
Sound and De
idable Type Inferen
e forFun
tional Dependen
iesGregory J. Du
k1, Simon Peyton-Jones2, Peter J. Stu
key1 and MartinSulzmann31 Department of Computer S
ien
e and Software EngineeringThe University of Melbourne, Vi
. 3010, Australiafgjd,pjsg�
s.mu.oz.au2 Mi
rosoft Resear
h Ltd7 JJ Thomson Avenue, Cambridge CB3 0FB, Englandsimonpj�mi
rosoft.
om3 S
hool of Computing, National University of SingaporeS16 Level 5, 3 S
ien
e Drive 2, Singapore 117543sulzmann�
omp.nus.edu.sgAbstra
t. Fun
tional dependen
ies are a popular and useful exten-sion to Haskell style type 
lasses. In this paper, we give a reformula-tion of fun
tional dependen
ies in terms of Constraint Handling Rules(CHRs). In previous work, CHRs have been employed for des
ribinguser-programmable type extensions in the 
ontext of Haskell style type
lasses. Here, we make use of CHRs to provide for the �rst time a 
on-
ise result that under some suÆ
ient 
onditions, fun
tional dependen
iesallow for sound and de
idable type inferen
e. The suÆ
ient 
onditionsimposed on fun
tional dependen
ies 
an be very limiting. We show howto safely relax these 
onditions.1 Introdu
tionFun
tional dependen
ies, introdu
ed by Mark Jones [Jon00℄, have proved tobe a very attra
tive extension to multi-parameter type 
lasses in Haskell. Forexample, 
onsider a 
lass intended to des
ribe a 
olle
tion of type 
 
ontainingvalues of type e:
lass Coll 
 e | 
 -> e whereempty :: 
insert :: 
 -> e -> 
member :: 
 -> e -> BoolThe part \| 
->e" is a fun
tional dependen
y, and indi
ates that �xing the
olle
tion type 
 should �x the element type e. These fun
tional dependen
ieshave proved very useful, be
ause they allow the programmer to 
ontrol the typeinferen
e pro
ess more pre
isely. We elaborate in Se
tion 2.The purpose of this paper is to explore and 
onsolidate the design spa
e offun
tional dependen
ies (FDs). The main tool we use in this exploration is the re-formulation of FDs in terms of Constraint Handling Rules (CHRs) [Fr�u95,SS02℄,an idea that we review in Se
tion 3. This reformulation allows us to make severalnew 
ontributions:



{ Despite their popularity, fun
tional dependen
ies have never been formalised,so far as we know. CHRs give us a language in whi
h to explain more pre
iselywhat fun
tional dependen
ies are. In parti
ular, we are able to make the so-
alled \improvement rules" implied by FDs expli
it in terms of CHRs.{ Based on this understanding, we provide the �rst 
on
ise proof that the re-stri
tions imposed by Jones on fun
tional dependen
ies [Jon00℄ ensure soundand de
idable type inferen
e (Se
tion 3).{ Jones's restri
tions 
an be very limiting. We propose several useful extensions(Se
tion 4) su
h as more liberal FDs (Se
tion 4.1). We establish some 
on
ise
onditions under whi
h liberal FDs are sound.Throughout, we provide various examples to support the usefulness of our im-provement strategies. Related work is dis
ussed in Se
tion 5. We 
on
lude inSe
tion 6.We refer the interested reader to [DPJSS03℄ for proofs and additional mate-rial.2 Ba
kground: Fun
tional Dependen
ies in HaskellWe begin by reviewing fun
tional dependen
ies, as introdu
ed by Jones [Jon00℄,assuming some basi
 familiarity with Haskell-style type 
lasses.Example 1. Re
all the 
olle
tion 
lass
lass Coll 
 e | 
 -> e whereempty :: 
insert :: 
 -> e -> 
member :: 
 -> e -> Boolplus the followinginstan
e Eq a => Coll [a℄ a where ...ins2 xs a b = insert (insert xs a) bConsider the fun
tion ins2. In the absen
e of fun
tional dependen
ies, typeinferen
e would giveins2 :: (Coll 
 e1, Coll 
 e2) => 
 -> e1 -> e2 -> 
whi
h is of 
ourse not what we want: we expe
t a and b to have the same type.The fun
tional dependen
y 
->e expresses the idea that the 
olle
tion type 
�xes the element type e, and hen
e that e1 and e2 must be the same type. Insu
h a situation, we 
ommonly say that types are \improved" [Jon95℄.Fun
tional dependen
ies are useful in many di�erent 
ontexts. Here are somerepresentative examples.Example 2. Consider the following 
lass for representing state monads and twoinstan
es




lass SM m r | m->r, r->m wherenew :: a -> m (r a)read :: r a -> m awrite :: r a -> a -> m ()instan
e SM IO IORef wherenew = newIORefread = readIORefwrite = writeIORefinstan
e SM (ST s) (STRef s) wherenew = newSTRefread = readSTRefwrite = writeSTRefThe part \| m->r, r->m" gives two fun
tional dependen
ies, and indi
ates that�xing the monad type m should �x the referen
e type r as well, and vi
e versa.Now 
onsider the 
odef x = do { r <- new x; print "Hello"; return r }The 
all to print, whose type is String -> IO (), makes it 
lear that f isin the IO monad, and hen
e, by the fun
tional dependen
y, that r must be anIORef. So we infer the typef :: a -> IO (IORef a)From this example we 
an see the main purpose of fun
tional dependen
ies: theyallow the programmer to pla
e stronger 
onditions on the set of 
onstraints gen-erated during type inferen
e, and thus allow more a

urate types to be inferred.In their absen
e, we would infer the typef :: (SM IO r) => IO (r a)whi
h is needlessly general. In other situations, ambiguity would be reported.For example:g :: a -> IO ag x = do { r <- new x ; read r }Without fun
tional dependen
ies, the type system 
annot work out whi
h refer-en
e type to use, and so reports an ambiguous use of new and read.Example 3. Consider the following appli
ation allowing for (overloaded) multi-pli
ation among base types su
h as Int and Float and user-de�nable types su
has ve
tors. For simpli
ity, we omit the obvious fun
tion bodies.
lass Mul a b 
 | a b -> 
 where(*)::a->b->
instan
e Mul Int Int Int where ...instan
e Mul Int Float Float where ...type Ve
 b = [b℄instan
e Mul a b 
 => Mul a (Ve
 b) (Ve
 
) where ...



The point here is that the argument types of (*) determine its result type. Inthe absen
e of this knowledge an expression su
h as (a*b)*
 
annot be typed,be
ause the type of the intermediate result, (a*b), is not determined. The type
he
ker would report type ambiguity, just as it does when fa
ed with the 
lassi
example of ambiguity, (read (show x)).Example 4. Here is an another useful appli
ation of FDs to en
ode a family ofzip fun
tions.zip2 :: [a℄->[b℄->[(a,b)℄zip2 (a:as) (b:bs) = (a,b) : (zip2 as bs)zip2 _ _ = [℄
lass Zip a b 
 | a 
 -> b, b 
 -> a wherezip :: [a℄ -> [b℄ -> 
instan
e Zip a b [(a,b)℄ wherezip = zip2instan
e Zip (a,b) 
 e => Zip a b ([
℄->e) wherezip as bs 
s = zip (zip2 as bs) 
sThese de�nitions make zip into an n-ary fun
tion. For example, we may writee1 :: (Bool,Char)e1 = head (zip [True,False℄ ['a','b','
'℄)e2 :: ((Bool,Char),Int)e2 = head (zip [True,False℄ ['a','b','
'℄ [1::Int,2℄)2.1 Fun
tional Dependen
ies are Tri
kyAs we have seen, fun
tional dependen
ies allow the programmer to exert 
ontrolover the type inferen
e pro
ess. However, used un
riti
ally, this additional 
ontrol
an have unexpe
ted 
onsequen
es. Spe
i�
ally: they may lead to in
onsisten
y,whereby the type inferen
e engine dedu
es nonsense su
h as Int = Bool; andthey may lead to non-termination, whereby the type inferen
e engine goes intoan in�nite loop. We illustrate ea
h of these diÆ
ulties with an example.Example 5. Suppose we add instan
e Mul Int Float Int to Example 3. Thatis, we have the following de
larations:
lass Mul a b 
 | a b -> 
instan
e Mul Int Float Float -- (I1)instan
e Mul Int Float Int -- (I2)Note that the �rst two parameters are meant to uniquely determine the thirdparameter. In 
ase type inferen
e en
ounters Mul Int Float a we 
an eitherargue that a=Int be
ause of instan
e de
laration (I2). However, de
laration(I1) would imply a=Float. These two answers are in
onsistent, so allowingboth (I1) and (I2) makes the whole program in
onsistent, whi
h endangerssoundness of type inferen
e.Example 6. Assume we add the following fun
tion to the 
lasses and instan
esin Example 3.



f b x y = if b then (*) x [y℄ else yThe program text gives rise to the 
onstraint Mul a (Ve
 b) b. The improve-ment rules 
onne
ted to instan
e Mul a b 
 => Mul a (Ve
 b) (Ve
 
) im-ply that b=Ve
 
 for some 
; applying this substitution gives the 
onstraint Mula (Ve
 (Ve
 
)) (Ve
 
). But this 
onstraint 
an be simpli�ed using the in-stan
e de
laration, giving rise to the simpler 
onstraint Mul a (Ve
 
) 
. Un-fortunately, now the entire 
hain of reasoning simply repeats! We �nd that typeinferen
e be
omes suddenly non-terminating. Note that the instan
es (withoutthe fun
tional dependen
y) are terminating.The bottom line is this. We want type inferen
e to be sound and de
idable.Fun
tional dependen
ies threaten this happy situation. The obvious solutionis to pla
e restri
tions on how fun
tional dependen
ies are used, so that typeinferen
e remains well-behaved, and that is what we dis
uss next.2.2 Jones's Fun
tional Dependen
y Restri
tionsWe assume that fv(t) takes a synta
ti
 term t and returns the set of free variablesin t. A substitution � = [t1=a1; : : : ; tn=an℄ simultaneously repla
es ea
h ai by its
orresponding ti.In Jones's original paper [Jon00℄, the following restri
tions are imposed onfun
tional dependen
ies.De�nition 1 (Haskell-FD Restri
tions). Consider a 
lass de
laration
lass C => TC a1 ::: an | fd1; :::; fdmwhere the ai are type variables and C is the 
lass 
ontext 
onsisting of a (possiblyempty) set of type 
lass 
onstraints. Ea
h fdi is a fun
tional dependen
y of theform4 ai1 ; :::; aik -> ai0 where fi0; i1; :::; ikg � f1:::ng. We 
ommonly refer toai1 ; :::; aik as the domain and ai0 as the range.The following 
onditions must hold for fun
tional dependen
y fdi:Consisten
y. Consider every pair of instan
e de
larationsinstan
e ::: => TC t1 ::: tninstan
e ::: => TC s1 ::: snfor a parti
ular type 
lass TC. Then, for any substitution � su
h that�(ti1 ; :::; tik ) = �(si1 ; :::; sik )we must have that �(ti0) = �(si0 ).Termination. For ea
h instan
e ::: => TC t1 ::: tn we must have thatfv(ti0) � fv(ti1 ; : : : ; tik )4 Haskell systems that allow fun
tional dependen
ies usually allow dependen
ies ofthe form a -> b 
, with multiple type variables to the right of the arrow. But thisis equivalent to the form a -> b, a -> 
, so in the rest of the paper we only dealwith the 
ase where there is a single type variable to the right of the arrow.



The �rst of these 
onditions rules out in
onsistent instan
e de
larations (seeExample 5); and it turns out that the se
ond ensures termination, although theinformal argument in Jones's original paper does not mention termination asan issue. In parti
ular, the se
ond restri
tion makes illegal the re
ursive Ve
instan
e in Example 3 (sin
e fv(
) 6� fv(a; b)), and hen
e prevents the divergen
eof Example 6.To the best of our knowledge, no one has proved that the restri
tions givenabove ensure sound and de
idable type inferen
e. We do so, for the �rst time,in Se
tion 3.While these two restri
tions make the system well-behaved, it is naturalto ask whether either 
ondition 
ould be weakened. The 
onsisten
y 
onditionseems entirely reasonable, but we have seen many examples in whi
h the ter-mination restri
tion ex
ludes entirely reasonable and useful programs. BesidesExamples 3 (whi
h appears in Jones's original paper) and 4, there are a num-ber of other examples in the literature whi
h break the termination 
ondition[Kar03,WW03,CK03℄. In Se
tion 4.1, we propose a more liberal form of FDswhi
h allows for breaking the termination 
ondition under some additional 
on-ditions.3 Fun
tional Dependen
ies expressed using CHRsIn this se
tion we explain how to translate fun
tional dependen
ies into a lower-level notation, 
alled Constraint Handling Rules (CHRs) [Fr�u98℄. This transla-tion has two bene�ts: it allows us to give a more pre
ise a

ount of exa
tly whatfun
tional dependen
ies mean; and it allows us to formally verify that Jones's
onditions are suÆ
ient to ensure sound and de
idable type inferen
e.Example 7. Let us return to the 
olle
tion example:
lass Coll 
 e | 
 -> e whereempty :: 
insert :: 
 -> e -> 
member :: 
 -> e -> Bool
lass Eq a => Ord a where(>=) :: a -> a -> Boolinstan
e Ord a => Coll [a℄ a where ...From the fun
tional dependen
y 
->e we generate the two improvement ruleswhi
h we shall express using the following CHRs:rule Coll 
 e1, Coll 
 e2 ==> e1=e2rule Coll [a℄ b ==> a=bInformally, the �rst rule says that if the two 
onstraints (Coll 
 e1) and(Coll 
 e2) both hold, then it must be that e1 and e2 are the same type. Thisrule is generated from the 
lass de
laration alone, and expresses the idea that 
uniquely determines e. The se
ond rule is generated from the instan
e de
lara-tion, together with the fun
tional dependen
y, and states that if (Coll [a℄ b)



holds, then it follows that a = b. During type inferen
e, the inferen
e engine isrequired to solve sets of 
onstraints, and it 
an apply these improvement rulesto narrow its 
hoi
es.These CHRs have one or more type-
lass 
onstraints on the left hand side,and one or more equality 
onstraints on the right. The logi
al interpretationof ==> is impli
ation. Its operational interpretation | that is, its e�e
t on thetype inferen
e pro
ess | is this: when the type inferen
e engine sees 
onstraintsmat
hing the left hand side, it adds the 
onstraints found on the right-hand side.Super
lass relations also generate CHR rules. The super
lass relationship
lass Eq a => Ord a where... generates the CHRrule Ord a ==> Eq aInformally, the rule states that if the 
onstraint Ord a holds then also the 
on-straint Eq a holds. During typing this rule is used to 
he
k that all super
lass
onstraints are also satis�ed.The instan
e de
laration above also generates the following CHR rule, whi
hallows us to simplify sets of 
onstraints to remove 
lass 
onstraints whi
h areknown to hold.rule Coll [a℄ a <==> Ord aInformally, the rule states that the 
onstraint Coll [a℄ a holds if and only ifOrd a holds. The logi
al interpretation of the <==> is bi-impli
ation, while theoperational interpretation is to repla
e the 
onstraints on the left hand side bythose on the right hand side.Although not relevant to the 
ontent of this paper, the rule generated fromthe instan
e is also intimately 
onne
ted to the eviden
e translation for theprogram above, we refer readers to [SS02℄ for more details.3.1 Translation to CHRsFormalising the translation given above, 
lass and instan
e de
larations aretranslated into CHRs as follows:De�nition 2 (CHR Translation). Consider a 
lass de
laration
lass C => TC a1 ::: an | fd1; :::; fdmwhere the ai are type variables and ea
h fun
tional dependen
y fdi is of the formai1 ; :::; aik -> ai0 , where fi0; i1; :::; ikg � f1:::ng. From the 
lass de
laration wegenerate the following CHRs:Class CHR: rule TC a1 : : : an ==> CFun
tional dependen
y CHR: for ea
h fun
tional dependen
y fdi in the
lass de
laration, we generaterule TC a1 : : : an, TC �(b1) : : : �(bn) ==> ai0 = bi0where �(bij ) = aij , j > 0 and �(bl) = bl if :9j:l = ij .In addition, for ea
h instan
e de
laration of the form



instan
e C => TC t1 : : : tnwe generate the following CHRs:Instan
e CHR: rule TC t1 : : : tn <==> C. In 
ase the 
ontext C is empty,we introdu
e the always-satis�able 
onstraint True on the right-hand side ofgenerated CHRs.Instan
e improvement CHR: for ea
h fun
tional dependen
y fdi in the
lass de
laration,rule TC �(b1) : : : �(bn) ==> ti0 = bi0where �(bij ) = tij , j > 0 and �(bl) = bl if :9j:l = ij .If p is a set of 
lass and instan
e de
larations, we de�ne Simp(p) to be theset of all instan
e CHRs generated from p; and Prop(p) to be the set of all 
lass,fun
tional-dependen
y and instan
e-improvement CHRs generated from p5. Wede�ne Prop
lass(p) to be the set of all 
lass CHRs in Prop(p), and similarlyPropinst(p) to be the set of all instan
e improvement CHRs in Prop(p),The 
lass and instan
e CHRs, Prop
lass(p) [ Simp(p), are standard Haskell,while the fun
tional-dependen
y and instan
e-improvement CHRs arise fromthe fun
tional-dependen
y extension to Haskell.For 
onvenien
e, in the 
ase where the fun
tional dependen
y ai1 ; :::; aik -> ai0imposed on TC is full, that is, when k = n � 1, we are able to 
ombine the in-stan
e improvement and instan
e rule into one rule. In su
h a situation, for ea
hinstan
e C => TC t1 : : : tn and full fun
tional dependen
y ai1 ; :::; aik -> ai0we generate the following CHR: rule TC �(b1) : : : �(bn) <==> ti0 = bi0, C where�(bij ) = tij , j > 0 and �(bl) = bl if :9j:l = ij .By having a uniform des
ription of (super) 
lass and instan
e relations andFDs in terms of CHRs, we 
an establish some important 
riteria (in terms ofCHRs) under whi
h type inferen
e is sound and de
idable.3.2 Main ResultThe translation to CHRs allows us to phrase the entire type inferen
e pro
ess asCHR solving. We know from earlier work that if a set of CHRs is (a) 
on
uent,(b) terminating, and (
) range-restri
ted (all terms that we explain shortly) wea
hieve type inferen
e that is sound (all answers are 
orre
t), 
omplete (if thereis an answer then type inferen
e will provide us with an answer), and de
idable(the type inferen
e engine always terminates) [SS02℄.Then our main result is as follows:Theorem 1 (Soundness and De
idability). Let p be a set of Haskell 
lassand instan
e de
larations whi
h satis�es the Haskell-FD restri
tions (see De�-nition 1). Let Simp(p) and Prop(p) be the sets of CHRs de�ned by De�nition 2.If the set Prop
lass(p) [ Simp(p) of CHRs is 
on
uent, terminating and range-restri
ted then Simp(p)[Prop(p) is 
on
uent, terminating and range-restri
ted.5 \Simp" is short for \simpli�
ation rule" and \Prop" for \propagation rule", termi-nology that 
omes from the CHR literature.



The design of Haskell 98 ensures that the CHRs Prop
lass(p) [ Simp(p), whi
hrepresent the Haskell type system with no FD extension, are indeed 
on
uent,terminating and range-restri
ted. Hen
e, our theorem says that provide the FDssatisfy the Jones restri
tions, then type inferen
e is sound and de
idable.To explain this result we need to say what we mean for a set of CHRs to be
on
uent, terminating, and range restri
ted.Con
uen
e Re
all Example 5 whose translation to CHRs is as follows (notethat the fun
tional dependen
y is fully imposed).rule Mul a b 
, Mul a b d ==> 
=d -- (M1)rule Mul Int Float 
 <==> 
=Float -- (M2)rule Mul Int Float 
 <==> 
=Int -- (M3)We �nd two 
ontradi
ting CHR derivations. We write C �R D to denote theCHR derivation whi
h applies rule (R) to 
onstraint store C yielding store D.E.g. 
onsider Mul Int F loat 
�M2 
 = F loat and Mul Int F loat 
�M3 
 =Int. The problem with the 
ode of Example 5 manifests itself in the CHR rulesas non-
on
uen
e. That is there are two possible sequen
es of applying rules,that lead to di�erent results. Just 
onsidering the rules as logi
al statements,the entire system is unsatis�able; that is, there are no models whi
h satisfy theabove set of rules.Non-
on
uen
e also arises in 
ase of \overlapping" instan
es. Assume we addthe following de
laration to the 
ode of Example 7.instan
e Eq a ==> Coll [a℄ a whereIn 
ase type inferen
e en
ounters Coll [t℄ t we 
an either redu
e this 
on-straint to Ord t (by making use of the original instan
e) or Eq t (by makinguse of the above instan
e). However, both derivations are non-joinable. In fa
t,a 
ommon assumption is that instan
es must be non-overlapping, in whi
h 
asenon-
on
uen
e only o

urs due to \invalid" FDs.We note that the 
onsisten
y 
ondition alone is not suÆ
ient to guarantee
on
uen
e (assuming that instan
es and super 
lasses are already 
on
uent of
ourse).Example 8. The following 
ode fragment forms part of a type-dire
ted evaluator.data Nil = Nildata Cons a b = Cons a bdata ExpAbs x a = ExpAbs x a-- env represents environment, exp expression-- and t is the type of the resulting value
lass Eval env exp t | env exp -> t whereeval :: env->exp->tinstan
e Eval (Cons (x,v1) env) exp v2=> Eval env (ExpAbs x exp) (v1->v2) whereeval env (ExpAbs x exp) = \v -> eval (Cons (x,v) env) expThe translation to CHRs yieldsrule Eval env exp t1, Eval env exp t2 ==> t1=t2 -- (E1)rule Eval env (ExpAbs x exp) v <==>v=(v1->v2), Eval (Cons (x,v1) env) exp v2 -- (E2)



Note that the termination 
ondition is violated but the 
onsisten
y 
ondition istrivially ful�lled (there is only one instan
e). However, we �nd that CHRs areterminating but non-
on
uent. E.g. we �nd that (applying (E2) twi
e)Eval env (ExpAbs x exp) t1; Eval env (ExpAbs x exp) t2�� t1 = v1 ! v2; Eval (Cons (x; v1) env) exp v2;t2 = v3 ! v4; Eval (Cons (x; v3) env) exp v4Note that rule (E1) 
annot be applied on 
onstraints in the �nal store. But thereis also another non-joinable derivation (applying rule (E1) then (E2))Eval env (ExpAbs x exp) t1; Eval env (ExpAbs x exp) t2�� t1 = t2; t1 = v5 ! v6; Eval (Cons (x; v5) env) exp v6So the \termination 
ondition" is perhaps mis-named; in this example, its vio-lation leads to non-
on
uen
e rather than non-termination.Termination Re
all Example 3. The translation to CHRs yields (among others)the following.rule Mul a (Ve
 b) d <==> d=Ve
 
, Mul a b 
 -- (M4)The program text in Example 6 gives rise to Mul a (Ve
 b) b. We �nd thatMul a (V e
 b) b�M4 Mul a (V e
 
) 
; 
 = V e
 b�M4 Mul a (V e
 d) d; d = V e
 
; 
 = V e
 b: : :That is, the CHR derivation, and hen
e type inferen
e, is non-terminating. Theimportant point here is that non-termination was introdu
ed through the FD.For the purpose of this paper, we generally assume that instan
e CHRs areterminating. There exists some suÆ
ient 
riteria to ensure that instan
e CHRsare terminating, e.g. 
onsider [Pey99℄. Clearly, we 
an possibly identify further
lasses of terminating instan
e CHRs whi
h we plan to pursue in future work.Note that, when a set of CHRs are terminating, we 
an easily test for 
on
uen
eby 
he
king that all \
riti
al pairs" are joinable [Abd97℄.Range restri
tion Range-restri
tedness is the third 
ondition we impose onCHRs. We say a CHR is range-restri
ted i� grounding all variables on the left-hand side of a CHR, grounds all variables on the right-hand side.Example 9. Consider
lass C a b 

lass D a binstan
e C a b 
 => D [a℄ [b℄Our translation to CHRs yieldsrule D [a℄ [b℄ <==> C a b 
 -- (D1)



Note that rule (D1) is not range-restri
ted. After grounding the left-hand side,we still �nd non-ground variable 
 on the right-hand side. Range-restri
tednessensures that no un
onstrained variables are introdu
ed during a derivation andis a ne
essary 
ondition for 
omplete type inferen
e. We refer readers to [SS02℄for more details.4 ExtensionsIn turn we dis
uss several extensions and variations of fun
tional dependen
ies.4.1 More Liberal Fun
tional Dependen
iesEarlier in the paper we argued that, while Jones's 
onsisten
y 
ondition is rea-sonable, the termination 
ondition is more onerous than ne
essary, be
ause itex
ludes reasonable and useful programs (Se
tion 2.2). In this se
tion we sug-gest repla
ing the termination restri
tion with the following weaker one, withthe goal of making these useful programs legal.De�nition 3 (Liberal-FD). Consider a 
lass de
laration
lass C => TC a1 ::: an | fd1; :::; fdmwhere the ai are type variables and C is the 
lass 
ontext 
onsisting of a (possiblyempty) set of type 
lass 
onstraints. Ea
h fdi is a fun
tional dependen
y of theform ai1 ; :::; aik -> ai0 where fi0; i1; :::; ikg � f1:::ng.In addition to the 
onsisten
y 
ondition (see De�nition 1), the following 
on-dition must hold for more liberal fun
tional dependen
y fdi:Context Consisten
y. For ea
h instan
e C => TC t1 ::: tn we must have thatfv(ti0) � 
losure(C; fv(ti1; : : : ; tik)) where
losure(C; vs) = STC t1 : : : tn 2 CTC a1 : : : an j ai1 ; :::; aik -> ai0ffv(ti0 ) j fv(ti1 ; : : : ; tik ) � vsgThe basi
 idea of the 
ontext 
onsisten
y 
ondition is that the variables in therange are 
aptured by some FDs imposed on type 
lasses present in the 
ontext.Note that although the 
ontext 
onsisten
y 
ondition resembles a more \lib-eral" version of the termination 
ondition, 
ontext 
onsisten
y does not preventnon-termination. Example 3 satis�es both of the above 
onditions, however, re-sulting CHRs are non-terminating. More pre
isely, adding the improvement rulesProp(p) to a terminating set Simp(p) of instan
e CHRs yields a non-terminatingset Simp(p)[Prop(p). Hen
e, for the following result to hold we need to assumethat CHRs are terminating.Theorem 2 (More Liberal FDs Soundness). Let p be a set of Haskell
lass and instan
e de
larations whi
h satis�es the Liberal-FD restri
tions. LetSimp(p) and Prop(p) be de�ned by De�nition 2. If the set Simp(p)[Prop(p)
lassis 
on
uent and range-restri
ted and Simp(p) [ Prop(p) is terminating, thenSimp(p) [ Prop(p) is 
on
uent and range-restri
ted.



Note that Example 4 also satis�es the more liberal FD 
onditions. A

ordingto De�nition 2 we generate the following improvement rules. Note that the fun
-tional dependen
y imposed is full. For simpli
ity, we only fo
us on improvementrules.rule Zip a b 
, Zip a d 
 ==> b=d -- (Z1)rule Zip a b 
, Zip d b 
 ==> a=d -- (Z2)rule Zip a d [(a,b)℄ ==> d=b -- (Z3)rule Zip d b [(a,b)℄ ==> d=a -- (Z4)rule Zip a d ([
℄->e) ==> d=b -- (Z5)rule Zip d b ([
℄->e) ==> d=a -- (Z6)Rules (Z5) and (Z6) are generated from the se
ond instan
e. Note that bothrules introdu
e some new variables sin
e we violate the termination 
ondition.However, both rules are harmless. E�e
tively, we 
an repla
e them byrule Zip a d ([
℄->e) ==> True -- (Z5')rule Zip d b ([
℄->e) ==> True -- (Z6')whi
h makes them trivial. Hen
e, we 
an omit them altogether. We observe thatwe 
an \safely" violate the termination 
ondition (without breaking termination)in 
ase the improvement rules generated are trivial, i.e. the right-hand side ofCHRs 
an be repla
ed by the always true 
onstraint. This is always the 
ase ifthe range 
omponent of an instan
e is a variable.4.2 Stronger ImprovementThere are situations where FDs do not enfor
e suÆ
ient improvement. Note thatthe inferred types of e1 and e2 in Example 4 aree1 :: Zip Bool Char [a℄ => ae2 :: Zip (Bool,Char) Int [a℄ => arather thane1 :: (Bool,Char)e2 :: ((Bool,Char),Int)For example rule (Z3) states that only if we see Zip a d [(a,b)℄we 
an improved by b. However, in 
ase of e1 we see Zip Bool Char [a℄, and we would like toimprove a to (Bool,Char). Indeed, in this 
ontext it is \safe" to repla
e rules(Z3) and (Z4) byrule Zip a b [
℄ ==> 
=(a,b) -- (Z34)whi
h imposes stronger improvement to a
hieve the desired typing of e1 ande2. Note that rule (Z34) respe
ts the 
onsisten
y and termination 
onditions(assuming we enfor
e these 
onditions for user-provided improvement rules).Hen
e, we retain 
on
uen
e and termination of CHRs.Of 
ourse, if a user-provided improvement violates any of the suÆ
ient 
on-ditions, it is the user's responsibility to ensure that resulting CHRs are 
on
uentand terminating.



4.3 Instan
e Improvement OnlyInstead of stronger improvement it might sometimes be desirable to omit 
ertainimprovement rules. For example, in 
ase the 
ontext 
onsisten
y 
ondition isviolated, we 
an re
over 
on
uen
e by dropping the fun
tional dependen
y rule.Theorem 3 (Instan
e Improvement Soundness). Let p be a set of Haskell
lass and instan
e de
larations whi
h satis�es the Haskell-FD 
onsisten
y re-stri
tion. If the set Simp(p)[Prop
lass(p) is 
on
uent and range-restri
ted andSimp[Prop
lass(p)[Propinst(p) is terminating, then Simp(p)[Prop
lass(p)[Propinst(p) is 
on
uent and range-restri
ted.Here is a (
on
uent) variation of Example 8 where we only impose the in-stan
e improvement rule.data Nil = Nildata Cons a b = Cons a bdata ExpAbs x a = ExpAbs x a-- env represents environment, exp expression-- and t is the type of the resulting value
lass Eval env exp t where eval :: env->exp->t-- we only impose the instan
e improvement rule but NOT-- the 
lass FDrule Eval env (ExpAbs x exp) v ==> v=v1->v2instan
e Eval (Cons (x,v1) env) exp v2=> Eval env (ExpAbs x exp) (v1->v2) whereeval env (ExpAbs x exp) = \v -> eval (Cons (x,v) env) exp5 Related WorkThe idea of improving types in the 
ontext of Haskell type 
lasses is not new. Forexample, Chen, Hudak and Odersky [CHO92℄ introdu
e type 
lasses whi
h 
anbe parameterized by a spe
i�
 parameter. For example, the de
laration 
lassSM m r | m->r from Example 2 
an be expressed as the parametri
 de
laration
lass m::SM r. Interestingly, they impose 
onditions similar to Jones's 
onsis-ten
y and termination 
ondition to a
hieve sound and de
idable type inferen
e.However, their approa
h is more limited than ours. Fun
tional dependen
iesmust be always of the form a->b where b is not allow to appear in the domainof any other fun
tional dependen
y. Furthermore, they do not 
onsider any ex-tensions su
h as more liberal FDs.In [Jon95℄, Jones introdu
es a general theory of simplifying and improvingtypes as a re�nement of his theory of quali�ed types [Jon92℄. However, he doesnot provide any formal results whi
h improvement strategies lead to sound andde
idable type inferen
e.Subsequently, Jones extends multi-parameter type 
lasses with fun
tionaldependen
ies [Jon00℄. He states some 
onditions (
onsisten
y and termination)whi
h in this paper we �nally verify as suÆ
ient to ensure sound and de
id-able type inferen
e. Surprisingly, he introdu
es Example 3 (whi
h breaks thetermination 
ondition) as a motivation for fun
tional dependen
ies.



Duggan and Ophel [DO02℄ des
ribe an improvement strategy, domain-drivenunifying overload resolution, whi
h is very similar to fun
tional dependen
ies.Indeed, they were the �rst to point out the potential problem of non-terminationof type inferen
e. However, they do not dis
uss any extensions su
h as moreliberal FDs nor do they 
onsider how to 
ope with the termination problem.Stu
key and Sulzmann [SS02℄ introdu
e a general CHR-based formulationfor type 
lasses. They establish some general 
onditions, e.g. termination and
on
uen
e, in terms of CHRs under whi
h type inferen
e is sound and de
id-able. Here, we rephrase fun
tional dependen
ies as a parti
ular instan
e of theirframework.6 Con
lusionWe have given a new perspe
tive on fun
tional dependen
ies by expressing theimprovement rules implied by FDs in terms of CHRs. We have veri�ed, for the�rst time, that the 
onditions (termination and 
onsisten
y, see De�nition 1)stated by Jones are suÆ
ient to guarantee sound and de
idable type inferen
e(see Theorem 1).There are many examples whi
h demand dropping the termination 
ondition.For this purpose, we have introdu
ed more liberal FDs in Se
tion 4.1. We haveidenti�ed an additional 
ondition (
ontext 
onsisten
y) whi
h guarantees 
on
u-en
e (see Theorem 2). We have also dis
ussed further useful extensions su
h asstronger improvement rules (Se
tion 4.2) and instan
e improvement rules only(Se
tion 4.3).For su
h extensions it be
omes mu
h harder to guarantee de
idability (unlessthe generated improvement rules are trivial). For example, the more liberal FD
onditions only ensure soundness but not de
idability. We are already workingon identifying further de
idable 
lasses of CHRs. We expe
t to report results onthis topi
 in the near future.In another line of future work we plan to investigate how to safely drop the
onsisten
y 
ondition. Consider
lass Insert 
e e | 
e -> e where insert :: e->
e->
einstan
e Ord a => Insert [a℄ ainstan
e Insert [Float℄ IntOur intention is to insert elements into a 
olle
tion. The 
lass de
laration statesthat the 
olle
tion type uniquely determines the element type. The �rst instan
estates that we 
an insert elements into a list if the list elements enjoy an orderingrelation. The se
ond instan
e states that we have a spe
ial treatment in 
ase weinsert Ints into a list of Floats (for example, we assume that Ints are internallyrepresented by Floats). This sounds reasonable, however, the above program isreje
ted be
ause the 
onsisten
y 
ondition is violated. To establish 
on
uen
ewe seem to require a more 
ompli
ated set of improvement rules. We plan topursue this topi
 in future work.



A
knowledgementsWe thank Jeremy Wazny and the reviewers for their 
omments.Referen
es[Abd97℄ S. Abdennadher. Operational semanti
s and 
on
uen
e of 
onstraint prop-agation rules. In Pro
. of CP'97, volume 1330 of LNCS, pages 252{266.Springer-Verlag, 1997.[CHO92℄ K. Chen, P. Hudak, and M. Odersky. Parametri
 type 
lasses. In Pro
.of ACM Conferen
e on Lisp and Fun
tional Programming, pages 170{191.ACM Press, June 1992.[CK03℄ M. Chakravarty and S. Keller. Classy type analysis, 2003.[DO02℄ D. Duggan and J. Ophel. Type-
he
king multi-parameter type 
lasses. Jour-nal of Fun
tional Programming, 12(2):133{158, 2002.[DPJSS03℄ G. J. Du
k, S. Peyton-Jones, P. J. Stu
key, and M. Sulzmann.Sound and de
idable type inferen
e for fun
tional dependen-
ies. Te
hni
al report, National University of Singapore, 2003.http://www.
omp.nus.edu.sg/~sulzmann/
hr/download/fd-
hr.ps.gz.[Fr�u95℄ T. Fr�uhwirth. Constraint handling rules. In Constraint Programming: Ba-si
s and Trends, volume 910 of LNCS. Springer-Verlag, 1995.[Fr�u98℄ T. Fr�uhwirth. Theory and pra
ti
e of 
onstraint handling rules. Journal ofLogi
 Programming, 37(1{3):95{138, 1998.[Jon92℄ M. P. Jones. Quali�ed Types: Theory and Pra
ti
e. PhD thesis, OxfordUniversity, September 1992.[Jon95℄ M. P. Jones. Simplifying and improving quali�ed types. In FPCA '95: Con-feren
e on Fun
tional Programming Languages and Computer Ar
hite
ture.ACM Press, 1995.[Jon00℄ M. P. Jones. Type 
lasses with fun
tional dependen
ies. In Pro
. of the9th European Symposium on Programming Languages and Systems, ESOP2000, volume 1782 of LNCS. Springer-Verlag, Mar
h 2000.[Kar03℄ J. Kar
zmar
zuk. Stru
ture and interpretation of quantum me
hani
s { afun
tional framework. In Pro
. of Haskell Workshop'03, pages 50{61. ACMPress, 2003.[Pey99℄ S. Peyton Jones et al. Report on the programming language Haskell 98,February 1999. http://haskell.org.[SS02℄ P. J. Stu
key and M. Sulzmann. A theory of overloading. In Pro
. ofICFP'02, pages 167{178. ACM Press, 2002.[WW03℄ G. Washburn and S. Weiri
h. Boxes go bananas: en
oding higher-orderabstra
t syntax with parametri
 polymorphism. In Pro
. of ICFP'03, pages249 { 262. ACM Press, 2003.


