [r1, r2− 1], and (2) initially, temp-stateA = r2− 1 and
temp-stateB = r2. Both calculations thus execute the same for loop, beginning at
round r1, and proceeding to construct the execution round by round. Since the ballot
and status array entries are the same, the execution constructed is the same, through
the end of round r2 − 1. At this point, the calcuation of exec(r1, r2 − 1, j)v returns,
while the calculation of exec(r1, r2, j)v continues, ensuring that the former is a prefix
of the latter.

In Lemma 11.7.16, we assume that node j does not join virtual node v in round
r2. We now consider the more general case where j may join virtual node in round
r2; our only assumption about node j is that it completes round r2. If node j joins
the emulation in round r2, we can no longer conclude that j extends its own prior
execution for v, as j has no prior execution to extend! Instead, we argue that j
extends the execution of some other node i, specifically, the node i that sent the
join-ack message that allowed j to complete the join protocol.

Lemma 11.7.17. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node v ∈ IV

and that r2 > r1. Moreover, assume that j ∈ IB completes round r2. If E(v).ballot [r2 ]j ∈
{red, orange}, then there exists some i ∈ IB that participates in virtual round r2 such
that execution exec(r1, r2, j)v extends execution exec(r1, r2 − 1, i)v.

Proof. If j does not join v in round r2, then the conclusion follows immediately from
Lemma 11.7.16: in this case, j participates in round r2, and hence we choose i = j.
Thus it remains to consider the case where j joins v in round r2.

If j joins v in round r2, then j receives a message from some node i ∈ IB during
the join-ack phase. It is straightforward to see that i does not join v in round r2, as
i sends information in the join-ack phase; similarly, it is clear that i participates in
round r2. By Lemma 11.7.16, we conclude that exec(r1, r2−1, i)v at the end of round
r2 − 1 is a prefix of exec(r1, r2, i)v at the end of round r2.
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After j joins, all the relevant state variables of j are equal to those of i. Thus their
calculation of the executions proceed identically, that is, exec(r1, r2, i)v = exec(r1, rj, j)v

at the end of round r2, which implies the desired result.

We get the following immediate corollary which states that when a round r2 is bad,
then every calculated execution extends some previous execution:

Corollary 11.7.18. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node
v ∈ IV and that r2 > r1. Moreover, assume that i ∈ IB completes round r2. If round
r2 is bad, then there exists some j ∈ IB that participates in virtual round r2 such that
execution exec(r1, r2, i)v extends execution exec(r1, r2 − 1, j)v.

Proof. By Lemma 11.5.4, we know that E(v).round-status [r2 ]i is either red or orange
at the end of round r2, and the claim then follows by Lemma 11.7.17

The following lemma, then, is a key lemma which shows that every execution
is an extension of a previous execution. Recall that Lemma 11.7.14 addresses the
situation where a node j ∈ IB designated a round to be green or yellow; Lemma 11.7.17
addresses the situation where a node j ∈ IB desiganted a round to be orange or
red. Thus the following lemma combines these two results, showing that regardless
of the color designation, if j completes round r2, then its view of virtual node v’s
[r1, r2]-execution is a one-round extension of some other node’s view of v’s [r1, r2−1]-
execution. Moreover, we argue that this other node does not fail or depart the
emulation prior to the scheduled-ballot phase.

Lemma 11.7.19. Assume 〈r1, r2〉 delineates a finite epoch of virtual node v, and r2 >
r1. Then for every j ∈ IB that completes round r2, there exists some i ∈ IB that begins
round r2 and does not fail or set E(v).joined i = false prior to the scheduled-ballot
phase bcast event, such that exec(r1, r2, j)v is an extension of exec(r1, r2 − 1, i)v.

Proof. There are two cases: either status E(v).round-status [r2 ]j ∈ {green, yellow}, or
status E(v).round-status [r2 ]j ∈ {red, orange}. In the former case, the result follows
from Lemma 11.7.14, and the fact that the round r2 proposer does not fail or set
E(v).joined i = false prior to broadcasting the ballot; in the latter case, the result
follows from Lemma 11.7.17.

Lemma 11.7.19 shows that every execution is a one-round extension of a previous
execution. We now apply this argument inductively to prove the same result about
multi-round extensions. That is, we show that for every r ∈ [r1, r2], every execution
constructed for rounds [r1, r2] has as a prefix some execution constructed for rounds
[r1, r].

Lemma 11.7.20. Assume 〈r1, r2〉 delineates a finite epoch of virtual node v. Let
r ∈ [r1, r2] be a virtual round. Then if some i ∈ IB completes round r2, there ex-
ists some j ∈ IB that completes round r such that exec(r1, r2, i)v is an extension of
exec(r1, r, j)v. Moreover, if r < r2, then j does not fail or set E(v).joined j = false
prior to the scheduled-ballot phase bcast of round r + 1.
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Proof. If r = r2, the claim follows immediately, where j = i. If r2 > r, the claim
follows by backwards induction, decrementing r′ from r2 down to r + 1, and at each
stage showing that for every node k ∈ IB that completes round r′, there exists
some k′ ∈ IB that completes round r′ − 1 such that exec(r1, r

′, k)v is an extension of
exec(r1, r

′−1, k)v. At each stage of the induction, this claim follows by Lemma 11.7.19.
Thus by transitivity of extension, the claim follows.

Thus, we can conclude from Lemma 11.7.20 that for every r ∈ [r1, r2], for every
γ ∈ execs(r1, r2)v there exists some γ′ ∈ execs(r1, r)v such that γ′ < γ. We can state
a somewhat stronger result in the case where some round r ∈ [r1 + 1, r2] is good: we
know that if round r is good, then γ′ is the execution for [r1, r − 1] calculated by
the (unique) proposer from round r. Lemma 11.7.21 extends Lemma 11.7.20 for this
specific case:

Lemma 11.7.21. Assume that 〈r1, r2〉 delineates a finite epoch for virtual node v ∈ IV

and that r2 > r1. Moreover, assume that virtual round r ∈ [r1 +1, r2] is good and that
node i ∈ IB is the round r proposer. (See Definition 11.5.17.) For every j ∈ IB that
completes round r2, exec(r1, r2, j)v is an extension of exec(r1, r − 1, i).

Proof. We first invoke Lemma 11.7.20 to show that for every j ∈ IB that completes
round r2, there exists some k ∈ IB that completes round r such that exec(r1, r2, j)v

is an extension of exec(r1, r, k)v. Since k completes round r, we then invoke Corol-
lary 11.7.15 to show that exec(r1, r, k)v is an extension of exec(r1, r− 1, i). The claim
then follows by the transitivity of extension.

11.8 Eventually All Green

In this section, we argue that eventually every round is green for a non-failed virtual
node. Recall (from Chapter 8) that the following three components of a basic sys-
tem guarantee some eventually good behavior: the basic broadcast service guarantees
eventual collision freedom; the collision detector guarantees eventual accuracy; and
the regional contention managers guarantee eventual `-regional fairness. In this sec-
tion, we consider what happens when all the eventuality conditions hold. We begin
by identifying the earliest round, rgst , in which all the conditions hold:

Definition 11.8.1. Let rgst be the maximum of the following values:

• racc(α), as hypothesized to exist by Lemma 8.1.42;

• rcf , as assumed to exist by Definition 8.1.56;

• For every CM v, v ∈ IV , round rcm as assumed to exist by Definition 8.1.54.

The main result of this section is Lemma 11.8.12, which shows that for every round
r ≥ rgst , for every v ∈ IV , if virtual node v is up in round r, then round r is green for
v. This fact implies that the agreement protocol has completed successfully with all
the replicas agreeing on the execution for the virtual node. We also show a slightly
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stronger result, Lemma 11.8.13, which shows that every nearby node designates a
round as green. (Recall that the definition of a round being green requires only that
one node designate a round as green.)

The main structure of the argument in this section proceeds as follows. Consider,
for the purpose of this overview, the case in which some virtual node v is scheduled
for some virtual round r. (The unscheduled case is nearly identical.) We first show
that in this case, there is exactly one ballot b broadcast for v in the scheduled-ballot
phase. Moreover, every node near to v receives ballot b, and moreover does not detect
any collisions. Thus, none of the nodes near to v broadcast in the scheduled-veto-1
phase, and as a result, none of the nodes near to v broadcast in the scheduled-veto-2
phase. As a result, the round is designated green by every node that is near to v at
the beginning of round r.

Thus the key argument in the proof is presented in Section 11.8.1 in which we
conclude that if a virtual node v is up, then after round rgst : exactly one ballot is
broadcast by a replica of v, exactly one ballot is received by replicas of v, and no
collisions are detected in the ballot phase. This result depends on the stabilization
of the contention managers, the collision detector, and the broadcast service: the
contention manager ensures that exactly one ballot is broadcast; the broadcast service
and eventual collision freedom ensure that the ballot is received; the eventual accuracy
of the collision detector ensures that no spurious collision are detected.

The argument then divides into two (nearly) identical cases, depending on whether
the virtual node v is scheduled or unscheduled. We discuss the scheduled agreement
instance in Section 11.8.2, and the unscheduled agreement instance in Section 11.8.3.
Finally, in Section 11.8.4, we assemble the various cases and prove the main conclusion
of this section, Lemma 11.8.12.

11.8.1 Exactly One Proposer per Virtual Round

In this section we show that after rgst , there is exactly one proposer for virtual node
v that broadcasts a message during a ballot phase, and hence each node i ∈ IB that
is near a virtual node receives exactly one ballot—and detects no collisions—in the
ballot phase of each virtual round ≥ rgst .

We begin the section with two lemmas related to the contention manager: Lemma 11.8.2
shows that the emulator satisfies `-restricted contention for each of the regional con-
tention managers, while Lemma 11.8.3 shows that the regional contention managers
select exactly one emulator to be active for each virtual round ≥ rgst . Both of these
lemmas involve a careful examination of the properties of a regionally-fair contention
manager (Definition 8.1.54). This section is one of two places in this paper where
the properties of the regional contention manager are exploited. (The other place is
Section 11.16, where we analyze the join protocol to show when the virtual node is
failed and when it is not failed.)

Lemma 11.8.3 further shows that there is exactly one proposer for each virtual
round ≥ rgst . This lemma may be reminiscent of Lemma 11.5.14, which shows that
in a non-red round there is a unique proposer. In this case, however, we have a
different hypothesis: instead of assuming that round r is non-red, we assume that
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round r ≥ rgst ; we later use this lemma to conclude that the round is non-red—in
fact, that the round is green.

We are then able to draw some conclusions about the messages broadcast and
received by replicas of v during ballot rounds. Lemma 11.8.4 show that for every
node i that is near a virtual node, there is exactly one message broadcast by a node
near to i during a ballot phase. This lemma depends primarily on the schedule to show
that no two virtual nodes are too close together. Finally, Lemma 11.8.5 concludes
that for every node i that is near a virtual node, i does not detect a collision during a
ballot phase and i receives exactly one ballot in the ballot phase. This lemma depends
on eventual collision freedom to show that the single message broadcast is received,
and eventual accuracy to show that no collision is detected.

We now begin with an examination of the regional contention managers. Recall
that the guarantees of a regional contention manager depend on the execution α
satisfying `-restricted contention for some location `; if α does not satisfy `-restricted
contention, then the regional contention managers may not reduce contention. Thus,
our first claim in this section is that α in fact satisfies `-restricted contention for all
v ∈ V . The proof of this fact is relatively straightforward: a port contends only if it
has already joined a virtual node v ∈ IV , and a joined port is always within distance
RB/4 of v.

Lemma 11.8.2. For every v ∈ IV , for ` = loc(v)V , execution α satisfies `-restricted
contention for CM v.

Proof. The broadcast service has two types of ports: those of the form 〈i, 0〉, for
i ∈ IB, and those of the form 〈i, v〉, for i ∈ IB and v ∈ IV . For every i ∈ IB, port
〈i, 0〉 never contends for CM v: this is ensured by the preconditions of the multiplexer
bcast action which only allow cm = global or cm = ⊥ (see lines 695–698, Figure 10-
13).

Consider port 〈i, v〉 for i ∈ IB, v ∈ IV , and consider some basic round rb > 0. We
show that if port 〈i, v〉 contends in round rb, then at the beginning of round rb − 1,
node i is within distance RB/4 of loc(v). The preconditions of the round rb−1 bcasti,v
transition ensure that cm = v′ only if v = v′ and E(v).joined i = true (lines 164–167,
Figure 10-4). Moreover, E(v).joined i = true at the beginning of basic round rb − 1
only if the preceding round rb−2 recv(·, ·, ·, loc)i,v event specified a location loc within
distance RB/4 of loc(v)V . Since the round rb− 1 bcast event occurs at the same time
as the round rb − 2 recv event, we can conclude that i is within distance RB/4 of
loc(v)V when the bcasti,v event occurs, as required.

Notice that the emulator uses the information from the regional contention man-
agers in only two phases: in the client phase, to set the roundCM variable (which is
used in the vn and scheduled-ballot phases), and in the unscheduled-ballot phase, to
determine whether to send a ballot. The first conclusion of Lemma 11.8.3, then, is
that after stabilization at most one node has roundCM = active after the client phase.
This conclusion follows almost immediately from the fact that α satisfies `-restricted
contention. The second conclusion is that, as a result, there is at most one k ∈ IB

such that port 〈k, v〉 broadcasts in the scheduled-ballot phase.
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The third and fifth conclusions of Lemma 11.8.3 depend on a further assumption
about the availability of a node to activate, and conclude that, in fact, there is
exactly one node that is advised by the contention manager to be active. Recall
(from Definition 8.1.54) that a regional contention manager advises a unique node to
be active in basic round rb only when there is some non-failed node that contends for
rb and is nearby and non-failed in rounds rb and rb + 1. Thus the second conclusion
of Lemma 11.8.3 is that when such a node exists, there is exactly one node with
roundCM = active. The third conclusion considers the unscheduled-ballot phase, and
shows that exactly one node is advised to be active. The fourth and sixth conclusions
of Lemma 11.8.3 follow immediately from the third and fifth conclusions, respectively,
showing that there is exactly one k ∈ IB such that port 〈k, v〉 broadcasts during the
scheduled-ballot phase or unscheduled-ballot phase, respectively.

Lemma 11.8.3. Let r ≥ rgst be a virtual round, and v ∈ IV be a virtual node. Then:

1. There exists is at most one node j ∈ IB that has E(v).roundCM j = active at
the end of the client phase of round r.

2. There exists at most one j ∈ IB such that port 〈j, v〉 broadcasts a message
m 6= ⊥ in the scheduled-ballot phase.

3. If there exists some i ∈ IB that begins round r and has E(v).joined i = true and
E(v).failed i = false at the end of the scheduled-ballot phase of round r, then
there exists exactly one node j ∈ IB that has E(v).roundCM = active at the
end of the vn phase of round r; moreover, j begins round r for v and remains
joined and not failed through the beginning of the scheduled-ballot phase, that is,
through the bcastj,v event in the scheduled-ballot phase.

4. If there exists some i ∈ IB that begins round r and has E(v).joined i = true and
E(v).failed i = false at the end of the scheduled-ballot phase of round r, and if v
is scheduled for round r, then there is exactly one j ∈ IB such that port 〈j, v〉
broadcasts a message m 6= ⊥ in the scheduled-ballot phase.

5. Let ra ∈ [0, SMAX − 1], and assume that v is unscheduled for round r and
v ∈ schedule[ra]. If there exists some i ∈ IB that begins virtual round r and has
E(v).joined i = true and E(v).failed i = false at the end of round ra + 2, then
there exists exactly one j ∈ IB for which a recv(·, ·, cm, ·)j,v event occurs in the
basic round ra in the unscheduled-ballot phase of round r where cm = active.
Moreover, j begins round r for v and remains joined and not failed through the
end of basic round ra + 1 in the unscheduled-ballot phase.

6. Let ra ∈ [0, SMAX − 1], and assume that v is unscheduled for round r and
v ∈ schedule[ra]. If there exists an i ∈ IB that begins virtual round r and has
E(v).joined i = true and E(v).failed i = false at the end of round ra + 2, and if
v is not scheduled for round r, then there is exactly one j ∈ IB such that port
〈j, v〉 broadcasts a message m 6= ⊥ in round ra + 1 of the unscheduled-ballot
phase of r.
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Proof. The main argument of the proof proceeds as follows: Conclusion 1 follows from
the fact that CM v advises at most one port 〈j, v〉, for j ∈ IB, to be active according
to Definition 8.1.54, Part 1. It remains to show that other contention managers do
not advise some other port 〈k, v〉, k 6= j, to be active, thus violating the claim that
port 〈j, v〉 is the only port that may be advised to be active. To show this claim, we
rely on the fact that all the contention managers are conservative: every port 〈k, v〉
either contends for contention manager CM v, or does not contend for any contention
manager, which leads to the desired result. Conclusion 2 is an immediate corollary
of Conclusion 1.

Conclusions 3 and 5 follow from Definition 8.1.54, Part 2: since a node exists
satisfying the hypothesis of Definition 8.1.54, Part 2, we conclude that there is in
fact some j ∈ IB such that the contention manager CM v advises 〈j, v〉 to be active.
Combined with the results from Conclusion 1, this implies that the port 〈j, v〉 is
the unique port advised by CM v to be active. Conclusion 4 and 6 are immediate
corollaries of Conclusion 3 and 5, respectively. We now proceed in more detail.

Conclusion 1. Definition 8.1.54, Part 1, states that if α satisfies `-restricted con-
tention for ` = loc(v), then there exists some round rcm such that for every round
r ≥ rcm , at most one port is advised by CM v to be active in round r. We conclude
from Lemma 11.8.2 that α satisfies `-restricted contention, for ` = loc(v)V , and by
assumption, rgst ≥ rcm posited by the definition. We thus conclude that in the client
phase, there is at most one node j ∈ IB that the contention manager CM v advises to
be active in the vn phase.

It remains to show that no other contention manager advises a port in the client
phase recv to be active during the vn phase. Consider some node k ∈ IB, k 6= j.
We can conclude that port 〈k, v〉 either contends for CM V , or does not contend to
be active in the vn phase, as per lines 164–167 in Figure 10-4. Since port 〈k, v〉
contends only for contention manager CM v, and, since all the contention managers
are conservative, we can conclude that for all k ∈ IB, k 6= j, every contention
manager advises port 〈k, v〉 to be passive in the vn phase of round r, resulting in
E(v).roundCM k = passive.

We thus conclude that at the end of the client phase, there is at most one node
j ∈ IB such that E(v).roundCM j = active.

Conclusion 2. A port 〈k, v〉, where k ∈ IB, broadcasts a message m 6= ⊥ in the
scheduled-ballot phase only if E(v).roundCM k = active at the end of the vn phase,
and thus Conclusion 2 follows as an immediate result of Conclusion 1, along with the
fact that roundCM is unmodified in the vn phase.

Conclusions 3 and 5. Choose basic round rb to be either (1) the basic round
associated with the client phase of round r, or (2) the basic round associated with
round ra of the unscheduled-ballot phase, depending on whether we are interested in
arguing Conclusion 3 or 5, respectively. As per the lemma hypothesis, we assume
that there exists an i ∈ IB that begins virtual round r and has E(v).joined i = true
and E(v).failed i = false at the end of round rb + 2 (i.e., the scheduled-ballot phase of
round r, in the case of Conclusion 3, or round ra + 2, in the case of Conclusion 5).

It is immediately clear that port 〈i, v〉 ∈ near(loc(v)V , [rb+1, r+b+2], bcast-portsB),
since if node i were farther than RB/4 from loc(v)V at the beginning of either round
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rb + 1 or rb + 2, then during the recv transition for round rb or round rb + 1 (which
occur simultaneous with the beginning of the following rounds), E(v).joined i ← false.
By assumption, we know that this is not the case.

It is also immediately clear that port 〈i, v〉 contends for CM v in round rb +1, since
whenever E(v).joined i = true at the beginning of basic round rb, port 〈i, v〉 contends
in round rb + 1, according to lines 164–167, Figure 10-4.

We can therefore determine that node i satisfies the hypothesis of Definition 8.1.54,
Part 2. Thus, there exists a port p ∈ bcast-portsB such that:

a. Port p contends for CM v in round rb + 1.

b. Port p does not fail prior to the end of round rb + 2.

c. Port p ∈ near(loc(v)V , [rb + 1, rb + 2], bcast-portsB).

d. Contention manager CM v advises port p to be active in round rb.

Choose j ∈ IB such that p = 〈j, v〉. (We know that for all j ∈ IB, p 6= 〈j, 0〉, as port
〈j, 0〉 never contends for the vn phase of a virtual round.) Thus we conclude that at
the end of the client phase, E(v).roundCM j = active, in the case of Conclusion 3,
and that there is a recv(·, ·, active, ·)j,v event in round ra, in the case of Conclusion 5.
Combined with Conclusion 1, this yields the desired results.

Conclusion 4. Since v is scheduled, a port 〈k, v〉 broadcasts a message m 6= ⊥ in
the scheduled-ballot phase under the following conditions: (1) line 273: E(v).scheduledk =
true; (2) line 274: E(v).joinedk = true; (3) line 274: E(v).roundCM k = active. Con-
clusion 3 guarantees that there is exactly one such node.

Conclusion 6. Since v is unscheduled, a port 〈k, v〉 broadcasts a message m 6= ⊥
in round ra + 1 of the unscheduled-ballot phase under the following conditions: (1)
line 378: E(v).scheduled j = false; (2) line 378: E(v).joined j = true; (3) line 388:
v ∈ schedule[ra]; (4) line 390: cm = active. Conclusion 5 guarantees that there is
exactly one such node.

The following lemma draws further conclusions about the behavior of the emulator
for v during the scheduled-ballot and unscheduled-ballot phase. Lemma 11.8.3 shows
that only one port 〈·, v〉 for virtual node v broadcasts a message. That is, it shows that
among ports for a single virtual node, the regional contention manager is successful in
reducing the contention. It remains to show that contention among ports for different
virtual nodes is also sufficiently low.

Lemma 11.8.4, Conclusion 1, shows that in each of the ballot phases, for every
node i ∈ IB that is near a virtual node, there is at most one broadcast by a node
that may interfere with i, or none if i itself broadcasts a message. If some node
is available, that is, joined and not failed, then Lemma 11.8.4, Conclusions 2 and 3,
show that there is exactly one such broadcast in the appropriate ballot phase (i.e., the
scheduled-ballot phase, if v is scheduled, and the unscheduled-ballot phase, otherwise).
The proof depends in large part on Lemma 11.8.3 and the fact that the schedule is
non-interfering.

335



Lemma 11.8.4. Let r ≥ rgst be a virtual round, let v ∈ IV be a virtual node, and let
i ∈ IB be a node.

1. If i is within distance 3RB/4 of loc(v)V at the beginning of the scheduled-ballot
phase, then there exists at most one port p ∈ bcast-portsB such that a bcast(m, ·)p

event, m 6= ⊥, occurs in the scheduled-ballot phase of round r where port p is
within distance R′B of i at the beginning of the phase.

2. If i is within distance 3RB/4 of loc(v)V at the beginning of the scheduled-ballot
phase, and if v is scheduled for round r, and if there exists some k ∈ IB

that begins round r and remains joined and not failed through the end of the
scheduled-ballot phase, then there exists exactly one port p ∈ bcast-portsB such
that a bcast(m, ·)p event, m 6= ⊥, occurs in the scheduled-ballot phase of round
r where port p is within distance R′B of i at the beginning of the phase. Addi-
tionally, port p is within distance RB of i at the beginning of the scheduled-ballot
phase.

3. Choose ra ∈ [0, SMAX − 1]. If i is within distance 3RB/4 of loc(v)V at the
beginning of round ra +1 of the unscheduled-ballot phase of virtual round r, and
if v is unscheduled for round r, and if v ∈ schedule[ra], and if there exists some
j ∈ IB that begins round r and remains joined and not failed through the end of
basic round ra + 2 in the unscheduled-ballot phase of round r, then there exists
exactly one port p ∈ bcast-portsB such that a bcast(m, ·)p event, m 6= ⊥, occurs
in round ra of the unscheduled-ballot phase of round r where port p is within
distance R′B of i at the beginning of the round. Additionally, port p is within
distance RB of i at the beginning of round ra in the unscheduled-ballot phase.

Proof. For the purpose of this proof, we partition the broadcast ports into three sets:

1. BP1 = {〈j, v〉 : j ∈ IB},

2. BP2 = {〈j, v′〉 : j ∈ IB, v′ ∈ IV , v′ 6= v},

3. BP3 = {〈j, 0〉 : j ∈ IB} .

Notice that these three sets are non-intersecting, and together contain all the ports
in bcast-portsB. (Recall that 〈j, 0〉 is a broadcast port for node j.)

We consider each of the three conclusions separately (though the arguments are
similar). In each case, we consider which of the ports broadcast in the specified phase.
We can conclude from Lemma 11.8.3 that there is at most one port—or exactly one
port, depending on the case—in the set BP1 that broadcasts in the ballot phase. We
can conclude from the fact that the schedule is non-interfering that there is at most
one port in the set BP2 that broadcasts in the ballot phase—and that ports in this set
broadcast only when no ports in the BP1 set broadcast in the ballot phase. Finally,
we show that no port in BP3 ever broadcasts in a ballot phase. Thus, in each of the
three cases, we achieve the desired conclusion.
Conclusion 1 : Assume that i is within distance 3RB/4 of loc(v)V at the beginning of
the scheduled-ballot phase:
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1. BP1: Lemma 11.8.3, Part 2, shows that there is at most one j ∈ IB such that
port 〈j, v〉 broadcasts a message m 6= ⊥ in the scheduled-ballot phase. If v is
unscheduled for round r, then there is no j ∈ IB such that port 〈j, v〉 broadcasts
a message m 6= ⊥ in the scheduled-ballot phase, since the E(v).scheduled j flag
prevents a message m 6= ⊥ from being broadcast in the scheduled-ballot phase
by an emulator for an unscheduled virtual node (line 273).

2. BP2: There are two subcases to consider, depending on whether v is scheduled
or unscheduled.

Assume that v is scheduled for round r. Consider some port 〈k, v′〉 ∈ BP2

where k is within distance R′B of i and v′ 6= v. Port 〈k, v′〉 broadcasts a message
6= ⊥ in the scheduled-ballot phase only if k has E(v′).joinedk = true, and hence
only if k is within distance RB/4 of loc(v′)V . Thus, v′ is within distance R′B +
RB/4 + 3RB/4 < 2R′V of v. (The first term R′B refers to the distance of k
from i; the second term refers to the distance of k from v′; the third term
refers to the distance of i from v.) Since v′ 6= v, and node v is scheduled, we
can conclude by the non-interference guarantee of the schedule that v′ is not
scheduled for round r, and hence port 〈k, v′〉 does not broadcast a message
6= ⊥ in the scheduled-ballot phase. From this argument we conclude that if v
is scheduled for round r, no port in BP2 that is within distance R′B of i at
the beginning of the scheduled-ballot phase broadcasts a message 6= ⊥ in the
scheduled-ballot phase.

Assume that v is not scheduled for round r. We show that there is at most
one port in the interference range of i that broadcasts a message 6= ⊥ in the
scheduled-ballot phase. Assume for the sake of contradiction that there are two
distinct ports 〈j′, v′〉 and 〈j′′, v′′〉, where v′, v′′ ∈ IV and j′, j′′ ∈ IB, and both j
and j′ are both within distance R′B of i at the beginning of the scheduled-ballot
phase. Port 〈j′, v′〉 broadcasts m 6= ⊥ in the scheduled-ballot phase only if
E(v′).joined j′ = true, and hence only j′ is within distance RB/4 of loc(v′)V ; it
also broadcasts in the scheduled-ballot phase only if v′ is scheduled for round r.
Similarly, port 〈j′′, v′′〉 broadcasts m 6= ⊥ in the scheduled-ballot phase only if
j′′ is within distance RB/4 of loc(v′′)V and v′′ is scheduled for round r. Since v′

and v′′ are both scheduled, either v′ = v′′ or the two ports are at least distance
2R′V apart, due to the non-interference of the schedule.

If v′ = v′′, then we conclude by Lemma 11.8.3, Part 1, that j′ = j′′, as there
is at most one j ∈ IB such that port 〈j, v′〉 that broadcasts a message m 6= ⊥
in the scheduled-ballot phase of round r. This contradicts our assumption that
ports 〈j′, v′〉 and 〈j′′, v′′〉 are distinct.

Otherwise, if v′ 6= v′′, then v′ and v′′ are distance > 2R′V = RB + 2R′B apart.
Since j′ is within distance RB/4 of loc(v′)V and j′′ is within distance RB/4 of
loc(v′′)V , we can conclude that j′ and j′′ are at distance > RB/2 + 2R′B > 2R′B
apart. Thus it is impossible that i be within distance R′B of both of them,
contradicting our assumption.
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From this argument, we see that if v is not scheduled, then there is at most one
port 〈j, v′〉 ∈ BP2 within distance R′B of i that broadcasts a message 6= ⊥ in
the scheduled-ballot phase.

3. BP3: For all k ∈ IB, port 〈k, 0〉 broadcasts only during the client phase, and
never during the scheduled-ballot phase.

From these three facts, we conclude that there exists at most one port p ∈ bcast-portsB

such that a bcast(m, ·)p event, m 6= ⊥, occurs in the scheduled-ballot phase of round
r where port p is within distance R′B of i at the beginning of the phase: specifically,
if v is scheduled, p ∈ BP1 (if it exists); if v is unscheduled, p ∈ BP2 (if it exists).
Conclusion 2 : Assume that i is within distance 3RB/4 of loc(v)V at the beginning of
the scheduled-ballot phase, and that v is scheduled for round r, and that there exists
some k ∈ IB that begins round r and remains joined and not failed through the end
of the scheduled-ballot phase:

1. BP1: Lemma 11.8.3, Part 4, shows that there is exactly one j ∈ IB such that
port 〈j, v〉 broadcasts a message m 6= ⊥ in the scheduled-ballot phase. We can
also conclude that node j is within distance RB/4 of loc(v)V at the beginning
of the scheduled-ballot phase, as otherwise E(v).joined j ← false, at which point
port 〈j, v〉 does not broadcast a message 6= ⊥.

2. BP2: Since v is scheduled, the argument here is identical to the scheduled
subcase of Conclusion 1. We repeat the argument here: Consider some port
〈k, v′〉 ∈ BP2 where k is within distance R′B of i and v′ 6= v. Port 〈k, v′〉 broad-
casts a message 6= ⊥ in the scheduled-ballot phase only if k has E(v′).joinedk =
true, and hence only if k is within distance RB/4 of loc(v′)V . Thus, v′ is within
distance R′B + RB/4 + 3RB/4 < 2R′V of v. (The first term R′B refers to the
distance of k from i; the second term refers to the distance of k from v′; the
third term refers to the distance of i from v.) Since v′ 6= v, and node v is
scheduled, we can conclude by the non-interference guarantee of the schedule
that v′ is not scheduled for round r, and hence port 〈k, v′〉 does not broadcast
a message 6= ⊥ in the scheduled-ballot phase. From this argument we conclude
that no port in BP2 that is within distance R′B of i at the beginning of the
scheduled-ballot phase broadcasts a message 6= ⊥ in the scheduled-ballot phase.

3. BP3: For all k ∈ IB, port 〈k, 0〉 broadcasts only during the client phase, and
never during the scheduled-ballot phase.

From these three facts, we conclude that here exists exactly one port p ∈ bcast-portsB

such that a bcast(m, ·)p event, m 6= ⊥, occurs in the scheduled-ballot phase of round r
where port p is within distance R′B of i at the beginning of the phase. Additionally,
port p ∈ BP1 and is within distance RB/4 of v at the beginning of the scheduled-ballot
phase; since i is within distance 3RB/4 of v, we can conclude that port p is within
distance RB of i.
Conclusion 3 : Assume i is within distance 3RB/4 of loc(v)V at the beginning of round
ra + 1 of the unscheduled-ballot phase of virtual round r, and that v is unscheduled
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for round r, and that v ∈ schedule[ra], and that there exists some i ∈ IB that begins
round r and remains joined and not failed through the beginning of basic round ra +2
in the unscheduled-ballot phase of round r:

1. Since v is unscheduled and v ∈ schedule[ra], then Lemma 11.8.3, Part 6, shows
that there exists exactly one j ∈ IB such that port 〈j, v〉 broadcasts a message
m 6= ⊥ in round ra + 1 of the unscheduled-ballot phase. Also, as argued in the
previous cases, node j is within distance RB/4 of loc(v)V at the beginning of
round ra of the scheduled-ballot phase, as otherwise port 〈j, v〉 would not have
broadcast a message in the ballot phase. Thus we conclude that node j is within
distance RB of node i.

2. Since v is unscheduled, the argument here is not entirely identical to—but
essentially the same as—the scheduled subcase of Conclusion 1. We repeat the
argument here: Consider some port 〈k, v′〉 ∈ BP2 where k is within distance
R′B of i at the beginning of round ra in the unscheduled-ballot phase and v′ 6= v.
Port 〈k, v′〉 broadcasts a message 6= ⊥ in the unscheduled-ballot phase only if
k has E(v′).joinedk = true, and hence only if k is within distance RB/4 of
loc(v′)V at the beginning of round ra in the unscheduled-ballot phase. Thus,
v′ is within distance R′B + RB/4 + 3RB/4 < 2R′V of v. (The first term R′B
refers to the distance of k from i; the second term refers to the distance of
k from v′; the third term refers to the distance of i from v.) Since v′ 6= v,
and v ∈ schedule[ra], we can conclude by the non-interference guarantee of
the schedule that v′ /∈ schedule[ra], and hence port 〈k, v′〉 does not broadcast a
message 6= ⊥ in round ra+1 of the unscheduled-ballot phase. From this argument
we conclude that no port in BP2 that is within distance R′B of i at the beginning
of round ra + 1 in the unscheduled-ballot phase broadcasts a message 6= ⊥ in
round ra + 1 of the unscheduled-ballot phase.

3. BP3: For all k ∈ IB, port 〈k, 0〉 broadcasts only during the client phase, and
never during the unscheduled-ballot phase.

Putting these three conclusions together, we can conclude that there exists exactly
one port p ∈ bcast-portsB such that a bcast(m, ·)p event, m 6= ⊥, occurs in round
ra +1 of the unscheduled-ballot phase of round r where port p is within distance R′B of
i at the beginning of the basic round. Additionally, port p ∈ BP1, and thus is within
distance RB of i at the beginning of round ra + 1 in the unscheduled-ballot phase.

Lemma 11.8.4 specifies which messages are broadcast in a ballot phase. We now
proceed in Lemma 11.8.5 to examine which messages are received in a ballot phase.
Since only one message is broadcast by a nearby node in the ballot phase (as per
Lemma 11.8.4), we invoke eventual collision freedom to show that the message is
received; we invoke eventual accuracy to conclude that no collisions are detected.
Using Lemma 11.8.5 we will be able to easily conclude that after rgst , the various
ballot phases proceed “cleanly,” which is a prerequisite for a green round.
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The conclusions of Lemma 11.8.5 divide into two (nearly identical) claims, the first
with respect to the scheduled-ballot phase, the second with respect to the unscheduled-ballot
phase.

Lemma 11.8.5. Let r ≥ rgst be a virtual round, and let v, v′ ∈ IV be virtual nodes.
Let i ∈ IB be a node.

1. Assume that a recv(allM , cd , . . .)i,v event occurs in the scheduled-ballot phase of
round r in α, and that virtual node v′ is scheduled. Assume that node i is within
distance 3RB/4 of loc(v′)V . Then cd = null and |{〈vn, v′, ·〉 ∈ allM }| ≤ 1.

If there exists some j ∈ IB that begins round r for v′ and remains joined and not
failed through the end of the scheduled-ballot phase, then |{〈vn, v′, ·〉 ∈ allM }| =
1.

2. Let ra ∈ [0, SMAX− 1], and assume that a recv(allM , cd , . . .)i,v event occurs in
round ra+1 of the unscheduled-ballot phase of round r in α. Assume that virtual
node v′ is unscheduled, and that v′ ∈ schedule[ra]. Assume that node i is within
distance 3RB/4 of loc(v′)V . If there exists some j ∈ IB that begins round r for
v′ and remains joined and not failed through the beginning of round ra +2, then
cd = null and |{〈vn, v′, ·〉 ∈ allM }| = 1.

Proof. We consider the two parts separately, first examining the scheduled-ballot
phase, and then examining the unscheduled-ballot phase. In each case, the argu-
ment proceeds roughly according to the following three steps: (1) According to
Lemma 11.8.4, there is at most one nearby port p that broadcasts a message m
in the ballot phase; (2) Since the basic broadcast service guarantees eventual collision
freedom and r ≥ rgst , port 〈i, v〉 receives message m, if it is broadcast by port p; (3)
Since every message broadcast by a nearby or interfering node is received, eventual
accuracy guarantees that cd = null. We now proceed in more detail.

Part 1: First, we consider the scheduled-ballot phase. By Lemma 11.8.4, Part 1,
there exists at most one port p ∈ bcast-portsB such that a bcast(m, ·)p event, m 6= ⊥,
occurs in the scheduled-ballot phase of round r where port p is within distance R′B of
i at the beginning of the phase. By Lemma 11.8.4, Part 2, if there exists some j ∈ IB

that begins round r for v′ and remains joined and not failed through the end of the
scheduled-ballot phase, then there is exactly one such port p, and in addition port p
is within distance RB of i at the beginning of the phase.

In the case where some port p broadcasts a message, we now consider the eventual
collision freedom property of the basic broadcast service (Definition 8.1.56). Notice
that all the required conditions hold: (1) port p broadcasts a message, (2) port p is
within distance RB of port 〈i, v〉 at the beginning of the scheduled-ballot phase, and
(3) no port k 6= p within distance R′B of 〈i, v〉 at the beginning of the scheduled-ballot
phase broadcasts a message. Thus, since r ≥ rgst , we know that the basic round
associated with the scheduled-ballot phase ≥ rcf , and thus we conclude that m ∈ allM ,
the set of messages received by port 〈i, v〉 in the scheduled-ballot phase.

Next, we argue that cd = null because of the eventual accuracy of the basic
broadcast service. In particular, Definition 8.1.41 and Lemma 8.1.42 state that if
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there is a recv(allM ,±, . . .)i,v event in the scheduled-ballot phase, then there exists a
port p′ ∈ bcast-portsB and m ∈ msgsB such that:

1. There exists a bcast(m, . . .)p′ event in the scheduled-ballot phase.

2. Port p′ is within distance R′B of 〈i, v〉 at the beginning of the scheduled-ballot
phase.

3. Message m /∈ allM .

If no port p broadcast a message, then we conclude immediately that cd = null.
Otherwise there exists exactly one port p ∈ bcast-portsB, where p is within distance
R′B of 〈i, v〉 at the beginning of the phase, that broadcasts a message m 6= ⊥. And
we have already concluded that m ∈ allM . Thus no such port p′ can exist, and hence
we can conclude that cd = null.

Finally, we conclude that |{〈vn, v′, ·〉 ∈ allM }| = 1: only one message is sent by a
port within distance R′B (i.e., port p), and no port of distance greater than R′B sends
a message of the form 〈vn, v′, ·〉. In particular, a port sends a message of the form
〈vn, v′, ·〉 only if it is within distance RB/4 of loc(v′)V , and hence only if it is within
distance RB of i. (Notice that there may be messages of the form 〈vn, v′′, ·〉 in allM ,
where v′′ 6= v′; the broadcast service may deliver messages sent from ports that are
quite distant. These messages are discarded by the emulator.)

Part 2: The second part is quite similar to the first part, though we omit the
claim that at most one node broadcasts, instead focusing on the case where exactly
one node broadcasts a message. Consider round ra of the unscheduled-ballot phase.
By Lemma 11.8.4, Part 3, there exists exactly one port p ∈ bcast-portsB such that
a bcast(m, ·)p event, m 6= ⊥, occurs in basic round ra + 1 in the unscheduled-ballot
phase of round r where port p is within distance R′B of i at the beginning of the basic
round, and in addition port p is within distance RB of i at the beginning of the basic
round.

We now consider the eventual collision freedom property of the basic broadcast
service (Definition 8.1.56). Notice that all the required conditions hold: (1) port p
broadcasts a message, (2) port p is within distance RB of port 〈i, v〉 at the beginning
of round ra +1 in the unscheduled-ballot phase, and (3) no port k 6= p within distance
R′B of 〈i, v〉 at the beginning of round ra+1 in the unscheduled-ballot phase broadcasts
a message. Thus, since r ≥ rgst , we know that the basic round associated with round
ra + 1 of the unscheduled-ballot phase is ≥ rcf , and thus we conclude that m ∈ allM ,
the set of messages received by port 〈i, v〉 in round ra + 1 in the unscheduled-ballot
phase.

Next, we argue that cd = null because of the eventual accuracy of the basic
broadcast service. In particular, Definition 8.1.41 and Lemma 8.1.42 state that if
there is a recv(allM ,±, . . .)i,v event in round ra + 1 of the unscheduled-ballot phase,
then there exists a port p′ ∈ bcast-portsB and m ∈ msgsB such that:

1. There exists a bcast(m, . . .)j event in the scheduled-ballot phase.

2. Port p′ is within distance R′B of 〈i, v〉 at the beginning of round ra + 1 of the
unscheduled-ballot phase.
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3. Message m /∈ allM .

However, we have already concluded that there exists exactly one port p ∈ bcast-portsB,
where p is within distance R′B of 〈i, v〉 at the beginning of the basic round, that broad-
casts a message m 6= ⊥. And we have already concluded that m ∈ allM . Thus no
such port j can exist, and hence we can conclude that cd = null.

Finally, we argue that |{〈vn, v′, ·〉 ∈ allM }| = 1, since only one such message is
sent by a port within distance R′B (i.e., port p), and no port of distance greater than
R′B sends a message of the form 〈vn, v′, ·〉. In particular, a port sends a message of
the form 〈vn, v′, ·〉 only if it is within distance RB/4 of loc(v′)V , and hence only if it
is within distance RB of i.

In the next two sections, we apply Lemma 11.8.5 to show that the scheduled and
unscheduled ballot rounds proceed cleanly, which results in the conclusion that for
every virtual node v that is up, for every virtual round r ≥ rgst , round r is a green
round for v.

11.8.2 Scheduled Virtual Nodes

In this section, we analyze the scheduled agreement instance, and show that after
stabilization, i.e., for every r ≥ rgst , every node j ∈ IB that has not failed at the end
of the agreement instance designates virtual round r as green.

We examine each phase of the scheduled agreement instance, and show that
throughout, the variable E(v).scheduled-status remains set to the default value of ⊥.
Thus, at the end of the scheduled-veto-2 phase, when the scheduled agreement instance
is complete, each participating node designates the round as green. Lemma 11.8.6 an-
alyzes the scheduled-ballot phase; Lemma 11.8.7 analyzes the scheduled-veto-1 phase;
and Lemma 11.8.8 analyzes the scheduled-veto-2 phase, stating the final result. Each
lemma examines the possible ways in which E(v).scheduled-status can be modified,
and shows that none of them occur.

First, we show that for all i ∈ IB, for all v ∈ IV , at the end of the scheduled-ballot
phase for some virtual round r ≥ rgst , E(v).scheduled-status i = ⊥. In addition, we
show that E(v).outgoing-msg i = ⊥. Together, these facts indicate that the ballot
round was “successful,” thus preventing vetoes in the following two rounds. Notice
that the lemma makes no assumptions on whether v is up or down, or whether node
i is near to virtual node v. It also makes no assumptions as to whether v is scheduled
or unscheduled for round r.

Lemma 11.8.6. Let v ∈ IV be a virtual node, r ≥ rgst a virtual round, and i ∈ IB

be a node that does not fail prior to the end of the scheduled-ballot phase of round
r. Then at the end of the scheduled-ballot phase, E(v).scheduled-status i = ⊥ and
E(v).outgoing-msg i = ⊥.

Proof. Consider the recv(allM , cd , . . .)i,v event in the scheduled-ballot phase of round r
(which takes place since i is non-failed). Initially (line 303), E(v).scheduled-status i ←
⊥. In this proof, we examine the various lines in which E(v).scheduled-status i is
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modified, and argue that Lemma 11.8.5 implies that E(v).scheduled-status i remains
⊥ throughout. The conclusion for E(v).outgoing-msg i follows immediately, since
E(v).outgoing-msg i is modified only if E(v).scheduled-status i 6= ⊥.

First, consider the case where i is farther than 3RB/4 from loc(v)V when the recv
event occurs. Then E(v).scheduled-status i is not modified from ⊥ throughout the
recv transition for the scheduled-ballot phase (see the if condition on line 304).

Second, consider the case where there exists no v′ ∈ IV such that v′ is scheduled
and i is within distance 3RB/4 of loc(v)V . Then again, E(v).scheduled-status i is not
modified from ⊥ throughout the recv transition (see the else if condition on line 306).

Thus, assume that i is within distance 3RB/4 of loc(v′)V , for some v′ ∈ IV where
v′ is scheduled for round r. By Lemma 11.8.5, Part 1, we conclude that cd = null and
that if M ′ = {〈vn, v′, ·〉 ∈ allM }, then |M ′| ≤ 1. If v′ = v and E(v).joined i = true,
then we assert that there exists some j ∈ IB that begins round r for v′ and remains
joined and not failed through the end of the scheduled-ballot phase, that is, node i
itself. In this case, again by lemrefexactlyone3, Part 1, we conclude that |M ′| = 1.

We now consider each of the lines during the recv transition in the scheduled-ballot
phase where E(v).scheduled-status i is modified, in the order the lines are executed
during the transition:

• line 303: In this line, E(v).scheduled-status i is initialized to ⊥, as desired. We
will argue that it is not changed during the rest of the recv transition.

• line 313: This line is only executed if cd = ±, which we have already precluded
above (by Lemma 11.8.5), or if |M ′| > 1, which we have already precluded
above (by Lemma 11.8.5).

• line 319: This line is only executed if v = v′, E(v).joined i = true, and 6
∃〈vn, v, b〉 ∈ allM , i.e., |M ′| = 0, which we have already precluded above (by
Lemma 11.8.5).

Thus, when the recv transition completes, E(v).scheduled-status i = ⊥, which imme-
diately implies that E(v).outgoing-msg=⊥ (line 321).

Next, we show that at the end of the scheduled-veto-1 phase, scheduled-status = ⊥.
In addition, we show that outgoing-msg = ⊥. Together, these facts indicate that the
first veto round was successful, that is, entirely silent.

Lemma 11.8.7. Let v ∈ IV be a virtual node, r ≥ rgst a virtual round, and i ∈ IB

a node that does not fail prior to the end of the scheduled-veto-1 phase of round
r. Then at the end of the scheduled-veto-1 phase, E(v).scheduled-status i = ⊥ and
E(v).outgoing-msg i = ⊥.

Proof. By Lemma 11.8.6, we conclude two facts:

• E(v).scheduled-status i = ⊥ at the beginning of the scheduled-veto-1 phase.

• For every v′ ∈ IV , for every j ∈ IB that has E(v′).failed j = false at the beginning
of the scheduled-veto-1 phase, E(v′).outgoing-msg j = ⊥.
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There are two situations during the scheduled-veto-1 phase of round r that can
result in E(v).scheduled-status i being set 6= ⊥: port 〈i, v〉 receives a message of the
form 〈vn, v, veto〉, or port 〈i, v〉 detects a collision. That is, E(v).scheduled-status i

is modified if during the recv(allM , cd , . . .)i,v event for the scheduled-veto-1 phase of
round r, either allM 6= ∅ or cd = ±.

Since for every non-failed j ∈ IB, for every v′ ∈ IV , E(v′).outgoing-msg j = ⊥, we
can conclude (by the integrity of the basic broadcast service, Lemma 8.1.35), that i
does not receive a veto message in the scheduled-veto-1 phase.

We can also conclude by the eventual accuracy of the basic broadcast service
(Lemma 8.1.42) that since no non-⊥ messages are broadcast in the scheduled-veto-1
phase, no collisions are detected by port 〈i, v〉.

Thus, at the end of the scheduled-veto-1 phase, E(v).scheduled-status i = ⊥. As a
result, it follows immediately that E(v).outgoing-msg i = ⊥ (see line 341).

Finally, we show that at the end of the scheduled-veto-2 phase, scheduled-status =
⊥, and draw two further conclusions as a result. Consider some virtual node v ∈ IV

and some node i ∈ IB. The first conclusion of Lemma 11.8.8 deals with unscheduled
virtual nodes: E(v).scheduled-status i = ⊥ at the end of the scheduled-veto-2 phase.
This conclusion is useful when arguing about the ballot proposed in the unsched-
uled agreement instance, which depends on which messages were broadcast (or not
broadcast) by v in the scheduled agreement instance. The second conclusion deals
with scheduled virtual nodes and all nodes i ∈ IB, and states that the round status
is either ⊥ or green. The third conclusion also deals with scheduled virtual nodes,
but limits its attention to nodes i ∈ IB that are “near” to v. In this case, the round
status is green. Thus, if any such node exists, we can conclude that round r is green
for v.

Lemma 11.8.8. Let v ∈ IV be a virtual node, r ≥ rgst a virtual round, and i ∈ IB a
node that does not fail prior to the end of the scheduled-veto-2 phase of round r.

1. If v is unscheduled in round r, then E(v).scheduled-status i = ⊥ at the end of
the scheduled-veto-2 phase.

2. If v is scheduled in round r, then at the end of the scheduled-veto-2 phase,
E(v).round-status [r ]i ∈ {green,⊥}.

3. If v is scheduled in round r and i is within distance 3RB/4 of loc(v)V at the
beginning of the scheduled-veto-2 phase, then at the end of the scheduled-veto-2
phase, E(v).round-status [r ]i = green.

Proof. The proof of this lemma is quite similar to that of Lemma 11.8.7. First, we
apply Lemma 11.8.7 to conclude the following two facts:

• E(v).scheduled-status i = ⊥ at the beginning of the scheduled-veto-2 phase.

• For every v′ ∈ IV , for every j ∈ IB that has E(v′).failed j = false at the beginning
of the scheduled-veto-2 phase, E(v′).outgoing-msg j = ⊥.
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There are two situations during the scheduled-veto-2 phase of round r that can
result in E(v).scheduled-status i being set 6= ⊥: port 〈i, v〉 receives a message of the
form 〈vn, v, veto〉, or port 〈i, v〉 detects a collision. That is, E(v).scheduled-status i

is modified if during the recv(allM , cd , . . .)i,v event for the scheduled-veto-2 phase of
round r, either allM 6= ∅ or cd = ±.

Since for every non-failed j ∈ IB, for every v′ ∈ IV , E(v′).outgoing-msg j = ⊥, we
can conclude (by the integrity of the basic broadcast service, Lemma 8.1.35), that i
does not receive a veto message in the scheduled-veto-2 phase.

We can also conclude by the eventual accuracy of the basic broadcast service
(Lemma 8.1.42) that since no non-⊥ messages are broadcast in the scheduled-veto-2
phase, no collisions are detected by port 〈i, v〉.

We conclude, then, that at the end of the scheduled-veto-2 phase, E(v).scheduled-status i =
⊥. This immediately implies all three conclusions: if v is unscheduled for round r,
then E(v).scheduled-status i = ⊥; if v is scheduled, then E(v).round-status [rnd ]i gets
either green or E(v).scheduled-status i (i.e., ⊥); if v is scheduled and within distance
RB ≤ 3rB/4 of loc(v)V , then we conclude that E(v).round-status [r ]i is set to green,
as desired, which concludes the proof.

11.8.3 Unscheduled Virtual Nodes

In this section, we analyze the unscheduled agreement instance, and show that after
stabilization, i.e., for every r ≥ rgst , every node j ∈ IB that has not failed at the
end of the agreement instance designates virtual round r as green. The proof in this
section is nearly identical to that in Section 11.8.2, with the exception that we are
interested only in virtual nodes that are unscheduled.

We examine each phase of the unscheduled agreement instance, and show that
throughout, the status E(v).round-status [r ] remains set to the default value of ⊥.
Thus, at the end of the unscheduled-veto-2 phase, each participating node desig-
nates the round as green. Lemma 11.8.9 analyzes the unscheduled-ballot phase;
Lemma 11.8.10 analyzes the unscheduled-veto-1 phase; and Lemma 11.8.11 analyzes
the unscheduled-veto-2 phase, stating the final result. Each lemma examines the pos-
sible ways in which E(v).round-status [r ] can be modified, and shows that none of
them occur.

First, we show that for all i ∈ IB, for all v ∈ IV , at the end of the unscheduled-ballot
phase for some virtual round r ≥ rgst , E(v).round-status [r ]i = ⊥. In addition, we
show that E(v).outgoing-msg i = ⊥. Together, these facts indicate that the ballot
round was “successful,” thus preventing vetoes in the following two phases. Notice
that the lemma makes no assumptions on whether v is up or down, or whether node
i is near to virtual node v. It also makes no assumptions as to whether v is scheduled
or unscheduled for round r.

Lemma 11.8.9. Let v ∈ IV be a virtual node, r ≥ rgst a virtual round, and i ∈ IB

be a node that does not fail prior to the end of the unscheduled-ballot phase of round
r. Then at the end of the unscheduled-ballot phase, E(v).round-status [r ]i = ⊥ and
E(v).outgoing-msg i = ⊥.
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Proof. Initially, at the beginning of the unscheduled-ballot phase, E(v).round-status [r ]i =
⊥. Our goal is to show that it remains as such through the end of the unscheduled-ballot
phase. In this proof we examine the various lines in which E(v).round-status [r ]i is
modified, and argue that Lemma 11.8.5 implies that E(v).round-status [r ]i remains
⊥ throughout. The conclusion for E(v).outgoing-msg i follows immediately, since
E(v).outgoing-msg i is modified only if E(v).round-status [r ]i = red (line 393).

Notice that for every basic round ra+1 in which v /∈ schedule[ra], E(v).round-status [r ]i
is not modified. Thus we consider basic round ra+1 such that v ∈ schedule[ra]. (There
is exactly one such round by the completeness of the schedule.)

Consider the recv(allM , cd , . . .)i,v event in round ra + 1 of the unscheduled-ballot
phase of round r (which takes place since i is non-failed).

First, consider the case where i is farther than RB/4 from loc(v)V at the beginning
of round ra + 1 in the unscheduled-ballot phase. Then E(v).joined i = false, and as a
result, E(v).round-status [r ]i is not modified from ⊥ throughout the recv transition
(see the if condition on line 378).

Thus, for the rest of the proof, we assume that i is within distance RB/4 of
loc(v)V at the beginning of round ra + 1 in the unscheduled-ballot phase, and that
E(v).joined i = true at the beginning of the basic round. By Lemma 11.8.5, Part
2, we conclude that cd = null and that if M ′ = {〈vn, v, b〉 ∈ allM}, then |M ′| = 1.
(Notice that node i itself satisfies the hypothesis for Lemma 11.8.5.) We now consider
each of the lines during the recv transition when E(v).round-status [r ]i is modified, in
the order the lines are executed during the transition:

• line 382: This line is only executed if |M ′| = 0 of |M ′| > 1, which we have
already precluded.

• line 384: This line is only executed if cd = ±, which we have already precluded.

Thus, at the end of the unscheduled-ballot phase, E(v).round-status [r ]i remains un-
changed from its initial value ⊥. This immediately implies that E(v).outgoing-msg i =
⊥ (line 321).

Next, we show that at the end of the unscheduled-veto-1 phase, round-status [r ] =
⊥. In addition, we show that outgoing-msg = ⊥. Together, these facts indicate that
the first veto round was successful, that is, entirely silent.

Lemma 11.8.10. Let v ∈ IV be a virtual node, r ≥ rgst a virtual round, and i ∈ IB

a node that does not fail through the end of the unscheduled-veto-1 phase of round
r. Then E(v).round-status [r ]i = ⊥ and E(v).outgoing-msg i = ⊥ at the end of the
unscheduled-veto-1 phase.

Proof. The proof of this lemma is quite similar to that of Lemma 11.8.7. By Lemma 11.8.9,
we conclude two facts:

• E(v).round-status [r ]i = ⊥ at the beginning of the unscheduled-veto-1 phase.

• For every v′ ∈ IV , for every j ∈ IB that has E(v′).failed j = false at the beginning
of the unscheduled-veto-1 phase, E(v′).outgoing-msg j = ⊥.
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There are two situations during the unscheduled-veto-1 phase of round r that can
result in E(v).round-status [r ]i being set 6= ⊥: port 〈i, v〉 receives a message of the
form 〈vn, v, veto〉, or port 〈i, v〉 detects a collision. That is, E(v).round-status [r ]i is
modified if during the recv(allM , cd , . . .)i,v event for the unscheduled-veto-1 phase of
round r, either allM 6= ∅ or cd = ±.

Since for every non-failed j ∈ IB, for every v′ ∈ IV , E(v′).outgoing-msg j = ⊥, we
can conclude (by the integrity of the basic broadcast service, Lemma 8.1.35), that i
does not receive a veto message in the unscheduled-veto-1 phase.

We can also conclude by the eventual accuracy of the basic broadcast service
(Lemma 8.1.42) that since no non-⊥ messages are broadcast in the unscheduled-veto-1
phase, no collisions are detected by port 〈i, v〉.

Thus, at the end of the unscheduled-veto-1 phase, E(v).round-status [r ]i = ⊥. As
a result, it follows immediately that E(v).outgoing-msg i = ⊥ (see line 410).

Finally, we show that at the end of the unscheduled-veto-2 phase, round-status [r ] =
green. This lemma implies that in the case where v is unscheduled, round r is green.

Lemma 11.8.11. Let v ∈ IV be a virtual node, r ≥ rgst a virtual round, and i ∈ IB

a node that does not fail through the end of the last agreement phase of round r.

1. If v is unscheduled for round r, then at the end of the last agreement phase,
E(v).round-status [r ]i ∈ {green,⊥}.

2. If v is unscheduled in round r, and if i is within distance 3RB/4 of loc(v)V at
the beginning of the last agreement phase, then at the end of the last agreement
phase, E(v).round-status [r ]i = green.

Proof. The proof of this lemma is quite similar to that of Lemma 11.8.8 and Lemma 11.8.10.
First, we apply Lemma 11.8.10 to conclude the following two facts:

• E(v).round-status [r ]i = ⊥ at the beginning of the unscheduled-veto-2 phase.

• For every v′ ∈ IV , for every j ∈ IB that has E(v′).failed j = false at the beginning
of the unscheduled-veto-2 phase, E(v′).outgoing-msg j = ⊥.

There are two situations during the unscheduled-veto-2 phase of round r that
can result in E(v).round-status i being set 6= ⊥ prior to line 426: port 〈i, v〉 re-
ceives a message of the form 〈vn, v, veto〉, or port 〈i, v〉 detects a collision. That
is, E(v).round-status [r ]i is modified if during the recv(allM , cd , . . .)i,v event for the
unscheduled-veto-2 phase of round r, either allM 6= ∅ or cd = ±.

Since for every non-failed j ∈ IB, for every v′ ∈ IV , E(v′).outgoing-msg j = ⊥, we
can conclude (by the integrity of the basic broadcast service, Lemma 8.1.35), that i
does not receive a veto message in the unscheduled-veto-2 phase.

We can also conclude by the eventual accuracy of the basic broadcast service
(Lemma 8.1.42) that since no non-⊥ messages are broadcast in the unscheduled-veto-2
phase, no collisions are detected by port 〈i, v〉.

Thus, on line 426, if node i is within distance RV < 3RB/4 of loc(v)V , then
E(v).round-status [r ]i is assigned to green in line 426. Otherwise, E(v).round-status [r ]i
remains ⊥ through the end of the last agreement phase.
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11.8.4 Eventually, All Rounds are Green

We conclude with the main result of this section, which shows that eventually all
rounds are green:

Lemma 11.8.12. For every virtual node v ∈ IV , for every virtual round r ≥ rgst , if
v is up in virtual round r, then round r is green for v.

Proof. Since v is up in round r, by Lemma 11.3.10, there is some node i ∈ IB

that begins round r for virtual node v and does not fail prior to the end of the
unscheduled-veto-2 phase. Moreover, we can conclude that at the end of each basic
round in round r, up until and including the unscheduled-veto-2 phase, node i is within
distance RB/4 of loc(v)V since E(v).joined i = true throughout.

If v is scheduled, we apply Lemma 11.8.8 to conclude that E(v).round-status [r ]i =
green at the end of the last agreement phase. If v is not scheduled, we apply
Lemma 11.8.11 to conclude that E(v).round-status [r ]i = green at the end of the
last agreement phase. Thus, by Definition 11.5.1, round r is green.

We provide one secondary result: if a virtual node v is up in round r, and if j ∈ IB

completes round r for v, then j designates round r as green. This result is somewhat
stronger in that its conclusion refers to the designation of each node j ∈ IB that
completes round r, rather than only one j ∈ IB. Also, it consider the designation at
the end of the virtual round, rather than at the end of the last agreement phase, and
hence we must examine the join protocol, once again.

Lemma 11.8.13. For every virtual node v ∈ IV , for every virtual round r ≥ rgst , if v
is up in virtual round r and if j ∈ IB completes round r for v, then E(v).round-status [r ]j =
green at the end of round r.

Proof. Since j completes round r for v, and since v was not reset in round r (as v is
up in round r), we can conclude that either i participates in round r, or i joins virtual
node v in round r. In the former case, Lemma 11.8.8 and Lemma 11.8.11 imply the
desired result. In the latter case, i must have received the round status from some
other node k ∈ IB which itself participates in round r, again implying the desired
result. We now proceed in more detail.

• Assume some node k ∈ IB participates in round r. We can conclude that at the
end of each basic round in round r, up until and including the last agreement
phase, node k is within distance RB/4 of loc(v)V ; otherwise k would not remain
joined.

If v is scheduled, we apply Lemma 11.8.8 to conclude that E(v).round-status [r ]k =
green at the end of the last agreement phase. If v is not scheduled, we apply
Lemma 11.8.11 to conclude that E(v).round-status [r ]k = green at the end of
the last agreement phase.

From this we conclude that if j participates in round r and does not join v
in round r, then at the end round r, E(v).round-status [r ]j = green: a node
only changes round-status after the last agreement phase if it joins or resets the
virtual node, and we have assumed that this does not happen.
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• Assume, then, that j joins v in round r. Then in the join-ack phase, j re-
ceives a copy of the round-status array. This must have been sent by some
node k ∈ IB (by the integrity of the basic broadcast service), and we can
conclude from the previous argument that at the end of the last agreement
phase, E(v).round-status [r ]k = green. Thus, after receiving the join-ack mes-
sage, round-status[r]j = green, and is not changed for the rest of the virtual
round, completing our proof.

11.9 Defining an Execution of a Virtual Node

In this section, for each virtual node v ∈ IV , we construct an execution γv. Later,
we paste together the γv executions, along with the client executions, the contention
manager executions, and the broadcast service execution to produce a single execution
γ of the virtual infrastructure system.

We now present a brief description of the mechanism by which γv is constructed.
A more careful description of the construction is presented in Figures 11-1 and 11-2.
(During the construction, whenever two actions are inserted consecutively, assume
that an intervening point trajectory is inserted into the execution, as required to
ensure that the resulting sequence is an execution.)

The construction consists first of an initialization portion (Figure 11-1) which
constructs all the virtual rounds prior to the first epoch in the updown sequence; it is
followed (Figure 11-2) by a loop that iterates through epochs in the updown sequences.
The variable r is a loop counter; the epoch under consideration is 〈ur, dr〉. In each
iteration of the loop, the construction adds rounds [ur, ur+1−1] to the execution: first,
an execution for 〈ur, dr〉, and then a trajectory through the end of round ur+1 − 1.
At the beginning of each loop, the following conditions hold: virtual node v is not
failed (i.e., there are no preceding fail events without an intervening recover event),
and `time(γv) is the end of round ur − 1. The main loop is broken into two major
cases: either the epoch is finite, or the epoch is infinite.

Finite Epoch, Finite dr: The main idea is to choose some node j ∈ IB and
append the execution exec(ur, dr, j)v to γv. We know, due to the definition of an
updown sequence, that v is down in round dr + 1, and hence we need to end this
execution with a fail event.

There are two subcases, however, that depend on whether any emulator for virtual
node v broadcasts a message for v in round dr + 1. We branch based on whether a
message 〈vn, v, ·〉 was broadcast in the vn and scheduled-ballot phases of round dr. If
so, then some emulator for virtual node v broadcast a message for v; other clients and
virtual nodes may well have chosen to receive this message, and hence it is included
in the execution for v prior to v failing. In this case, we choose j to be a node that
broadcast this message in round dr + 1. (If there is more than one, we choose any
of them; in any case, if there is more than one such node, we can be sure that every
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other emulator and client either received both or detected a collision.) We append
exec(ur, dr, j)v to γv, extending the execution through the end of round dr. We also
call do-bcast to generate the round dr+1 broadcast event, and append the appropriate
execution fragment.

Otherwise, if no node broadcasts a 〈vn, v, ·〉 message in the vn and scheduled-ballot
phases of round dr + 1, it is safe to continue constructing the execution under the
premise that v failed prior to its round dr + 1 bcast event. In this case, we simply
choose an arbitrary execution fragment from execs(ur, dr)v, which we know is know
empty by Lemma 11.7.8; we append this execution fragment to γv.

In both subcases, we append a fail event, and then a time-passage trajectory.
There are again two subcases depending on whether the virtual node ever recovers. If
there exists some 〈ur+1, dr+1〉 in the updown sequence, then the time passage of the
trajectory continues until some time ε after the end of round ur+1−1. The additional
ε ensures that node v does not receive a round ur+1−1 recv event. Finally, we append
a recover event, and a trajectory to complete the round.

If 〈ur, dr〉 is the last element in the updown sequence, a special case occurs: in-
stead of adding a finite trajectory and a recover event, we simply append an infinite
trajectory and terminate the construction of γv.

Infinite dr: The second major case occurs when dr is infinite. In this case, we need
to construct an infinite number of virtual rounds. We break this up into two parts:
first, we append an execution fragment from round ur up until one round after the
system stabilizes, i.e., rgst + 1; then, we append one round at a time, inductively.

For the first part of this step, we choose r′ to be the smallest virtual round such
that every basic round in r′ comes after rgst . We know by Lemma 11.8.12 that after
rgst , every round is green, and hence good, by Corollary 11.5.7. Thus, there is only
one execution in execs(ur, r

′)v by Corollary 11.7.12. We append this execution to γv.

For the second step, we assume that we have constructed an execution up until
round r′, and show to extend it by one (virtual) round, thus incrementing r′. As
before, we know that there is only one execution in execs(ur, r

′+1)v, and moreover, we
know that this execution extends the (sole) execution in execs(ur, r

′)v. Thus we simply
add the difference between these two executions to γv, increment r′, and continue.
The end result is an infinite execution in which any fragment of γv representing rounds
[ur, r

′] is equal to the (sole) execution in execs(ur, r
′)v.

11.10 Defining Other Component Executions

In this section, we define the other component executions for the virtual infrastructure
system, specifically, the client executions and the contention manager executions. Af-
ter showing that the executions constructed to this point are sufficient for showing the
integrity of the virtual broadcast service (Section 11.11), we proceed in Section 11.12
we construct the (virtual) collision detection rule, and then in Section 11.13, we con-
struct the virtual broadcast execution.
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Figure 11-1: Initialization of γv.

Initialization:

• Execution γv begins with a point trajectory τ0.
• Assume that updown(v) = 〈u0, d0〉, 〈u1, d1〉, 〈u2, d2〉, . . ..
• If u0 6= 1, then:

– Append a failv event to γv.
– Append a trajectory τ to γv, where dom(τ) = (ui − 1) · RndLengthV + ε,

for some ε : 0 < ε < RndLengthV . (Recall that the state of a process is
constant over all trajectories, by assumption; see Definition 8.1.2.)

– Append a recoverv event to γv.
– Append a trajectory τ with domain dom(τ) = RndLengthV − ε.

• Let r = 0.
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Figure 11-2: Construction of execution γv.

Loop: Repeat until 〈ur, dr〉 is not in updown(v):

• Case 1. Finite Epoch: If dr 6=∞, we consider virtual round dr:

– Construct an execution based on whether v broadcasts in round dr + 1:

∗ Subcase A. If some port 〈j, v〉 ∈ bcast-portsB broadcasts 〈vn, v, m〉,
m 6= ⊥, in the vn phase of virtual round dr + 1 and also 〈vn, v, ·〉 in
the scheduled-ballot phase of virtual round dr + 1 then:

· Fix such a j; append exec(ur, dr, j)v to γv; let s = `state(γv).
· Let 〈·, ·, ·, e〉 ← do-bcast(s)v.
· Append execution e.failv to γv.

∗ Subcase B. Otherwise:

· Append an arbitrary execution e ∈ execs(ur, dr)v to γv. (By
Lemma 11.7.8, execs(ur, dr)v 6= ∅.)
· Append a failv event to the end of γv.

– Add time passage until the next epoch begins, if there is one:

∗ Subcase A. If updown(v) contains 〈ur+1, dr+1〉:
· Append trajectory τ where dom(τ) = (ur+1−dr−1)·RndLengthV +

ε, for some ε : 0 < ε < RndLengthV . (Recall: the state of a process
is constant over all trajectories; see Definition 8.1.2.)
· Append a recoverv event to γv.
· Append a trajectory τ with domain dom(τ) = RndLengthV − ε.

∗ Subcase B. Otherwise, if updown(v) does not contain any 〈ur+1, dr+1〉:
· Append a trajectory τ where dom(τ) =∞ and all the variables of

virtual node v are constant.

• Case 2. Infinite Epoch: Otherwise, if dr is infinite:

– There are an infinite number of virtual rounds ≥ ur. Since α is infinite,
Lemma 8.1.31 implies that there are an infinite number of basic rounds in
α. Let r′ be the smallest virtual round ≥ ur such that every basic round
in virtual round r′ is ≥ rgst + 1.

– First, we construct the execution from ur to r′, and then inductively con-
struct each round of the execution after that one at a time. Choose e to
be an arbitrary execution in execs(ur, r

′)v. Append e to γv. (Notice that
|execs(ur, r

′)v| = 1 by Corollary 11.7.12, since r′ is a green round.)
– Next, we construct each additional virtual round of execution γv induc-

tively. Given an execution through virtual round r′ where every basic
round in round r′ is > rgst :

∗ Let γ′ be the (sole) execution in execs(ur, r
′ + 1)v. Notice that it

extends execs(ur, r
′)v, since round r′ is green for v.

∗ Append to γv all events and trajectories in γ′ not in execs(ur, r
′)v.

∗ Increment round r′.

• r ← r + 1
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11.10.1 Client Executions

We next define an execution γi, for each i ∈ IB as the restriction of α to the events and
trajectories relating to the client automaton associated with node i. More formally:

Definition 11.10.1. Let C = Remap(AV (i), i). Let γi be α|〈C.actions , C.vars〉.

(See Appendix A for the formal definition of an (A, V )-restriction of an execution.) It
follows immediately that each γi is an execution of the remapped process Remap(AV (i), i).

We now verify that the trace of each γi is “consistent” with an execution of the
virtual infrastructure system. It is immediately clear that γi is an execution of a client
automaton; it requires some further examination to show that the execution has the
appropriate (virtual) round structure. If the client’s execution, as just defined, is a
component execution of a virtual infrastructure system, it must have the appropriate
round structure: specifically, if a client does not fail in round r, then γi contains a
round r bcast and a round r recv event. The first round in the execution is a special
case: there is a recv event, but no bcast event.

Lemma 11.10.2. If node i does not fail in virtual round 1, then γi contains a single
round 1 recvi,∗ event.

For every virtual round r > 1, if node i does not fail prior to beginning round r,
then γi contains a single round r bcasti,∗ event; if node i does not fail in round r,
then γi contains a single round r recvi,∗ event at the end of round r.

Proof. We show that for each round r > 0, if i does not fail in r, then γi contains a
single round r recvi,∗ event. The conclusion with respect to bcast events then follows
immediately from the fact that the client is a process and γi is an execution of the
client process: a process responds with bcast events immediately and only in response
to recv events (see Definition 8.1.2).

Consider some virtual round r, and let ra be the last basic round in r. We need to
show that during virtual round r, exactly one recvi,∗ event occurs, and that it occurs
at the end of round ra.

We argue that the restriction on trajectories (line 721) ensures that at least
one recvi,∗ occurs immediately after the round ra recv event. Specifically, the stops
when condition restricts the passage of time when E(multiplexer).phase i = out and
E(multiplexer).failed i = false. Notice that immediately after the round ra recvi,0

event, E(multiplexer).phase i = out and E(multiplexer).failed i = false (as i does not
fail prior to the end of r). The following sequence of dependencies show that a recvi,∗
event must occur in order for time to pass:

• Time stops at the end of round r when E(multiplexer).phase i = out and
E(multiplexer).failed i = false.

• The only event which resets the phase to in is a round ra +1 bcasti,0 event. The
precondition of the bcasti,0 event requires E(multiplexer).clientBcast i = true.
After the recvi,0 event, the client broadcast flag E(multiplexer).clientBcast i =
false.
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• The only event which sets clientBcast to true is a bcasti,∗ event.

• Since the client is a process (see Definition 8.1.2), a bcast event occurs only
in response to a recv event. Thus the necessary bcasti,∗ event occurs only if a
recvi,∗ event precedes it.

Since the process AB(i) (consisting of the composed emulator and client) is progres-
sive, as per Lemma 10.3.6, we can conclude that time-passage is enabled after a finite
sequence of events after the recvi,0 event, and hence at least one round r recvi,∗ event
occurs at the end of round r.

Finally, we argue that only one recvi,∗ event occurs. Notice that a precondition of
the recvi,∗ action in Figure 10-13 is that E(multiplexer).inVNs i = V , and an effect
of the recvi,∗ action is that the set of virtual nodes E(multiplexer).inVNs i ← ∅.
Moreover, a virtual node v ∈ IV is added to the set E(multiplexer).inVNs i only
during a vn-client-outputv event.

The virtual node emulator E(v), however, ensures that (1) vn-client-outputv events
occur only at the end of a virtual round, and (2) only one vn-client-outputv event
occurs per virtual round. This follows by noticing that the vn-client-output action has
a precondition E(v).do-client-recv i = true, which is reset by the vn-client-output to
false. Moreover, this flag is only set during the last basic round in r, i.e., during the
basic round ra recv event. Thus it is only set once per virtual round at the very end
of the virtual round.

We therefore conclude that only one recvi,∗ event can occur in each virtual round,
concluding our proof.

The next lemma we prove is that the clients’ interaction with the virtual broadcast
service satisfies the self delivery property. That is, we show that if some client port
〈i, ∗〉 broadcasts a message m in round r, then port 〈i, ∗〉 also receives message m in
round r.

Lemma 11.10.3. Let i ∈ IB be a client and r > 0 be a virtual round. If for some
m ∈ msgsV , a round r bcast(m, ·)i,∗ occurs in γi and if a round r recv(M, . . .)i,∗ event
occurs in γi, then m ∈M .

Proof. This lemma follows from the self-delivery property of the basic broadcast ser-
vice. Immediately after the bcast(m, ·)i,∗ event, we can determine that E(multiplexer).outM i =
m, and hence there is a bcast(〈client, m, ·〉, ·)i,0 event in the client phase of round
r. Since there is a recvi,∗ event at the end of virtual round r (by assumption), we
can conclude that i does not fail in the client phase, and hence there is a client
phase recv(M, . . .)i,∗ event. By the self-delivery property of the basic broadcast ser-
vice, we know that 〈client, m, ·〉 ∈ M , and hence immediately after the recvi,∗ event,
〈client, m, ·〉 ∈ inM . Thus, when the recvi,∗ occurs at the end of virtual round r, we
can conclude that m ∈M , as desired.

11.10.2 The Virtual Contention Manager Execution

We next construct an execution γvirtual of the virtual contention manager CM virtual .
The construction derives entirely from the γi, i ∈ IB, and γv, v ∈ IV , executions
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that have already been constructed: every bcast event in these executions is added to
γvirtual ; for each bcast event, an immediately following cm-advice event is added.

Recall that each contention manager in the virtual infrastructure system gives
advice to every node in the system, real or virtual. However, the virtual contention
manager here is designed to provide useful advice for the virtual nodes; thus, it always
advises the clients to be passive.

For the virtual nodes, the contention manager derives its advice from the recv
events in γv, v ∈ IV . This construction thus ensures that the γvirtual execution is
consistent with the virtual node executions. As in prior constructions, we implicitly
insert point trajectories between actions in the sequence.

The construction itself is presented in Figure 11-3. We then prove that γvirtual is an
execution of CanonicalCM (Lemma 11.10.4), that γvirtual is non-interfering (Lemma 11.10.6),
and that γvirtual is eventually fair (Lemma 11.10.7).

Lemma 11.10.4. γvirtual is an execution of CanonicalCM.

Proof. Notice that γvirtual is an alternating sequence of trajectories and actions, and
that all the in γvirtual are consistent with CanonicalCM. We need only show the
following two facts: (1) the preconditions for transitions in CanonicalCM are satisfied
whenever a cm-advice occurs in γvirtual ; (2) time-passage is enabled whenever τi is a
trajectory with domain > 0.

First, consider some cm-advice(〈i, ∗〉, ·) event, for i ∈ IB ∪ IV . We need to show
that 〈i, ∗〉 ∈ waiting . From the construction, we can determine that γi contains an
immediately preceding bcasti,∗ event, which adds 〈i, ∗〉 to the waiting set, as required.

Second, consider some trajectory τ with domain > 0. Notice that τ that was
added in Step 3 of the construction. We need to show that in fstate(τ), waiting = ∅.
That is, we need to show that for each preceding bcasti,∗ event, there is an intervening
cm-advice(i, · · · ) event, for all 〈i, ∗〉 ∈ IB ∪ IV .

We can see immediately by construction that for all i ∈ IB, each bcasti,∗ event
has an immediately following cm-advice(〈i, ∗〉, passive) event. For v ∈ IV , the same
conclusion follows: whether or not there is a recv event, some cm-advice event follows
each bcastv,∗ event.

Next, we discuss the additional properties associated with the contention manager
CM virtual : eventual non-interference and eventually fairness. Before proceeding, we
prove a basic lemma about when a node v ∈ IV is advised by CM virtual to be active.
Specifically, we show that if virtual node v is advised to be active in round r, then it
is scheduled in round r; if it is advised to be passive, then it is not scheduled. That
is, the schedule exactly determines when v is advised to be active. The claim follows
immediately from the construction of γv via the calculate-state function.

Lemma 11.10.5. For r > 0, for v ∈ IV , assume there exists a round r recv(·, ·, cm, ·)v

event in γv. If cm = active, then virtual node v is scheduled in round virtual round
r + 1; if cm = passive, then virtual node v is not scheduled in virtual round r + 1.

Proof. The main argument in the proof is that the cm parameter of the recv transition
in γv is determined by the calculate-state function which is used to construct executions
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Figure 11-3: Constructing the Virtual Contention Manager Execution.

• Execution γvirtual begins with the point trajectory τ0.
• Begin with r = 1.
• Repeat:

1. For every v ∈ IV , if there is a round r bcast(m, cm)v,∗ event in γv, for any
m and cm, then:

– Insert bcast(m, cm)v,∗ in γvirtual .
– If there is a round r recv(·, ·, cm, ·)v,∗ event in γv, for any cm, then

insert cm-advice(〈v, ∗〉, cm)virtual in γvirtual .
– Otherwise, insert a cm-advice(〈v, ∗〉, passive)virtual in γvirtual .

2. For every j ∈ IB, if there is a round r bcast(m, cm)j,∗ event in γj, for any
m and cm, then:

– Insert bcast(m, cm)j,∗ in γvirtual .
– Append a cm-advice(〈j, ∗〉, passive)virtual to γvirtual .

3. Append trajectory τ to γvirtual , where dom(τ) = RndLengthV .
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of the virtual node; the calculate-state function uses the schedule to determine whether
cm should be active or passive, implying the desired result. We now proceed in more
detail.

By the construction of γv, if there exists a round r recvv event in γv, then v is
up in round r, which implies by the definition of an updown sequence that for some
r1, r2 the following hold: (1) r ∈ [r1, r2] and (2) 〈r1, r2〉 ∈ updown(v).

Recall that γv was constructed by appending some execution in execs(r1, r
′)v,

where r′ ≤ r2 and r ∈ [r1, r
′], to an inductively constructed prefix. Thus, if there

is a round r recv(·, ·, cm, ·)v event in γv, then there is some execution fragment γ′ ∈
execs(r1, r

′)v where a round r recv(·, ·, cm, ·)v ∈ γ′.
Recall that γ′ is constructed by calling the calculate-state function. Notice that in

Figure 10-11, in each iteration of the loop, inCM is calculated in line 541cacl:schedule¿
by examining the schedule: inCM = active if and only if v is scheduled in round r+1.
Moreover, the cm parameter of the recv action derives from inCM (see lines 556
and 566).

Thus, if there is a recv(·, ·, active, ·)v,∗ in γ′, then v is scheduled in round r + 1; if
there is a recv(·, ·, passive, ·)v,∗ in γ′, then v is not scheduled. Together these imply
the desired result.

Next, we show that γvirtual satisfies eventual non-interference and eventual fairness.
The claim follows immediately from the fact that the schedule, which determines
whether v is scheduled, is complete and non-interfering.

Lemma 11.10.6. γvirtual satisfies eventual non-interference for the port set S2 =
IV × {∗}.

Proof. For the purpose of eventual non-interference, we consider the stabilization
round to be 2. Consider some round r ≥ 2. We need to show that if two ports
〈v, ∗〉, 〈v′, ∗〉 ∈ S2 are advised to be active by CM virtual in round r, then |loc(v) −
loc(v′)| > 2R′V .

If 〈v, ∗〉 is advised by CM virtual to be active in round r, then there is an advice event
cm-advice(〈v, ∗〉, active)virtual in γvirtual , which implies, according to the construction
of γvirtual , that there must have been a round r − 1 recv(·, ·, active, ·)v,∗ event in γv.

Similarly, if 〈v′, ∗〉 is advised to be active in round r, that means that there must
have been a round r − 1 recv(·, ·, active, ·)v′,∗ event in γv′ .

By Lemma 11.10.5, we know that both ports 〈v, ∗〉 and 〈v′, ∗〉 are scheduled for
round r. Since the schedule is non-interfering, we can therefore conclude that |loc(v)−
loc(v′)| > 2R′B + RB = 2R′V , as desired.

Finally, we show that γvirtual is an eventually fair contention manager:

Lemma 11.10.7. γvirtual satisfies eventually fairness for S2 = IV × {∗} with delay
SMAX .

Proof. For the purpose of eventual fairness, we consider the stabilization round to
be 2. Consider some round r ≥ 2. We need to show that if some port 〈v, ∗〉 ∈ S2

is not failed in rounds [r, r + SMAX], then there exists a round r′ ∈ [r, r + SMAX]
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such that there is a round r′ − 1 recv(·, ·, active, ·)v,∗ event in γv. This implies, by the
construction of γvirtual , that CM virtual advises 〈v, ∗〉 to be active.

First, notice that the construction of γv guarantees that if port 〈v, ∗〉 is failed in
a round, then it is down in that round: if 〈ui, di〉 and 〈ui+1, di+1〉 are elements of the
sequence updown(v), then v is failed in rounds [di + 1, ui+1]. (If 〈ui, di〉 is the last
element in the sequence, then v is failed from round di + 1 onwards.)

Therefore, if 〈v, ∗〉 is not failed in rounds [r, r+SMAX], then it is up in rounds [r, r+
SMAX]. We therefore conclude that in each of these rounds, there is a recv(·, ·, cm, ·)v,∗
event in γv. Since the schedule is complete, there exists some r′ ∈ [r, r + SMAX] such
that v ∈ scheduled [r′ mod SMAX], i.e., that v is scheduled. If cm = passive, then
Lemma 11.10.5 would imply that v is not scheduled, resulting in a contradiction.
Thus we can conclude that cm = active, concluding the proof.

11.10.3 The Client Contention Manager Execution

We now construct an execution γclient of the client contention manager CM client . As
in the case of γvirtual , the construction derives immediately from γi, i ∈ IB, and γv,
v ∈ IV . As before, each broadcast event by a client or virtual node is added to γclient .
Since the client contention manager is intended to provide advice to clients, in this
case, however, γclient always advises virtual nodes to be passive, while deriving its
cm-advice events from the recv events in γi, i ∈ IB.

The construction is presented in Figure 11-4. We then discuss what it means
for a client contention manager to cm-sample the “global contention manager”, the
contention manager in the basic system; we present two lemmas relating the client
contention manager to the global contention manager. The first, Lemma 11.10.10,
shows that in fact the client contention manager is a cm-sampling of the global con-
tention manager. The second, Lemma 11.10.11, shows that if the client contends
for the client contention manager, then the multiplexer contends for the global con-
tention manager. The final result, then, is showing in Lemma 11.10.12 that if the
global contention manager satisfies certain contention fairness properties, then γclient

satisfies some related contention fairness properties.
Since the construction is so similar to that of γvirtual , the same argument shows that

γclient is an execution of CanonicalCM, the canonical contention manager automaton:

Lemma 11.10.8. γclient is an execution of CanonicalCM.

Proof. Notice that γclient is an alternating sequence of trajectories and actions, and
that all the in γclient are consistent with CanonicalCM. We need only show the following
two facts: (1) the preconditions are satisfied whenever a cm-advice occurs in γclient ;
(2) time-passage is enabled whenever τi is a trajectory with domain > 0.

First, consider some cm-advice(〈i, ∗〉, ·) event, for i ∈ IB ∪ IV . We need to show
that 〈i, ∗〉 ∈ waiting . From the construction, we can determine that γi contains an
immediately preceding bcasti,∗ event, which adds 〈i, ∗〉 to the waiting set, as required.

Second, consider some trajectory τ with domain > 0. That is, consider some τ
that was added in Step 3 of the construction. We need to show that in fstate(τ),
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Figure 11-4: Constructing the Client Contention Manager Executions.

• Execution γclient begins with the point trajectory τ0.
• Begin with r = 1.
• Repeat:

1. For every v ∈ IV , if there is a round r bcast(m, cm)v,∗ event in γv, for any
m and cm, then:

– Insert bcast(m, cm)v,∗ in γclient .
– Append a cm-advice(〈v, ∗〉, passive)client in γclient .

2. For every j ∈ I, if there is a round r bcast(m, cm)j,∗ event in γj, for any
m and cm, then:

– Insert bcast(m, cm)j,∗ in γclient .
– If there is a round r recv(·, ·, cm, ·)j,∗ event in γj, for any cm, then

insert cm-advice(〈j, ∗〉, cm)client in γclient .
– Otherwise, insert a cm-advice(〈j, ∗〉, passive)client in γclient .

3. Append trajectory τ to γclient , where dom(τ) = RndLengthV .
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waiting = ∅. That is, we need to show that for each preceding bcasti,∗ event, there is
an intervening cm-advice(〈i, ∗〉, · · · ) event, for all i ∈ IB ∪ IV .

We can see immediately by construction that for every v ∈ IV , each bcastv,∗ event
has an immediately following cm-advice(〈v, ∗〉, passive) event. For every i ∈ IB, the
same conclusion follows: whether or not there is a recv event, some cm-advice event
follows each bcasti,∗ event.

To this point, we have made only limited assumptions about the global contention
manager: we have assumed that it is conservative. With no other assumptions, we
can show only that traces of the client contention manager are “sub-traces” of the
global contention manager, in the following sense:

Definition 11.10.9. We say that γclient is a cm-sampling of some contention man-
ager CM ∈ CM-namesB with respect to set S1 = IB × {∗} if the following holds for
every virtual round r > 1:

- Let ra be the first basic round in virtual round r.

- For every i ∈ IB that does not fail in virtual round r:

• There is a round r cm-advice(〈i, ∗〉, active)client in γvirtual

if and only if

• there is a round ra cm-advice(〈i, 0〉, active)CM in α.

Essentially, γclient is a cm-sampling of the global contention manager if its advice
given at the beginning of a virtual round is equivalent to the advice given by the
global contention manager at the beginning of that virtual round. The fact that
γclient is a cm-sampling of CM global follows from the construction of γclient , and the
manner in which the multiplexer samples the global contention manager:

Lemma 11.10.10. γclient is a cm-sampling of CM global .

Proof. Consider some particular virtual round r > 1 and let ra be the first basic round
in r. Assume that i does not fail in virtual round r. We show that the construction
of γclient implies that there is a round r cm-advice(〈i, ∗〉, active)client in γvirtual if and
only if there is a round ra cm-advice(〈i, 0〉, active)global in α.

First, we consider port 〈i, 0〉. Since i does not fail in round r, it also does not
fail in round ra, and ra > 1; hence there must be a round ra bcast(·, ·)i,0 event and
a round ra recv(·, ·, gcm, ·)i,0 event, as per the operation of the broadcast service
(see Lemmas 8.1.37 and 8.1.38). Since the regional contention managers are con-
servative, by assumption, we can conclude that there are no cm-advice(〈i, 0〉, active)v

events in α. Thus, we can conclude that gcm = active if and only if there is a
cm-advice(〈i, 0〉, active)global event in α.

Next, we consider port 〈i, ∗〉. Since i does not fail in round r and r > 1, we
can conclude by Lemma 11.10.2 that γi contains a round r bcast(·, ·)i,∗ and a round
r recv(·, ·, ccm, ·)i,∗. From this, we conclude according to the construction that the
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contention manager execution that γclient also contains the round r bcasti,∗ event and
a round r cm-advice(〈i, ∗〉, ccm)client event.

Our goal is to show that ccm = active if and only if gcm = active. Once we have
shown this fact, the conclusion follows from the preceding argument.

Moreover, this fact follows from the operation of the multiplexer. The recvi,∗
event is an output of the multiplexer, and occurs at the end of round r due to
the precondition on line 663, Figure 10-13. According to the pseudocode, cm =
E(multiplexer).inCM i.

Notice, however, that E(multiplexer).inCM i is modified in only one place: during
a recvi,0 event. The recvi,0 input event occurs whenever the basic broadcast service
delivers messages, i.e., at the end of each basic round. The only basic round of
interest is the client round: in line 707, Figure 10-13, E(multiplexer).inCM i is mod-
ified only during the client phase. (The E(multiplexer).rnd i is a correct count of
the basic rounds by Lemma 11.2.7.) We can therefore conclude that γclient includes
a round r cm-advice(〈i, ∗〉, active)client event if and only if there is a basic round ra

recvi,0(·, ·, active, ·) event in α. As per the preceding argument, this occurs if and only
if there is a round ra cm-advice(〈i, 0〉, active)global event in α, concluding our proof.

In order to relate the two contention managers, we need one further lemma. So
far, we have shown that the client contention manager is a cm-sampling of the global
contention manager. We also need to show that the multiplexer contends for the
global contention manager in a manner consistent with the way in which the clients
contend for the client contention manager. Lemma 11.10.11 shows that if a non-failed
client port 〈i, ∗〉 contends for the client contention manager in some virtual round r,
then the multiplexer port 〈i, 0〉 contends for the global contention manager in the
basic rounds contained in r− 1. In fact, port 〈i, 0〉 contends for the global contention
manager throughout the entire virtual round r − 1, with the exception only of the
first round.

In order to use Lemma 11.10.10, we need one final lemma about the multiplexer:

Lemma 11.10.11. Assume that some port 〈i, ∗〉 contends for CM client in virtual
round r, and i does not fail prior to round r. Let ra be the first basic round in virtual
round r − 1. Then port 〈i, 0〉 contends for CM global in basic rounds [ra + 1, ra +
RndLengthV ].

Proof. This lemma follows immediately from the operation of the multiplexer: the
precondition of the 〈bcast〉i,0 event chooses cm = global if and only if E(multiplexer).outCM i =
client; the only event that modifies E(multiplexer).outCM i is the bcasti,∗ event which
occurs only at the beginning of each virtual round (as per Lemma 11.10.2).

We can now draw some conclusions about the properties of the client contention
manager, under certain assumptions about the global contention manager: the more
powerful the global contention manager, the more powerful the client contention
manager; the weaker the global contention manager, the weaker the client contention
manager. We give an example of how to use Lemma 11.10.10 to translate the power
of one global contention manager to that of the client contention manager.
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As an example of how Lemmas 11.10.10 and 11.10.11 can be used to prove prop-
erties about the client contention manager, we consider the case where CM global guar-
antees eventual (a, b)-contention fairness for some integers a, b > 0. In this case,
as a result of Lemma 11.10.10, we can conclude that the client contention manager
guarantees eventual (a′, b′)-contention fairness:

Lemma 11.10.12. Let a, b ∈ N be integers, a, b > RndLengthV , and assume that
CM global guarantees eventual (a, b)-contention fairness with radius 2R′B + RB. Let
a′ = da/RndLengthV e and b′ = bb/RndLengthV c. Then γvirtual satisfies eventual
(a′, b′)-contention fairness for set S1 with radius 2R′V .

Proof. This lemma follows immediately from Lemmas 11.10.10 and 11.10.11. In the
case of γvirtual , choose the stabilization round to be the maximum of virtual round
3 and the first virtual round in which every basic rounds comes after rcm + 1 for
CM global from α, posited by Definition 8.1.52. Consider some virtual round r that
is no smaller than the stabilization round, and assume some port 〈j, ∗〉 contends for
virtual rounds [r, r + a′ − 1].

Let rc be the first basic round in virtual round r − 1, and recall that every basic
round in round r− 1 comes after rcm . By Lemma 11.10.11 we can conclude that port
〈i, 0〉 contends in basic rounds [rc + 1, rc + a′ ·RndLengthV ], that is, at least for basic
rounds [rc + 1, rc + a].

By assumption, we then conclude that there exists some round rd ∈ [rc +1, rc +a]
such that CM global advises 〈i, 0〉 to be active in rounds [rd, rd + b − 1], and advises
every port within distance 2R′B + R′B to be passive in rounds [rd, rd + b− 1].

By Lemma 11.10.10, then, we can conclude that there is some round r′ ∈ [r, r+b′]
where 〈i, ∗〉 is advised to be active, and every port within distance 2R′V is advised to
be passive in rounds [r, r + b′].

11.11 Integrity of the Virtual Broadcast Service

In this section, we prove a key lemma about the executions of the clients and the vir-
tual nodes that we use to show that the virtual broadcast service guarantees integrity.
(The execution for the virtual broadcast service is construct later in Section 11.13.)
The main goal of this section is to show that if some node i ∈ IB ∪ IV receives some
message m in virtual round r, then some other node j ∈ IB ∪ IV broadcast message
m in round r. The result is stated formally in Lemma 11.11.12.

The main structure of the proof is broken down into two lemmas: Lemma 11.11.7
deals with the case where the receiving node i is a client; Lemma 11.11.11 deals with
the case where the receiving node v is a virtual node.

In both lemmas, the first step is to trace the message back to its origin, i.e., to de-
termine from where it originated. Any message that originates from a client i ∈ IB in
round r is relatively easy to trace, and Lemmas 11.11.1 and 11.11.2 in Section 11.11.1
show that if a message 〈client, m, ·〉 ever ends up either in the multiplexer (about to
be delivered to a client), or in a ballot (about to be delivered to a virtual node), then
there is some client j that performs a round r bcast(m, ·)j,∗ in γj, as is desired.

362



The more difficult case is tracking back messages of the form 〈vn, v′, m〉, i.e.,
messages that originate at some virtual node emulator. The main difficulty is to
show that if message m is received, then a bcast(m, ·)v,∗ event occurs in γv. The two
cases diverge depending on whether the receiving node is a client or a virtual node.

If the receiving node is a client (Section 11.11.4), then some multiplexer must
have delivered the message to the client via a vn-client-outputv transition, and by
examining the emulator the produced this event (i.e., the subscript v on the event),
we can identify which virtual node broadcast the message. Since a vn-client-output
only outputs a message under certain conditions, we can then argue that v must be
scheduled, and that the round itself must be green for v. Moreover, the message itself
must have been included in some ballot b broadcast by an emulator for v. At this
point we can invoke Lemma 11.11.5 (see Section 11.11.3), a key lemma which shows,
loosely, that any message of the form 〈vn, v, m〉 included in a ballot for node v in a
good round is broadcast by virtual node v.

If the receiving node is a virtual node v (Section 11.11.5), somewhat more work
is needed to trace back the origin of the message. First, we argue that the message
must be in some ballot for v. Next, we identify the origin of the message: in the easy
case, it is sent by v itself. Otherwise, we claim that it is only in the ballot for v if it
was previously in some ballot for v′ 6= v. Next, we show that v′ must be scheduled,
and v unscheduled (Lemma 11.11.8). We then show that, in this case, round r must
be a good round for v′ (Lemma 11.11.9) and there must be a round r ballot for v′

containing the message (Lemma 11.11.10). At this point, we conclude the proof as in
the previous case by invoking Lemma 11.11.5.

11.11.1 Tracing Messages Broadcast by Clients

Any message m received by a client or virtual node was originally introduced into the
system by either a client or an emulator. We begin with two easy lemmas that trace
messages of the form 〈client, m, ·〉 back to the clients that originally broadcast these
messages. Each lemma is a straightforward back-tracing of the unique sequence of
transitions that place a message of the form 〈client, m, ·〉 in the specified set.

Lemma 11.11.1. Let α′ be a prefix of α, i ∈ IB be a node, m ∈ msgsV a message
(i.e., 6= ⊥). Assume that in `state(α′), 〈client, m, ·〉 ∈ E(multiplexer).inM i. Then a
bcast(m, ·)i,∗ occurs in α′.

Proof. We trace the message backwards along the only possible sequence of transitions
that can arrive at 〈client, m, ·〉 ∈ E(multiplexer).inM i: from the multiplexer, back to
the recvi,0 event, back to the bcasti,0 event, back to the bcasti,∗ event at which it
originated.

• The only transition that adds a message of the form 〈client, m, ·〉 to E(multiplexer).inM i

is recv(M, . . .)i,0 where m ∈M and E(multiplexer).rnd i indicates that the recv
event is a client phase receive event for some virtual round r.

• The only ports that broadcast in the client phase of round r are ports 〈j, 0〉, for
j ∈ IB. Thus, by the integrity of the basic broadcast service (Lemma 8.1.35),
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there must be some j ∈ IB and some bcast(〈client, m, ·〉)j,0 event in α′ preceding
the recvi,0 event.

• Since m 6= ⊥, we can conclude that E(multiplexer).outM j 6= ⊥ immediately
prior to the bcastj,0 event. The only transition that sets outM 6= ⊥ is bcastj,∗.

• Thus, we conclude there must be a bcast(m, ·)j,∗ event in α′ that precedes the
bcastj,0 event.

This second lemma assumes that a message 〈client, m, ·〉 has been places in a ballot b
for virtual round r. As before, the message is traced back to an originating broadcast.

Lemma 11.11.2. Let i ∈ IB be a node, m ∈ msgsV a message (6= ⊥). Assume that
for some ballot b, node i broadcasts a 〈vn, v, b〉 ballot message such that 〈client, m, ·〉 ∈
b.clientM . Then a bcast(m, ·)i,∗ occurs in α and precedes the broadcast of the ballot.

Proof. We trace the message backwards along the only possible sequence of transitions
that can arrive at 〈client, m, ·〉 ∈ b.clientM : to the E(v).clientM i set, to the client
phase recvi,v transition, to the client phase bcastj,0 event, to the originating bcastj,∗
event.

• Immediately prior to broadcasting ballot b, we know that 〈client, m, ·〉 ∈ E(v).clientM i.

• The only transition that adds a message of the form 〈client, m, ·〉 to E(v).clientM i

is a client phae recv(M, . . .)i,v where m ∈M .

• The only ports that broadcast in the client phase of round r are ports 〈j, 0〉, for
j ∈ IB. Thus, by the integrity of the basic broadcast service (Lemma 8.1.35),
there must be some j ∈ IB and some bcast(〈client, m, ·〉)j,0 event in α′ preceding
the recvi,0 event.

• Since m 6= ⊥, we can conclude that E(multiplexer).outM j 6= ⊥ immediately
prior to the bcastj,0 event. The only transition that sets outM 6= ⊥ is bcastj,∗.

• Thus, we conclude there must be a bcast(m, ·)j,∗ event in α′ that precedes the
bcastj,0 event.

11.11.2 Preliminary Lemmas Related to Ballots and Execu-
tions

We now consider messages of the form 〈vn, v, ·〉, i.e., messages purported to be
sent by virtual nodes. The goal of this subsection and Section 11.11.3 is to prove
Lemma 11.11.5, which shows that if some message 〈vn, v, m〉 is included in a ballot
broadcast by an emulator for virtual node v, and if the ballot is broadcast in a good
round r, then virtual node v does in fact broadcast message m in round r in γv.
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This lemma is an important building block for Lemma 11.11.12, which shows that
the client and virtual node executions satisfy the integrity property.

In order to prove Lemma 11.11.5, we need two preliminary lemmas, presented in
this section. The first lemma provides the basis for the claim in Lemma 11.11.5 in
the special case where: (1) 〈r1, r2〉 delineates a finite epoch of virtual node v, (2) v is
scheduled for round r2, and (3) round r2 is not red. Note that this lemma does not
address the case where v is down in round r2; the following Lemma 11.11.4 considers
this case.

The main claim in Lemma 11.11.3 is that if some message 〈vn, v′, m〉 is in the
b.vnM , where b is the round r2 ballot, and if i is the proposer that sends ballot b (in
the scheduled-ballot phase), then we can conclude that the next external action in any
extension of exec(r1, r2 − 1, i)v is the broadcast of message m. This lemma is then
used in Lemma 11.11.5 by noting that since i is the round r proposer, γv includes–
and hence extends—the execution fragment exec(r1, r2, i)v, and hence message m is
broadcast in round r2 in γv, as desired.

The main idea behind the proof is to first argue that if i broadcasts a ballot
containing message m, it must also have broadcast message m in the vn phase. Thus,
i calculates the last state s in exec(r1, r2− 1, i)v in the client phase for the purpose of
choosing the message to broadcast in the vn, and then calls do-bcast(s)v to calculate
the message, which we have already posited is m, the message included in the ballot.

Lemma 11.11.3. Assume that 〈r1, r2〉 delineates a finite epoch of virtual node v ∈ IV ,
assume that v is scheduled for round r2, and that r2 > r1. Moreover, assume that
round r2 is not red for v. Let i be the proposer for round r2 and b be the ballot for
round r2. We conclude the following:

• If for some m ∈ msgsV , message 〈vn, v, m〉 ∈ b.vnM , and if s is the last state
in exec(r1, r2 − 1, i)v, then 〈·, m, ·, ·〉 = do-bcast(s)v.

Proof. The proof proceeds in three steps. First, we argue that i broadcasts some
message 〈vn, v′, m′〉 in the vn phase, since by assumption it broadcasts a message in the
scheduled-ballot phase. Second, we show that m′ = m. Finally, we conclude the proof
by arguing that message m is calculated by examining the last state in exec(r1, r2 −
1, i)v and calling the do-bast function, as described in the lemma statement. We now
proceed in more detail.

Step 1. First, notice that node i, the proposer, broadcasts a message in the
scheduled-ballot phase, since v is scheduled. We therefore argue that i also broadcasts
a message in the vn phase: We know that E(v).scheduled i = true, E(v).joined i = true,
and E(v).roundCM =active when E(v).outgoing-msg i ← b at the end of the vn phase,
in preparation for the scheduled-ballot phase. These same settings must hold at the
end of the client phase when the message is chosen for the vn phase, as they are
not changed during the vn phase. In addition, since E(v).last-reset i = r1 − 1 by
Corollary 11.4.5, we know that r2 6= E(v).last-reset i + 1. Thus all the conditions are
met for outgoing-msg to be set 6= ⊥ in line 240. We therefore conclude that node
i broadcasts a message in the vn phase; assume that this message is 〈vn, v, m′〉, for
some message m′ ∈ msgsV ∪ {⊥}.
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Step 2. Second, we argue that m′ = m. That is, at the end of the client phase,
E(v).outgoing-msg i = 〈vn, v, m〉.

We trace the message 〈vn, v, m′〉 forward from its broadcast in the vn phase by
port 〈i, v〉 (posited in Step 1) until the formation of ballot b. Notice that 〈vn, v, m′〉 is
in the set E(v).allM i immediately prior to the recv event that concludes the vn phase:
this follows immediately by the self-delivery property of the basic broadcast service
which guarantees that node i receives every message that it sends (Lemma 8.1.36).
Moreover, the message 〈vn, v, m′〉 is in E(v).nearby-msgs i after line 257 during the
recv event for the vn phase of round r2.

Assume, for the sake of contradiction, that m′ 6= m. In this case, there are at
least two messages in E(v).nearby-msgs i: 〈vn, v, m〉 and 〈vn, v, m′〉. As a result of
the condition on line 264 (Figure 10-5), the set E(v).vnM i is left unmodified, empty.
This implies that 〈vn, v, m〉 /∈ E(v).vnM i, and hence contradicts our assumption that
〈vn, v, m〉 ∈ b.vnM . Hence we can conclude that m = m′.

Step 3. The last step of the proof is to notice that i chooses the message next-vn-msg
by first calculating temp-state = exec(r1, r2−1, i)v, and then calculating 〈next-vn-msg , ·〉 =
do-bcast(temp-state)v. Node i then broadcasts 〈vn, v, next-vn-msg〉, which concludes
our proof.

The second lemma in this section deals with the case where v is down in some
virtual round r. Even when a virtual node is down in a virtual round, it may broadcast
a message in that round if it does not fail until after the round begins. Recall from
the construction of γv that when a virtual node is down in a virtual round, it either
fails at some point during that round, or begins the round already failed. In this
lemma, we show that if there is a broadcast by v in a virtual round, and it is down in
that round, then it must be up in the previous virtual round. More specifically, we
show that if some non-empty ballot is sent in round r, then even though v is down
in round r, v must be up in round r − 1.

Lemma 11.11.4. Let r > 0 be a virtual round, v ∈ IV a virtual node. Assume that
v is down in round r, and that there is some node i ∈ IB that broadcasts a ballot b in
the scheduled-ballot phase of round r such that 〈vn, v, m〉 ∈ b.vnM . Then, r > 1 and
v is up in round r − 1.

Proof. If v is down in round r−1, then we can conclude that either (1) E(v).last-reset i =
r − 1 at the beginning of the vn phase of round r, in which case b.vnM = ∅, or (2)
there are no nodes that begin round r for v. Both cases imply a contradiction.

We now proceed in more detail. Assume for the sake of contradiction that one of
two cases holds:

• r = 1, or

• r > 1 and v is down in round r − 1.

(As a technical matter, when we refer to the end of round r − 1 in the case where
r = 1, we are actually referring to the beginning of round 1, i.e., the beginning of the
execution.)
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Since i broadcasts a ballot in the scheduled-ballot phase, we can conclude that i
begins round r: node i broadcasts a ballot only if it has E(v).joined i = true and
E(v).failed i = false when the vn phase recv occurs, which is only the case when i
begins round r, as there is no opportunity to join v prior to the join phase of round
r.

If r > 1, there are two possible reasons why v is down in round r − 1 (according
to Definition 11.3.7): either no node completes round r− 1, or virtual node v is reset
in round r− 1. Thus, along with the case where r = 1, there are three possible cases
to cover:

1. r = 1, or

2. r > 1 and v is down in round r − 1 due to the fact that some node resets v in
round r − 1,

3. r > 1 and v is down in round r − 1 due to the fact that no node completes
round r − 1.

We consider these cases as follows: (1,2) r = 1 or some node resets v in round r − 1,
(3) r > 1 and no node completes round r − 1.

(1,2). Either r = 1 or r > 1 and virtual node v is reset in round r−1: If r > 1, we apply
Lemma 11.4.2 to conclude that at the beginning of round r, E(v).last-reset i =
r − 1. If r = 1, then at the beginning of round 1, E(v).last-reset i = 0 and
E(v).rnd j = 0, as each remains set to its initial value. After the client phase
recv of round 1, E(v).rnd j = 1, implying that E(v).last-reset i = r− 1. Thus, if
r = 1 or if v is reset in round r − 1, then E(v).last-reset i = r − 1.

As a result, there are no message of the form 〈vn, v, ·〉 sent in the vn phase of
round r (see line 238, Figure 10-5). Thus, by the integrity of the basic broadcast
service, there are no messages of the form 〈vn, v, ·〉 received in the vn phase of
round r. Since the ballot data structure b.vnM contains a subset of the messages
received in the vn phase of round r by the round r proposer, we can conclude
that 〈vn, v, m〉 /∈ b.vnM , resulting in a contradiction.

(3). At the end of virtual round r − 1, for every j ∈ IB, node j does not complete
round r − 1, i.e., does not begin round r. This contradicts our claim that i
begins round r.

11.11.3 Round r Ballot Implies a Round r Broadcast

In this section, we prove a key lemma which describes when a bcast event occurs in
γv. Specifically, if some round r is good for virtual node v, and b.vnM 6= ∅, where b
is the round r ballot, then γv includes a broadcast event for the message contained in
the ballot. Both of the main lemmas that prove the integrity of the virtual broadcast
service, Lemma 11.11.7 and Lemma 11.11.11, use this lemma as the final step to show
that some message was actually broadcast.
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Lemma 11.11.5. Assume virtual round r > 0 is good for virtual node v ∈ IV , and
that v is scheduled for round r. Moreover, assume that some node i ∈ IB broadcasts
a ballot b such that message 〈vn, v, m〉 ∈ b.vnM in the scheduled-ballot phase of round
r. Then γv contains a round r bcast(m, ·)v,∗ event.

Proof. There are two cases based on whether v is up or down in round r:

• Consider the case where v is up in round r:
The proof proceeds as follows: First, we identify some r1, r2 such that some
γ′ ∈ execs(r1, r2)v is included in γ. Second, we argue that r > r1, and, as a
result, conclude by Lemma 11.7.21 that γ′ extends exec(r1, r − 1, i)v, where i
is the round r proposer. Third, we apply Lemma 11.11.3 to show that every
extension of exec(r1, r, i)v contains a round r bcast(m, ·)v,∗ event, and hence γv

contains such an event. We now proceed in more detail.

Step 1. Choose r1 ≤ r such that 〈r1, r〉 delineates a finite epoch of v. Choose
r2 such that r ∈ 〈r1, r2〉 and 〈r1, r2〉 ∈ updown(v); we know this is possi-
ble according to the construction of the updown sequence. If r2 = ∞, set
r2 = max(rgst + 1, r). Recall that γv is constructed by appending some γ′ ∈
execs(r1, r2)v to an already constructed prefix.

Step 2. We now show that r1 < r. Assume for the sake of contradiction that
r1 = r. Notice that for every node j ∈ IB, j does not send a message 〈vn, v, ·〉
in the vn phase of round r: according to line 238 (Figure 10-5), a message is
broadcast only if E(v).rnd j 6= E(v).last-reset j + 1 and E(v).joined j = true;
it is also immediately clear that a message is broadcast by port 〈j, v〉 only
if E(v).failed j = false. In this case, however, according to Corollary 11.4.5,
E(v).last-reset j = r1 − 1 at the beginning of round r, implying that port 〈j, v〉
does not boadcast any messages in the vn phase of round r.

Since no message of the form 〈vn, v, ·〉 is broadcast in the vn phase of round
r, we conclude by the integrity of the basic broadcast service that no message
of this form is received in the vn phase of round r. As a result, when i forms
ballot b on line 275, message 〈vn, v, m〉 is not in b.vnM , contradicting our prior
assumption. Thus we conclude that r1 < r.

Since r1 < r, we apply Lemma 11.7.21 to show that for every j ∈ IB that
completes round r2, exec(r1, r2, j)v extends exec(r1, r − 1, i)v; hence γ′ extends
exec(r1, r − 1, i)v.

Step 3. By Lemma 11.11.3, we conclude that if s is the last state in exec(r1, r−
1, i)v, then 〈m, ·〉 = do-bcast(s)v.

Examine the calculation performed by calculate-state in extending exec(r1, r −
1, i)v to form round r of γ′: we begin with the last state of exec(r1, r−1, i)v and
performs a do-bcast(s)v followed by a do-recv(. . .)v. Since 〈m, ·〉 = do-bcast(s)v,
we can conclude that a bcast(m, ·)v,∗ occurs in γ′, and hence in γv.

• Consider the case where v is down in round r:
The proof generally proceeds as follows: from the construction of γv, we identify
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a node j′ that broadcasts a message 〈vn, v, m′〉 in the vn phase of round r and a
ballot b′ containing 〈vn, v, m′〉 in the scheduled-ballot phase of round r; if j′ = i,
then we can conclude that m′ = m, concluding the proof; otherwise, if j′ 6= i,
we can conclude that the round is not good; resulting in a contradiction.

We know by Lemma 11.11.4 that r > 1 and v is up in virtual round r − 1.
Choose r1 such that 〈r1, r−1〉 delineates a (finite) epoch of v. We can conclude
that 〈r1, r − 1〉 ∈ updown(v), since v is down in round r.

Recall that γv is constructed by appending some execution γ′ ∈ execs(r1, r−1)v

to a previously constructed prefix, followed by a do-bcast(s) event, where s
is the last state in γ′. Moreover, recall that the execution γ′ is chosen from
execs(r1, r − 1)v by selecting j′ ∈ IB such that γ′ = exec(r1, r − 1, j′)V and j′

broadcasts some message 〈vn, v, m′〉, m 6= ⊥, in the vn phase and some message
〈vn, v, ·〉 in the scheduled-ballot phase.

Since j′ chooses message m′ to broadcast in the vn phase by calculating exec(r1, r−
1, j′)v and calling do-bcast, we can conclude that bcast(m′, ·)v,∗ is the next en-
abled external event in state s. Thus, the event bcast(m′, ·)v,∗ occurs in γv in
round r.

It remains to show that m′ = m. Assume not, for the sake of contradiction.
Recall that virtual node v is scheduled in round r. Since 〈vn, v, m〉 is in the
round r ballot, some node j must have broadcast 〈vn, v, m〉 in the vn phase.
This would result in two messages broadcast in the vn phase: 〈vn, v, m〉 and
〈vn, v, m′〉; moreover nodes i, j, and j′ are all within distance RB/4 of loc(v)
since they have E(v).joined = true; hence node i either receives two messages in
the vn phase of round r, or node i detects a collision (by Lemma 8.1.40); either
case would result in E(v).vnM i = ∅, and hence a ballot b with b.vnM = ∅,
contradicting our assumption. We thus conclude that m′ = m, and therefore a
bcast(m, ·)v,∗ occurs in γv in round r.

11.11.4 Clients Receiving Messages

In this section, we prove one of the two main lemmas: Lemma 11.11.7 shows that
when a client receives a message m, some other client or virtual node broadcast that
message. In the case where message m originates at a client, we use Lemma 11.11.1
to trace the message back to the sender. In the case where message m originates at
a virtual node, we show that the message appears in some ballot, and then invoke
Lemma 11.11.5 to conclude the proof.

Recall that Lemma 11.11.5 holds only when a virtual round is good. We first prove
a preliminary lemma which shows that a round r is good when certain conditions hold.
When a node is participating in a virtual node, it is relatively straightforward to de-
termine when a round is good; specifically, a round is good if E(v).round-status [r ]i =
green. However, if a node is not participating in a virtual node, then this does not
immediately follow. Lemma 11.11.6, then, is of particular use in the case where some
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node i ∈ IB delivers a message to a client, but is not participating in the virtual node.
(When node i is participating in the virtual node, the lemma follows immediately.)

Lemma 11.11.6. Let v ∈ IV be a virtual node, r > 0 a virtual round, and i ∈ IB a
node that does not fail prior to the end of the last agreement phase of virtual round
r. Assume the following three conditions hold:

1. Virtual node v is scheduled for virtual round r.

2. E(v).round-status [r ]i = green at the end of the last agreement phase of virtual
round r.

3. E(v).ballot [r ].vnM i 6= ∅ at the end of the last agreement phase of virtual round r.

Then round r is good for v.

Proof. This lemma follows from Lemma 11.5.6: By assumption i ∈ IB is non-failed
through the end of the last agreement phase of virtual round r. Moreover, by as-
sumption, E(v).round-status [r ]i = green at the end of the last agreement phase. It
remains only to show that node i is within distance 3RB/4 of loc(v) at the beginning
of the scheduled-veto-2 phase of virtual round r, and the conclusion follows.

By assumption, E(v).ballot [r ].vnM i 6= ∅ at the end of the scheduled-veto-2 phase
of virtual round r. Thus, we can conclude that E(v).ballot [r ].vnM i 6= ∅ at the end of
the scheduled-veto-1 phase, as the ballot data structure is filled only in the vn phase
and the ballot phase.

In the scheduled-veto-1 phase recv event, however, the ballot is reset if |loc −
loc(v) > RV + RB/4. Thus, we can conclude that node i is within distance 3RB/4 at
the end of the scheduled-veto-1 phase when the recv event occurs, and hence at the
beginning of the scheduled-veto-2 phase (which occurs at the same instant in time as
the scheduled-veto-1 recv event).

We can now prove the main lemma showing the integrity of the basic broadcast
service, with respect to clients receiving messages. Notice that most of the proof is
related to the case where the client receives a message from a virtual node; tracing a
message back to a client is a straightforward application of Lemma 11.11.1.

Lemma 11.11.7. Let r > 0 be a virtual round, i ∈ IB a node, m ∈ msgsV a message,
and M ⊆ msgsV a set of messages. If a round r recv(M, ·, ·, ·)i,∗ occurs in γi, then for
every m ∈ M there exists some j ∈ IB ∪ IV such that a round r bcast(m, ·)j,∗ occurs
in γj.

Proof. We first divide the proof into two cases, depending on whether the message
originated at a client or a virtual node. If a round r recv(M, ·, ·, ·)i,∗ occurs in γi,
then for every m ∈ M , either 〈client, m, ·〉 ∈ E(multiplexer).inM i or 〈vn, m, ·〉 ∈
E(multiplexer).inM i, as enforced by the precondition in lines 664–667, Figure 10-13.

We next dispose of the straightforward case where the message originates with a
client. Consider the case where 〈client, m, ·〉 ∈ E(multiplexer).inM i. By Lemma 11.11.1,
we conclude that a bcast(m, ·)i,∗ occurs in α, and hence in γi, as required.
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For the remainder of the proof, we consider the case where a message originates
at a virtual node. That is, consider the case where 〈vn, m, ·〉 ∈ E(multiplexer).inM i.
We begin by tracing the message back to a specific vn-client-output transition which
delivered the message to the multiplexer. We then examine the conditions under
which the vn-client-output event occurs, leading to the conclusion that v is scheduled
and that the round status is green for i at the end of the virtual round. We then show
that the round is good for v (using Lemma 11.11.6 in one case), and conclude that
for some node k ∈ IB, port 〈k, v〉 broadcast a ballot b containing message m. We
then apply Lemma 11.11.5 to conclude the proof. We now proceed in more detail.

There are two lines in which messages are added to the set inM : lines 651
and 708 (Figure 10-13). In the first case, all the messages added have the form
〈client, ·, ·〉. Hence we can assume that the message 〈vn, m, ·〉 is added as a result of a
vn-client-output(〈vn, m, ·〉, ·)i,v transition.

Next, we examine the preconditions under which a vn-client-output transition from
E(v)i produces message m:

• E(v).round-status [r ]i = green at the end of round r, as per line 177.

• Virtual node v is scheduled in round r, as per line 178.

• 〈vn, v, m〉 ∈ E(v).ballot [r ].vnM i, m 6= ⊥, at the end of round r, as per line 179.

There are now two cases, depending on whether i joins v in round r. In either case,
we know that E(v).failed i = false through the end of round r, as a vn-client-output
transition occurs.

• Assume i joins v in round r: We know that i does not reset v in round r, as
E(v).round-status [r ]i 6= ⊥ (see line 488) at the end of round r. Thus, virtual
node v is up in round r: node i is non-failed through the end of round r, and
node i prevents the virtual node being reset in the join-veto phase.

Let basic round ra be the last agreement phase of virtual round r, and let rb

be the join-ack phase in virtual round r; thus rb > ra. Since i ∈ IB completes
the join protocol, we know that E(v).joined i = true and E(v).failed i = false
at the end of basic round rb. Therefore by Lemma 11.5.3, we conclude that
there exists some j ∈ IB where j participates in virtual round r and at the end
of basic round ra, E(v).round-status [r ]j = E(v).round-status [r ]i at the end of
round rb; also at the end of basic round ra, E(v).ballot [r ]j = E(v).ballot [r ]i at
the end of round rb.

Since E(v).round-status [r ]i = green at the end of round r2 and the virtual node
is not reset in round r, we conclude that the round status is also green at the end
of rb, and hence E(v).round-status [r ]j = green at the end of the last agreement
phase of r, and hence by definition round r is green.

By the same logic, we can conclude that 〈vn, v, m〉 ∈ E(v).ballot [r ].vnM j at the
end of the last agreement phase of r. Moreover, by the integrity of the basic
broadcast service (Lemma 8.1.35), we can conclude that some node k broadcast
the ballot b received by j, i.e., 〈vn, v, m〉 ∈ b.vnM .
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• Assume i does not join v in round r: In this case, i does not join or reset virtual
node v, and hence i does not modify E(v).round-status [r ]i or E(v).ballot [r ]i
after the last agreement phase of r prior to the end of round r. Thus, at
the end of the last agreement phase of r, E(v).round-status [r ]i = green and
〈vn, v, m〉 ∈ E(v).ballot [r ].vnM i, m 6= ⊥. Hence by Lemma 11.11.6, round r is
good for v.

Moreover, by the integrity of the basic broadcast service (Lemma 8.1.35), we can
conclude that some node k broadcast the ballot b received by i, i.e., 〈vn, v, m〉 ∈
b.vnM .

In either case, we have conclude that round r is good, virtual node v is scheduled
for round r, and that some node k broadcasts a ballot b in the scheduled-ballot phase
where 〈vn, v, m〉 ∈ b.vnM . We then apply Lemma 11.11.5 to conclude that γv contains
a round r bcast(m, ·)v,∗ event.

11.11.5 Virtual Nodes Receiving Messages

In this section, we prove the second of the two main integrity lemmas: Lemma 11.11.11
shows that when a virtual node v receives a message m in some round r of γv, then
some other client or virtual node broadcast message m in round r. As before, the case
where a virtual node receives a message from a client is relatively straightforward,
and handled (for the most part) by Lemma 11.11.2. The majority of this section is
examining the case where the message originates at some virtual node v′ ∈ IV .

We begin with three preliminary lemmas. First, we show that a virtual node v
can only receive a message from another virtual node v′ in some virtual round r if
v′ is scheduled and v unscheduled. The emulator does not allow virtual nodes to
successfully broadcast messages when they are not scheduled: any such messages
are lost. Thus we conclude from the operation of the emulator that v′ is scheduled.
Moreover, the emulator only delivers messages from nearby virtual nodes. Since v
receives a message from v′, we can conclude that the two virtual nodes are not too
far apart, and thus we conclude from the non-interference property of the schedule
that v is unscheduled.

Lemma 11.11.8. Let r > 0 be a virtual round, v ∈ IV a virtual node, m ∈ msgsV a
message, and M ⊆ msgsV a set of messages.

Assume, that for some ballot b, there is a 〈vn, v, b〉 message broadcast in either
the scheduled-ballot or unscheduled-ballot phase of round r, and 〈vn, v′, m〉 ∈ b.vnM ,
for some v′ ∈ IV , v 6= v′. Then we conclude that virtual node v is not scheduled and
virtual node v′ is scheduled for round r.

Proof. First, assume for the sake of contradiction virtual node v′ is not scheduled.
Assume node i is a node that broadcasts 〈vn, v, b〉 in a ballot round. Since by assump-
tion 〈vn, v′, m〉 ∈ b.vnM , we can conclude that 〈vn, v′, m〉 ∈ E(v).vnM i when ballot b
is formed in the vn phase. Thus we can conclude that 〈vn, v′, m〉 ∈ E(v).nearby-msgs i

during the vn phase recv transition. However, in this case, since v′ is not scheduled,
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the condition on line 268 ensures that E(v).vnM i is left unmodified, that is, = ∅. This
contradicts our previous assumption, from which we conclude that v′ is scheduled.

Next, assume for the sake of contradiction that both virtual nodes v and v′ are
scheduled. In this case, we can conclude that v and v′ are “far enough” apart, that
is, v and v′ are distance > 2R′V apart, since the schedule is non-conflicting. Let i be
a node that broadcasts the ballot message 〈vn, v, b〉. As before, every message that
node i adds to the vnM field of the ballot is received in the vn phase. Moreover,
since i broadcasts a ballot, we can conclude that i is within distance RB/4 of i at
the end of the vn phase; otherwise i no longer remains joined, and hence does not
send a ballot. According to line 257, however, i includes in the set nearby-msgs only
messages sent by virtual nodes v′ within distance RV of v, and every message that
eventually ends up in the ballot b.vnM was previously in nearby-msgs . Thus, since
〈vn, v′, m〉 ∈ b.vnM where ballot b is sent by port 〈i, v〉, we can conclude that v is
within distance RV < 2R′V of v′, contradicting our conclusion that v and v′ are far
enough apart due to the non-conflicting property of the schedule.

Hence, we conclude that v′ is scheduled, then v is not scheduled for virtual round r.

Next, we show that a round is good under certain conditions. Specifically, the
emulator delivers messages from virtual node v′ only in rounds that are good for v′.
(In rounds that are not good for v′, there may be emulators that do not agree on
the execution, and hence it is important that no externally visible behavior depend
on the current state of v.) We show that if a ballot for virtual node v includes a
messages from virtual node v′, then the round must be good for v′:

Lemma 11.11.9. Let v, v′ ∈ IV be two virtual nodes, r > 0 a virtual round, and
assume that v is not scheduled for round r, and v′ is scheduled for round r. If
〈vn, v, b〉, for some ballot b, is broadcast in the unscheduled-ballot phase of round r,
and 〈vn, v′, m〉 ∈ b.vnM , then round r is good for v′.

Proof. Assume for the sake of contradiction that round r is not good for v′. The proof
proceeds by identifying the node j ∈ IB that has a round status of red or orange, and
noticing that this node broadcasts a veto message in the scheduled-veto-2 phase. As
a result, the node which broadcasts ballot b either receives the veto message, detects
a collision, or is too far away from v′ for either of the two preceding options. In all
cases, the ballot-broadcasting node drops message 〈vn, v′, m〉, and does not include it
in the ballot, resulting in a contradiction. We now proceed in more detail.

Since round r is not good for v’, there exists some j ∈ IB that participates in v′ and
has E(v′).round-status [r ]j equal to red or orange at the end of the scheduled-veto-2
phase. Notice that E(v′).round-status [r ]j is copied from E(v′).scheduled-statusj in
the scheduled-veto-2 phase, and E(v′).scheduled-statusj cannot be set to red or orange
after the scheduled-veto-1 recv event. Thus, we can conclude that by the end of the
scheduled-veto-1 recv event, E(v′).scheduled-statusj is red or orange.

Also, recall that since j participates in v′, j has E(v′).joined j set to true. There-
fore node j sets outgoing-msg to 〈vn, v′, veto〉, broadcasting a veto message in the
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scheduled-veto-2 phase. Moreover, we know that node j is within distance RB/4 of
loc(v).

Let i ∈ IB be the node that broadcasts ballot b. There are now two cases to
consider: either i is “near enough” to loc(v′) or i is “far” from loc(v′). First, con-
sider the case where i is within distance 3RB/4 of loc(v′) at the beginning of the
scheduled-veto-2 phase. In this case, by Lemma 8.1.40, node i either receives the veto
message or detects a collision. In either case, E(v).scheduled-status i is set to some
value 6= ⊥, and as a result E(v).vnM i is set to ∅ during the scheduled-veto-2 phase
recv event, as is required.

Consider the case where i is not within distance 3RB/4 of loc(v′) at the begin-
ning of the scheduled-veto-2 phase. In this case, during the scheduled-veto-1 phase
recv event, E(v).vnM i is reset to ∅, and remains empty through the end of the
scheduled-veto-2 phase, as required.

Thus, in either case, b.vnM = ∅, which contradicts our original assumption and
conclude the proof.

The third preliminary lemma traces messages backwards from a ballot for v to a
ballot for v′. If a message from v′ is included in a ballot for v, then this message must
have previously been included in a ballot for v′. This lemma is key to the proof of
Lemma 11.11.11 in that once the message has been traced back to a ballot for v′, we
can invoke Lemma 11.11.5 to draw the desired conclusion.

Lemma 11.11.10. Let v, v′ ∈ IV be two virtual nodes, r > 0 a virtual round,
and assume that v is not scheduled for round r, and v′ is scheduled for round r.
If 〈vn, v, b〉, for some ballot b, is broadcast in the unscheduled-ballot phase of round r,
and 〈vn, v′, m〉 ∈ b.vnM , then there is some ballot b′ broadcast in the scheduled-ballot
phase of round r where 〈vn, v′, m〉 ∈ b.vnM .

Proof. We trace back the series of necessary events for 〈vn, v′, m〉 to appear in b.vnM :
When some node j broadcasts the ballot message 〈vn, v, b〉 in the unscheduled-ballot

phase, we can conclude that b.vnM = E(v).vnM j, and hence 〈vn, v′, m〉 ∈ E(v).vnM j.
According to line 299 (Figure 10-6), every message 〈vn, v′, m〉 in E(v).vnM j

is contained in b′.vnM for some ballot b′ received as 〈vn, v′, b′〉 ∈ allM during the
scheduled-ballot phase. The basic broadcast service integrity (Lemma 8.1.35) guaran-
tees that some node broadcast ballot 〈vn, v′, b′〉, as required.

Finally, we can put the pieces together and prove the main lemma of Section 11.11:
if a virtual node v receives a message in γv, then some client or virtual node must
have broadcast that message.

Lemma 11.11.11. Let r > 0 be a virtual round, v ∈ IV a virtual node, m ∈ msgsV a
message, and M ⊆ msgsV a set of messages. If a round r recv(M, ·, ·, ·)v,∗ occurs in
γv, then there exists some j ∈ IB ∪ IV such that a round r bcast(m, ·)j,∗ occurs in γj.

Proof. The main structure of the proof proceeds as follows: first, we argue that for
some round r ballot b for v, either 〈client, m, ·〉 ∈ b.clientM or 〈vn, v′, m〉 ∈ b.vnM .
(A third alternative is that v sent the message m itself in round r.) In the case where
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the message originates at a client, we apply Lemma 11.11.2. In the case where the
message originates at a virtual node, we apply Lemma 11.11.10 to trace the message
back to a ballot from v′, and then Lemma 11.11.5 to conclude the proof.

First, notice that by the construction of γv, if v is down in round r, then there is
no round r recv event in γv. Thus we can conclude that v is up in round r.

Since there is a round r recv(M, . . .)v,∗ in γv and v is up in round r, we know
that there is some 〈r1, r2〉 ∈ updown(v) such that r ∈ [r1, r2]. If r2 = ∞, set r2 =
max(rgst + 1, r). Thus γv is constructed using an execution γ′ ∈ execs(r1, r2)v, and as
a result there is a round r recv(M, . . .)v,∗ in execution γ′. By Lemma 11.7.20, then,
there is some prefix γ′′ ≤ γ′, γ′′ ∈ execs(r1, r)v where there is a round r recv(M, . . .)v,∗
in γ′′. Choose j ∈ IB where j completes round r such that γ′′ = exec(r1, r, j)v, as
described in Lemma 11.7.20. By Lemma 11.5.3, there exists some node k ∈ IB

that participates in round r and at the end of the last agreement phase of r has
E(v).ballot [r ]k=E(v).ballot [r ]j.

Notice, then, that according to the construction of exec(r1, r, j)v and the calculate-state
function (lines 550, 555, and 565, Figure 10-11), since there is a recv(M, . . .)v,∗ event
in γ′′, we can conclude that:

M ⊆ {m′ : 〈client, m′, ·〉 ∈ E(v).ballot [r ].clientM j} ∪
{m′ : 〈vn, v′, m′〉 ∈ E(v).ballot [r ].vnM j, v 6= v′} ∪
{temp-msg}

In this case, temp-msg is the message broadcast by virtual node v in round r (see
Figure 10-11). Thus, we can conclude that at the end of the last agreement phase of
r, message m is in one of the following sets:

• {m′ : 〈client, m′, ·〉 ∈ E(v).ballot [r ].clientM k}, at the end of the last agreement
phase of r,

• {m′ : 〈vn, v′, m′〉 ∈ E(v).ballot [r ].vnM k, v 6= v′}, at the end of the last agree-
ment phase of r,

• {temp-msg}, the round r messages broadcast in exec(r1, r, j)v.

If there is a round r bcast(m, . . .)v,∗ event in γv, then the claim is satisfied. Assume,
then, that no such round r event occurs in γv. We conclude that temp-msg 6= m.

Next, notice that initially ballot [r] is a default, empty, value. It is set to be non-
empty only in lines 317 and 386, when the ballot is received. We have shown, above,
that ballot b = E(v).ballot [r ]k is modified from its default initial value by the end
of the last agreement phase. Choose k′ ∈ IB to be the node that broadcast that
ballot b for virtual node v. (We know such a node exists by the integrity of the basic
broadcast service, Lemma 8.1.35.)

Thus, either 〈client, m, ·〉 ∈ b.clientM or 〈vn, v′, m〉 ∈ b.vnM , v′ 6= v. By Lemma 11.11.2,
in the former case we conclude that there is a round r bcast(m, ·)j,∗ for some j ∈ IB.

Assume, then, that 〈vn, v′, m〉 ∈ b.vnM , for some v′ ∈ IV , v′ 6= v. (Notice that, at
this point, nothing we have argued indicates that there is only one such message for
one such v′; we arbitrarily choose one of them.)
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According to Lemma 11.11.8, we can conclude that v′ is scheduled and v is un-
scheduled. We will show that v′, the scheduled virtual node, broadcast message m,
and v, the unscheduled virtual node, received the message.

Since k′ broadcasts a ballot for virtual node v, and v is unscheduled, we can
conclude that k′ does not fail prior to the beginning of the unscheduled-ballot phase.
Moreover, 〈vn, v′, m〉 ∈ E(v).ballot [r ].vnM k′ .

We now apply Lemma 11.11.9 to show that round r is good for v′: by assumption,
there is some message 〈vn, v′, m〉 ∈ b.vnM . By Lemma 11.11.10, we conclude that
some node i ∈ IB broadcasts a ballot b′ such that message 〈vn, v′, m〉 ∈ b.vnM in the
scheduled-ballot phase of round r.

Finally, by Lemma 11.11.5, we conclude that γv contains a round r bcast(m, ·)v,∗
event, as required.

11.11.6 Putting the Pieces Together

We now combine Lemma 11.11.7 and Lemma 11.11.11 to state the main result: if any
node i ∈ IB ∪ IV receives a message m in round r in an execution γi, then there is
some j ∈ IB ∪ IV that broadcast message m in round r in execution γj.

Lemma 11.11.12. Let r > 0 be a virtual round, i ∈ IB ∪ IV a node, m ∈ msgsV a
message, and M ⊆ msgsV a set of messages. If a round r recv(M, ·, ·, ·)i,∗ occurs in
γi, then there exists some j ∈ IB ∪ IV such that a round r bcast(m, ·)j,∗ occurs in γj.

Proof. The claim follows immediately from Lemma 11.11.7 and Lemma 11.11.11.

11.12 The (Virtual) Collision Detector

In this section we discuss the collision detector that is integrated into the virtual
broadcast service. (We construct the actual virtual broadcast service execution in
Section 11.13; we will need the results in this section to complete the construc-
tion.) Recall (from Chapter 8), that a collision detector is modelled as a set of
“collision detector rules” which defines the behavior of the collision detector in each
round. The virtual collision detector encompasses the set of all rules that are complete
and eventually accurate. We will show that the rule constructed is both complete
(Lemma 11.12.10) and eventually accurate (Lemma 11.12.16), and hence a valid rule
for the virtual collision detector.

11.12.1 Defining the Virtual Collision Detector Rule

In this section, we define a virtual collision detector rule. We define the collision
detector rule by extracting from α information on collisions actually detected. This
process ensures that the rule is consistent with an execution of the virtual broadcast
service: whenever the virtual broadcast service delivers a collision in γj, j ∈ IB ∪ IV ,
the collision detector rule specifies that a collision should be detected.
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In Section 11.12.2, we show that the virtual collision detector rule is complete,
and in Section 11.12.3 we show that the virtual collision detector rule is eventually
accurate. Thus we conclude that the collision detector rule is in the set of rules
specified for the virtual infrastructure system.

Before defining the collision detector rule itself, we first define the following func-
tions, which we use to extract the set of broadcast events:

• The virtual round r broadcast events for the virtual broadcast service:

BC (r) = {e : e is a round r bcast event in γi, i ∈ IB ∪ IV } .

• For all k ∈ IV , let `-pre(k) be the location of node k at the beginning of round
r, according to the broadcast service.

• The messages broadcast by round r broadcast events near node j: sentM (j, r) =
{m : bcast(m, ·)k,∗ ∈ BC (r), |`-pre[j]−−`-pre[k]| ≤ RV , k ∈ IB ∪ IV }.

• The messages broadcast by round r broadcast events that may interfere with
node j: sentMinterfere(j, r) = {m : bcast(m, ·)k,∗ ∈ BC (r), |`-pre[j]−−`-pre[k]| ≤
R′V , k ∈ IB ∪ IV }.

It should be noted that the set sentM (j, r) corresponds to the set sentM on line 49
of Figure 8-5. Similarly, the set sentM (j, r)′ corresponds to the set sentMinterfere
on line 51 of Figure 8-5. It is this correspondence that is used to show that the rule
constructed is consistent with the execution of the virtual broadcast service. We now
define CD-ruleV in Figure 11-5.

11.12.2 Completeness

The goal of this section is to show that the CD-ruleV defined in Figure 11-5 is com-
plete, as per Definition 8.1.12: if more messages are broadcast than are received, then
a collision is detected. Since the collision detector rule is defined from information
extracted from executions γi, for i ∈ IB, and γv, for v ∈ IV , the proof involves exam-
ining broadcast and receive events in these executions and showing that they imply
that the collision detector rule is complete. Specifically, we need to show that if some
non-failed node i ∈ IB ∪ IV broadcasts a message m in some virtual round r, and
some non-failed node j ∈ IB ∪ IV that is nearby does not receive that message, then
j detects a collision in virtual round r. By the manner in which the collision detector
rule is constructed, this is sufficient to show completeness.

In general, the proof breaks down into four cases, depending on whether i and j
are clients or virtual nodes. In each case, we assume for the sake of contradiction
that some message m is lost, yet no collision is detected. We then trace the progress
of message m from the sender to the receiver, arguing at each step that either the
message successfully arrives at the next step along the path, or a collision is gener-
ated, which results in the receiver detecting a collision. In this way, we produce a
contradiction.
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Figure 11-5: Constructing the Virtual Collision Detector Rule.

For every j ∈ bcast-portsV , for every r > 0:

• If a round r recv(M, cd , ·, ·)j event occurs in γj, for some M ⊆ msgs :

– Let p = |sentM (j, r)|.
– Let q = |M ∩ sentM (j, r)|.
– Let p′ = |sentM (j, r)′|.
– Let q′ = |M ∩ sentM (j, r)′|.
– Define CD-rule(〈j, ∗〉, r, p, q, p′, q′)V = cd .

• For all other values p, q, p′, q′ ∈ N not defined above:

CD-rule(i, r, p, q, p′, q′)V =

{
null, if p ≤ q
±, if p > q
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We begin with a few preliminary lemmas. We then consider the case where the
node receiving the messages is a client. Next, we consider the case where the node
receiving the messages is a virtual node. We conclude with the main proof of com-
pleteness.

Preliminary Lemmas

We begin by proving two preliminary lemmas that are used in Sections 11.12.2 and 11.12.2
to show that the virtual collision detector rule is complete.

The first of these two lemmas, Lemma 11.12.1 shows that if some virtual node v′

receives a message in round r and does not detect a collision, then we can conclude
that round r is not red for v′; moreover, the round r ballot for v contains exactly the
messages in set M , and includes no collisions. (As a point of notation, notice that
throughout this section we tend to use the letter v to represent a virtual node that
broadcasts a message and the letter v′ to represent a virtual node that receives some
messages.) When proving that the collision detector rule is complete, in cases where
the receiving node is a virtual node, we can focus our attention on the round r ballot.

Lemma 11.12.1. Let v′ ∈ IB be a virtual node and r > 0 a virtual round. Assume
that a round r recv(M, cd , . . .)v′,∗ occurs where cd = null in γv′. Then:

1. Round r is not red for v′.

2. Let b be the (unique) round r ballot for v′, and let i be the round r proposer for
v′. Then, in addition, we conclude:

• M = {m : 〈client, m, ·〉 ∈ b.clientM or 〈vn, ·, m〉 ∈ b.vnM }.
• b.clientCD = null.

• b.vnCD = null.

Proof. The proof depends primarily on examining the calculate-state function, and
noticing that if round r is red, then the execution fragment constructed by calculate-state
always includes a round r recv(·,±, . . .)v′,∗ event, which contradicts the lemma’s hy-
pothesis. Thus, the first step of the proof is to identify an execution fragment contain-
ing round r that is constructed by calculate-state and used during the construction
of γv′ . The conclusions then follows from a line-by-line examination of calculate-state
(Figure 10-11).

First, notice that virtual node v′ is up in round r: the construction of γv′ only
includes a recvv′,∗ event in round r if v′ is up. Since v′ is up in round r, then we know
that it is included in an epoch of the updown sequence: let 〈r1, r2〉 ∈ updown(v′) be
the pair that delineates an epoch of v′ such that r ∈ [r1, r2]. If r2 = ∞, then set
r2 = max(rgst + 1, r) so that 〈r1, r2〉 is a finite epoch. Since the construction of γv′

uses the epochs from the updown sequence to construct execution fragments (with
a special case when an epoch is infinite), we can choose γ to be the execution in
execs(r1, r2)v′ that is used in the construction γv′ . By Lemma 11.7.20, there exists
some node k′ that completes round r and γ is an extension of exec(r1, r, k

′)v′ . We
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have now identified an execution γ that includes round r and is constructed by the
calculate-state function based on the state of node k′ at the end of round r.

Next, we examine how calculate-state constructs round r of execution γ. Specifi-
cally, notice that the construction branches based on whether temp-status [r ] = green
or red (line 545, Figure 10-11). If the latter branch is chosen, i.e., if temp-status [r ] =
red, then do-recv is called with the second parameter equal to ±, resulting in a round
r recv(·,±, . . .)v′,∗ in γ. However, we have assumed that cd = null, and hence can
conclude that temp-status [r] = green. The array temp-status is calculated by node k′

by calling calculate-status (Figure 10-10) based on the state of k′ in the client phase
of round r. By (the contrapositive of) Lemma 11.6.8, we conclude that round r is
not red for v′.

Finally, notice that in the case where temp-status [r] = green, calculate-state con-
structs the set inM (line 550, Figure 10-11) as the set:

{m : 〈client, m, ·〉 ∈ b.clientM or 〈vn, ·, m〉 ∈ ∪b.vnM } .

Since calculate-state calls do-recv with the parameter inM , we conclude that M =
inM , implying the desired result.

Similarly, calculate-state calculates the collision detection parameter inCD such
that if either b.clientCD or b.vnCD is equal to ±, then inCD = ±. However, since
cd = null in the round r recv event in γv′ , we can conclude that both b.clientCD and
b.vnCD are equal to null.

The second preliminary lemma, Lemma 11.12.2, considers the case where a virtual
node v broadcasts some message m. In this case, we show that there exists some node
i that broadcasts 〈vn, v, m〉 in the vn phase of round r. That is, any message broadcast
in γv in round r is also broadcast in the vn phase of round r. When proving that the
virtual collision detector rule is complete, in the cases where a virtual node broadcasts
a message, we can focus our attention on the message broadcast in the vn phase.

Lemma 11.12.2. Let v ∈ IB be a virtual node, and r > 0 a virtual round. Assume
that a round r bcast(m, ·)v occurs in γv where m 6= ⊥. Assume that one of the
following three cases holds:

• Round r is good for v.

• Virtual node v is unscheduled for round r.

• Virtual node v is down in round r.

Then there exists some i ∈ IB that begins round r for v and remains joined and not
failed through the beginning of the scheduled-ballot phase such that:

1. There is a round r bcast(〈vn, v, m〉, ·)i,v event in the vn phase of round r.

2. If v is scheduled for round r, then there is a round r bcast(〈vn, v, b〉, ·)i,v event
in the scheduled-ballot phase of round r.
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Proof. We begin with an overview of the proof, which divides into two cases, based
on whether v is up or down in round r. If v is down in round r, the claim follows
immediately from the construction of γv: there is a broadcast in round r of γv only if
there is a message broadcast by some port 〈i, v〉 in the vn and scheduled-ballot phases
of round r. Since γv is constructed by the calculate-state function, which calculates
the round r message in the same way that node i calculates the message to broadcast
in the vn phase, we can conclude that port 〈i, v〉 broadcasts 〈vn, v, m〉 in the vn phase,
as claimed.

If v is up in round r, the proof is slightly more complicated. We first identify an
execution fragment γ that includes round r − 1 and is used in the construction of
γv. We further restrict our attention to exec(r1, r− 1, i)v, for some i ∈ IB, and argue
that γ is an extension of exec(r1, r − 1, i)v, according to Lemma 11.7.20. Moreover,
i completes round r − 1 and remains joined and not failed until the scheduled-ballot
phase of round r. From this we conclude that in the last state of exec(r1, r− 1, i)v, a
broadcast of message m is the next enabled external event. There are two subcases to
consider: If v is scheduled in round r, then node i is the round r proposer, and hence
has E(v).roundCM i = active. (This fact depends on the assumption that round r
is good for v.) If v is not scheduled, then E(v).scheduled i = false. Thus in either
case, port 〈i, v〉 satisfies line 239, and we are able to conclude that i broadcasts the
message 〈vn, v, m〉 in the vn phase, as claimed. It follows then that if v is scheduled,
i also broadcasts a message in the scheduled-ballot phase.

We now proceed in more detail. There are two cases to consider, depending on
whether v is up or down in r:

• Assume v is down in round r. By the construction of γv, the only way in
which a bcast event occurs in round r is the following: there exists some epoch
〈r1, r − 1〉 ∈ updown(v), and there exists some node i ∈ IB such that port
〈i, v〉 broadcasts a message 6= ⊥ in the vn and scheduled-ballot phases of round
r. Thus, port 〈i, v〉 broadcasts a message in the vn phase, as desired, and i
does not fail prior to the scheduled-ballot phase. It is easy to conclude that the
message is of the form 〈vn, v, ·〉.
During the construction of γv, we see that m is chosen as follows: assume s
is the last state of exec(r1, r − 1, i)v; v broadcasts the message specified by
do-bcast(s)v in round r of γv. When port 〈i, v〉 chooses a message to broadcast
in the vn phase of round r (the calculation occurs in the client phase recv of
round r), it follows the same procedure, and hence we can conclude that there
is a bcast(〈vn, v, m〉, ·)i,v event in the vn phase of round r.

• Assume v is up in round r. Since v is up in round r, then we know that it is
included in an epoch of the updown sequence: let 〈r1, r2〉 ∈ updown(v) be the
pair that delineates an epoch of v such that r ∈ [r1, r2]. If r2 = ∞, then set
r2 = max(rgst + 1, r) so that 〈r1, r2〉 is a finite epoch. Since the construction of
γv uses the epochs from the updown sequence to construct execution fragments
(with a special case when an epoch is infinite), we can choose γ to be the
execution in execs(r1, r2)v that is used in the construction γv. We also know
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that since there is a round r bcast event in γv, virtual round node v is not down
in round r − 1, and hence r > r1.

Thus, by Lemma 11.7.20, there exists some node i ∈ IB that completes round
r − 1 and does not fail or set E(v).joined i = false prior to the bcasti,v event in
the scheduled-ballot phase, and γ is an extension of exec(r1, r − 1, i)v.

Since there is a round r bcast(m, ·)v,∗ event in γv and γv is an extension of γ,
there is also a round r bcastv,∗ event in γ, and thus we can conclude that in
the last state s of exec(r1, r − 1, i)v, the do-bcast(s) produces message m, as
this is the procedure by which exec(r1, r− 1, i)v is extended to γ. Thus, we can
conclude that in the client phase, when choosing which message to send in the
vn phase, next-vn-msg is set equal to m in line 237.

If v is scheduled for round r, then, since v is up, we know by assumption, round
r is good for v. (Recall we have assumed that one of three situations held:
either round r is good for v, v is not scheduled for round r, or v is down in
round r.) Thus, we can conclude that i is the round r proposer for v, since
according to Corollary 11.7.15, γ extends the proposer’s [r1, r − 1] execution.
In this case, we conclude that E(v).roundCM i = active at the beginning of the
vn phase, since i is the round r proposer.

Thus, at the end of the client phase, when the message is selected for the vn
phase, we know the following: By the way in which i was chosen, we know
that E(v).joined i = true and E(v).failed i = false. Since r > r1, we know that
E(v).last-reset i + 1 ≤ E(v).rnd i (by Corollary 11.4.5). Either v is scheduled,
in which case E(v).roundCM i = active, or v is not scheduled, in which case
E(v).scheduled i = false. Thus, since m 6= ⊥, node i sets E(v).outgoing-msg i =
〈vn, v, m〉 at the end of the client phase, and hence broadcast 〈vn, v, m〉 in the
vn phase of round r, as desired.

Moreover, since i remains joined and not failed through the bcasti,v event in
the scheduled-ballot phase of round r, it is easy to see that if v is scheduled
for round r, then at the end of the vn phase: (1) E(v).scheduled i = true;
(2) E(v).joined i = true; and (3) E(v).roundCM i = active. Thus, there is a
bcast(〈vn, v, b〉, ·)i,v event in the scheduled-ballot phase of round r, concluding
the proof.

Delivering Messages to a Client

Next, we consider a particular client j ∈ IB that receives some set of messages M
in virtual round r and does not detect a collision. Our goal is to show that every
message broadcast by a nearby node—be it real or virtual—is delivered to j. We
begin with Lemma 11.12.3, which shows that every messages broadcast by a nearby
client is received by node j. This first lemma, Lemma 11.12.3, mainly focuses on the
multiplexer, showing that the messages are correctly passed from the broadcasting
client to the multiplexer, broadcast by the multiplexer using the basic broadcast
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service, received by node j’s multiplexer, and then passed from node j’s multiplexer
to node j.

Lemma 11.12.3. Assume that i, j ∈ IB are two (possibly distinct) clients, and r > 0
is a virtual round. Assume that a round r bcast(m, ·)i,∗, m 6= ⊥, occurs in γi and a
round r recv(M, null, . . .)j,∗ event occurs in γj. If j is within distance RV of i, then
m ∈M .

Proof. In this case, we trace message m forward from the sending port 〈i, ∗〉 to the
receiving port 〈j, ∗〉. The message is first passed from the client to the multiplexer at
i; it is then broadcast by the multiplexer at i and received by the multiplexer at j; it
is then passed from the multiplexer at j to the client at j. The only step in which the
message can be lost is when it is broadcast over the basic broadcast service from the
multiplexer at i to the multiplexer at j. If the message is lost, then the multiplexer
at j detects a collision, since the collision detector for the basic broadcast service is
complete. This collision notification is then passed to the client at j, contradicting
the assumption that cd = null.

We now proceed in more detail. Since clients only broadcast on port 〈i, ∗〉 at the
beginning of a virtual round (as an immediate response to the round r − 1 recvi,∗
event), we conclude that message m is broadcast in the client phase by port 〈i, ∗〉;
that is, that there is a bcast(m, ·)i,∗ event in the client phase of round r in α. At this
point, E(multiplexer).outM i ← m.

Next, the multiplexer broadcasts message m on port 〈i, 0〉. (Since the multiplexer
flag E(multiplexer).clientBcast i = true, the bcasti,0 event immediately follows the
bcasti,∗ event with no intervening time passage.) Thus we conclude that there is a
bcast(〈client, m, ·〉, ·) event in the client phase of round r (see line 694, Figure 10-13).

Since the basic broadcast service is complete and i and j are within distance
RV ≤ RB at the beginning of round r (i.e., the beginning of the client phase), either
port 〈j, 0〉 receives this broadcast of message m, or port 〈j, 0〉 detects a collision (by
Lemma 8.1.40). That is, either a recv(m, . . .)j,0 event occurs in the client phase of
round r, or a recv(·,±, . . .)j,0 event occurs in the client phase of round r. The first
case implies that m ∈ M , as desired; the second case implies a contradiction, from
which we conclude that this case does not occur under the assumptions of the lemma.

In the former case, where port 〈j, 0〉 receives 〈client, m, ·〉, the multiplexer at j
adds message 〈client, m, ·〉 to E(multiplexer).inM j (line 708); the only transition
that removes messages from inM is the recvj,∗ event, and thus the round r recvj,∗
event delivers message m (see line 664). This implies that m ∈M .

In the latter case, where port 〈j, 0〉 detects a collision in the client phase, the
collision detection flag E(multiplexer).inCD j ← ± (line 709). No other round r event
can set inCD 6= ±, and hence the round r recvj,∗ event delivers a collision to port
〈j, ∗〉, contradicting our assumption that cd = null in the round r recvj,∗ event.

Our next goal is to prove the equivalent of Lemma 11.12.3, but in the case where
the broadcasting node is a virtual node (instead of a client). The main part of this
argument will be showing that when virtual node v broadcasts a message in round
r, the vn-client-outputj,v delivers this message to the client (via the multiplexer). We
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need a few further preliminary lemmas in this case. We first show that when a virtual
node broadcasts a message, then every node that is nearby and non-failed detects that
some messages was broadcast in the vn phase. (The latter follows primarily from
Lemma 11.12.2.) As a result, we can show in Lemma 11.12.6 that the vn-client-output
event delivers the message to client j.

Lemma 11.12.4. Let v ∈ IV be a virtual node and r > 0 a virtual round. Assume
that a round r bcast(m, ·)v occurs in γv, m 6= ⊥, and let j ∈ IB be a node that is
within distance 3RB/4 of loc(v)V at the beginning of the scheduled-ballot phase and at
the beginning of the last agreement phase, and assume that E(v).round-status [r ]j ∈
{green,⊥} at the end of the last agreement phase of round r. Then we can draw the
following conclusion:

• For all k′ ∈ IB that are not failed at the end of round r and that are within
distance RV of loc(v)V at the beginning of round r, E(v).vnphaseBcastk′ = true
at the end of virtual round r.

Proof. We begin the lemma by arguing that round r is good for v, and by identifying
some node k that broadcasts a message for v in the vn and ballot phases (as per
Lemma 11.12.2). We argue that any node k′ that is not failed and sufficiently close
either receives the message 〈vn, v, m〉 sent in the vn phase, or detects a collision in the
vn phase; both cases result in k′ detecting that a broadcast occurred in the vn phase,
i.e., E(v).vnphaseBcastk′ = true. We now proceed in more detail.

First, we argue that round r is good for v: since E(v).round-status [r ]j ∈ {green,⊥}
at the end of the last agreement phase of round r, we conclude by Lemma 11.5.6,
round r is good for v.

Therefore we conclude by Lemma 11.12.2 that there exists some k ∈ IB that
begins round r for v and remains joined and not failed through the beginning of the
scheduled-ballot phase such that there is a round r bcast(〈vn, v, m〉, ·)k,v event in the
vn phase of round r in α.

Fix some k′ ∈ IB that does not fail prior to the end of virtual round r, and
assume that k′ is within distance RV of loc(v)V at the beginning of round r. Since
the velocity of a node is limited, we can conclude that k′ is within distance 3RB/4
of loc(v)V at the beginning of the vn phase. Since k remains joined and not failed
through the scheduled-ballot phase, by assumption, we know that k is within distance
RB/4 of loc(v)V at the beginning of the vn phase. Thus, we conclude that k and k′

are within distance RB of each other at the beginning of the vn phase. As a result,
in the vn phase, k′ either receives the 〈vn, v, m〉 message, or detects a collision, as per
the completeness of the basic broadcast service (Lemma 8.1.40).

First, assume k′ receives the message 〈vn, v, m〉. Since k is within distance RB/4
of loc(v), the vn phase recv transition reaches line 262. In this case, 〈vn, v, m〉 ∈
E(v).nearby-msgsk′ after line 257 (Figure 10-5). Thus, on line 263 (Figure 10-5), the
flag E(v).vnphaseBcastk′ ← true.

Next, consider the case where k′ detects a collision in the vn phase of round r. In
this case, again, on line 263 (Figure 10-5), E(v).vnphaseBcastk′ ← true.
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Thus, we conclude that in either case, at the end of virtual round r either
E(v).vnphaseBcastk′ = true.

A second fact we need before proving Lemma 11.12.6 is that the round status of
a node is not ⊥, if that node is close to the virtual node. This lemma follows from a
straightforward examination of the pseudocode.

Lemma 11.12.5. Let v ∈ IV be a virtual node, j ∈ IB be a node, and r > 0 a virtual
round. If j is within distance RB/2 of loc(v)V at the end of the last agreement phase,
then E(v).round-status [r ]j 6= ⊥ at the end of the last agreement phase.

Proof. The proof breaks down into two cases, depending on whether v is scheduled
or unscheduled in round r. If v is scheduled, then in the scheduled-veto-2 phase,
E(v).round-status [r ]j is assigned a non-⊥ value. If v is unscheduled, then in the
unscheduled-veto-2 phase, E(v).round-status [r ]j is assigned a non-⊥ value.

In more detail, consider the case where v is scheduled, and examine lines 359–362 in
the scheduled-veto-2 phase (Figure 10-7). In the case where E(v).scheduled-statusj =
⊥, since E(v).scheduled j = active and j is within distance RV of v, we can conclude
that E(v).round-status [r ]j = green. In the case where E(v).scheduled-statusj 6= ⊥,
E(v).round-status [r ]j ← E(v).scheduled-statusj. In both of these cases, the status
E(v).round-status [r ]j 6= ⊥ at the end of the scheduled-veto-2 phase.

Consider the case where virtual node v is not scheduled, and examine line 426 in
the unscheduled-veto-2 phase (Figure 10-8). Notice that if E(v).round-status [r ]j = ⊥,
then E(v).round-status [r ]j ← green, since j is within distance RV /2 of v. Thus, at
the end of the last agreement phase, E(v).round-status [r ]j 6= ⊥.

Finally, we can show that if a virtual node broadcasts a message in round r, and if
a nearby client does not detect a collision, then the client receives that message. The
main part of the proof is an examination of the possible vn-client-outputj,v transitions;
we use Lemma 11.12.4 to show that the only possible outcome consistent with our
assumptions and the vn-client-output preconditions is that message m is delivered to j.

Lemma 11.12.6. Assume that v ∈ IV is a virtual node, j ∈ IB is a client, and r > 0
is a virtual round. Assume that a round r bcast(m, ·)v,∗, m 6= ⊥, occurs in γv and a
round r recv(M, null, . . .)j,∗ event occurs in γj. If j is within distance RV of loc(v)V ,
then m ∈M .

Proof. We begin by noting that there is a round r vn-client-outputj,v event in α: by
assumption, there is a round r recvj,∗ event; a precondition of the recvj,∗ event (in
the multiplexer) is that inVNs = V , which implies that for all v′ ∈ IV , a round r
vn-client-outputj,v′ event occurs.

We divide the possible vn-client-output events into three categories, and in each
case argue that m ∈M . The first case addresses the situation where the vn-client-output
event delivers a message from v to j (via the multiplexer). In this case it is relatively
easy to see that m is the only possible message that could be delivered, and that the
message delivered is included in the set M , as required.
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The second case addresses the situation where the vn-client-output notifies j (via
the multiplexer) of a collision resulting from a broadcast by virtual node v. We
argue that this case cannot occur, since, by assumption, port 〈j, ∗〉 does not detect a
collision in round r.

The third case addresses the situation where the vn-client-output event neither
delivers a message to j nor notifies j of a collision. We argue that this case too is
impossible: since there is a bcastv,∗ event in γv, we can conclude (from Lemma 11.12.4)
that either message m is in the round r ballot or vnphaseBcast = true. In either case,
however, the preconditions of vn-client-output preclude the third case from occurring.

We now proceed to examine the three cases in more detail:

• vn-client-output(〈vn, m′, loc(v)〉, ·)j,v: In this case, some message m′ is delivered
by the emulator for virtual node v to j. We claim that in this case, as per
the operation of the multiplexer, m′ ∈ M : message 〈vn, v, m′〉 is added to
E(multiplexer).inM j during the vn-client-output transition, and thus m′ is de-
livered to port 〈j, ∗〉 during the (immediately) following recvj,∗ transition. (See
line 665, Figure 10-13.) If m′ = m, this implies that m ∈M , as desired.

We argue that in fact m′ must be equal to m in this case: Since m′ is delivered
to the client port 〈j, ∗〉 for node j, we can conclude by the integrity of the
virtual broadcast service (Lemma 11.11.12) that some node k ∈ IB ∪ IV must
have sent message m′. Moreover it is clear that in this case, if one follows the
path constructed by Lemma 11.11.12 that identifies the sender of a message,
virtual node v is the unique node that could have sent this message. (This is
clear since all messages of the form 〈vn, v, ·〉 originate at virtual node v.) We
have, however, assumed that virtual node v broadcast message m in round r,
resulting in the conclusion that m′ = m.

• vn-client-output(⊥,±)j,v: In this case, a collision is delivered by the emulator for
virtual node v to j. We can conclude in this case that, as per the operation of the
multiplexer, that a ± is delivered to port 〈j, ∗〉 during the round r recvj,∗ event,
since immediately after the vn-client-output transition, E(multiplexer).inCD j =
± (line 653, Figure 10-13). This contradicts our assumption that there is a
round r recv(M, null, ·, ·)j,∗ event in γj. Thus we conclude that this case does
not occur.

• vn-client-output(⊥, null)j,v: In this case, no message or collision is delivered from
the emulator for virtual node v to j. We need to show that since there is a round
r bcast(m, ·)v,∗ event in γv, this case does not occur.

We proceed to examine the preconditions for the vn-client-output transition
(lines 201–207, Figure 10-4), and notice that there are only four cases that
can result in a vn-client-output(⊥, null)j,v, as we have assumed. We examine
each of these cases in turn, and show that each implies a contradiction.

The first case is one in which the round is designated as green, the virtual node
is scheduled, vnphaseBcast = false, and yet no message broadcast by virtual
node v appears in the ballot; this is contradicted by Lemma 11.12.4, which
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shows that if virtual node v broadcasts a message in round r, then the messages
appears in the ballot or vnphaseBcast = true.

The second and third cases are also ones in which the round is designated
as green, but the virtual node is not scheduled. Moreover, again in these
cases, E(v).vnphaseBcast j = false. Again, Lemma 11.12.4 implies a contra-
diction, indicating that since virtual node v broadcasts a message in round r,
E(v).vnphaseBcast j = true.

The fourth case is one in which the round is not designated as green, but in-
stead E(v).round-status [r ]j = ⊥. In this case, the contradiction is implied by
Lemma 11.12.5, as whenever j is near to v, we know that E(v).round-status [r ]j 6=
⊥.

We now proceed in more detail to enumerate each of these cases:

– lines 187–188: E(v).round-status [r ]j = green, v is scheduled for round r,
and:

6 ∃〈vn, v, ·〉 ∈ E(v).ballot [r ].vnM j .

We can also conclude that E(v).vnphaseBcast j = false, as that case has
already been eliminated by the earlier else if clause on line 183 (Figure 10-
4. There are two subcases depending on whether j joins v in round r. First,
assume that j does not join v in round r. (Note that j may or may not have
already joined; we have not assumed, for example, that j is participating.)
In this case, we can determine that E(v).round-status [r ]j = green at the
end of the last agreement phase, as it is not modified between the end of the
last agreement phase and the end of the virtual round. By Lemma 11.12.4,
Part 1, we conclude that E(v).vnphaseBcast j = true, contradicting the
assumptions of this case.

If j does join v in round r, then there is some other node j′ ∈ IB that
broadcasts the join information to j in the join-ack phase. In particular,
we can conclude that E(v).round-status [r ]j′ = green, as j adopts this state
from the join information sent by j′. By Lemma 11.12.4 we can conclude
that E(v).vnphaseBcast j′ = true at the end of the last agreement phase.
Since j′ sends the vnphaseBcast flag as part of the join information, we
can conclude that E(v).vnphaseBcast j = true, again contradicting the as-
sumption of this case.

– lines 194–195, lines 200–201: E(v).round-status [r ]j ∈ {green,⊥}, v is not
scheduled for round r, and E(v).vnphaseBcast j = false. There are two
subcases depending on whether j joins v in round r. First, assume that
j does not join v in round r. As in the previous case, we can thus de-
termine that E(v).round-status [r ]j ∈ {green,⊥} at the end of the last
agreement phase, and hence we apply Lemma 11.12.4 to conclude that
E(v).vnphaseBcast j = true, contradicting the possibility that this case oc-
curs.

If j does join v in round r, then there is some other node j′ ∈ IB that

387



broadcasts the join information to j in the join-ack phase. In particular,
we can conclude that E(v).round-status [r ]j′ = green, as j adopts this state
from the join information sent by j′. By Lemma 11.12.4 we conclude
that E(v).vnphaseBcast j′ = true at the end of the last agreement phase.
Since j′ sends the ballot data structure as part of the join information, we
can conclude that E(v).vnphaseBcast j = true, contradicting the possibility
that this case occurs.

– lines 203–204: E(v).round-status [r ]j = ⊥. By Lemma 11.12.5, we can
conclude that this case does not occur since E(v).round-status [r ]j 6= ⊥
when j is near to v.

Since these four sub-cases cannot occur, we conclude that this particular output
event vn-client-output(⊥, null)j,v cannot occur.

Thus we conclude that the first case in which message m is delivered by the vn-client-output
is the only possible case, under the assumptions of this lemma, and hence m ∈M , as
desired.

Delivering Messages to a Virtual Node

We next consider a particular virtual node v′ ∈ IV that receives some set of messages
M in virtual round r and does not detect a collision. Our goal is to show that every
message broadcast by a nearby node—be it real or virtual—is delivered to v′. We first
argue in Lemma 11.12.7 that if the sending node is virtual, then the sending node is
scheduled for round r. We next prove in Lemma 11.12.8 a straightforward claim that
if the round is not green, then the scheduled-status of a nearby emulator is also not
green.

Lemma 11.12.7. Let v ∈ IV and v′ ∈ IV be two virtual nodes, v 6= v′, where
|loc(v)V − loc(v′)v| < RV , and r > 0 be a virtual round. Assume that a round r
bcast(m, ·)v occurs in γv and a round r recv(·, null, . . .)v′,∗ occurs in γv′. Then virtual
node v is scheduled for round r.

Proof. The proof consists of three basic steps, first we conclude via Lemma 11.12.1
that round r is not red for v′, and we identify the round r ballot b for v′. The second
part of the proof argues via Lemma 11.12.2 that some node i ∈ IB broadcasts a
message 〈vn, v, m〉 in the vn phase of round r, since there is a round r bcast(m, ·)v

event in γv. Finally, we put the pieces together to show that v must be scheduled in
round r. We now proceed in more detail.

First, by Lemma 11.12.1, we conclude that round r is not red for v′. Let b be
the round r ballot for v′, and let j be the round r proposer. We conclude (still by
Lemma 11.12.1) that b.vnCD = null.

Next, assume for the sake of contradiction that v is not scheduled for round r.
We conclude as per Lemma 11.12.2 that there exists some i ∈ IB that begins round r
for v and remains joined and not failed through the beginning of the scheduled-ballot
phase such that there is a round r bcast(〈vn, v, m〉, ·)i,v event in the vn phase of round
r in α.

388



At the beginning of the vn phase, nodes i and j are within distance RB =
RB/4 + RB/4 + RB/2 of each other: node i is within distance RB/4 of loc(v)V ,
since E(v).joined i = true; node j is within distance RB/4 of loc(v′)V since j broad-
casts a ballot for v′ in round r, thus implying that E(v′).joined j = true; v and v′ are
within distance RV = RB/2 of each other.

Thus, by the completeness of the basic broadcast service (Lemma 8.1.40), we
conclude that node j either receives the message 〈vn, v, m〉 from i, or detects a collision
in the vn phase of round r.

In the first case, on line 270, node j sets E(v′).vnCD=±, since it discovers (on
line 268) that virtual node v′ is not scheduled (and v′ 6= v, by assumption). In
the second case, on line 266, node j detects a collision, and again on line 270 sets
E(v′).vnCD=±.

In either case, when the ballot for v′ is formed (on line 389), b.vnCD ← ±,
contradicting our previous claim that b.vnCD = null. From this we conclude that
virtual node v is scheduled in round r.

The following claim, Lemma 11.12.8, is quite similar to the contrapositive of
Lemma 11.5.6. The main difference is that Lemma 11.5.6 examines the emulator
for virtual node v, and conclude that all the emulators for virtual node v have a
certain round status—green or yellow—when the virtual round is green for v. In this
case, however, we are interested in emulators for some virtual node v′ 6= v. If an
emulator for v′ is close to v, and if round r is not good for v, we argue that the
scheduled-status for v′ is not green at the end of the scheduled-veto-2 phase.

Lemma 11.12.8. Let v, v′ ∈ IV be two virtual nodes, r > 0 a virtual round where v
is scheduled for roundr, and i ∈ IB a node that is non-failed through the end of the
scheduled-veto-2 phase. Moreover, assume that node i is within distance 3RB/4 of
loc(v)V at the beginning of the scheduled-veto-2 phase of virtual round r. If round r is
not good for v, then E(v′).scheduled-status i 6= green at the end of the scheduled-veto-2
phase of virtual round r.

Proof. Choose some j ∈ IB that participates in virtual round r and has status
E(v).round-status [r ]j ∈ {red, orange} at the end of the scheduled-veto-2 phase of vir-
tual round r. Since j has designates round r as red or orange, we argue that j broad-
casts a veto message in the scheduled-veto-2 phase: Notice that since E(v).round-status [r ]j
is red or orange at the end of the scheduled-veto-2 phase, E(v).scheduled-statusj must
be red or orange at the beginning of the scheduled-veto-2 phase, as there is no later op-
portunity to downgrade the round to red or orange. However, if j has scheduled-status
either red or orange by the end of the scheduled-veto-1 recv event, then node j broad-
casts a veto message in the scheduled-veto-2 phase, since node j participates in the
round and has joined set to true.

Since node j and node i are within distance RB of each other, we conclude by
the completeness of the basic broadcast service (Lemma 8.1.40) that node i either
receives the veto message or detects a collision in the scheduled-veto-2 phase. In either
case, node i sets E(v′).scheduled-status i 6= green, concluding the proof.
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Finally, we can show that if a node—real or virtual—broadcasts a message in
round r, and if a nearby virtual node does not detect a collision, then the virtual
node receives that message. The proof breaks down into two cases, depending on
whether the broadcasting node is real or virtual, and shows that in both cases the
message arrives successfully.

Lemma 11.12.9. Assume that v′ ∈ IV is a virtual node, j ∈ IB ∪ IV is a client or
a virtual node, and r > 0 is a virtual round. Assume that a round r bcast(m, ·)j,∗,
m 6= ⊥, occurs in γj and a round r recv(M, null, . . .)v′,∗ event occurs in γv′. If j is
within distance RV of loc(v′)V , then m ∈M .

Proof. We begin by invoking Lemma 11.12.1 to conclude that round r is not red for
v′. Moreover, we can determine that v is up in round r, as the construction of γv′ only
inserts a recvv′,∗ event in round r if v′ is up. It then follows from Corollary 11.5.16
that there is a unique round r proposer for v, which we label k, and a uniqure round
r ballot b for v. Also by Lemma 11.12.1, we conclude that:

• M = {m : 〈client, m, ·〉 ∈ b.clientM or 〈vn, ·, m〉 ∈ ∪b.vnM }

• b.clientCD = null.

• b.vnCD = null.

The proof now divides into two parts, depending on whether j ∈ IB or j ∈ IV ,
i.e., whether j is a client or j is a virtual node.

Part 1: Assume j ∈ IB. It follows from the construction of γj that there is also a
bcast(m, ·)j,∗ event in α, and we can conclude that this broadcast event occurs in the
client phase of round r. By the operation of the multiplexer, port 〈j, 0〉 broadcasts
message 〈client, m, ·〉 in the client phase of round r.

Notice that i is within distance RB of k: i is within distance RB/2 of loc(v′)V , by
assumption, and k is within distance RB/4 of loc(v′)V (since a port only broadcasts
a ballot if it is joined, and it only remains joined if it is near the virtual node).

We can thus conclude that at the end of the client phase, by the completeness of
the basic broadcast service (Lemma 8.1.40), either 〈client, m, ·〉 ∈ E(v′).clientM k or
E(v′).clientCDk = ±. Thus, either m ∈ b.clientM , or b.clientCD = ±. We have
already concluded that the latter case does not occur, and hence m ∈ b.clientM . As
a result, m ∈M , as per the conclusion of Lemma 11.12.1.

Part 2: Assume j ∈ IV . Assume that for some v ∈ IV where v is within distance
RB/2 of loc(v′)V , there is a round r bcast(m′, ·)v,∗ event in γv where m′ 6= ⊥. (For the
sake of consistent notation, we use v here instead of j, as in the lemma statement.)

We first conclude from Lemma 11.12.7 that v is scheduled for round r. (This
implies that v′ is not scheduled for round r, since v and v′ are within distance RV of
each other and the schedule guarantees non-interference.)

Next, we argue that round r is good for v. Assume for the sake of contradiction
that round r is not good for v. Then by (the contrapositive of) Lemma 11.12.8,
we conclude that E(v′).scheduled-statusk 6= green at the end of the scheduled-veto-2
phase, and hence E(v′).vnCDk ← ± on line 368 (Figure 10-7). Thus, when node k
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forms the ballot for v′ on line 389 (Figure 10-8), b.vnCD = ±, which contradicts our
claim above that b.vnCD = null. Thus we conclude that round r is good for v.

We conclude by Lemma 11.12.2 that there exists some i ∈ IB that begins round r
for v and remains joined and not failed through the beginning of the scheduled-ballot
phase such that there is a round r bcast(〈vn, v, m〉, ·)i,v event in round r of α.

We can conclude that i is within distance RB/4 of loc(v)V , since port 〈i, v〉 only
broadcasts a message 6= ⊥ in the vn phase if it is joined, and a node is only joined if
it is within distance RB/4 of v.

Since v is within distance RB/2 of v′, and k is within distance RB/4 of v′, we
conclude that i is within distance RB of k. Thus, by the completeness of the basic
broadcast service (Lemma 8.1.40), we can conclude that either port 〈k, v′〉 receives
the message 〈vn, v, m〉 in the vn phase of round r, or port 〈k, v′〉 detects a collision. In
the latter case, E(v′).vnCDk ← ±, resulting in b.vnCD = ±, which we have already
shown is not the case.

We thus conclude that after line 257 (Figure 10-5), 〈vn, v, m〉 ∈ E(v′).nearby-msgsk.
Since k is within distance 3RB/4 of v, we can determine that on lines 261–272 (Fig-
ure 10-5), either E(v′).vnM k ← E(v′).nearby-msgsk, or E(v′).vnCDk ← ±. As we
have already determined that the latter case does not occur, we can conclude that
〈vn, v, m〉 ∈ E(v).vnM k after line 272 (Figure 10-5), and similarly, as the end of the
scheduled-veto-2 phase. Hence 〈vn, v, m〉 ∈ b.vnM , which implies that m ∈ M as
desired.

Main Completeness Lemma

Finally, we conclude Section 11.12.2 by showing that CD-ruleV is complete. Lemma 11.12.10
relates the definition of CD-ruleV to the broadcast and receive events in the execu-
tions γi, i ∈ IB, and γv, v ∈ IV , and argues that if the rule is not complete, then there
must exist some message broadcast in one of these executions that is not received by
a nearby neighbor; moreover, the nearby neighbor does not detect a collision. The ar-
gument then proceeds to invokes Lemmas 11.12.3, 11.12.6 and 11.12.9 to show that in
each case the message is, in fact, delivered, from which we conclude that the collision
detector rule is complete.

Lemma 11.12.10. The collision detector rule CD-ruleV is complete.

Proof. We have to show that for every broadcast port j ∈ bcast-portsV , for every
round r > 0, for every p, q ∈ N0, if p > q, then CD-rule(j, r, p, q, ·, ·)V = ±.

Recall the rule for constructing CD-ruleV : Consider the case where a round r
recv(M, cd , ·, ·)j,∗ event occurs in γj, for some M ⊆ msgs with the following properties:

1. p = |sentM (j, r)|,

2. q = |M ∩ sentM (j, r)|,

3. p′ = |sentMinterfere(j, r)|, and

4. q′ = |M ∩ sentMinterfere(j, r)|.
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Then the construction specifies that CD-rule(r, p, q, p′, q′)V = cd . If p > q, we must
show that cd = ±.

In all other cases, i.e., for all j ∈ IB, p, p′, q, q′ ∈ N0 where the round r recv event
does not satisfy Properties 1–4, the desired conclusion follows immediately from the
definition of CD-ruleV . For the rest of this proof, fix j ∈ IB, r ∈ N, p, p′, q, q′ ∈ N0,
where p > q, such that the round r recv(M, cd , . . .)j,∗ in γj satisfies Properties 1–4.
Assume for the sake of contradiction that cd = null.

We begin by choosing a message m 6= ⊥ that will be of interest: since p > q,
we can fix some m ∈ sentM (j, r) such that m /∈ M ∩ sentM (j, r), i.e., m /∈ M .
Every message in sentM (j, r) originates (by definition) with either a bcasti,∗ event,
for i ∈ IB, or a bcastv,∗ event, for v ∈ IV , where the sending node is within distance
RV of node j at the beginning of round r. Thus we can identify some node i ∈ IB or
v ∈ IV that broadcasts message m.

We proceed to consider the four cases separately, depending on whether j is a
client or a virtual node, and depending on whether the sender of m is a client or a
virtual node: (1) i ∈ IB and j ∈ IB are both clients; (2) v ∈ IV is a virtual node;
j ∈ IB is a client; (3) i ∈ IB is a client, j ∈ IV is a virtual node; (4) v ∈ IB is a virtual
node, j ∈ IV is a virtual node.

1. There is a bcast(m, ·)i,∗ event in round r in γi for some i ∈ IB, and a recv(M, null, . . .)j,∗
in round r for some j ∈ IB: We invoke Lemma 11.12.3 to conclude that since j
is within distance RV of i, m ∈ M . This, however, contradicts our assumption
that m /∈M .

2. There is a bcast(m, ·)v,∗ event in γv for some v ∈ IV , and a recv(M, null, . . .)j,∗ in
round r for j ∈ IB: We invoke Lemma 11.12.6 to conclude that since j is within
distance RV of loc(v)V , m ∈ M . This, however, contradicts our assumption
that m /∈M .

3. There is a bcast(m, ·)i,∗ event in round r in γi for some i ∈ IB, and a recv(M, null, . . .)v′,∗
in round r for some v′ ∈ IV : We invoke Lemma 11.12.9 to conclude that since
j is within distance RV of loc(v′)V , m ∈ M . This, however, contradicts our
choice of m above.

4. There is a bcast(m, ·)v,∗ event in round r in γv for some v ∈ IV , and a recv(M, null, . . .)v′,∗
in round r for some v′ ∈ IV : We invoke Lemma 11.12.9 to conclude that since
loc(v)V is within distance RV of loc(v′)V , m ∈ M . This, however, contradicts
our choice of m above.

11.12.3 Eventual Accuracy

The goal of this section is to show that the CD-ruleV defined in Section 11.12 is
eventually accurate (as per Definition 8.1.14). As in Section 11.12.2, the proof involves
examining broadcast and receive events in executions γi, for i ∈ IB, and γV , for v ∈ IV ,
and showing that they imply that the collision detector rule is eventually accurate.
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Specifically, we need to show that from some virtual round onwards, if some non-
failed node i ∈ IB ∪IV detects a collision in a virtual round r, then some nearby node
j ∈ IB ∪ IV broadcasts a message m in round r that is not received by i. By the
manner in which the collision detector rule is constructed, this is sufficient to show
eventual accuracy. In fact, we show that the collision detector rule stabilizes in round
rgst + 1.

Preliminary Lemmas

We begin with some preliminary lemmas. The key difficulty in proving eventual
accuracy is showing that when ± is recorded by the ballot [r] data structure in some
round r ∈ IB (for a round r large enough), then in fact some message was broadcast
by a nearby node and not received. The ballot data structure records collisions in
two subfields: the clientCD field, for collisions that originate from messages sent in
the client phase, and the vnCD field, for collisions that originate from messages that
originate in the vn phase. In each case, we trace the collision back until we find
the message that was lost. Lemma 11.12.11 considers the case where a message is
broadcast in the client phase; Lemma 11.12.12 considers the case where a message is
broadcast in the vn phase.

Our first claim, Lemma 11.12.11 shows that if a message 〈client, m, ·〉 is broadcast
in the client phase of round r by some i ∈ IB, then message m is broadcast in round
r of γi. The lemma follows almost immediately from the construction of γi and the
operation of the multiplexer:

Lemma 11.12.11. Let i ∈ IB be a node, and assume that α contains a bcast(〈client, m, ·〉, ·)i,0

event, m 6= ⊥, in the client phase of round r. Then, there is a round r bcast(m, ·)v

event in γi.

Proof. The multiplexer port 〈i, 0〉 broadcasts a message 〈client, m, ·〉 in the client phase
of round r only if E(multiplexer).outM i = m. However, E(multiplexer).outM i = m,
m 6= ⊥, only if there is a preceding bcast(m, ·)i,∗ event. It remains only to argue
that this preceding bcasti,∗ event occurs in the client phase of round r. By the use
of the clientBcast flag and the stops when condition limiting the trajectories of the
multiplexer, we know that the bcasti,0 event immediately follows the bcast i,∗ event
with no intervening time passage: the bcast i,0 transition is the only one which resets
the clientBcast flag. Thus we conclude that the preceding bcasti,∗ event occurs in the
client phase of round r. Since γi contains every client phase bcasti,∗ event, we thus
conclude that there is a round r bcast(m, ·)i,∗ event in γi.

Our next claim, Lemma 11.12.12, proves a similar claim as Lemma 11.12.11,
except with respect to messages broadcast in the vn phase, rather than the client
phase. Specifically, we show that if some message 〈vn, v, m〉 is broadcast in the vn
phase in a round r ≥ rgst + 1, then for some virtual node v ∈ IV , message m is
broadcast in round r in execution γv. That is, every message broadcast in the vn
phase is also broadcast in the execution of the virtual system. (Notice that now we
are considering round rgst + 1, rather than round rgst ; the emulator takes one round
to stabilize.)
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This lemma is almost the converse of Lemma 11.12.2, which states that if a mes-
sages m is broadcast in round r of γv, then message 〈vn, v, m〉 is broadcast in the
vn phase of round r. The main difference is that Lemma 11.12.2 holds from the be-
ginning of the execution, while Lemma 11.12.12 holds only for rounds r ≥ rgst + 1.
(There are also some differences in the precise conditions under which the respective
lemmas hold; for example, Lemma 11.12.2 assumes that if v is scheduled, then round
r is good for v.) In many ways, Lemma 11.12.12 is the key lemma necessary to prove
the eventual accuracy of the collision detector rule.

Lemma 11.12.12. Let r ≥ rgst + 1 be a virtual round, i ∈ IB be a node, and v ∈ IV

be a virtual node. Assume that α contains a bcast(〈vn, v, m〉, ·)i,v event, m 6= ⊥, in
the vn phase of round r. Then, there is a round r bcast(m, ·)v,∗ event in γv.

Proof. The proof proceeds in three steps. First, we identify an epoch 〈r1, r2〉, where
r1 < r ≤ r2 + 1, such that the (sole) execution γ′ ∈ execs(r1, r2)v is used in the
construction of γv. (By Lemma 11.8.12 we know that round r2 is green, and hence
we can conclude by Corollary 11.7.12 that there is only one execution in the set.)
Second, we identify an execution γ < γ′ which includes round r − 1, but not round
r. Since there is also only one execution in the set execs(r1, r − 1)v (for the same
reasons as there is only one execution in execs(r1, r2)v), and since there is a message
〈vn, v, m〉 broadcast in the vn phase of round r, we can conclude that in the last state
of γ, virtual node v is enabled to broadcast message m. Finally, we conclude the
proof by arguing that this broadcast event occurs in γ′, and hence also in γv.

First, by Lemma 11.8.12, we conclude that round r is green, and by Corol-
lary 11.5.7, that round r is good. Choose r1, r2 such that 〈r1, r2〉 ∈ updown(v)
delineates an epoch of v and r ∈ [r1, r2 + 1]. This is possible since v is up in round
r−1—otherwise no broadcast occurs in round r in the vn phase—and since r ≥ rgst+1,
we can conclude that round r−1 is good, which implies that r−1 is included in some
epoch of the updown sequence, since the updown sequence contains maximal epochs.
If r2 =∞, then set r2 = r so that 〈r1, r2〉 is a finite epoch of v.

The next fact to notice is that r > r1: if r = r1, then E(v).last-reset i = r1 − 1
at the beginning of the client phase of round r, according to Corollary 11.4.5; thus,
E(v).rnd i = E(v).last-reset i + 1, and E(v).outgoing-msg i is unmodified in line 240,
resuling in the broadcast of ⊥ in the vn phase, contradicting our hypothesis that some
message 〈vn, v, m〉 is broadcast in the vn phase. Thus we conclude that r > r1.

Next, note that by Lemma 11.8.12, both rounds r−1 and r2 are both green, since
v is up in both of these rounds. By Corollary 11.7.12, |execs(r1, r − 1)v| = 1 and
|execs(r1, r2)v| = 1. Fix γ ∈ execs(r1, r − 1)v, and γ′ ∈ execs(r1, r2)v. We invoke
Lemma 11.7.20 to conclude that γ′ is an extension of γ: the lemma states that γ′ in
an extension of some execution in execs(r1, r − 1)v; γ is the only one.

Next, notice that according to the construction of γv, γ′ is included in γv. In the
case where 〈r1, r2〉 ∈ updown(v) (i.e., the case where the epoch containing r is finite),
this is immediate by construction. In the case where 〈r1, r2〉 /∈ updown(v), this follows
from the manner in which γv is constructed by successive extension.

Finally, we argue that the γ′ extension of γ contains a round r bcast(m, ·)v event.
Since node i broadcasts a message 〈vn, v, m〉 in the vn phase of round r, we conclude
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that E(v).outgoing-msg i = 〈vn, v, m〉 at the end of the client phase of round r. The
message m is constructed in lines 235–237 by calculating the last state s of γ =
exec(r1, r − 1, i)v, and then calling the function do-bcast(s).

Recall that γ′ extends γ be first calling do-bcast on s, the last state in γ (see
Figure 10-11). Thus we conclude that γ′ contains a round r bcast(m, ·)v event, from
which we conclude that γv contains a round r bcast(m, ·)v,∗ event, as desired.

In the previous two lemmas, we argued that a broadcast in the client or vn phases
indicates a similar broadcast in γi, i ∈ IB, or γv, v ∈ IV (respectively). The next
step in tracing the cause of the collision is to show that a collision in the clientCD
or vnCD fields of the ballot indicate that some message was in fact broadcast in the
client or vn phases, and that this message was lost. When combined with the two
previous lemmas, this indicates that there was a message broadcast in γi, i ∈ IB or
in γv, v ∈ IV , that was lost, hence justifying the collision.

More specifically, in Lemma 11.12.14, we assume that there is a ballot b broad-
cast for some virtual node v ∈ IV in one of the two ballot phases of round r, and
that this ballot indicates a collision in the client phase, i.e., b.clientCD = ±. We
conclude that in this case, there is some message m that was broadcast by j ∈ IB

in round r of execution γj. Moreover, this message m is not included in the ballot,
i.e., 〈client, m, ·〉 /∈ b.clientM . Thus, messages m was broadcast in round r and not
received. Finally, we note that j is within the interference range of node v, and hence
v’s collision detector is behaving accurately when it detects a collision in round r.

Lemma 11.12.13. Let v ∈ IV be a virtual node, and r ≥ rgst + 1 a virtual round in
which some node i ∈ IB broadcasts a ballot b in a ballot phase, either the scheduled-ballot
phase of the unscheduled-ballot phase.

Assume that ballot E(v).b.clientCD i = ± immediately after either (1) line 275 in
the vn phase of round r, or (2) line 389 in the unscheduled-ballot phase of round r,
i.e., immediately after the ballot is created.

Then there exists some m ∈ msgsV and some j ∈ IB where j is within distance
R′V of v at the beginning of round r, such that a round r bcast(m, ·)j,∗ event occurs
in γj and 〈client, m, ·〉 /∈ E(v).b.clientM i immediately after the ballot b is set.

Proof. The proof consists of three steps. First, we identify a recv(·, cd , . . .)i,v event
where cd = ± in the client phase of round r; this is the event which results in the
collision indication in the ballot. Second, we conclude that as a result if the eventual
accuracy of the basic broadcast service, there is some bcastj,0 event that broadcasts a
message 〈client, m, ·〉 in the client phase that is lost. Finally, we apply Lemma 11.12.11
to conclude that message m is broadcast in round r of γj, completing the proof.

First, notice that ballot b is formed from the E(v).clientM i variable (as well as
clientCD , vnM , and vnCD). Moreover, prior to the ballot being formed, the clientCD
variable is modified only in the client phase of virtual round r, specifically, on line 228
(Figure 10-5), E(v).clientCD i ← cd . Thus we conclude in this case that cd = ± in
the client phase recv(·, cd , . . .)i,v for round r.

Second, by the eventual accuracy of the basic broadcast service (Lemma 8.1.42),
we can conclude that if cd = ±, then there is some message sent in the client phase by
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a nearby port that was not delivered. That is, there exists some port p ∈ bcast-portsB

such that p is within distance R′B of i at the beginning of the client phase (and hence,
the beginning of virtual round r) and a round r bcast(m′, ·)p event occurs in α.
Moreover, since message m′ never arrives at port 〈i, v〉, it is straightforward to see
that message m′ is never added to E(v).clientM i, and hence m′ /∈ b.clientM .

Notice, however, that for all j ∈ IB, for all v ∈ IV , port 〈j, v〉 does not broadcast
in the client phase of round r. Thus we conclude that port p is a multiplexer port,
i.e., for some j ∈ IB, port p = 〈j, 0〉; fix this node j ∈ IB. Thus j is within distance
R′B of i. Since i is within distance RB/4 of loc(v)V (as it must be joined to broadcast
a ballot, we conclude that j is within distance R′V ≥ R′B + RB/4 of loc(v)V .

We can also conclude that m′ = 〈client, m, ·〉, for some m ∈ msgsV , as per line 694
(Figure 10-13), since the multiplexer only broadcasts messages of this form. (We have
already concluded that m′ 6= ⊥, as the eventual accuracy property indicates that a
non-⊥ message is broadcast.)

Finally, by Lemma 11.12.11, we conclude that there is a round r bcast(m, ·)j,∗
event in γj. Since 〈client, m, ·〉 /∈ b.clientM , this concludes our proof.

In Lemma 11.12.14 we prove the equivalent result for collision detected in the
vn phase. More specifically, we assume that there is a ballot b broadcast for some
virtual node v ∈ IV in one of the two ballot phases of round r, and that this ballot
indicates a collision in the vn phase, i.e., b.vnCD = ±. We conclude that in this
case, there is some message m that was broadcast by v′ ∈ IV in round r of execution
γv′ . Moreover, this message m is not included in the ballot, i.e., 〈vn, v′, m〉 /∈ b.vnCD .
Thus, messages m was broadcast in round r and not received. Finally, we note that v′

is within the interference range of node v, and hence v’s collision detector is behaving
accurately when it detects a collision in round r.

Lemma 11.12.14. Let v ∈ IV be a virtual node, and r ≥ rgst + 1 a virtual round in
which some node i ∈ IB broadcasts a ballot b in a ballot phase, either the scheduled-ballot
phase of the unscheduled-ballot phase.

Assume that ballot E(v).b.vnCD i = ± immediately after either (1) line 275 in the
vn phase of round r, or (2) line 389 in the unscheduled-ballot phase of round r, i.e.,
immediately after the ballot is created.

Then for some message m ∈ msgsV , for some v′ ∈ IV , v′ 6= v, where v′ is within
distance R′V of v (at the beginning of round r1), we conclude that there is a round r
bcast(m, ·)v′,∗ event in γv′ and that 〈vn, v′, m〉 /∈ E(v).b.vnM i immediately after the
ballot b is set.

Proof. The ballot is created in either line 275 or line 389 from E(v).vnM i and
E(v).vnCD i (along with E(v).clientM i , E(v).clientCD i , and E(v).prev-rnd i ).
We trace back the point at which E(v).vnCD i was set to ±, and identify a message
that was lost.

At some point prior to the ballot being formed we know that E(v).vnCD i is set to
±, by assumption. The collision flag E(v).vnCD i are first initialized during round r in

1Recall that virtual nodes are not mobile.
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the vn phase recv transition. The collision flag E(v).vnCD i is then potentially modi-
fied, i.e., set to ±, once in the vn phase—line 270—and once in the scheduled-veto-2
phase—line 368. We examine the possible points at which this could have occurred,
and show that it implies that some message m was broadcast in the vn phase that
is not included in vnM . We then invoke Lemma 11.12.12 to show that m was also
broadcast in γv′ , for some v′ ∈ IV that is within the interference range of v, concluding
the proof.

1. The first case where E(v).vnCD i ← ± is on line 270 (Figure 10-5) under three
conditions: (1) port 〈i, v〉 received more than one message from a nearby virtual
node, (2) port 〈i, v〉 received a message from an unscheduled virtual node, or
(3) port 〈i, v〉 detected a collision. In each of these cases, the set of messages
E(v).vnM i remains empty (as initialized on line 258), and hence when the ballot
b is formed, b.vnM = ∅, and no messages are delivered to v from a node v′ 6= v
in round r. It remains to show that some message m was broadcast in γv′ for
some v′ 6= v near to v. We consider separately the three sub-cases that trigger
the execution of line 270:

• line 264: Immediately prior to line 270, |E(v).nearby-msgs i| > 1. No-
tice, however, that there is at most one message of the form 〈vn, v, ·〉 in
E(v).nearby-msgs i since round r ≥ rgst , and hence at most one joined, non-
failed node has E(v).roundCM =active and broadcasts a message in the vn
phase. Thus, there must be some message 〈vn, v′, m〉 in E(v).nearby-msgs i

where v′ 6= v. We can determine that the message was sent by some port
〈k, v′〉 in the vn phase, for some k ∈ IB (by the integrity of the basic broad-
cast service). We then invoke Lemma 11.12.12 to conclude that there is
a bcast(m, ·)v′,∗ event in γv′ . As argued above, 〈vn, v′, m〉 /∈ b.vnM , as
b.vnM = ∅.
• line 266: In this case, cd = ±. By the eventual accuracy of the basic

broadcast service (Lemma 8.1.42), since cd = ± in the recv(·, c, . . .)i,v

transition in the vn phase of round r, there is some message m′ that was
sent by a port 〈j, v′〉, j ∈ IB, v′ ∈ IV , in the vn phase, where j is within
distance R′B of i, and message m′ is not received by i in the vn phase of
round r. Since j is within distance R′B of i, and i and j are within distance
RB/4 of v and v′ (respectively), we can conclude that v is within distance
R′B + RB/2 = R′V of v′.

All the messages sent in the vn phase are of the form 〈vn, v′, ·〉; therefore,
we conclude that for some m ∈ msgsV there is a bcast(〈vn, v′, m〉, ·)j,v′

event in the vn phase of round r.

By Lemma 11.12.12, we conclude that there is a bcast(m, ·)v′,∗ event in γv′ .
Since 〈vn, v′, m〉 is not received by i in the vn phase, message 〈vn, v′, m〉 /∈
E(v).nearby-msgs i, and hence is not included in the ballot b.vnM .

It remains only to show that v 6= v′. If v = v′, then we argue that
i = j, which implies by the self-delivery property of the basic broad-
cast service that j receives message m′ = 〈vn, v′, m〉 in the vn phase
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of round r, contradicting our choice of message m′. Thus it suffices to
show that if v = v′, then i = j. Recall that node i was selected be-
cause it broadcasts ballot b in a ballot phase. Thus we conclude that
E(v′).roundCM i = E(v).roundCM i = active at the end of the client phase
(since roundCM is modified only in the client phase of round r). More-
over, since port 〈j, v〉 broadcasts a message in the vn phase, we can con-
clude that E(v).roundCM j = active at the end of the client phase. How-
ever, Lemma 11.8.3 shows that there is at most one node i ∈ IB that has
E(v).roundCM i = active at the end of the client phase of round r, and thus
i = j, resulting in the desired contradiction. We conclude that v 6= v′.

• line 268: In this case, there exists a message 〈vn, v′, m〉 from some unsched-
uled virtual node v′ in nearby-msgs , where v′ 6= v. By the definition of
the set nearby-msgs , we know that v′ is within distance RV of v. We can
determine that the message was sent by some port 〈k, v′〉 in the vn phase,
for some k ∈ IB (by the integrity of the basic broadcast service). We then
invoke Lemma 11.12.12 to conclude that there is a bcast(m, ·)v′,∗ event in
γv′ . As argued above, 〈vn, v′, m〉 /∈ b.vnM , as b.vnM = ∅.

2. The second case where E(v).vnCD i ← ± is on line 368 (Figure 10-7) in the
scheduled-veto-2 phase. In this case, E(v).scheduled-status i 6= ⊥ and E(v).scheduled i =
false (due to the if/else condition lines 358 and 366, Figure 10-7). Additionally,
we can determine that i does not fail prior to the end of the scheduled-veto-2
phase (or it would not reach the line in question). However, according to
Lemma 11.8.8, E(v).scheduled-status i = ⊥, implying that this case does not
occur.

Thus we conclude that there exists some m ∈ msgsV , m 6= ⊥, and some v′ ∈ IV ,
v′ 6= v, where v′ is within distance R′V of v such that a round r bcast(m, ·)v′,∗ event
occurs in γv′ and 〈vn, v′, m〉 /∈ E(v).b.vnM i immediately after the ballot b is set.

The previous four lemmas address the case where a collision is detected in a ballot
for some virtual node. Thus, these lemmas are used to show that if a virtual node
v ∈ IV detects a collision in round r of γv, then some message is lost. The final
preliminary lemma is related to the case where a client j ∈ IB detects a collision in
round r of γi. We show that if a vn-client-output delivers the collision notification to i
(via the multiplexer), then some message broadcast by a virtual node v ∈ IV is lost.

Lemma 11.12.15. Let v ∈ IV be a virtual node, j ∈ IB a client, and r ≥ rgst + 1 a
virtual round. Assume a vn-client-output(m,±)j,v occurs at the end of virtual round r
in α. Then m = ⊥ and for some v′ ∈ IV , where j is within distance R′V of loc(v′)V ,
there exists a round r bcast(m′, ·)v′,∗ event in γv′, where m 6= ⊥.

Proof. The proof proceeds as follows: Since r ≥ rgst + 1, we can conclude that
E(v).round-status [r ]j = green and E(v).round-status [r-1 ]j ∈ {green,⊥}. By ex-
amining the preconditions of vn-client-output we conclude that m = ⊥ and that
E(v).vnphaseBcast j = true. This latter conclusion provides the key evidence needed
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to show that some message was broadcast in the vn phase, which by Lemma 11.12.12
proves the desired result.

First, we can conclude immediately that m = ⊥ by examination of the precon-
ditions for vn-client-outputj,v (lines 177–207, Figure 10-4): the preconditions consist
of a series of cases, each of which determines vnm-out and vnCD-out , the message
and collision parameters of the vn-client-output transition; in every case in which
vnCD-out = ±, notice that vnm-out = null. For example, on line 192, vnCD-out = ±;
in the preceding line 191, vnm-out = null.

Next, notice that E(v).round-status [r ]j ∈ {green,⊥} immediately prior to the
vn-client-output: if v is scheduled, then this follows from Lemma 11.8.8; if v is unsched-
uled, then this follows from Lemma 11.8.11. By the same argument, we conclude that
E(v).round-status [r-1 ]j ∈ {green,⊥}. Moreover, it is clear that E(v).round-status [r ]j 6=
⊥, since in that case the preconditions require that vnCD-out = null, contradicting
our assumption that 〈j, v〉 delivers a collision to j.

Next, we conclude that E(v).vnphaseBcast j = true: since round-status [r-1 ]j ∈
{green,⊥}, we can conclude that the execution never reaches line 193 (Figure 10-4),
which would result in vnCD-out = null. Thus we are either in the case where v is
scheduled—lines 183–185—or the case where v is unscheduled—lines 190–192.

Since E(v).vnphaseBcast j = true, we can conclude that some message 〈vn, v, m〉
was sent in the vn phase of round r, which implies the desired result by Lemma 11.12.12,
since the flag vnphaseBcast is set in two cases (line 262, Figure 10-5):

1. Some message 〈vn, v, m′〉 is in the set nearby-msgs in the vn phase: We can con-
clude that j must be within distance 3RB/4 ≤ R′V of loc(v)V since E(v).vnphaseBcast i

is only set after the distance check on line 261 (Figure 10-5). By the integrity
of the basic broadcast service we can conclude that for some node k ∈ IB, port
〈k, v〉 broadcast message 〈vn, v, m′〉 in the vn phase of round r. We thus conclude
by Lemma 11.12.12 that a round r bcast(m′, ·)v,∗ event occurs in gammav.

2. A collision is detected in the vn phase of round r: We conclude by the eventual
accuracy of the basic broadcast service) that for some k ∈ IB, where k is within
distance R′B of j, a message 〈vn, v′, m′〉 was sent in the vn phase of round r by
port 〈k, v′〉. Since k is within distance R′B of j, and k is also within distance
RB/4 of loc(v′)V (as k sends a message in the vn phase only if it is joined), we
conclude that j is within distance R′B + RB/4 ≤ R′V of loc(v′)V . We conclude
by Lemma 11.12.12 that a round r bcast(m′, ·)v′,∗ event occurs in gammav′ .

Main Eventual Accuracy Result

We can now show the main result of this section: the virtual collision detector
rule CD-ruleV is eventually accurate. Lemma 11.12.16 first relates the definition
of CD-ruleV to the broadcast and receive events in the executions γi, i ∈ IB, and
γv, v ∈ IV , and argues that if the rule is not eventually accurate and a collision is
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detected in round r, then there must exist some message broadcast in one of these
executions that is not received by a nearby neighbor.

The argument then divides into two cases, depending on whether the receiving
node is a client or a virtual node. If the receiving node is a client, the argument
relies on Lemma 11.12.15 to show that some messages is lost; if the receiving node
is a virtual node, the argument relies on Lemmas 11.12.13 and 11.12.14 to show that
some message is lost.

Lemma 11.12.16. The collision detector rule CD-ruleV is eventually accurate, sta-
bilizing in round rgst + 1.

Proof. We have to show that for every broadcast port j ∈ bcast-portsV , for every
round r > rgst +1, for every p′, q′ ∈ N0, if p′ ≤ q′, then CD-rule(j, r, ·, ·, p′, q′)V = null.

Recall the rule for constructing CD-ruleV : Consider the case where a round r
recv(M, cd , ·, ·)j,∗ event occurs in γj, for some M ⊆ msgs with the following properties:

1. p = |sentM (j, r)|,

2. q = |M ∩ sentM (j, r)|,

3. p′ = |sentMinterfere(j, r)|, and

4. q′ = |M ∩ sentMinterfere(j, r)|.

In this case, the construction specifies that CD-rule(r, p, q, p′, q′)V = cd , i.e., the rule
depends on whether the recv event delivers a collision to j. In all other cases, i.e., for
all j ∈ IB, p, p′, q, q′ ∈ N0 where the round r recv event does not satisfy Properties 1–
4, CD-rule(r, p, q, p′, q′)V is set to a default value that satisfies the accuracy property:
if p′ ≤ q′, then CD-rule(r, p, q, p′, q′)V = null.

Thus, we must show that if a round r recv event occurs satisfying Properties 1–4
and if p′ ≤ q′, then cd = null. In all other cases, i.e., where no such round r recv event
occurs, the desired conclusion follows immediately from the definition of CD-ruleV .
For the rest of this proof, fix j ∈ IB, r ∈ N, p, p′, q, q′ ∈ N0, where p′ ≤ q′, such that
the round r recv(M, cd , . . .)j,∗ in γj satisfies Properties 1–4. Assume for the sake of
contradiction that cd = ±. Our main goal is to show that there exists some message
m ∈ sentM (j, r)′ that is not in M , i.e., p′ > q′, resulting in a contradiction. (Notice
that by definition p′ ≥ q′, since M ∩ sentM (j, r)′ is no larger than sentM (j, r)′; hence
for the purposes of constructing CD-ruleV , the assumption that p′ ≤ q′ is equivalent
to assuming that p′ = q′.)

The proof divides into two cases, depending on whether j is a client or a virtual
node, that is, whether j ∈ IB or j ∈ IV . In each case, we trace back the cause of the
collision, and identify some message in sentM (j, r)′ that is not in M .

• If j is a client, then there are two possible reasons why port 〈j, ∗〉 detects a
collision in round r: either it detects a collision during the client phase, which
implies that a message sent by a client was lost, or it is notified of a collision
by the emulator vn-client-outputv,j event for some virtual node v ∈ IV ; the
latter event indicates that some message sent by virtual node v was lost, as per
Lemma 11.12.15.
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• If j is a virtual node, then we can conclude that the round r ballot b for the
emulator for virtual node j includes a collision in either b.clientCD or b.vnCD .
(We can refer to the round r ballot since r > rgst , and hence round r is green,
implying that there is a unique proposer and hence a unique ballot.) In the
former case, we know from Lemma 11.12.13 that some client broadcast a mes-
sage that was not received by virtual node j; in the latter case, we know from
Lemma 11.12.14 that some virtual node broadcast a message that was not re-
ceived by virtual node j.

We now proceed in more detail.
Case 1. j ∈ IB is a client. We begin by examining the multiplexer (Figure 10-13):

notice that the multiplexer delivers a collision notification to a client port 〈j, ∗〉 if and
only if E(multiplexer).inCD j = ±. The variable inCD can be set equal to ± in two
different transitions: recvj,0 (line 709), and vn-client-outputj,v (line 653). Thus, this
case divides into two subcases: in the first, we show that a message sent by a client
is lost; in the second, we show that a message sent by a virtual node is lost. Since
these are the only ways in which E(multiplexer).inCD j = ±, showing a contradiction
in each of these cases is sufficient to complete Case 1.

Case 1, Subcase A. Assume that a recv(·,±, ·, ·)j,0 event occurs in the client phase
of round r, thus setting E(multiplexer).inCD j = ±. By the eventual accuracy of the
basic broadcast service, we can conclude that there was some message m /∈ M sent
in the client phase of round r by a port p ∈ bcast-portsB where p is within distance
R′B. Moreover, for all v ∈ IV , for all i ∈ IB, port 〈i, v〉 does not broadcast in the
client phase. (Notice that E(v).outgoing-msg i is unmodified in the join-ack phase.)
Thus we can conclude that for some i ∈ IB, p = 〈i, 0〉. Thus, we conclude that there
is a bcast(m, ·)i,0 in α in the client phase of round r. From the precondition of the
bcast event (line 694, Figure 10-13), we can see that m = 〈client, outM , ·〉, where
E(multiplexer).outM i 6= ⊥. The final step is to trace back the origin of the message
in outM , which is set only in the bcasti,∗ transition at the beginning of virtual round
r. Thus, we conclude that there is a bcast(m, ·)i,∗ event in α, and thus in γi. Since
i is within distance R′B ≤ R′V of j, we can conclude that m ∈ sentM (j, r)′, and we
have just argued that m /∈M , resulting in a contradiction: p′ > q′.

Case 1, Subcase B. Assume that a vn-client-output(m′,±)j,v occurs at the end of
virtual round r, thus setting E(multiplexer).inCD j = ±. Since the vn-client-output
event occurs, we can conclude by Lemma 11.12.15 that m′ = ⊥ and that there exists
a round r bcast(m, ·)v′,∗ event in γv′ , where m 6= ⊥ and j is within distance R′V of
loc(v)V .

Moreover, it is easy to see that message m is not delivered to port 〈j, ∗〉 in round
r: the multiplexer delivers messages to the client only when no collisions are reported,
as per line 666. Thus we can conclude that m /∈ M , where M is the set of messages
delivered via the recv(M, cd , . . .)j,∗ event described above, resulting in a contradiction:
p′ > q′.

Case 2. j ∈ Iv is a virtual node. We next examine the case where j is a virtual
node. Let 〈r1, r2〉 ∈ updown(v) be the epoch containing virtual round r that delineates
an execution of v. If r2 = ∞, then choose r2 = r, so that 〈r1, r2〉 delineates a finite
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epoch of v. Thus, γv contains some execution from execs(r1, r2)v.

Since r ≥ rgst , we can conclude by Lemma 11.8.12 that rounds r and r2 are
both green rounds (since v is up in rounds r and r2), and thus by Corollary 11.7.12
that |execs(r1, r)v| = 1 and |execs(r1, r2)v| = 1. Fix γ ∈ execs(r1, r)v and γ′ ∈
execs(r1, r2)v. By Lemma 11.7.20, we can conclude that γ′ extends γ, since γ′ extends
some execution in execs(r1, r)v, and γ is the only such execution. Also, fix k ∈ IB

to be a node that completes round r such that γ = exec(r1, r, k)v. (By definition of
execs , such a k exists.)

Thus, by assumption, there is a round r recv(M,±, . . .)j,∗ event in γ. Examine
now the calculate-state function (Figure 10-11) which is used to construct γ at the
end of round r. From Lemma 11.8.13 we conclude that E(j).round-status [r ]k =
green. Thus it is clear that the round r recv event is constructed by the do-recv
function to deliver a collision only if inCD = ± (line 556, Figure 10-11). Moreover,
inCD ← ± in two specific circumstances: (1) E(j).ballot [r ].clientCDk = ±, or (2)
E(j).ballot [r ].vnCDk = ± (see lines 546–549, Figure 10-11). Thus the proof breaks
down into two subcases. In the first subcase, we show that a round r message sent
by a client is lost; in the second subcase, we show that a round r message sent by
another virtual node is lost. Since these are the only ways in which a round r ballot
can contain a collision, and hence the only ways in which virtual node j can detect a
collision in round r, it is sufficient to show a contradiction in each of these cases to
conclude the proof.

Case 2, Subcase A. Since E(j).ballot [r ].clientCDk = ±, we can conclude that
some node k′ ∈ IB broadcast ballot b = E(j).ballot [r ]k in the ballot phase of round
r. We thus conclude from Lemma 11.12.13 that there exists some m ∈ msgsV and
some j′ ∈ IB where j′ is within distance R′V of virtual node j at the beginning of
round r such that a round r bcast(m, ·)j′,∗ event occurs in γj′ and 〈client, m, ·〉 /∈
E(j).b.vnM k′ immediately after the ballot b is set. Thus, we conclude that m ∈
sentM (j, r)′. Moreover, since 〈client, m, ·〉 /∈ E(j).b.vnM k, we can conclude that
〈client, m, ·〉 /∈ E(j).ballot [r ].vnM k, and hence from the construction of γ via the
calculate-state function, we can conclude that m /∈ M , the set of messages delivered
to virtual node j in round r of γj (see line 550, Figure 10-11). This results in a
contradiction: p′ > q′, which concludes our proof.

Case 2, Subcase B. Since E(j).ballot [r ].vnCDk = ±, we can conclude that some
node k′ ∈ IB broadcast ballot b = E(j).ballot [r ]k in the ballot phase of round r.
We thus conclude from Lemma 11.12.14 that there exists some m ∈ msgsV and
some v′ ∈ IV where v′ is within distance R′V of j at the beginning of round r (and
throughout the execution, since virtual nodes do not move) such that a round r
bcast(m, ·)v′,∗ event occurs in γv′ and 〈vn, v′, m〉 /∈ E(j).b.vnM k′ immediately after the
ballot b is set. Thus, we conclude that m ∈ sentM (j, r)′. Moreover, since 〈vn, v′, m〉 /∈
E(j).b.vnM k, we can conclude that 〈vn, v′, m〉 /∈ E(j).ballot [r ].vnM k, and hence from
the construction of γ via the calculate-state function, we can conclude that m /∈M , the
set of messages delivered to virtual node j in round r of γj (see line 550, Figure 10-11).
This results in a contradiction: p′ > q′, which concludes our proof.
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11.13 Constructing an Execution of the Virtual

Broadcast Service

In Sections 11.9 and 11.10 we constructed executions for each of the clients and virtual
nodes, and for each of the contention managers. In Section 11.12, we constructed a
collision detector rule, CD-ruleV that is complete and eventually accurate. The only
component of the system we have not yet considered is the virtual broadcast service
itself. In this section, we construct an execution γB for the virtual broadcast service.
We begin by constructing a trace of the virtual broadcast service, βB, by extracting
the appropriate events from the previously constructed executions. We then construct
the full execution, γB, by filling in the additional internal events missing from the
trace. Finally, we show in Lemma 11.13.1 that the constructed sequence is, in fact,
an execution of γB.

11.13.1 Constructing a Trace of the Virtual Broadcast Ser-
vice

We construct a trace βB of the virtual broadcast service by merging the traces of the
clients, virtual nodes, and contention managers. (Notice that every external action
of the broadcast service appears in the signature of either a client, virtual node, or
contention manager.) We proceed to construct the trace in two steps. First, we
combine the traces of the clients and virtual nodes. Since there are no actions shared
between clients or virtual nodes, this merging process is straightforward: for each
time t, we take every event that occurs at time t in any of the client or virtual node
traces and add it to the new merged trace at the same time t. The second step
is to combine the resulting trace with the traces from the two virtual contention
managers. The contention manager traces contain two types of events: bcast events
and cm-advice advice. The bcast events are already included in the merged trace, as
they were derived from the client and virtual node traces during the construction of
the contention manager traces. It suffices, then, to add the cm-advice events to the
merged trace. Recall from the construction of the contention manager traces that the
cm-advice events always come after the bcast events. Thus, at each time t we add all
the cm-advice events from the contention manager traces after all the other events at
time t.

Step 1: Merging the client and virtual nodes traces. We now proceed in more
detail to describe the construction of the merged trace. We define βi to be the trace
of execution γi, for i ∈ IB ∪ IV : βi = trace(γi), i ∈ IB ∪ IV . More formally, let
Ei = {bcasti,∗, recvi,∗, faili, recoveri}, that is, the set of external events at process i.
Then βi = γi|(Ei, ∅).

We begin with an empty trace, βB, and add events from βi, i ∈ IB ∪ IV . Our goal
is to construct a trace with the following property: for all i ∈ IB∪IV , βB|(Ei, ∅) = βi:

• (Base case:) We begin by adding all events that occur at time t = 0. That is,
for every event e that occurs in βi for some i ∈ IB ∪ IV , add event e to βB.
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• (Inductive step:) Next, assume that we have constructed βB up to and including
time t. Choose t′ to be the minimum time > t such that there exists an event
e in βi, for i ∈ IB ∪ IV at time t′. If no such t′ exists, add a trajectory τ over
the empty set of variables where dom(τ) = ∞ and stop. Otherwise, add a
trajectory τ (over the empty set of variables) to βB such that `time(βB) = t′.
That is, dom(τ) = t′− t. Then, for every event e that occurs at time t in βi for
some i ∈ IB ∪ IV , add event e to βB.

• Repeat the previous step until `time(βB) =∞.

Notice that when this process is complete, every event e in βi, i ∈ IB ∪ IV , has been
added to βB at the exact time at which it occured in βi. Moreover, notice that for
all i, j ∈ IB ∪ IV , the sets Ei and Ej are distinct, that is, Ei ∩ Ej = ∅. This implies
that the traces βi and βj contain no shared events. Thus, we can conclude that
βB|(Ei, ∅) = βi.

Step 2: Merging βB and the contention manager traces. The second step of the
process is to merge the two contention manager traces, derived from γvirtual and γclient ,
into βB. Let βvirtual = trace(γvirtual) and βclient = trace(γclient).

Recall that executions γvirtual and γclient are constructed by adding a bcast event
to the contention manager execution for every bcast event in γi, i ∈ IB ∪ IV , and
adding an immediately following cm-advice event. (See Section 11.10.) As a result
of this construction process, every bcast event in βvirtual and βclient has already been
added to βB. It remains only to add the cm-advice events to βB.

Notice that cm-advice events immediately follow bcast events, and bcast events
occur only at the beginning of virtual rounds. Thus each cm-advice event occurs
at the beginning of a virtual round, and after a bcast event. Specifically, the event
cm-advice(〈i, ∗〉, ·) immediately follows a bcasti,∗ event. We therefore modify βB as
follows:

– For every round r > 0:

– For every cm-advice(〈i, ∗〉, ·)d event e at the beginning of round r in βvirtual

or βclient , where i ∈ IB ∪ IV and d ∈ {client , virtual}:

– Add event e to γB immediately following the bcasti,∗ event at the
beginning of round r.

Let Evirtual = {cm-advicevirtual , bcasti,∗ : i ∈ IB ∪ IV }, i.e., the external actions for
the virtual contention manager. Similarly, let Let Eclient = {cm-adviceclient , bcasti,∗ :
i ∈ IB ∪ IV }, i.e., the external actions for the client contention manager. It is
straightforward to see that βB|(Evirtual , ∅) = βvirtual and βB|(Eclient , ∅) = βclient : when
restricted to the bcast events, it is clear by construction that the contention manager
traces are equivalent to βB; the addition of the cm-advice events in the same order
and at the same time ensures the desired property.
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11.13.2 Constructing an Execution of the Virtual Broadcast
Service

In this section we construction an execution γB of the virtual broadcast service,
based on the trace βB. We add events related to non-external actions—specifically,
next-round events—and construct trajectories over the variables of the virtual broad-
cast service. We then show in Lemma 11.13.1 that this construction results in an
execution. The key claim in the proof is that each event is enabled when it occurs
in the hybrid sequence. The proof this claim relies on the integrity of the virtual
broadcast service (Lemma 11.11.12) and the construction of the collision detector
rule (Section 11.12).

Let ext-actB be the set of external actions for the virtual broadcast service, that
is,

ext-actB = {bcastj : j ∈ IB ∪ IV } ∪
= {recvj : j ∈ I)B ∪ IV } ∪
= {failj : j ∈ IB ∪ IV } ∪
= {recoverj : j ∈ IB ∪ IV } ∪
= {cm-adviced : d ∈ {client, virtual}

Let actB be the actions of the broadcast service, i.e., actB = ext-actB ∪{next-round}.
Additionally, let varsB be the state variables of the broadcast service (see Figure 8-4).

Recall that an execution γB of the broadcast service is a 〈actB, varsB〉-hybrid
sequence satisfying two conditions: (1) Each trajectory τi in the sequence γ is in
the set trajsB, the trajectories of the broadcast service. (2) For each event ai in
the sequence γ, `state(τi−1)

ai−→fstate(τi). The first condition indicates that each
trajectory is allowed by the broadcast service automaton; the second condition ensures
that each action is enabled and applied appropriately according to the transition
function.

We construct the sequence γB in three steps: (1) Begin with γB = βB, a 〈ext-actB, ∅〉-
hybrid sequence; (2) Insert next-round events at the end of each virtual round, result-
ing in a 〈actB, ∅〉-hybrid sequence; (3) For each trajectory τi ∈ γB over the empty set of
variables, replace it with a trajectory over varsB. Finally, we prove in Lemma 11.13.1,
that the resulting hybrid sequence γB is in fact an execution of the broadcast service.
Step 1: We begin with γB = βB. Thus, at this point, γB consists of a hybrid sequence
alternating actions in the set actB ⊂ ext-actB and trajectories over the empty set of
variables. That is, γB is a 〈actB, ∅〉-hybrid sequence.
Step 2: We now insert next-round events at the end of each virtual round in γB. For
each round r we insert a next-round event immediately after the last recv event for
round r. More formally, for all r > 0:

• Let t = (r − 1) · RndLengthV .

• Let a be the last recv event that occurs at time t in γB. If no such a exists,
then let a be the last event prior to time t. Let t′ be the time at which event a
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occurs.

• Immediately after event a insert a trajectory τ over the empty set of variables
where dom(τ) = t− t′. Notice that if there is at least one round r recv event in
γB, then τ is a point trajectory.

• Immediately after trajectory τ , insert a next-round event.

Notice that after each insertion of a trajectory and a next-round event, γB remains a
〈actB, ∅〉-hybrid sequence.
Step 3: We now replace each trajectory τi in γB over the empty set of variables with
a trajectory τ ′i over the variables varsB. We proceed inductively:

• Initially, for all discrete variables x ∈ varsB except CD-rule, set fstate(τ ′0).x
to the initial state of the broadcast service as specified in Figure 8-4. Choose
fstate(τ ′0).CD-rule = CD-ruleB.

• Initially, for the continuous time variable, fstate(τ ′0).time = 0.

• Initially, for the continuous node locations: Let τ ′′0 be the first trajectory in exe-
cution α of the emulator system. For every j ∈ IB, assign fstate(τ ′0).location[j] =
fstate(τ ′′0 ).location[j]. That is, the initial state of each client is defined to be
the initial state of the associated node in α.

• Initially, for every v ∈ IV , fstate(τ0).location[v] = loc(v), the location of the
virtual node v.

• Assume inductively that we have determined the initial state of trajectory τ ′i ,
and the initial and final states of all trajectories preceding τ ′i in γB.

• For all the discrete variables, the state does not change during the trajectory,
and `state(τ ′i) = fstate(τ ′i).

• For the continuous time variable, `state(τ ′i).time evolves at a rate of 1 through-
out the trajectory. That is, `state(τ ′i).time = fstate(τ ′i).time + dom(τ ′i).

• For the continous virtual node location variables, the state does not change
during the trajectory, and `state(τ ′i).location[v] = fstate(τ ′i).location[v], for all
v ∈ IV , since the virtual nodes are static.

• For the continous client location variables, we copy the evolution of the tra-
jectory from execution α, i.e., from the trajectory’s evolution in the emulator
system. That is, for all j ∈ IB, for all t ≤ dom(τi), define τ ′i(t).location[j] to
be the state variable location[j] at time fstate(τi).time + t in α. (This latter
expression represents the real time of the system when time t of the trajectory
has passed.)

More formally, when we say “the state variable location[j] at some time t′ in
α,” we mean as follows: Let τ be a trajectory in execution α such that time
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t′ ∈ [fstate(τ).time, `state(τ).time]. (Since the time variable advances at a rate
of 1, this is simply shorthand for the interval of time covered by the trajectory
in α; since `time(α) is infinite, we know that there exists such a τ .) Let t′′ =
t′−fstate(τ ′).time; that is, t′′ is the point in the trajectory where the execution
reaches time t′. The state at time t′ is thus τ ′(t′′).location[〈j, 0〉].

• Lastly, we define fstate(τi+1), if dom(τi) 6= ∞. Let ai+1 be the action that
occurs immediately after trajectory τi and before trajectory τi+1. (Recall that
γB is a hybrid sequence in which actions and trajectories alternate, and that
γB has infinite limit time.) If action ai+1 is enabled in `state(τi), then define
fstate(τi+1) such that `state(τi)

ai+1−→fstate(τi+1), according to the transition
function for the virtual broadcast service. If action ai+1 is not enabled, choose
fstate(τi+1) arbitrarily. We will show that this case does not occur.

• Increment i and go to Step 4.

It is straightforward to see that, by construction, γB|(varsB, ∅) = βB; that is, if γB

is an execution of the broadcast service, then βB is a trace of the virtual broadcast
service. The main claim of this section is that γB, as thus defined, is an execution of
the virtual broadcast service:

Lemma 11.13.1. γB is an execution of the virtual broadcast service.

Proof. We need to show two things: (1) Each trajectory is allowed by the trajectories
trajs of the virtual broadcast service. In our case, this requires showing that whenever
time passes, there is no stopping condition that restricts the time passage. More
formally, we must show that for each τi ∈ γB, τi is in the trajectories of the broadcast
service. (2) For each event in γB, the event is enabled and correctly transforms the
state prior to the event to the state after the event. More formally, we must show
that for each τi ∈ γB, `state(τi)

ai+1−→fstate(τi+1). As a result of the way in which γB

is constructed, it is only necessary to show that ai+1 is enabled in `state(τi).
First, let us consider the trajectories. There are two stopping conditions that

restrict the trajectories. First, when time = round · RndLength, time cannot pass,
i.e., only the point trajectories are available. By inserting next-round events at round
boundaries, it is immediately clear that this condition is false when each time-passage
trajectory occurs in the sequence. Second, time-passage is not enabled when two ports
associated with the same node have different failure status; in the virtual infrastruc-
ture system, each node only has one port associated with it, so this condition is never
met. That is, for every i ∈ IB ∪ IV , the only port in bcast-portsV associated with
node i is port 〈i, ∗〉.

Next, we must show that for each τi ∈ γB, `state(τi)
ai+1−→fstate(τi+1). Due to

our construction, we need only show that for each τi, ai+1 is enabled in `state(τi).
We show this by induction on events in γ. Initially, τ0 is a point trajectory, and

`state(τ0) is the initial state of the broadcast service. We now consider each of the
locally-controlled (internal or output) events that occur in γB, and argue that they
are enabled:
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• next-round: The precondition of next-round is as follows:

doneP ∪ failed = bcast-portsV

time = round · RndLengthV

Thus, for the first precondition, we need to show that for each virtual node and
client, i.e., for every i ∈ IB ∪ IV , either port 〈i, ∗〉 ∈ failed or 〈i, ∗〉 ∈ doneP :
either i has failed and not recovered, or the broadcast service has delivered
messages to node i.

First we consider clients. Assume that client i ∈ IB is not failed in round r + 1.
Since clients are non-recoverable, this means that there have been no prior fail
events. We argue that the following sequence of events must occur in α at the
end of virtual round r:

recvi,∗, bcasti,∗, bcasti,0 .

We show that this sequence of events occurs by following the dependencies
backwards. By the properties of the basic broadcast service, we know that there
is a recv event in the last phase of virtual round r on port 〈i, 0〉 in the basic
system. In this case, the multiplexer sets phase to out. Therefore, according
to the trajectories, no time passage is possible until a bcast0 event, as this is
the only event which resets the phase flag. Since we are considering the last
phase of round r, this bcast0 event cannot occur until clientBcast = true. The
clientBcast event is set during the bcasti,∗ transition, and since a client is a
process, this does not occur until a recvi,∗ occurs in the previous basic round.
Since `time(α) is infinite, we know that the desires sequence of events occurs.
Thus there is a recvi,∗ transition at the end of virtual round r in α; thus by
construction there is a recvi,∗ event in γi, and hence in γB. During this recvi,∗
transition (line 58, Figure 8-5), the port 〈i, ∗〉 is added to doneP , as desired.

For virtual nodes, if v is not in a failed state at the end of round r, then it is
up in round r. (If v is down in round r, then a fail event is inserted at some
time ≤ the beginning of round r + 1, and no recover event is inserted until the
next round, by construction.) Since it is up in round r, γv contains a round r
receive event: γv contains a recv event for every round in which v is up. Thus
the first precondition for the next-round event is satisfied for both clients and
virtual nodes.

The second precondition for the next-round event requires that it occur only at
the end of each virtual round, i.e., at some time r · RndLengthV . Notice that
this follows immediately by Step 2 of the construction of γB: we insert the
next-round events into the hybrid sequence only at the appropriate times.

• fail, recover: The precondition for the fail event is:

6 ∃t ∈ N : 〈i, t〉 ∈ failed
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The precondition for the recover event is:

∃t such that 〈i, t〉 ∈ failed

time ≥ t + RndLengthV

Consider the case where v ∈ IV is a virtual node. For virtual nodes, by con-
struction, the fail and recover events are strictly alternating in execution γv: a
recover event is only inserted into γv following a prior fail event (and an inter-
vening trajectory). This ensures that the precondition for fail events is met,
and that the first of the two preconditions for recover events is met.

We now consider the second precondition of recover events, which ensures that
a node does not recover until at least time RndLengthV after it fails. Notice
thatfail events for virtual nodes are inserted only at the beginning of virtual
rounds, and recover events are inserted some ε > 0 after the beginning of virtual
rounds. Thus, since a virtual node cannot fail and recover in the same virtual
round, the time between a fail event and a recover event is at least RndLengthV ,
as required.

The preconditions in this case follow trivially for clients as there is only one fail
event per execution and clients are non-recoverable.

• recv: The recv transition has the most involved set of preconditions, and hence
is the most interesting case in this proof. Fix some p = 〈i, ∗〉 for i ∈ IB ∪ IV .
We address each of the preconditions for the recvp transition:

– time = round · RndLengthV : This precondition indicates that recv events
occur only at the end of a virtual round. If i is a client, this property follows
immediately from Lemma 11.10.2, which indicates that the recv events
occur at the correct times. If v is a virtual node, this property follows
from the construction of γv, specifically from the fact that exec(r1, r2, ·)v

is constructed by calling, alternately, do-bcast and do-recv, the former of
which inserts a fragment with zero time passage, and the latter of which
inserts a fragment with RndLengthV time passage. Thus all bcast and recv
events are inserted at round boundaries.

– some-msgs ⊆M [round ].msgs-{⊥}: This precondition indicates that every
messages delivered in round r is broadcast in round r. By Lemma 11.11.12
we know that if there is a round r recv(M, . . .)p event in γB where m ∈M ,
then for some j ∈ IB ∪ IV there is a round r bcast(m, ·)j,∗ event in γj,
and hence also in γB. The effects of a round r bcast(m, ·)j,∗ event is to
add message m to M [r], as required. It is straightforward to see that the
non-message ⊥ is never delivered by a recv event either in the case of a
client (lines 664 and 665, Figure 10-13) or a virtual node (by construction).

– if 〈m, p, ·〉 ∈M [round ] then m ∈ some-msgs : This precondition indicates
that if port p broadcasts a message in round r, then port p receives that
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message in round r. That is, this precondition guarantees the self-delivery
property of the virtual broadcast service.

In the case where p is a port on a client, this property follows from
Lemma 11.10.3 which states that if port 〈i, ∗〉 broadcasts a message m
in round r of γi, and if a round r 〈recv〉(M, . . .)i,∗ event occurs in round r,
then m ∈M .

In the case where p is a port on a virtual node, this property follows from
Lemma 11.7.13, since the construction of γv ensures that every recv event
is derived from some execution fragment exec(r1, r2, ·)v where r ∈ [r1, r2].

– p /∈ doneP : Since there is only one recvi,∗ event per virtual round (by
Lemma 11.10.2 in the case of clients; by construction in the case of virtual
nodes), and since doneP ← ∅ at the beginning of each virtual round, it
follows immediately that 〈i, ∗〉 /∈ doneP .

– p /∈ failed : If i is a client, it is immediately clear that a round r recv event
occurs only if i is not failed. If i is a virtual node, it follows from the
construction of γi that a round r recv occurs in γi only if i is up in round
r, and hence only if i is not failed in round r.

– The following set of conditions are all related to the collision detector rule:

let sentM = {m 6= ⊥: ∃ j ∈ bcast-ports, 〈m, j, ·〉∈ M[round ], |beginRound[j ] − beginRound[i ]| ≤ R}
let rcvedM = sentM ∩ some-msgs
let sentMinterfere = {m 6= ⊥: ∃ j ∈ bcast-ports, 〈m, j, ·〉∈ M[round ], |beginRound[j ] − beginRound[i ]| ≤
R′}
let rcvedMinterfere = sentMinterfere ∩ some-msgs
cd = CD-rule(i, round, |sentM|, |rcvedM|, |sentMinterfere|, |rcvedMinterfere|)

Notice that by the construction of CD-ruleV , sentM (i, r) is exactly the
set sentM defined above during the round r recv by port p = 〈i, ∗〉. The
same holds for sentMinterfere(j, r), in Section 11.12, and sentmInterfere
in the precondition. Thus, by precisely the definition of CD-ruleV , the
precondition for cd holds.

– cm = advice[i]: By the construction of γvirtual , if cm = active in this case,
then there is a cm-advice(active, p) at the beginning of round r, ensuring
that the precondition is met during the round r recv.

– loc = location[i]: For the clients, this follows from the operation of the
multiplexer: the loc delivered to the client during the recvi,∗ event is equal
to the loc received by port 〈i, 0〉 in the last phase of round r. Since the
trajectory of node i is the same in both the real and virtual infrastructure
systems, we can conclude that the location is correct. For virtual nodes,
this precondition is immediately satisfied, since virtual node locations are
static, and hence the location is built into the recv event calculated in
do-recv (Figure 10-12).

Thus we conclude that all the preconditions are satisfied for each transition, and
hence γB is an execution of the virtual broadcast service.
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11.14 Pasting the Executions Together

In this section, we paste all the component executions together, thus creating a single
execution γ of the virtual infrastructure system. We begin by stating a basic lemma
related to execution-pasting, which is an extension of Theorem 7.3 from [45,46]:

Lemma 11.14.1. Let A1 and A2 be compatible timed automata, and A = A1 × A2.
Let α1 and α2 be executions of A1 and A2, respectively.

Let β be an (E, ∅)-sequence, where E is the set of external actions of A. Suppose
that β|(Ei, ∅) = trace(αi), i ∈ {1, 2}.

Then there exists an execution α of A such that trace(α) = β, and αi = α|(Ai, Xi),
i ∈ {1, 2}.

It follows that we can paste together a countable collection of components:

Corollary 11.14.2. Let A1, A2, . . . , Ak be a finite collection of compatible timed au-
tomata, and let A = A1 × A2 × . . .× Ak. Let αi be an execution of Ai.

Let β be an (E, ∅)-sequence, where E is the set of external actions of A. Suppose
that β|(Ei, ∅) = trace(αi), i ∈ {1, 2, . . . , k}.

Then there exists an execution α of A such that trace(α) = β, and αi = α|(Ai, Xi),
i ∈ {1, 2, . . . , k}.

Using Corollary 11.14.2, we can paste together all the various components execu-
tions that we have constructed in the preceding sections:

• γi, i ∈ IB, the clients,

• γv, v ∈ IV , the virtual nodes,

• γvirtual , the virtual contention manager,

• γclient , the client contention manager, and

• γB, the virtual broadcast service.

The end result is an execution of the virtual infrastructure system. Moreover, since
the execution of the virtual infrastructure system is constructed from the client execu-
tions, we can conclude that the resulting execution, when restricted to a given client’s
behavior, is equivalent to the original execution alpha, when restricted to the client’s
behavior. This implies that the execution α is a valid emulation of a virtual system.
The following theorem, then, proves the main result that the algorithm presented is
a correct implementation of a virtual infrastructure system:

Theorem 11.14.3. For all i ∈ IB, let Ci be client i, that is, automaton Remap(A(i)V , i).
Then there exists a timed execution γ of the virtual infrastructure system such that
for all i ∈ IB, γ|〈C.actions i, C.vars i〉 = α|〈C.actions i, C.vars i〉.

Proof. We first notice that, by construction, βB contains all the events from the client
traces, the virtual node traces, the contention manager traces, and (tautologically)
the virtual broadcast trace. That is:

411



• For all i ∈ IB ∪ IV , βB|(Ei, ∅) = βi, where Ei is the set of external actions of
automaton Remap(A(i)V , i).

• βB|(Evirtual , ∅) = βvirtual , where Evirtual is the set of external actions of the virtual
contention manager.

• βB|(Eclient , ∅) = βclient , where Eclient is the set of external actions of the client
contention manager.

Since the virtual infrastructure system is the composition of the clients, virtual nodes,
contention managers, and the broadcast service, we conclude by Corollary 11.14.2 that
there exists an execution γ such that trace(γ) = βB and:

• For all i ∈ IB ∪ IV , γ|(Ai, Xi) = γi, where Ai is the set of actions of automaton
Remap(A(i)V , i) and Xi is the set of variables of automaton Remap(A(i)V , i).

• γ|(Avirtual , Xvirtual) = γvirtual , where Avirtual is the set of actions of the virtual
contention manager, and Xvirtual is the set of variables of the virtual contention
manager.

• γ|(Aclient , Xclient) = γclient , where Aclient is the set of actions of the client con-
tention manager, and Xclient is the set of variables of the client contention
manager.

• γ|(Abcast , Xbcast) = γB, where Abcast is the set of actions of the broadcast service,
and Xbcast is the set of variables of the broadcast service.

In particular, notice that γ|〈C.actions i, C.vars i〉 = γi, which by the construction
of γi is equal to α|〈C.actions i, C.vars〉i, concluding the proof.

11.15 Eventual Collision Freedom

In this section, we show that the virtual broadcast service satisfies the ECF[GA]
property, that is, eventual collision free with good advice. In particular, we show
that the broadcast service stabilizes in round rgst + 1. The proof breaks down into
four cases, depending on whether the sending and receiving nodes are clients or virtual
nodes:

• When the sending and receiving ports are both clients, the conclusion follows
simply from the operation of the multiplexer and the eventual collision freedom
property of the basic broadcast service.

• When the sending port is a virtual node and the receiving port is a client, the
conclusion follows from noticing (1) that the round is green, and hence good,
since we are considering rounds ≥ rgst +1, (2) that the virtual node is scheduled,
since we assume it is advised to be active, and (3) that Lemma 11.12.4 implies
that in this situation, the message broadcast is in the appropriate ballot at the
receiver, which immediately leads to the desired conclusion.
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• When the sending port is a client and the receiving port is a virtual node, the
conclusion follows by tracing the message from the client until it arrives in the
ballot for the virtual node, again implying the desired result.

• When both the sending and receiving ports are virtual nodes, we argue that
Lemma 11.12.2 shows that message 〈vn, v, m〉 is broadcast in the vn phase of
round r; the ECF property of the basic broadcast service ensures that the
message is received by the round r proposer for v′, and thus is included in the
round r ballot for v′, leading to the desired result.

Lemma 11.15.1. Execution γ satisfies the eventual collision freedom with good advice
property.

Proof. Consider some virtual round r ≥ rgst + 1, and some message m ∈ msgsV .
(Note that m 6= ⊥.) We assume that some node broadcasts message m in virtual
round r, and that the other conditions for ECF[GA] hold, i.e., the node in question is
advised to be active, and no other nearby node broadcasts in round r; we then show
that each nearby node—satisfying the requisite conditions—receives message m. The
proof breaks down into four cases, depending on whether the sending and receiving
nodes are clients or virtual nodes.

• Let i, j ∈ IB be two clients and that j ∈ near(location[i], r, IB × {∗}. That is,
j and i are within distance RB/4 of each other at the beginning of round r.
We now assume the hypotheses of eventual collision freedom with good advice:
Assume that a round r bcast(m, ·)i,∗ event occurs in γB, and that for all k ∈ IB,
k 6= i, if k ∈ interfere(location[i], r, IB×{∗}), then a round r bcast(⊥, ·)k,∗ event
occurs in γB. Moreover, assume that port 〈i, ∗〉 is advised to be active in round
r. We need to show that a round r recv(M, . . .)j,∗ event occurs in γB where
m ∈M .

In this case, the proof follows from the properties of the multiplexer and the
eventual collision freedom property of the basic broadcast service. We first
argue that port 〈i, 0〉 is the only “nearby” port to broadcast a message in the
client phase of round r, and that it broadcasts message 〈client, m, ·〉. Thus we
can invoke the eventual collision freedom property of the basic broadcast service
to conclude that port 〈j, 0〉 receives this message, and hence delivers m to 〈j, ∗〉
as desired. We now proceed in more detail.

It is easy to see that in the client phase of round r there is a bcast(〈client, m, ·〉, ·)i,0

event, since E(multiplexer).outM i ← m during the hypothesized bcasti,∗ event.
(Also, see the precondition on line 694, Figure 10-13, where the message broad-
cast is derived from E(multiplexer).outM i.)

Similarly, for every k ∈ IB, k 6= i, we can conclude that port 〈k, 0〉 broadcasts
⊥ in the client phase, since E(multiplexer).outM k ← ⊥ during the client phase
bcast(⊥, ·)k,∗ event that we have assumed above.

Finally, notice that for every k ∈ IB, for every v ∈ IV , port 〈k, v〉 broadcasts ⊥
in the client phase, since port 〈k, v〉 never broadcasts during the client phase.
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Thus by the eventual collision freedom property of the basic broadcast service,
port 〈j, 0〉 receives message 〈client, m, ·〉 in the client phase of round r, and adds
〈client, m, ·〉 to the set E(multiplexer).inM i. Thus, message m is delivered to
port 〈j, ∗〉 at the end of virtual round r (see line 664, Figure 10-13), as required.

• Let i ∈ IB be a client and v ∈ IV a virtual node, where v ∈ near(location[i], r, IV×
{∗}. Assume that a round r bcast(m, ·)i,∗ event occurs in γB, and that for all
k ∈ IB, k 6= i, if k ∈ interfere(location[i], r, IB×{∗}), then a round r bcast(⊥, ·)k,∗
event occurs in γB. Moreover, assume that port 〈i, ∗〉 is advised to be active in
round r. We need to show that if a round r recv(M, . . .)v,∗ event occurs in γB,
then m ∈M .

We begin be noticing that since there is a round r recvv,∗ event in γB, virtual
node v is up in round r: by construction, a recvv,∗ event is only added to
execution γv—and hence γB—if v is up in round r. Thus, since r ≥ rgst + 1, we
can conclude by Lemma 11.8.12 that round r is good for v. Let k be the round
r proposer for v, and let b be the round r ballot for v, which we know exists by
Corollary 11.5.16.

The key claim, in this case, is that message 〈client, m, ·〉 ∈ b.clientM . We argue
that message 〈client, m, ·〉 is sent by port 〈i, 0〉 in the client phase of round r,
and that no other port sends a message in the client phase of round r. We can
then conclude that port 〈k, v〉 receives this message in the client phase, by the
eventual collision freedom property of the basic broadcast service, and that it
is thus added to the ballot.

As in the previous case, it is easy to see that in the client phase of round r there
is a bcast(〈client, m, ·〉, ·)i,0 event, since E(multiplexer).outM i ← m during the
hypothesized bcasti,∗ event. (Also, see the precondition on line 694, Figure 10-
13, where the message broadcast is derived from E(multiplexer).outM i.)

Similarly, for every k ∈ IB, k 6= i, we can conclude that port 〈k, 0〉 broadcasts
⊥ in the client phase, since E(multiplexer).outM k ← ⊥ during the client phase
bcast(⊥, ·)k,∗ event that we have assumed above.

Finally, notice that for every k ∈ IB, for every v ∈ IV , port 〈k, v〉 broadcasts ⊥
in the client phase, since port 〈k, v〉 never broadcasts during the client phase.

By the eventual collision freedom property of the basic broadcast service, we
can conclude that port 〈k, v〉 receives 〈client, m, ·〉 in the client phase and adds
it to E(v).clientM k. Since no messages are removed from this set until the
beginning of virtual round r+1, we can conclude that 〈client, m, ·〉 ∈ b.clientM .

The final step of the proof in this case is to argue that message m is received
in the round r recvv,∗ event in γv, and hence in γB. Let γ′ be the execution
including round r used in the construction of γv, and choose k′, r1, r2 such that
γ′ = exec(r1, r2, k

′)v. (By the way in which γv is constructed, we know that
r2 6= ∞.) Since b is the round r ballot, and since round r is good for v, we
know that at the end of round r, E(v).ballot [r ]k′ = b. Thus, it follows that the
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calculate-state function which constructs γ′ includes message m in the round r
recv event, as desired.

• Let v ∈ IV be a virtual node and j ∈ IB be a client, where j ∈ near(location[v], r, IB×
{∗} and j does not fail prior to the end of round r. Assume that a round r
bcast(m, ·)v,∗ event occurs in γB, m 6= ⊥, and that for all k ∈ IV , k 6= v, if
k ∈ interfere(location[v], r, IV × {∗}), then a round r bcast(⊥, ·)k,∗ event occurs
in γB. Moreover, assume that port 〈v, ∗〉 is advised to be active in round r. We
need to show that if a round r recv(M, . . .)j,∗ event occurs in γB, then m ∈M .

Since port 〈v, ∗〉 is advised to be active in round r, by the construction of γvirtual

we can conclude that v is scheduled for round r. Thus the scheduled-veto-2 phase
is the last agreement phase of round r for v.

Next, we notice that E(v).round-status [r ]j = green at the end of the last agree-
ment phase of virtual round r: since j is within distance RB/4 of loc(v)V at the
beginning of round r, we can conclude that j is within distance 3RB/4 at the
beginning of the last agreement phase, since the velocity of a node is bounded;
we apply Lemma 11.8.8 to conclude that E(v).round-status [r ]i = green at the
end of the last agreement phase, the scheduled-veto-2 phase.

By Lemma 11.12.2 we conclude that there exists some i ∈ IB that begins
round r for v and remains joined and not failed through the beginning of the
scheduled-ballot phase such that there is a round r bcast(〈vn, v, m〉, ·)i,v event
in the vn phase of round r, and a round r bcast(〈vn, v, b〉, ·)i,v event in the
scheduled-ballot phase of round r. Since i is the unique proposer for round r,
we can conclude that E(v).ballot [r ]j = b.

We now show that 〈vn, v, m〉 ∈ b.vnM , when subsequently implies that 〈vn, v, m〉 ∈
E(v).ballot [r ].vnM j, which is sufficient to imply that message m is delivered to
client j. First, we can conclude that by the self-delivery property of the basic
broadcast service, port 〈i, v〉 receives the message 〈vn, v, m〉 in the vn phase, and
adds it to the set nearby-msgs . Since i broadcasts a ballot in the scheduled-ballot
phase, we can conclude that i is within distance RB/4 of loc(v)V , and hence
satisfies the condition on line 261 (Figure 10-5).

We now argue that all other ports near to 〈i, v′〉—with the exception of port
〈i, v〉—broadcast ⊥ in the vn phase. We first consider ports of the form 〈k, v〉,
for all k ∈ IB, then ports of the form 〈k, v′′〉, for k ∈ IB, v′′ ∈ IV , and finally
ports of the form 〈k, 0〉, for k ∈ IB.

– Ports of the form 〈k, v〉: By Lemma 11.8.3, there is only one port that
has E(v).roundCM = active at the end of the client phase; moreover we
know that E(v).roundCM i = active, since i broadcasts a message in the
vn phase. Thus, we can conclude that for all k ∈ IB, k 6= i, port 〈k, v〉
does not broadcast a message in the vn phase of round r, that is, there is
a bcast(⊥, ·)k,v transition in the vn phase of round r.
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– Ports of the form 〈k, v′′〉: For all k ∈ IB, for all v′′ ∈ IV , v′′ 6= v, we
argue that if 〈v′′, ∗〉 ∈ interfere(location[v], r, IV ×{∗}), then either there is
a round r bcast(⊥, ·)v′′,∗ in γv′′ , or there is no round r bcastv′′,∗ event.

We have assumed that no nearby port broadcasts a non-⊥ message in
round r in γB. For the sake of contradiction, consider some k ∈ IB such
that there is a bcast(〈vn, v′′, m′〉, ·)k,v′′ transition in the vn phase of round
r. Then by Lemma 11.12.12, there is a round r bcast(m′, ·)v′′,∗ event in
γv′′ . However, by assumption m′ = ⊥. Since, as per line 238, we know
that m′ 6= ⊥, this implies a contradiction. We conclude that if there is a
bcastk,v′′ event in the vn phase of round r where v′′ is within distance 2R′V
of v, then port 〈k, v′′〉 broadcasts ⊥.

Notice that the preceding argument is for a virtual node v′′ that is in
the interference range of virtual node v. We are interested, in this case, in
nodes k ∈ IB that are within the interference range of port 〈i, v〉. Consider
some k ∈ IB that is within distance 2R′B of i, and some v′′ ∈ IV , where
v′′ 6= v. First, port 〈k, v′′〉 broadcasts a non-⊥ message only if k is within
distance RB/4 of v′′. And we know that i is within distance RB/4 of v.
Thus, if port 〈k, v′′〉 were to broadcast a non-⊥ message, then we could
conclude that v′′ is within distance 2R′B = 2R′V − RB/2 of v′, resulting in
a contradiction.

– Ports of the form 〈k, 0〉: For all k inIB, port 〈k, 0〉 of the multiplexer does
not broadcast in the vn phase.

As argued above, there is only message broadcast by a port p ∈ bcast-portsB

in the interference radius of 〈i, v〉, that is, within distance 2R′B. We conclude
from the eventual collision freedom property of the basic broadcast service, that
port 〈i, v〉 receives message 〈vn, v, m〉 in the vn phase of round r, and adds this
message to nearby-msgs .

We thus conclude that E(v).vnM i ← nearby-msgs : Since no other ports near
to i broadcast a message in the vn phase of round r, we can conclude that
|nearby-msgs| = 1 (line 264), that is, 〈vn, v, m〉 is the only message is nearby-msgs .
By the eventual accuracy of the basic broadcast service, we conclude the cd =
null in the vn phase of round r, as the only message broadcast by a neighbor-
ing replica was, in fact, received (line 266). Finally, since the only message in
nearby-msgs is 〈vn, v, m〉, and since v is scheduled, we can conclude that no
message is received from an unscheduled, nearby virtual node (line 268). Thus
we conclude that E(v).vnM i ← nearby-msgs , and hence message 〈vn, v, m〉 ∈
E(v).vnM i when ballot b is formed.

Thus we conclude that message 〈vn, v, m〉 ∈ E(v).ballot [r ].vnM j at the end of
virtual round r. We now examine the preconditions for the vn-client-output tran-
sitions (Figure 10-4): E(v).round-status [r ]i = green, v ∈ schedule[r mod SMAX],
and there exists 〈vn, v, m〉 ∈ E(v).ballot [r ]i.vnM . Thus, there is an output event
vn-client-output(〈vn, v, m〉, null)i,v at the end of round r.
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It follows that 〈vn, v, m〉 is added to the set E(multiplexer).inM i, and thus
message m is delivered to port 〈i, ∗〉 during the recvi,∗ event that follows imme-
diately, implying that m ∈M , as desired.

• Let v, v′ ∈ IV be two virtual nodes, where v′ ∈ near(location[v], r, IV × {∗}.
Assume that a round r bcast(m, ·)v,∗ event occurs in γB, and that for all k ∈ IV ,
k 6= v, if k ∈ interfere(location[v], r, IV ×{∗}), then a round r bcast(⊥, ·)k,∗ event
occurs in γB. Moreover, assume that port 〈v, ∗〉 is advised to be active in round
r. We need to show that a round r recv(M, . . .)v′,∗ event occurs in γB where
m ∈M .

Since port 〈v, ∗〉 is advised to be active in round r, by the construction of γvirtual

we can that v is scheduled for round r. If v is up in round r, we can conclude
(by Lemma 11.8.12 that round r is green for v, and hence good. We conclude
by Lemma 11.12.2 that for some j ∈ IB there is a bcast(〈vn, v, m〉, ·)j,v in the
vn phase of round r, and a bcast(〈vn, v, b〉, ·)j,v in the scheduled-ballot phase of
round r.

Since there is a recvv′,∗ event in γv′ , we can conclude that v′ is up in round r.
Since r ≥ rgst + 1, we can conclude by Lemma 11.8.12 that round r is good v′.
Let i be the round r proposer for v′, and let b be the round r ballot.

We now argue that all other ports near to 〈i, v′〉—with the exception of port
〈j, v〉—broadcast ⊥ in the vn phase. We first consider ports of the form 〈k, v〉,
for all k ∈ IB, ports of the form 〈k, v′′〉, for k ∈ IB, v′′ ∈ IV , and ports of the
form 〈k, 0〉, for k ∈ IB.

– Ports of the form 〈k, v〉: By Lemma 11.8.3, there is only one port that
has E(v).roundCM = active at the end of the client phase; moreover we
know that E(v).roundCM j = active, since j broadcasts a message in the
vn phase. Thus, we can conclude that for all k ∈ IB, k 6= j, port 〈k, v〉
does not broadcast a message in the vn phase of round r, that is, there is
a bcast(⊥, ·)k,v transition in the vn phase of round r.

– Ports of the form 〈k, v′′〉: For all k ∈ IB, for all v′′ ∈ IV , v′′ 6= v, we
argue that if 〈v′′, ∗〉 ∈ interfere(location[v], r, IV ×{∗}), then either there is
a round r bcast(⊥, ·)v′′,∗ in γv′′ , or there is no round r bcastv′′,∗ event.

We have assumed that no nearby port broadcasts a non-⊥ message in
round r in γB. For the sake of contradiction, consider some k ∈ IB such
that there is a bcast(〈vn, v′′, m′〉, ·)k,v′′ transition in the vn phase of round
r. Then by Lemma 11.12.12, there is a round r bcast(m′, ·)v′′,∗ event in
γv′′ . However, by assumption m′ = ⊥. Since, as per line 238, we know
that m′ 6= ⊥, this implies a contradiction. We conclude that if there is a
bcastk,v′′ event in the vn phase of round r where v′′ is within distance 2R′V
of v, then port 〈k, v′′〉 broadcasts ⊥.

Notice that the preceding argument is for a virtual node v′′ that is in
the interference range of virtual node v. We are interested, in this case, in
nodes k ∈ IB that are within the interference range of port 〈i, v′〉. Consider
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some k ∈ IB that is within distance 2R′B of i, and some v′′ ∈ IV , where
v′′ 6= v. First, port 〈k, v′′〉 broadcasts a non-⊥ message only if k is within
distance RB/4 of v′′. And we know that i is within distance RB/4 of v′.
Thus, if port 〈k, v′′〉 were to broadcast a non-⊥ message, then we could
conclude that v′′ is within distance 2R′B = 2R′V − RB/2 of v′, resulting in
a contradiction.

– Ports of the form 〈k, 0〉: For all k inIB, port 〈k, 0〉 of the multiplexer does
not broadcast in the vn phase.

As argued above, there is only message broadcast by a port p ∈ bcast-portsB

in the interference radius of 〈i, v〉, that is, within distance 2R′B. We conclude
from the eventual collision freedom property of the basic broadcast service, that
port 〈i, v〉 receives message 〈vn, v′, m〉 in the vn phase of round r, and adds this
message to nearby-msgs .

Notice that i is the proposer for v′, and hence i is within distance RB/4 of
loc(v′)V . Thus, the condition on line 261 is satisfied, and we thus conclude
that E(v′).vnM i ← nearby-msgs : Since no other ports near to i broadcast a
message in the vn phase of round r, we can conclude that |nearby-msgs| = 1
(line 264), that is, 〈vn, v′, m〉 is the only message is nearby-msgs . By the eventual
accuracy of the basic broadcast service, we conclude the cd = null in the vn
phase of round r, as the only message broadcast by a neighboring replica was,
in fact, received (line 266). Finally, since the only message in nearby-msgs is
〈vn, v′, m〉, and since v is scheduled, we can conclude that no message is received
from an unscheduled, nearby virtual node (line 268). Thus we conclude that
E(v′).vnM i ← nearby-msgs , and hence message 〈vn, v′, m〉 ∈ E(v′).vnM i when
ballot b is formed.

The final step of the proof in this case is to argue that message m is received
in the round r recvv,∗ event in γv, and hence in γB. Let γ′ be the execution
including round r used in the construction of γv, and choose k′, r1, r2 such that
γ′ = exec(r1, r2, k

′)v. (By the way in which γv is constructed, we know that
r2 6= ∞.) Since b is the round r ballot, and since round r is good for v, we
know that at the end of round r, E(v).ballot [r ]k′ = b. Thus, it follows that the
calculate-state function which constructs γ′ includes message m in the round r
recv event, as desired. From this we can conclude that there is a recv(M, ·)v′,∗
event in round r of γv′ where m ∈M , as desired.

11.16 Virtual Node Failures

In this section, we examine when a virtual node is failed and when a virtual node is
non-failed. Intuitively, a virtual node is non-failed as long as there is some mobile
node nearby acting as an emulator. A nearby node, however, can act as an emulator
only after it completes the join protocol; the success or failure of the join protocol
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depends on whether the network has stabilized. Our goal in this section, then, is to
describe a precise situation in which we can be sure that a virtual node is non-failed.

We consider some range of virtual rounds [r1, r2], where r1 ≥ rgst + 1, and r2 ≥
r1 + SMAX. We assume that in each virtual round r ∈ [r1, r2] there is some node
ir ∈ IB that has not failed and is near to virtual node v at the beginning of round
r. We also assume that ir remains non-failed and near for long enough to complete
the join or reset protocol, and also long enough to pass on the state information to
a later emulator. Since it may require SMAX rounds before a node can complete
the join protocol, we therefore assume that each ir remains nearby and non-failed
through round r + SMAX. In this case, virtual node v is non-failed in virtual rounds
[r1 + SMAX, r2].

We first prove two preliminary lemmas. The first lemma shows that if some node
i ∈ IB begins round r for v and remains nearby and non-failed through the end of
round r, then v is up in round r. The main fact that must be proved in this lemma
is that i successfully prevents any node from resetting v.

Lemma 11.16.1. Let v ∈ IV be a virtual node, and r > 0 a virtual round. Assume
that i ∈ IB begins round r for v and remains non-failed and within distance RB/4 of
loc(v)V through the end of round r. Then v is up in round r.

Proof. By assumption v completes round r for v. Hence it remains only to show that
v is not reset in round r. We argue that i broadcasts a veto message in the join-veto
phase, thus preventing any node from resetting v in round r. We now proceed in
more detail.

Assume for the sake of contradiction that j ∈ IB resets v in round r. We know
in this case that j is within distance RB/4 of loc(v)V at the end of the join-veto
phase (line 480, Figure 10-9), and hence is within distance 3RB/4 of loc(v)V at the
beginning of the join-veto phase. Thus at the beginning of the join-veto phase nodes
i and j are within distance RB of each other. We can also conclude, as per line 480
(Figure 10-9) that v is scheduled in round r.

Since i is joined and not failed, and since v is scheduled for round r, we can
conclude that i broadcasts a veto message in the join-veto phase (lines 467–469, Fig-
ure 10-9). By the completeness of the basic broadcast service, we can conclude that
node j either receives the veto message or detects a collision in the join-veto phase,
and hence j does not reset v, resulting in a contradiction.

The second preliminary lemma shows that the join protocol successfully allows
nodes to join, after the network stabilizes. We assume that there is some node i′ ∈ IB

that is joined and not failed during the beginning of the join protocol, i.e., through
the beginning of the join-ack phase. Thus there is at least one node available to
send a join response in the join-ack phase. The regional contention manager ensures
that there is exactly one node that sends a join response. Eventual collision freedom
ensures that this message is received. Eventual accuracy shows that no collisions are
detected in the join-ack phase. The result, then, is that any node trying to join v
after the network stabilizes will complete the join protocol successfully.
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Lemma 11.16.2. Let v ∈ IV be a virtual node, and r ≥ rgst + 1 a virtual round such
that v is scheduled for round r. Let i′ ∈ IB be a node that is joined and not failed at
the beginning of the join-ack phase of round r. Let j ∈ IB be a node that is non-failed
through the end of round r, and is within distance RB/4 of loc(v)V throughout the
round. Then j completes round r for v.

Proof. In order to show that j completes round r for v, we must show that the end of
round r, E(v).joined j = true and E(v).failed j = false. Notice that the latter is true
by assumption.

If j begins round r for v, i.e., if E(v).joined j = true at the beginning of the round,
then it clearly remains joined throughout the round, as it remains within distance
RB/4 of loc(v)V throughout the round, by assumption.

Assume, then, that j does not begin round r for v, i.e., E(v).joined j = false at
the beginning of round r. We show that in this case j joins v in round r. The
argument goes as follows: First, node j broadcasts a join request in the join phase of
the protocol. Second, we identify some node i ∈ IB that broadcasts a join response
in the join-ack phase. The key step is showing that exactly one node broadcasts a
join response. (This is the second place in this paper that we use the properties of
the regional contention manager; the first is in Lemma 11.8.3.) Third, it follows from
eventual collision freedom and eventual accuracy that j receives this join information
and completes the join protocol. We now proceed in more detail.

Step 1. First, we argue that port 〈j, v〉 broadcasts a join response in the join
phase of round r. Consider the recvj,v event in the unscheduled-veto-2 phase. Since j
is near to v (line 431, Figure 10-8), and j is not joined (line 432, Figure 10-8), and
v is scheduled for round r (line 432, Figure 10-8), we can conclude that on line 433,
node j chooses to broadcast message 〈vn, v, join〉 in the join phase of round r.

Step 2. We now argue that exactly one node responds to the join request. We
begin by showing that the requirements of the regional contention manager CM v are
met, which implies that it designates exactly one node to be active in the join-ack
phase. By Lemma 11.8.2, we know that α satisfies loc(v)V -restricted contention. By
assumption, we know that some i′ ∈ IB is joined and not failed at the beginning of
the join-ack phase. Therefore, 〈i′, v〉 ∈ near(loc(v)V , [ra, ra + 1], bcast-portsB), where
ra is the join phase and ra + 1 is the join-ack phase. (Otherwise, if i′ is too far away,
it sets E(v).joined i′ = false.) Moreover, port 〈i′, v〉 contends for CM v when (and
only when) it has joined v (lines 164–167, Figure 10-4). We can therefore conclude
that port 〈i′, v〉 contends for the join (and join-ack) phases of round r. As a result,
the regional contention manager guarantees that there exists some port 〈i, v〉, i ∈ IB,
where the following properties hold:

• Port 〈i, v〉 contends for CM v in the join phase of round r. This implies that
E(v).joined i = true at the beginning of the unscheduled-veto-2 phase.

• Port 〈j, v〉 does not fail prior to the beginning of the join-ack phase of round r.

• Port 〈j, v〉 ∈ near(loc(v)V , [ra, ra + 1], bcast-portsB), i.e., i is near to v at the
beginning of the join and join-ack phases. Together with the previous two points,
this implies that i remains joined through the beginning of the join-ack phase.
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• Contention manager CM v advises port 〈i, v〉 to be active in the join and join-ack
phases of round r. This means that in the join phase recvi,v event, cm = active.

• At most one port is advised by CM v to be active in the join-ack phase of round
r. Thus for every port 〈k, v〉, k 6= i, CM v does not advise port 〈k, v〉 to be active
in the join-ack phase. Since all contention managers are conservative, and since
port 〈k, v〉 does not contend on any other contention manager, we can conclude
that in the join phase recvk,v event, cm = passive.

It remains to show one final property of port 〈i, v〉: we need to show that 〈i, v〉 either
receives the join request from node j, or detects a collision, in the join phase of round
r: since i and j are both within distance RB/4 of loc(v)V , we can conclude that i and j
are within distance RB of each other, and hence this fact follows by the completeness
of the basic broadcast service.

Thus all the conditions are satisfies for node i to broadcast a join response (see
Figure 10-9):

• line 442: Virtual node v is scheduled for round r.

• line 443: Port 〈i, v〉 either receives the join request from j, or detects a collision.

• line 445: As argued above, E(v).joined i = true at the end of the join phase (and
the beginning of the join-ack phase), and cm = active in the join phase recv
event for port 〈j, v〉.

Thus on line 446 (Figure 10-9) port i sets E(v).outgoing-msg i to an appropriate join
response message. Since i does not fail prior to the bcasti,v event in the join-ack phase
of round r, this message is broadcast in the join-ack phase.

Step 3. It remains only to show that port 〈j, v〉 receives this message. Recall that
for all k ∈ IB, k 6= j, in the recvk,v transition in the join phase, cm = passive, due to
the operation of regional contention manager CM v and the fact that all contention
managers are conservative. Moreover, for all v′ ∈ IV , v′ 6= v, if v′ is within distance
RB + 2R′B of v, then v′ is not scheduled, since the schedule is non-conflicting. From
these two facts, we conclude that for all k ∈ IB, k 6= i, for all v′ ∈ IV , if port 〈k, v′〉
is within distance 2R′B of port 〈j, v〉, then port 〈k, v′〉 does not broadcast a message
in the join-ack phase of round r: either cm = passive, if v = v′, or v′ is not scheduled.

Thus, by the eventual collision freedom property of the basic broadcast service,
we conclude that port 〈j, v〉 receives the message broadcast by port 〈i, v〉 in response
to the join request. Moreover, since only one message was sent by a node within
the interference range of 〈j, v〉, and since that message was received, we conclude by
the eventual accuracy of the basic broadcast service (Lemma 8.1.42) that port 〈j, v〉
does not detect a collision in the join-ack phase of round r. Thus, on lines 460–463
(Figure 10-9), node j sets E(v).joined j = true, as desired. Since j remains near to v
and non-failed through the end of round r, j completes round r for v.
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Finally, we can show that virtual node v is non-failed as long as in each round
there exists some node available that remains nearby for sufficiently long.2

Theorem 11.16.3. Let v ∈ IV be a virtual node. Let r1 ≥ rgst+1 and r2 ≥ r1+SMAX
be two virtual rounds. Assume that for every r ∈ [r1r2] there exists some node ir ∈ IB

with the following properties:

• Node ir does not fail prior to the end of round r + SMAX.

• Node ir is within distance RB/4 of loc(v)V from the beginning of round r until
the end of round r + SMAX.

Then virtual node v is non-failed in rounds [r1 + SMAX, r2].

Proof. Recall from Section 11.9 that, as per the construction of γv, virtual node v
fails in round r when v is down in round r. Thus our goal is to show that virtual
node v is up in rounds [r1 + SMAX, r2]. In fact, choose r′1 ∈ [r1, r1 + SMAX] such that
v ∈ schedule[r′1]; by the completeness of the schedule, we know that there is some
such r′1. We in fact show that v is up in rounds [r′1 + 1, r2]: v is reset in round r′1, if
it is not already up, and remains up throughout the remaining rounds.

We begin by showing that either virtual node v is up in round r′1, or v is reset
in round r′1. We then proceed to show that virtual node v remains up in each of the
following rounds through round r2. Specifically, for each virtual round we identify a
node that begins that round and remains joined and not failed through the round.
That is, we say that node i is responsible for round r (with respect to v) if i begins
round r for v and remains joined and not failed through the end of round r. We
argue that if there is some node responsible for each round, then v is up in that
round: the responsible node broadcasts in the join-veto round, preventing a reset,
and also satisfies the requirement that some node complete the round.

For round r′1 + 1, this “responsible” node is the node that performed the reset
in round r′1, if v is reset in round r′1, or ir′1 , otherwise. For each ensuing round
r, the responsible node is either the same as the responsible node for round r − 1,
or alternatively node ir. In this way, by identifying a node responsible for each
round, and thus we ensure that the virtual node is up in each round. In particular,
Lemma 11.16.1 shows that if some node is responsible for round r, then v is up in
round r.

We now proceed in more detail. We begin by examining round r′1; we consider
two subcases, depending on whether there is some node i′ ∈ IB that is available to
broadcast a message in the join-ack phase. If there is some node that is joined and
not failed at the beginning of the join-ack phase, we argue that ir′1 successfully joins
v in round r; otherwise, we argue that ir′1 resets v in round r′1. In each case, we argue
that ir′1 is responsible for rounds [r′1, r

′
1 + SMAX].

2Notice that the hypothesis of this lemma can be slightly weakened; in fact, it is only important
that nodes are available in rounds in which v is scheduled; in unscheduled rounds, new nodes cannot
join v.
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• Assume there exists some node i′ ∈ IB that is joined and not failed at the
beginning of the join-ack phase of round r. By Lemma 11.16.2 we conclude
that node ir′1 completes round r for v. Since, by assumption, node ir′1 remains
near to v and not failed for rounds [r′1, r

′
1 + SMAX], we can conclude that ir′1 is

responsible for rounds [r′1 + 1, r′1 + SMAX].

• Assume there is no node i′ ∈ IB that is joined and not failed at the beginning
of the join-ack phase of round r. In this case, node ir′1 resets v in round r′1. In
particular, since there is no node that is joined and not failed at the beginning
of the join-ack phase, we can conclude that there is no node joined and not
failed at the beginning of the join-veto phase: it is impossible for any node to
join during the join-ack phase, since no node broadcasts a join response in the
join-ack phase.

Moreover, since there is no node joined and not failed at the beginning of the
join-veto phase, no node broadcasts a message during the join-veto phase. Thus
we can conclude that node ir′1 does not receive any messages during the join-veto
phase. By the eventual accuracy of the basic broadcast service (Lemma 8.1.42)
we can conclude that port ir′1 does not detect a collision in the join-veto phase
of round r. Since v is scheduled, and since ir′1 is close to v, all the conditions
are therefore met for ir′1 to reset v (see lines 480–481, Figure 10-9).

We therefore conclude that ir′1 completes round r′1 for v. As in the previous
case, we can conclude that ir′1 is responsible for rounds [r′1 + 1, r′1 + SMAX].

We have now shown that there exists some node that is responsible for rounds
[r′1 + 1, r′1 + SMAX]. By Lemma 11.16.1, we can conclude that v is up in rounds
[r′1 + 1, r′1 + SMAX]. Assume inductively that for some c > 0, we have shown that
there exists a node responsible for each round in the round [r′1 + 1, r′1 + c · SMAX],
and that v is up in these rounds. (We have already established this for c = 1.)
If r′1 + c · SMAX < r2, we now identify a node to be responsible for the rounds
[r′1 + c · SMAX + 1, r′1 + (c + 1) · SMAX], and conclude by Lemma 11.16.1 that v is up
in these rounds. Let r = r′1 + c · SMAX.

Specifically, we argue that node ir is responsible for rounds [r+1, r+SMAX], which
is the desired range. Since there exists some node i′ ∈ IB that is responsible for round
r, and since v is up in round r, Lemma 11.16.2 shows that node ir completes round
r for v. Since ir, by assumption, remains near v and non-failed through the end of
round r + SMAX, we conclude that ir is responsible for v through round [r + SMAX],
as desired. We thus conclude that v is up in rounds [r′1, r2], which implies that v is
non-failed in rounds [r′1, r2].
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Chapter 12

Conclusion

In this thesis we have introduced the idea of virtual infrastructure, a set of new
techniques for simplifying the development of reliable applications for unreliable and
unpredictable wireless ad hoc networks. We have shown how to emulate virtual
infrastructure in fault-prone mobile networks, considering both networks with reliable
communication (Part I), and unreliable communication (Part II). In this chapter, we
begin (Section 12.1) by briefly reviewing the main contributions of this thesis. We
then discuss in Section 12.2 a protype implementation based on some of the ideas in
this thesis. Finally, we conclude in Section 12.3 with a discussion of open questions
and ongoing research.

12.1 Contributions

The first main contribution of this thesis is the introduction of virtual infrastruc-
ture, that is, the idea of emulating reliable fixed infrastructure in wireless networks
that have no preexisting infrastructure. We describe three different infrastructure
abstractions, each with different functionalities and capacities.

• The first of these abstractions, the Virtual Object Layer (Section 3.1), provides
clients with reliable data storage, known as virtual objects. The virtual ob-
jects are (relatively) reliable, and communication between the clients and the
virtual objects is reliable. We show how to use these virtual objects to build a
reconfigurable, atomic distributed shared memory (Chapter 6).

• The second of these abstractions, the Virtual Node Layer (Section 3.2), includes
virtual computation; the abstraction consists of both clients and virtual nodes,
which communicate reliably. Communication can be long-distance, via a virtual
GeoCast service (as discussed in Section 3.2), or via a simple local broadcast
(as discussed in Chapter 7). The virtual nodes can be used to form an overlay
network that facilitates communication and coordination among the clients.

• The third virtual infrastructure abstraction is designed for collision-prone net-
works that do not support reliable communication. The abstraction consists
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of clients and virtual nodes that communicate via synchronous local wireless
broadcast. Communication, however, is unreliable: messages can be lost due
to interference, collisions, and other unpredictable anomalies. The clients and
virtual nodes are equipped with collision detectors, which help to detect when
messages are lost, and contention managers, which help to determine how to
reduce contention on the wireless channel.

By designing simple abstractions, we facilitate the design of reliable software for
wireless networks.

The second main contribution of this thesis is a set of algorithms for emulating
virtual infrastructure in fault-prone networks that support reliable and timely com-
munication. We show how to extend standard replicated-state-machine techniques to
implement Virtual Object Layers and Virtual Node Layers. The basic underlying idea
is that each mobile node in the vicinity of a virtual node participates in replicating
that virtual node. The key challenge here lies in supporting nodes that join and leave
the emulation, and in handling the situation when a virtual node (or object) is reset.

The third main contribution of this thesis is a protocol for emulating virtual infras-
tructure in fault-prone and collision-prone networks. We introduce (in Section 8.2)
a more realistic model for wireless networks that accounts for the real unpredictable
behavior of wireless radios: messages are lost due to interference, collisions, and other
anomalies. As a result, algorithms for these networks are much more involved. We
develop an efficient emulation algorithm that emulates one round of the virtual infras-
tructure abstraction in a bounded number of real rounds of communication; moreover,
the size of each message is bounded. As in the earlier emulation algorithms, the basic
underlying idea is to replicate the virtual node at mobile nodes in the nearby region.
While inspired by techniques such as three-phase commit, this algorithm relies on a
new veto-based paradigm for achieving partial-agreement among the replicas.

To summarize, we introduce in this thesis the idea of virtual infrastructure; we
present three virtual infrastructure abstractions; and we develop two different tech-
niques for emulating virtual infrastructure in wireless networks, considering networks
with both reliable and unreliable communication.

12.2 Building a Prototype Virtual Infrastructure

In order to better understand the trade-offs and engineering considerations involved
in the deployment of virtual infrastructure, we have begun to develop a prototype
implementation based on the ideas presented in this thesis (see [14]).

12.2.1 Virtual Node Emulator

We focus on a virtual node layer that is specifically optimized for practical imple-
mentation. The virtual nodes’ in this layer are event driven, taking (atomic) steps
in which they (1) receive a message, (2) update their state, and then (optionally)
(3) send a message. The clients and virtual nodes communicate via (mostly-reliable)
local broadcast.
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Much like the emulation algorithms presented in this thesis, the mobile nodes
replicate each nearby virtual node. The emulation is implemented by three com-
ponents: (1) the Consistency Manager, which attempts to ensure that each of the
replicas has a consistent view of the virtual node’s state; (2) the Leader Manager,
which attempts to select a leader to manager the emulation; and (3) the Membership
Manager, which facilitates the process of nodes’ joining the emulation. Unlike the
algorithms described in this thesis, the emulation is managed by a leader. The leader
is responsible for sending messages on behalf of the virtual node, and in ensuring that
nodes receive an up-to-date replica of the state when they join the emulation. The
main algorithmic issues occur during transitions in leadership, for example, when a
leader fails or leaves the emulation.

The emulator was implemented in Python and deployed on a testbed of HP iPAQ
Pocked PCs. The iPAQs run linux and communicate via an 802.11 wireless adaptor.
The devices were carried through the hallways of an office building, providing mobility.
Each device determined its approximate location by querying the closest 802.11 access
point. (The access points were used only to determine the device’s location; all
communication was performed in ad hoc mode among the mobile devices.)

12.2.2 Virtual Traffic Control

Using this virtual infrastructure platform, we built a simple traffic control application
that implements a virtual traffic light at a busy intersection. Each user carries an HP
iPAQ, which presents the user with a visual indication as to whether the light is green
or red, i.e., whether she can safely proceed through the intersection. Depending on
the number of users waiting in each direction, the virtual traffic light chooses one of
the four directions and allows traffic to proceed, while indicating that the other users
should wait. A screenshot of the application can be found in Figure 12-1.

While the virtual traffic light application itself is clearly quite simple, such appli-
cations can be non-trivial to develop in wireless ad hoc networks. In fact, the main
difficult of a traffic light reduces to the problem of mutual exclusion, and there are
many subtleties involved in implementing a reliable, fault-tolerant mutual exclusion
protocol in a wireless ad hoc network. Yet in the context of a virtual node abstrac-
tion, the virtual traffic light application becomes quite simple, requiring fewer than
300 lines of Python code. Abbreviated Python code executing on the clients and
virtual nodes can be found in Figure 12-2. (In both cases, we have removed the error
checking and user-interface code for clarity and succinctness.)

12.3 Open Questions and Ongoing Research

In this section, we discuss some of the open questions raised by the research in this
thesis, and some of the ongoing research that is beginning to address these questions.
First, in Section 12.3.1 we discuss some of the applications that we have considered
developing on the virtual infrastructure platform. We then discuss in Section 12.3.2
some of the issues and trade-offs that arise in implementing virtual infrastructure.
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Figure 12-1: Two screenshots from the Virtual Traffic Light demo. The traffic light
is controlling access to an intersection, with users arriving from four different regions.
In the screenshot on the left, the user is in the top right region (dark shaded), and has
a green light. In the screenshot on the right, the user is in the bottom right region
(dark shaded), and has a red light. In each region, the interface indicates the number
of users waiting to access the intersection.
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Figure 12-2: Virtual Traffic Light: Virtual Node and Client Routines

Main routine executing on the virtual node:

def msgReceived(self, msg):

replyArray = []

if msg.msgtype(msg) == "UPDATE":

self.UpdateVehInfo(msg)

self.UpdateLightState()

reply = "STATUS:" + self._statusSTR_()

replyArray.append(reply)

return replyArray

Main routine executing on the client:

while (self.running):

transmit-msg = self.createUpdateMessage()

self.sock.bcast(transmit-msg)

while self.sock.select() :

rcv-msg = self.sock.recv()

self.UpdateUI(rcv-msg)

if self.location.moved() :

self.UpdateUI(self.location.position)
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Finally, in Section 12.3.3 we discuss some of the interesting algorithmic questions
that remain.

12.3.1 Virtual Infrastructure Applications

In this section, we briefly overview some of the applications that we have considered
developing on the virtual infrastructure platform.

Traffic Control. Recall from Section 12.2.2 that we have already begun to im-
plement a simple traffic control system on our prototype virtual infrastructure. As
currently implemented, the system supports virtual traffic lights that can control the
flow of traffic at specific intersections. There are many possible extensions to this
simple system. For example, the virtual traffic lights at different intersections could
coordinate to improve the flow of traffic. Moreover, the traffic control system could
notify cars of upcoming traffic, and could help to route cars around congested regions.

Air Traffic Control. A natural extension to the problem of highway traffic con-
trol is the problem of air traffic control. Currently, airplane traffic follows a strict
set of rules: flight plans must be filed in advance, deviation from flight plans is not
allowed, and problems of congestion—for example, during arrival and departure from
airports—are handled via human air traffic controllers. As air traffic has grown, how-
ever, this system has become both increasingly inefficient and increasingly susceptible
to human error; we focus here on the problem of inefficiency. (Other work, e.g., [100],
has considered solutions to minimize the problems of human error, particularly with
respect to take-off and landing.) As an example, pilots are often requires to fly longer
(and hence more expensive) routes, since routes are statically assigned prior to flight
time; they are not allowed to switch to a shorter unoccupied route.

Thus the idea of free flight has been proposed: each airplane chooses its own route
independently, and coordinates with nearby planes to avoid collisions. The challenge
lies in facilitating this coordination in a manner that allows for pilots to choose
efficient routes, while at the same time avoiding the potential for in-air collisions. It
has been proposed in [15] that an air-traffic control system could be readily built on a
virtual infrastructure platform. The three-dimensional space in which planes fly can
be divided into regions, each of which is associated with a virtual node. The virtual
nodes are responsible for coordinating the flight plans of airplanes within their region,
and for coordinating with nearby virtual nodes to ensure a safe flight plan.

Emergency Management and Rescue Worker Coordination. A third coor-
dination scenario involves the management of an emergency situation, for example,
an earthquake, a power blackout, or a terrorist attack. In such situations, emergency
workers must coordinate to rescue survivors, restore order, and otherwise ameliorate
the problems—while simultaneously ensuring the safety of the rescuers themselves.
Moreover, the catastrophic event itself may have destroyed the infrastructure required
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for the rescue workers to coordinate. Thus virtual infrastructure seems ideal for fa-
cilitating the rescue effort.

There are a variety of other benefits provided by virtual infrastructure in this con-
text. First, it is possible that some infrastructure may have survived the catastrophe;
the virtual infrastructure implementation can take advantage of any remaining infras-
tructure, while ensuring that virtual infrastructure is available even in regions where
the infrastructure has been destroyed. Moreover, this process occurs transparently,
and the rescue workers need not be aware of whether the previous infrastructure
remains or was destroyed. Second, in the future, rescue workers may make use of
robots and other mechanical devices to avoid putting the rescuers themselves in dan-
gerous situations. Lynch et al. [69] have already begun to study the problem of using
virtual infrastructure to coordinate mobile robots. Third, virtual infrastructure is
closely tied to geography, which may be particularly useful in coordinating rescue
efforts. For example, rescue workers may want to associate certain information with
particular locations, say, warning any rescue worker that approaches of some danger.

Monitoring and Data Collection. Sensor and mobile networks are often de-
ployed for the purpose of environmental monitoring and data collection. For example,
in the ZebraNet project (see, e.g., [43]), mobile devices were attached to zebras in
Kenya and used to monitor the zebra behavior. Others have proposed the idea of
using submergible and floating sensors to monitor aquatic environments. In these
situations, little infrastructure is available, and it remains difficult to aggregate and
collect the data that has been collected by these sensors. Virtual infrastructure may
provide a simple method to accomplish these tasks.

Internet Routing. Finally, we have recently begun to consider whether virtual
infrastructure can be used to facilitate internet routing in mobile networks. Specif-
ically, virtual nodes can be used to execute simple IPv6 routers, transforming an
unstructured wireless network into a well-defined network with a more traditional
structure.

12.3.2 Trade-offs in Implementing Virtual Infrastructure

There are a variety of trade-offs that arise in implementing virtual infrastructure. In
this section, we discuss some of these issues, along with some of the other challenges
that arise in practical implementations.

Notice that some of the applications discussed in Section 12.3.1 require high
reliability—for example, air traffic control—while others can tolerate more faults—
for example, data collection. Similarly, some applications—again, particularly the
control-related applications—require strong semantics, while others—for example,
IPv6 routing—can tolerate weaker best-effort semantics. When implementing virtual
infrastructure, there is an inherent trade-off between (1) the efficiency (and simplicity)
of the implementation, (2) the semantics of the virtual devices, and (3) the reliability
and availability of the virtual infrastructure.
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In the first part of this thesis, we described virtual infrastructure layers that have
strong semantics, and also provide good reliability. Specifically, the semantics of
the virtual nodes emulated in Chapter 5 are defined simply in terms of traditional
computing devices: the virtual nodes behave exactly as real computing devices in
which each step of computation is executed in order. In addition, the virtual nodes
are available as long as there are any clients in the virtual node region, with only
minimal overlap required when clients enter and leave the region. In order to ensure
these strong semantics and good reliability, the emulation sacrifices some efficiency:
it depends on a totally-ordered broadcast service that guarantees reliable message
delivery, which can be costly to implement; and it involves broadcasting redundant
messages to coordinate the replicas.

In the second part of this thesis, we describe a virtual infrastructure emulation that
also provides strong semantics, but provides more limited availability. Specifically, the
virtual nodes are themselves prone to collisions and lost messages, and during times
when the network is congested, the virtual nodes may not be available. As a result,
the virtual infrastructure emulation presented in Chapter 10 is more efficient: the
underlying broadcast service is less powerful, subject to congestion and lost messages;
we can better bound the size of messages and the overhead of the emulation after
stabilization; we can bound the length of time necessary to emulate a virtual round,
even during unstable portions of the execution. Moreover, there may be further
optimizations (as discussed in Section 12.3.3) that improve the performance of this
emulation algorithm.

For some applications, such as implementing an IPv6 router, however, weaker
semantics are sufficient. In particular, IP routing guarantees only best effort message
delivery, and hence some unexpected behavior may be acceptable. Moreover, lower
levels of reliability may be sufficient: if a virtual router resets itself on occasion, there
is little effect on the resulting routing performance. Thus it seems likely that there
are quite efficient emulation algorithms that are sufficient for implementing virtual
routers. It remains an interesting question to consider virtual infrastructure with
weaker semantics.

Another interesting trade-off that arises in the use of virtual infrastructure is
the question of how much infrastructure is needed. Each piece of infrastructure has
some cost—in terms of emulation—and provides some benefit—in terms of simplifying
coordination among the clients.

For example, in the case of virtual traffic control, it may be necessary to have
a virtual traffic light at each intersection, and it may optionally be useful to have
some additional virtual nodes in between intersections to help coordinate the traffic
and provide information to passing vehicles. Similarly, as discussed in Section 3.3,
when using virtual nodes for routing or data collision, there is a trade-off between the
number of virtual nodes and the performance of the routing and data collection: the
more virtual nodes, the lower the latency for delivering messages or aggregated data,
but the higher the cost.

Clearly, optimizing this trade-off depends significantly on the efficiency of the
virtual infrastructure emulation—which itself depends on the desired semantics and
reliability of the virtual entities.
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Another interesting problem is the dynamic control of the amount of virtual infras-
tructure. This would allow the system to dynamically adjust this trade-off, changing
the number of virtual nodes or objects, depending, perhaps, on the desired perfor-
mance. In Chapter 6, the quorum-based protocol is reconfigurable, meaning that the
set of virtual objects that the protocol uses may be dynamically changed; in this
case, there is no reason to emulate the virtual objects that are currently unused. We
examine one aspect of this question in [34], where (autonomous) virtual nodes may
be generated and destroyed on the fly.

Finally, it remains an interesting open question—and an important area of ongoing
research—to compare the performance and complexity of algorithms based on virtual
infrastructure with the algorithms implemented directly on mobile ad hoc networks.

12.3.3 Algorithmic Open Questions

There are a variety of algorithmic questions involved in designing better and more
efficient virtual infrastructure. In this section, we discuss several of these possibilities.

First, in the context of collision-prone networks, there are several optimizations
that can further improve the performance of the emulation algorithm in Chapter 10.
It seems likely that the overhead of the emulation can be further reduced: there is no
need to include the client and virtual node messages (from the client and vn phases) in
the ballot (send in the scheduled-ballot and unscheduled-ballot phase); in this case, the
overhead of the emulation after stabilization—aside from nodes joining and leaving—
is reduced to an additive constant per round. It also remains open as to whether it
is possible to reduce the number of rounds required to implement one virtual round:
as presented in this thesis, the length of a virtual round depends on the size of the
schedule; it may be possible to implement one virtual round in a constant number
of underlying rounds, independent of the size of the schedule. Finally, it remains
an open question as to whether there is a simpler algorithm for emulating virtual
infrastructure in collision-prone networks.

Second, there remain a variety of questions related to the problem of collision de-
tection. In this thesis, we have assumed that mobile nodes have access to complete,
eventually accurate collision detectors. In other work [23, 79], we have considered
majority-complete collision detectors and zero-complete collision detectors. We be-
lieve that it is possible to adapt the emulation algorithm in Chapter 10 to tolerate
majority-complete collision detection. By contrast, we believe that it is impossible to
emulate virtual infrastructure with bounded round length using zero-complete colli-
sion detectors. It also remains an open question as to which collision detectors can
be reliably built in wireless radio hardware. Perfect completeness seems unrealistic,
while zero-complete collision detectors appear more plausible. It is possible, however,
that all real collision detectors may occasionally fail, and hence it may be interest-
ing to consider probabilistic completeness conditions. There remains much work in
implementing and experimenting with various collision detectors.

Third, there also remain a variety of questions related to the problem of contention
management. Most contention managers depend on backoff protocols to reduce con-
tention, and there has been a large body of literature studying the problem of backoff.
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It remains an interesting question to consider the performance of backoff protocols
in the context of fault-prone collision detectors. Specifically, most backoff protocols
assume that the mobile nodes can accurate detect collisions. When the collision detec-
tors may be unreliable, the problem of contention management may be more involved.
It also remains an open question whether we can emulate virtual infrastructure using
even weaker contention managers.

Fourth, mobile nodes tend to have very stringent energy limitations. They have
small batteries, and a limited lifetime that is further shortened by broadcast trans-
missions that are costly, in terms of energy. It is possible to take advantage of the
redundancy already built into virtual infrastructure emulation to increase the lifetime
of a wireless network. Specifically, the various replicas for a virtual node can share
the energy cost of the emulation, potentially improving the lifetime of the entire net-
work. Designing an energy-optimal virtual infrastructure emulation remains an open
area of research, as does determining the potential energy costs and benefits of using
virtual infrastructure.

Finally, the problem of malicious (or Byzantine) devices remains an area of ongoing
research. Specifically, is it possible to emulate virtual infrastructure in the presence
of non-cooperative devices? If the malicious devices themselves can cause arbitrary
collisions, then clearly it is impossible for replicas to coordinate. Malicious devices,
however, may have some limited capacity to disrupt the network, either due to energy
limitations, or due to the existence of multiple disjoint frequencies that can be used
by the replicas to communicate. In this context, it seems likely the replicas can
communicate sufficiently to emulate virtual infrastructure. Further, however, it may
desirable that the malicious devices learn nothing of the state of the virtual system.
Cryptographic techniques related to secret sharing and secure function evaluation
may enable such scenarios.
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Appendix A

Background Material

In this chapter, we review some basic concepts and notation that are used throughout
this thesis. More details can be found in [45,46,70].

A.1 Basic Notation

• Let ⊥ be some distinguished symbol. For any set X, we refer to the set X∪{⊥}
as X⊥. For example, if msgs is a set of messages, then msgs⊥ is the set of
messages plus ⊥.

• For any execution α, `time(α) refers to the last time in the execution.

• For any finite execution α, `state(α) refers to the last state in the execution.

A.2 Timed I/O Automata

In this section, we review some of the basic theory of timed automata. See [45, 46]
for more detail. A timed I/O automaton (TIOA) is a tuple

〈vars , states , start , actions , input , output , δ, trajectories〉

that is input enabled (Definition A.2.4) and time-passage enabled (Definition A.2.5).
In more detail, an I/O automaton consists of the following components:

• vars , a set of internal variables,

• states ⊆ vals(vars), the set of states for the automaton,

• start ⊆ states , a subset of states in which the automaton may begin an execu-
tion,

• actions , a set of actions that name transitions,

• input ⊆ actions , a subset of actions designated as input actions,
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• output ⊆ actions , a subset of actions designated as output actions; output ∩
input = ∅,

• δ ⊆ states × actions × states , a transition relation that determines how the
actions modify the state,

• trajectories ⊆ trajs(states), a set of trajectories defining how the analog vari-
ables evolve as time passes in between discrete actions. (The set trajs(states)
describes all possible trajectories over the set of states.) The trajectories must
satisfy the following axioms:

– (Existence of point trajectories.) If x ∈ states , then the point trajectory
with domain [0, 0] mapping 0 to x is in trajectories .

– (Prefix closure.) For every τ ∈ trajectories and every τ ′ ≤ τ , τ ′ ∈
trajectories .

– (Suffix closure.) For every τ ∈ trajectories and every t ∈ domain(τ),
τ D t ∈ trajectories , i.e., every extension of trajectory τ is also in the set
of trajectories.

– (Concatenation closure.) Let τ0, τ1, τ2, . . . be a sequence of trajectories in
trajectories such that for each nonfinal index i, τi is closed and τi.lstate =
τi+1.fstate. Then τ0 a τ1 a · · · ∈ trajectories , i.e., the concatenation of
trajectories is also in the set of trajectories.

Definition A.2.1. An action a ∈ actions is an external action if it is an input or
an output actions, that is, a ∈ input ∪ output.

Definition A.2.2. An action a ∈ actions is an internal action if it is not an
external action.

Definition A.2.3. An action a ∈ actions is locally controlled if it is an internal
or an output action, that is, a /∈ input.

By assumption, a timed-I/O automaton is input enabled:

Definition A.2.4. An automaton is input enabled if for each state s ∈ states and
a ∈ input, there exists a s′ ∈ states such that 〈s, a, s′〉 ∈ δ.

Also by assumption, a timed-I/O automaton is time-passage enabled:

Definition A.2.5. An automaton is time-passage enabled if for each state s ∈
states there exists τ ∈ trajectories such that τ.fstate = s and either

1. τ.ltime =∞ or

2. τ is closed and some locally controlled action ` is enabled in τ.lstate.

One subclass of timed I/O automata is the set of asynchronous automata:
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Definition A.2.6. We say that a timed I/O automaton is asynchronous if all of
its variables are discrete and if its set of trajectories consists of all constant-valued
mappings from all possible time intervals.

An asynchronous automaton can have any possible time-passage between any two
discrete events.

We will be interested in automata that take only a finite number of steps in a
finite interval of time:

Definition A.2.7. We say that an execution fragment is locally Zeno if it has finite
limit time and contains infinitely many locally controlled actions.

Definition A.2.8. A timed I/O automaton is progressive if it has no locally Zeno
execution fragments.

In general, a progressive automaton guarantees to only take a finite number of
locally controlled actions in a bounded amount of time. While we will be interested
in overall systems that guarantee this property, some subcomponents of the system
may have a weaker property: they will only provide this guarantee when there are
a finite number of input actions during the execution fragment in question. We
therefore introduce here a new notion of progessivity:

Definition A.2.9. We say that a timed I/O automaton is internally progressive if
it has no locally Zeno execution fragments containing a finite number of input actions.

Composition is a key operation that combines two automata into a single automa-
ton. In order to compose two automata, they must be “compatible:”

Definition A.2.10. We say that timed automata A1 and A2 are compatible if (1)
the set of internal actions of A1 is disjoint from the actions of A2, (2) the set of
internal actions of A2 is disjoint from the actions of A1, and (3) the variables of A1

and A2 are disjoint.

When two internally progressive TIOAs are composed together, there is no guar-
antee with respect to the resulting automaton; it may in fact have Zeno executions.
When one of the automata is progressive and the other is internally progressive, then
we can state a theorem about their composition:

Theorem A.2.11. If A1 is a progressive TIOA, and A2 is an internally-progressive
TIOA, and A1 and A2 are compatible, then their composition is an internally-progressive
TIOA.

Proof. Assume that the composed automaton has a locally Zeno execution fragment.
Therefore it contains infinitely many locally controlled actions. Notice that only a
finite number of these locally controlled actions can be actions from automaton A1,
since A1 is progressive. Thus the execution fragment must contain infinitely many
locally controlled actions from A2. Since A2 is internally-progressive, this implies that
the execution fragment has an infinite number of actions that are either input actions
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to the composed automaton or output actions of A1 that act as hidden inputs to A2.
Since only a finite number of the actions are output actions from A1, this implies that
there are an infinite number of input actions to the composed automaton, satisfying
the requirements of an internally-progressive automaton.

We will often want to talk about restricting an execution to a particular au-
tomaton, i.e., to a particular set of actions and variables. Given an execution α, a set
of actions A, and a set of variables V , we denote by α|(A, V ) the (A, V )-restriction
of α.

Before defining (A, V )-restriction, we note the following notation: if f is a function
and S is a set, we donte by f |S the restriction of f to S, i.e., the function g with
dom(g) = (dom(f) ∩ S) where g(c) = f(c) for each c ∈ dom(g); if f is a function
whose range is a set of functions, and if S is a set, we indicate by f ↓ S the function
g where dom(g) = dom(f) and g(c) = f(c)|S for each c ∈ dom(g). (See [46], Section
2.)

For any finite execution α, the (A, V )-restriction of α is defined inductively as
follows:

α|(A, V ) =


τ ↓ V α = τ

α′|(A, V ).a.(τ ↓ V ) α = (α′.a.τ), a ∈ A
α′|(A, V ).(τ ↓ V ) α = (α′.a.τ), a /∈ A

For infinite executions, then the (A, V )-restriction is simply the limit over all closed
prefixes of α.

A.3 Atomic Objects

Atomic objects play an important role in the Virtual Object Model discussed in Part I
of this thesis. In this section, we first define a variable type (Appendix A.3.1), which
is used to specify an atomic object. As an example, we specify the variable type for
a read/write object. We then formally describe an atomic object (Appendix A.3.2).
Finally, we discuss what it means to implement an atomic object, and present a key
theorem that we later use to prove that the virtual objects are, in fact, atomic objects
(Appendix A.3.3).

A.3.1 Variable Types

An atomic object is specified by a variable type that describes its sequential behavior.
The definition presented here is adapted from [70], Chapter 9, and [6]. A variable
type τ consists of the following components:

• V , a set of legal values (i.e., states) for the object

• v0 ∈ V , an initial value (i.e., state) for the object

• invocations , a set of invocations

• responses , a set of responses
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• δ, the transition function, a mapping from:

(invocations × V )→ (responses × V )

that maps every invocation and state to a response and a new state.

As an example, we present the variable type for a read/write object. (In Chapter 6,
Section 6.2.1 we present a more sophisticated variable type.) A read/write object has
the following variable type:

• V , an arbitrary set of values for the atomic object

• v0 ∈ V , an arbitrary initial value

• invocations = {read} ∪ {write(v) : v ∈ V }

• responses = {read-ack(v) : v ∈ V } ∪ {write-ack}

• δ is defined as follows:

– δ(read, v)→ 〈read-ack(v), v〉
– δ(write(v′), v)→ 〈write-ack, v′〉

In programmatic style (used later in this thesis), the read/write variable type is
expressed as the sequential specification presented in Figure A-1.

A.3.2 Canonical Atomic Objects

The variable type specifies the sequential behavior of an object; it does not indicate
how the object behaves when it receives concurrent invocations. The canonical atomic
object automaton indicates the legal behaviors of an atomic object of a given variable
type. Figure A-2 presents the asynchronous automaton for an atomic object of type

τ = 〈V, v0, invocations , responses , δ〉

with ports in Q, using the I/O automata formalism (see [70] for more details).
The input and output actions are of the form invoke(inv)p and respond(resp)p,

where inv ∈ invocations , resp ∈ responses , and p ∈ Q is a port.
Each invocation and response takes place on a port, and each port can support

only one operation at a time. Notice that the set of ports Q is a parameter of the
canonical automaton; different instantiations will use different sets for Q. In some
cases, Q may simply be I, the set of node identifiers, in which case each mobile node
has one port on the atomic object. In other cases, Q may be S = N>0 × OP × I,
where OP is some set of operation identifiers (see Figure 2-1), giving each mobile
node a countably infinite number of ports on the object, which allows each mobile
node more concurrent access to the object. (We see in more detail why this is useful
in Chapter 6.)
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Figure A-1: Read/Write Sequential Specification.

1 State:
2 value, initially v0

3

4 Operations:
5 read()
6 return read-ack(value)
7

8 write(new-value)
9 value ← new-value

10 return write-ack()
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Figure A-2: Canonical Atomic Object Specification.
Object Type τ = 〈V, v0, invocations, responses, δ〉 for the set Q of ports.

1 Signature:
2 Input invoke(inv)p, inv ∈ invocations, p ∈ Q
3

4 Output respond(resp)p, resp ∈ responses, p ∈ Q
5

6 Internal perform(inv, v, resp, v′)p, inv ∈ invocations, resp ∈ responses, v,v′ ∈ V, p ∈ Q
7

8 State:
9 val ∈ V, a value, initially v0

10 inv-buffer, a set of pairs 〈inv, p〉, inv ∈ invocations, by port p, p ∈ Q, initially ∅
11 resp-buffer, a set of pairs 〈resp, p〉, resp ∈ responses, to port p, p ∈ Q, initially ∅
12

13 Transitions:
14

15 Input invoke(inv)p

16 Effect:
17 inv-buffer ← inv-buffer ∪ {〈inv, p〉}
18

19 Output respond(resp)p

20 Precondition:
21 〈resp, p〉 ∈ resp-buffer
22 Effect:
23 resp-buffer ← resp-buffer − {〈resp, p〉}
24

25 Internal perform(inv, v, resp, v′)p

26 Precondition:
27 〈inv, p〉 ∈ inv-buffer
28 v = val
29 δ(inv, v) = (resp, v′)
30 Effect:
31 val ← v′

32 inv-buffer ← inv-buffer − {〈inv, p〉}
33 resp-buffer ← resp-buffer ∪ {〈resp, p〉}
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Figure A-3: Abstract Read/Write Object
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Figure A-3 depicts the atomic object derived from the read/write variable type.
In diagrams like Figure A-3, for clarity of presentation, instead of writing invoke(read)
and the corresponding respond(read-ack), we write read and read-ack, as the direction
of the arrows makes clear the action involved. We also omit the parameters to the
invocations and responses.

Notice that the canonical automaton is not a distributed algorithm; it assumes
centralized state that all the nodes can access. It does, however, support concurrent
read and write invocations on different ports. The automaton simply performs the
operations in some order. This is consistent with the usual notion that an atomic
object serializes all of its operations.

Also notice that the canonical automaton is asynchronous, meaning that, formally,
it is a timed I/O automaton in which there can be arbitrary time passage between
any two discrete events.

The canonical automaton is presented with no liveness conditions. Often (as
in [70]), there is an additional failp action, for each port in Q, and a “tasks” specifi-
cation requires that as long as no failp action occurs, each invocation on p eventually
leads to a response.

A.3.3 Implementing Canonical Objects

We next define what it means for an environment to be well-formed:

Definition A.3.1. We say that a timed I/O automaton U is a well-formed environ-
ment for an atomic object if:

1. Its outputs are exactly the invocations of the object, and its inputs are exactly
the responses of the object.

2. In every execution, for every port p, the automaton never performs two consec-
utive invocations on port p without an intervening response on port p.

We then say that an automaton S implements the canonical (abstract) object, A,
if:

1. S has the same input and output actions as A, the canonical object.

2. If U is a well-formed environment, then any trace of S × U is also a trace of
A×U . This implies that S preserves the well-formedness and safety guarantees
of A .

(Informally, a trace of an automaton is the sequence of input and output actions
occurring in an execution, along with appropriate timing information as to when the
inputs and outputs occur. The symbol × represents the composition of automata, as
defined in [70])

The most common way of showing that an algorithm implements an atomic object
is to show that in every execution there exists a total ordering of the operations
with certain properties. This ordering reflects the order in which the operations are
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performed in the canonical automaton. The following theorem is a variant of Lemmas
13.10 and 13.16 in [70]1. It has been updated to support timed I/O automata, though
the argument remains essentially equivalent.

Theorem A.3.2. Let A be an asynchronous2 canonical atomic object of some variable
type. Let S be a timed automaton with the same inputs and outputs as A. Let U be
a timed automaton that is a well-formed environment with respect to S and A. Let α
be a timed execution of S × A in which every operation completes, and assume that
the following holds:

Let Π be the set of operations in α. Assume that there exists a total ordering, ≺,
on all the operations in Π with the following properties:

1. The total order is consistent with the external order of invocations and responses.
That is, if π completes before π′ begins, then π ≺ π′.

2. Fix some π ∈ Π. Let inv 1, inv 2, · · · , invk be the invocations of the operations
preceding π in the total ordering, indexed according to the total ordering. Let
inv(π) be the invocation that initiates π, and resp(π) be the response that con-
cludes π.

Let v be the value of the variable type that results from starting with the initial
value, v0, and processing the following invocations:

inv 1, inv 2, . . . , invk .

Then the response to operation π is consistent with the object being in state v.
More formally, consider the event respond(resp(π)) that occurs in α. Then for
some value v′ of the variable type,

〈resp(π), v′〉 = δ(inv(π), v) .

Then there exists a timed execution γ of A× U such that trace(α) = trace(γ).

Proof (sketch). The proof is nearly identical to the untimed case, which is described
in Lemmas 13.10 and 13.16 in [70]. In particular, we can consider the untimed
sequence β of events in α, and show as in the case of an asynchronous system that
the invocations and responses are atomic by identifying a serialization point for each
operation. This implies that there exists an untimed sequence of events β′ of A with
the same external events as β and the internal perform events occurring in between
the invoke and respond events for each operation in the order specified by the chosen
serialization points.

1Lemmas 13.10 and 13.16 in [70] are presented for a setting with only finitely many ports, while
here we allow there to be a countably infinite number of ports. However, nothing in the lemmas or
their proofs depends on the number of ports being finite, so the results carry over for our setting.

2Recall that by asynchronous we mean a timed automaton with only discrete variables that sup-
ports arbitrary time passage between any two discrete events.
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Finally, we transform β′ into an execution of A by specifying the time at which
each event occurs: each external event in β′ occurs at the identical time as its matching
event in α; each internal event in β′ occurs at the earliest time that does not preceded
any event prior to it in β′. The result is an execution γ of A×U such that trace(α) =
trace(γ).

Since U is an arbitrary environment, this implies that S implements A.
Property 1 requires that the total ordering be consistent with the real-world order-

ing of operations. Consider the example of a read/write atomic object: this property
requires that if a write operation successfully completes and writes some value, val ,
then a later read operation cannot return an earlier value.

Property 2 requires that the total ordering of operations be consistent with the
actual responses sent during the execution, since the total ordering is supposed to
represent the order in which operations appear to happen. Consider again the example
of a read/write atomic object: Property 2 guarantees that if, in the real execution,
a read operation returns some value, val , then the closest preceding write operation
(in the total order) must write that same value val .

The proof of Theorem A.3.2 is similar to that of Lemma 13.16 in [70]:

Proof (sketch). The proof involves choosing a serialization point for each operation:
the earliest point after which the operation has begun and every operation preceding
it in the total order has begun, where ties are ordered consistently with the total order.
Property 1 ensures that the serialization point occurs before the operation completes
and Property 2 ensures that the serialized execution has the same responses as the
real execution.

In the case of a read/write atomic object, it is necessary to determine only a
partial ordering of the operations. The following theorem, then, is the analogue of
Theorem A.3.2, and is proved in [70], Lemmas 13.10 and Lemma 13.163:

Theorem A.3.3. Let A be a canonical atomic read/write object (i.e., an object of the
variable type presented in Figure A-1), and assume that S is an automaton with the
same inputs and outputs as A, and that U is any well-formed environment. For every
execution α of S ◦ U in which every operation completes, assume that the following
holds:

Let Π be the set of operations in α. Assume that there exists a partial ordering,
≺, on all the operations in Π with the following properties:

1. All write operations are totally ordered, and every read operation is ordered with
respect to all the writes.

2. The partial order is consistent with the external order of invocations and re-
sponses, that is, there do not exist read or write operations π1 and π2 such that
π1 completes before π2 starts, yet π2 ≺ π1.

3In [70], a fourth property is included, assuming that each operation is preceded by only finitely
many other operation. This is unnecessary, as it is implied by Property 2.
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3. Every read operation that is ordered after any writes returns the value of the
last write preceding it in the partial order; any read operation ordered before all
writes returns v0.

Then traces(S ◦ U) ⊆ traces(A ◦ U).

Again, since U is an arbitrary environment, this implies that S implements A.
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