Observable Confluence for Constraint Handling
Rules

Gregory J. Duck?®, Peter J. Stuckey!, and Martin Sulzmann?

1 NICTA Victoria Laboratory
Department of Computer Science and Software Engineering
University of Melbourne, 3010, AUSTRALIA
{gjd,pjs}@cs.mu.oz.au
2 School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543
sulzmann@comp.nus.edu.sg

Abstract. Constraint Handling Rules (CHR) are a powerful rule based
language for specifying constraint solvers. Critical for any rule based
language is the notion of confluence, and for terminating CHR, programs
there is a decidable test for confluence. But many CHR programs that
are in practice confluent fail this confluence test. The problem is that
the states that illustrate non-confluence are not observable from the ini-
tial goals of interest. In this paper we introduce the notion of observable
confluence, a more general notion of confluence which takes into account
whether states are observable. We devise a test for observable confluence
which allows us to verify observable confluence for a range of CHR pro-
grams dealing with agents, type systems, and the union-find algorithm.

1 Introduction

Constraint Handling Rules [3] (CHR) are a powerful rule based language for
specifying constraint solvers. Constraint handling rules operate on a global multi-
set (conjunction) of constraints. A constraint handling rule defines a rewriting
from one multi-set of constraints to another.

A critical issue for any rule based language is the notion of confluence. A CHR,
program is confluent if all possible rewriting sequences from a given input lead
to the same result. Thus confluent programs have a “deterministic behaviour”
with respect to the input goals, i.e. given some input goal, we can uniquely
determine the output. For terminating CHR programs there is a decidable test
for confluence [1]. Unfortunately there are many (terminating) programs which
are confluent in practice, but fail to pass the test.

In this paper, we make the following contributions:

— We introduce the notion of observable confluence which generalises the no-
tion of confluence by only considering rewriting steps which are observable
with respect to some invariant (Section 3.3).

— We give a generalised confluence test where we only need to consider join-
ability of critical pairs satisfying the invariant (Section 4).

— We show that the generalised confluence test enables us to verify observable
confluence of CHR used for the specification of agents, the union-find algo-
rithm, and type systems (Section 5). All of these classes of CHR programs
are non-confluent under the standard notion.

To the best of our knowledge, we are the first to study observable confluence
in the context of a rule-based language. In the workshop papers [2, 5], we reported
some preliminary results. The present work represents a significantly revised and
extended version of [2].

We continue in Section 2 where we consider a number of motivating examples.
Section 3 provides background material on CHR.

2 DMotivating Examples

The following examples fail the standard confluence test, but we can show that
they are observable confluent with respect to some appropriate invariant.

2.1 Blocks World

In our first example, we consider a set of CHRs used for agent-oriented program-
ming [5]. The following CHR program fragment describes the behaviour of an
agent in a blocks world:3

gl @ get(X), empty <=> hold(X).
g2 @ get(X), hold(Y) <=> hold(X), clear(Y).

The constraint hold(X) denotes that the agent holds some element X, whereas
empty denotes that the agent holds nothing. The constraint clear(Y) simply
represents the fact that Y is not held. The constraint get (X) represents an action,
to get some element X. The atoms preceding the ‘@’ symbols are the rule names,
thus the rules are named g1 and g2 respectively. Both rules are simplification
rules, rewriting constraints matching the left-hand-side to the constraints in
the right-hand-side. The first rule rewrites the constraints get(X) A empty to
hold(X). The second rule rewrites get (X) A hold(Y) to hold(X) A clear(Y).

It is clear that the rules are non-confluent. Consider the critical state get (X)
A hold(Y) A empty formed by combining the heads of rules g1 and g2. This
critical state can be rewritten to either hold(Y) A hold(X) by applying rule
gl,or tohold(X) A clear(Y) A empty by applying rule g2. These two derived
states are a critical pair between the two rules. The confluence test for CHR [1]
states that a terminating program is confluent iff all critical pairs are joinable, i.e.
can be rewritten to the same result. Since no rewriting steps can join hold(Y)
A hold(X) and hold(X) A clear(Y) A empty, the blocks world program is
non-confluent.

Let us consider the non-confluent state get(X) A hold(Y) A empty more
closely: it represents the agent holding nothing (empty) whilst simultaneously
holding an object Y (hold(Y)). Clearly, such a state is nonsense, so we would

3 CHR follows a Prolog like notation, where identifiers starting with a lower case letter
indicate predicates and function symbols, and identifiers starting with upper case
letters indicate variables.

like to exclude it from consideration. To do this we need a weaker notion of con-
fluence, i.e. confluence with respect to valid states. We refer to this as observable
confluence.

Specifically, we can informally define valid states as follows:

“Either the agent holds some element X or holds nothing.”
“There is at most one get (_) operation at one time.”

The conjunction of these conditions is an invariant in the blocks world program.
In this paper, we show that all non-confluent states violate this invariant, thus
blocks world program is observable confluent.

A similar form of observable confluence under some invariant arises in our
next example.

2.2 Union Find

Consider the following program which is part* of the simple union-find code
from [9, 8].

union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).
findNode @ X ~> PX \ find(X,R) <=> find(PX, R).

findRoot @ root(X) \ find(X,R) <=> R = X.

linkEq @ 1ink(X,X) <=> true.

link @ 1link(X,Y), root(X), root(Y) <=>Y ~> X, root(X).

Both findNode and findRoot are simpagation rules, which are similar to
simplification rules, except constraints on the LHS of the ‘\’ symbol are not
rewritten. This program defines an environment where the root(X) and X ~>
Y constraints define trees, and union(X,Y) links trees so that they have the same
root.

The union-find program is non-confluent, since there are eight non-joinable
critical pairs. The authors of [8] classify the critical pairs as either avoidable (as
in they should not arise in practice) and unavoidable (as inherent non-confluence
in the union-find algorithm). For example, the critical state between the 1inkEq
and 1ink is 1ink(X,X) A root(X) A root(X), with two root (X) constraints.?
The critical pair is root (X) A root(X) and X ~> X A root(X), which is non-
joinable. However, in [8] it is argued that this critical pair is avoidable, since the
presence of two root (X) in the state violates the definition of a tree (i.e. X can
only be the root of one tree). This kind of reasoning can be understood in terms
of invariants and observable confluence.

As was the case with the blocks world example, we define an invariant that
describes valid states. Firstly, we informally define validT'rees, as follows:

“For all X there is at most one root(X) or X ~> Y, and there are no
cycles X ~> Yy, ..., Y, ~> X’

We are also interested in the confluence of a single union(X,Y) operation exe-
cuted in isolation on valid trees. Some combinations of operations are not valid,
thus we define validOps as follows:

4 We have removed the make rule to simplify the invariant.
5 CHR uses a multi-set semantics, thus here we consider X A X to be distinct from X.

“There is at most one union(_,_) or 1ink(_,_), and if there is aunion(_,_)
there is no find(_,_).”

This condition helps enforce confluence: since the order in which these operations
are executed can affect the final result. For example, executing a find before
or after a union may produce different results, since the union may update the
trees.

To ensure observable confluence, there is one final case to consider: a con-
current link and find operation. In this case, we can not simply make these
operations mutually exclusive, since 1link and find do interact in the body of
the union rule. However, the second argument to a find constraint must al-
ways be associated to the corresponding link constraint. Therefore, we define
validFind as follows:

“If there is a find (X,Y) then there is a 1ink(Y,_.) or 1ink(_,Y) but no
link(Y,Y), and Y does not appear in any other constraint.”

Define U = walidTrees A validOps A validFind, then we verify that U is
preserved by rule application, and thus is an invariant. Furthermore, none of the
non-joinable critical pairs, or any states extended from these critical pairs, satisfy
1.5 Therefore the union-find program P is observable confluent with respect to
U. Or in other words, P is U-confluent.

This shows that the union operation, executed in isolation on valid trees, is
confluent, even though the program itself is not confluent.

2.3 Type Class Functional Dependencies

The invariants we have seen so far reject (critical) states by observing the con-
straints in the store. But in CHR, sometimes a state cannot be observable be-
cause of the kind of rules that have, or have not, fired so far. This is due to
CHR propagation rules which only add new constraints but do not delete exist-
ing constraints. To avoid trivial non-termination, the CHR semantics maintains
a propagation history to avoid re-application of the same rule on the same set
of constraints. The short story is that certain states can never be observable
because of their propagation histories. Our next example illustrates this point.

We consider CHRs which arise from the translation of type class constraints
in Haskell [7] involving functional dependencies [4]. We directly give the CHRs
and omit the type class program.

rl @ f(int,bool,float) <=> true.
r2 @ £f(A,B1,C), £f(A,B2,D) ==> Bl = B2.
r3 @ f(int,B,C) ==> B = bool.

The first rule is a simplification rule. The second and third rule are propaga-
tion rules. Propagation rules do not delete the constraints matching the head,
thus they only add constraints. For example, the second rule adds the constraint

6 In the original paper [8], one of the critical pairs, namely 1link + findRoot, was “un-
avoidable” under the author’s conditions. However, we have sufficiently strengthened
the conditions to make the “unavoidable” critical pair avoidable.

B1 = B2 whenever we see £(A,B1,C) A f(A,B2,D) in the store. To avoid triv-
ial non-termination, propagation rules maintain a history of applications, and
avoid applying the same propagation rule more than once on the same set of
constraints.

When testing for confluence, we examine critical states, which are minimal
states where two different rule firings are possible. In order to be truly minimal,
the propagation history is assumed to be as strong as possible, i.e. where no
propagation rule can fire, except possibly the two rules used to generate the
critical state itself.

Rules r1, r2 give rise to the critical state £ (int,bool,float)Af (int,B2,D)
from which we can derive two different states as shown by the following rewriting
steps f (int,bool,float) A f(int,B2,D) »—,; £(int,B2,D) and

f(int,bool,float) A f(int,B2,D)
.o f(int,bool,float) A f(int,bool,D) A B2 = bool
1 £(int,bool,D) A B2 = bool

Note that we cannot apply the rule r3 to the state £ (int,B2,D) because the
propagation history in the critical state disallows this. As the critical state has
led to two different non-joinable states, the above CHR, program is non-confluent.

But in practice the critical state £ (int ,bool,float) A f(int,B2,D) where
the propagation history prevents rule r3 from firing on the second constraint can-
not arise. The initial state always begins with an empty (weakest) propagation
history. Hence, rule r3 must have fired already on the second constraint. If this
were the case, then the constraint B2 = bool should appear in the critical state,
but B2 = bool does not occur. Therefore, the critical state is not reachable from
any initial goal. Further details are given in Section 5.1, where we show that this
program is in fact observable confluent with respect to the reachability invariant.

Next, we review background material on CHR, before introducing the notion
of observable confluence and the observable confluence test.

3 Preliminaries

A CHR simpagation rule is of the form (r @ H{ \ H) <= g | C) where
we propagate Hi and simplify H} by C if the guard g is satisfied. We call r
a propagation rule if H) is empty and a simplification rule if H{ empty. As
seen in Section 2, (r @ H) <= g | C) is shorthand for the simplification
rule (r @0\ HY, < g | C), and (r @ Hl = g | C) is shorthand for the
propagation rule (r @ H] \) < g¢ | C).

In CHR there are two distinct types of constraints: user constraints and built-
in constraints. Built-in constraints are provided by an external solver, whereas
user constraints are defined by the rules. Only user constraints may appear in
the rule head (Hj and HJ), and only built-in constraints in the guard g. The
body C' may contain both kinds of constraints.

Formally, CHR is a reduction system (—,Y) where ~ is the CHR rewrite
relation and X' is the set of all CHR states.

Definition 1 (CHR State). A state is a tuple of the form
(G,S,B,T,V)

where goal G is a multi-set of constraints (both user and built-in), user store S
is a multi-set of user constraints, built-in store B is a conjunction of built-in
constraints, token store T is a set of tokens, and variables of interest V is the
set of variables present in the initial goal. Throughout this paper we use symbol
‘o’ to represent a state, and X to represent the set of all states. O

The built-in constraint store B contains any built-in constraint that has been
passed to the built-in solver. Since we will usually have no information about
the internal representation of B, we treat it as a conjunction of constraints. We
assume D denotes the theory for the built-in constraints B.

The token store” T is a set of tokens of the from (r@QC), where r is a rule
name, and C is a sequence of user constraints. A CHR propagation rule r may
only be applied to C' if the token (r@QC') exists in the token store. This is neces-
sary to prevent trivial non-termination for propagation rules. Whenever a new
constraint is added to the user store, the token set of that constraint is added
to the token store.

Definition 2 (Token Set). Let P be a CHR program, C be a set of user con-
straints, and S a user-store, then define

Tic,sy ={rQH' | (r@H =g | B)e P,H' C C¥S,C C H',H' unifies with H}
to be the token set of C' with respect to S. O

In the above, we write W for multi-set union. Later, we will also use multi-set
intersection M.

We define vars(o) as the free variables in some object o: e.g. term, formula,
constraint. We define an initial state as follows.

Definition 3 (Initial State). Given a multi-set of constraints G (i.e. the goal)
the initial state with respect to G is (G, 0, true, D, vars(G)). O

The operational semantics of CHR?2 is based on the following three transitions
which map states to states:

Definition 4 (Operational Semantics).
1. Solve ({c} WG, S,B,T,V) — (G,S,cANB,T,V)
where ¢ is a built-in constraint.
2. Introduce ({c}WG,S,B,T,V) — (G, {c} WS, B, T(y,s¥T,V)
where ¢ is a user constraint.
3. Apply (G,HI W Hy WS, B TYT,V) — (CYG,H WS, 0AB,T,V)
where there exists a (renamed apart) rule (r @ H{ \ Hy < ¢ | C) in P, and
T = {(r@QH,, H2)} if Hy = 0, otherwise T = 0. The matching substitution 0 is
such that
Hy = 0(H{)
Hy = 0(H3)
DEB—3Jal@Ag)

" The token store is also known as the propagation history.

8 There are many different versions of the operational semantics of CHR. In this paper
we use a version that is close to the original operational semantics described in [1].
This version is the most suitable for the study of confluence.

where a = vars(g) — vars(H{, Hy) and D denotes the built-in theory. O

A derivation is a sequence of states connected by transitions. We use notation
oo —"* 01 to represent a derivation from og to o7.

3.1 Confluence
Confluence depends on the notion of equivalence between CHR states. The equiv-
alence relation for CHR states is known as wvariance:

Definition 5 (Variance). Two states
o1 =(G1,51,B1,11,V) and o3 = (Ga, 52, B2, 72, V)

are variants (written o1 =~ 02) if there exists a unifier p of S1 and Sz, G1 and
Go, (Ti M T (s, ,p)) and (T2 M T(g, 9)) such that

1. D ': EIV1B1 - glle/\ By

2. D ’: EIVZBQ — Hvzp/\ By

where Vi = VUvars(Gy)Uvars(S1)Uvars(7y) and Vo = VUvars(Ge)Uvars(S2)U
vars(73). Otherwise the two states are variants if D = -39 By and D |= —3pBs
(i.e. both states are false). O

Confluence relies on whether two states can derive the same state. This property
is known as joinability.

Definition 6 (Joinable). Two states o1 and oy are joinable if there exists
states o} and ol such that o1 —* o] and o2 —* o} and o] = of. We use the
notation (o1 | 02) to indicate that o1 and o9 are joinable. O

Finally, we can define confluence as follows:

Definition 7 (Confluence). A CHR program P is confluent if the following
holds for all states oy, 01 and o3: If 09 —* 01 and o9 —* o9 then o1 and o9
are joinable. O

3.2 Confluence Test

In [1] it was shown that confluence is decidable for terminating CHR programs.
The confluence test for CHR depends on calculating all critical pairs between
rules in the program. First we define the notion of a critical ancestor state.

Definition 8 (Critical Ancestor States). Given two (renamed apart) rule
instances: (rl @ Hi\Hy <= ¢1 | B1) and (12 Q H3\Hy <= g2 | Ba), then the
set of all critical ancestor states (or simply ancestor states) Xep between rl and
r2 18:
H.1 = Hi W Hy
H,., = H3WH,

0, HS w HS w H, H, = HO wHA

HY = H3 N g1 Aga, Tep, Vep) | Hyo = HO, W HE
Vep =

vars(Hy AN Hy N Hs A Hy A g1 A g2)

where, given e; = (rlQH;, Hy) and es = (r2QHs, Hy), then Tep = {e; | i €
{1,2}, riis a propagation rule}.

Basically, a critical ancestor state is a minimal state applicable to both rules.
The sets Hf} and H[), represent some potential overlap between the two rules.
If the rules heads H,; and H,2 do not overlap, then H] = H', = 0 gives the
only non- false ancestor state.

We define a critical pair in terms of an ancestor state.

Definition 9 (Critical Pair). Given the rules r1, r2 and the set Xep from
Definition 8, for ocp € Xep where

oep = (0, HA w HS w HD HY = HTY A gy A go, Tep, Vep)

rls

then the critical pair (ca,0p) for ocp is

((B1,(HA w HS w HY)) — Ho, H) = Hy A g1 A g2, Ta, Vep),

T

(Bo, (HR W HS WHD) — Hy HYY = HOY A g1 A g2, T, Ver))

T

where Ty = Tep —{e1} and Tp = Tep — {e2} and where ey and ey are defined
as in Definition 8. O

Informally, Definition 9 simply states that (c4,0p) is the result of respectively
firing 1 and r2 on o¢p, whilst being careful to specify exactly how the rules
were applied (e.g. how the constraints were matched against the rule head).
For the rest of the paper, we use o¢p to denote the ancestor state of a critical
pair CP.
Confluence can be proven by showing that all critical pairs are joinable.

Theorem 1 (Confluence Test). [1] Given a terminating CHR program P, if
all critical pairs between all Tules in P are joinable, then P is confluent.

This is known as the confluence test for terminating CHR, programs.

3.3 Z-Confluence

In this section we formally define Z-confluence (i.e. observable confluence)? with
respect to an invariant Z.

Definition 10 (Invariant). An invariant Z(o) is a property such that for all
oo and o1, we have that if oo — o1 (or o¢ = 01) and Z(og) then Z(o1). O

Ezample 1 (Blocks World Invariant). First we define exists(o, M), which de-
cides if the multi-set of user constraints M exists in o:
exists((G,S,B,7,V),M) <
35" Cuser(G)WS A D = builtin(G) A B — 3yars(ary (M = 5')
where user(G) and builtin(G) returns all user/built-in constraints in G respec-
tively.

9 The terminology “Z-confluence” and “observable confluence” are largely interchange-
able. The latter is useful when referring to a specific invariant 7.

The invariant for the blocks world example from Section 2.1 is formally rep-
resented as B(o) where

B(o) &—exists(o, {empty, empty}) A mexists(o, {empty,holds () })A
—exists(o, {holds(.),holds () }) A —exists(o, {get (), get()})

The first three conditions state that the agent either holds something or holds
nothing. The outcome is determined by the order in which get operations are
executed. Therefore, we impose the fourth condition which guarantees that we
only consider isolated get operations. It is straightforward to verify that the
Blocks-world program maintains B as an invariant. O

Given an invariant Z, we define confluence with respect to Z as follows:

Definition 11 (Observable Confluence). A CHR program P is Z-confluent
with respect to invariant T if the following holds for all states og, o1 and og
where I(og) holds: If oo —* 01 and oy —* o2 then o1 and oo are joinable. O

Alternatively, a CHR program P is Z-confluent with respect to invariant Z iff the
reduction system R = ({o € X|Z(0)},—) is confluent. Likewise, P is Z-local-
confluent iff R is local-confluent and P is Z-terminating iff R is terminating.

Observable confluence is a weaker form of confluence,'® thus the standard
confluence test (see Theorem 1) is too strong. We desire a more general test for
observable confluence.

4 Observable Confluence
4.1 Extensions
To help reduce the level of verbosity, we introduce the notion of a state extension.
Definition 12 (Extension). A state o = (G,S,B,7T,V) can be extended by
another state oo = (G, Se, Be, e, Ve) as follows

o®0o.=(GWG, SYS.,BAB., T W1, V)

We say that o is an extension of . O

An extension o, adds some “extra”’ information to an existing state o. Notice
that the variables of interest V in the original state o are simply replaced by
variables of interest V. from state o.. We also assume that ~ (see Definition 5)
is the equivalence relation for extensions.

Ezxample 2. The following equations are of the form ¢ & 0. = ¢’ where o and ¢’
are states, and o, is an extension.

0,{p(X)}, true,0,0) & (0, {q¢(X)}, true, 0,0) = (0, {p(X), ¢(X)}, true, 0, 0)
0, {p(X)}, true,0,0) ® (0,0, X =0,0,0) = (0, {p(X)}, X =0,0,0)
B, {p(X)}, true,0,0) & (0,0, true, 0, { X }) = (0, {p(X)}, true, 0, { X })
The first adds a user constraint g(X) to the user store, the second adds a built-in

constraint X = 0 to the built-in store, and the third replaces the variables of
interest with the set {X}. O

10 Observable confluence is only strictly weaker if Z # true.

One crucial property of extensions is that they do not affect the applicability
of the CHR rewrite relation —.

Lemma 1. For all states o and o1 such that o —* o1, and for all extensions
0. have that o ® 0e —* 01 D 0.

The notions of variance and joinability depend on the variables of interest
V. Therefore we must refine the definition of extension to ensure joinability is
preserved.

Definition 13 (Valid Extension). A valid extension o, = (G, Se, Be, Zc, Ve)
of a state 0 = (G, S, B,T,V) is an extension such that

v €vars(G,S, B, T)Nv &V = v &vars(Ge,Se, Be, e, Ve)

Ezample 3. Consider the state o = (0, {leq(X,Y)}, X =Y,0,{X}). Then o, =
{leq(X,2)},0,true,0,{X}) is a valid extension of o. However, the extension
ol = ({leq(Y, Z)},0, true,§,{X}) is invalid since local variable Y is mentioned
in the extension. O

For valid extensions, joinability is preserved.
Lemma 2. For all states o = (G, S, B,7,V), o1, and o2 such that

oc—"01 and o —" og

If 01 | 09, then for all valid extensions o. we have that o1 & oc | 09 P 0.

4.2 ZT-Confluence

If all variables in a state o = (G, S, B,7,V) are in V, i.e. vars(G,S,B,7) C V,
then all extensions are valid for o. The ancestor state of a critical pair has
this property, thus proving Z-confluence is equivalent to showing that for all
critical pairs (o4,0p) with ancestor state ocp, and all extensions o, such that
Z(ocp ®oe) holds, then (04 @ 0e, 05 B 0o.) are joinable. The problem is that the
set of all extensions is infinite, so we need some way of reducing the number of
extensions that we must test.

Our strategy is to define a partial order* =, over valid extensions that
satisfy the invariant with respect to some state o.

Definition 14 (Partial Order). Given a state o = (G, S, B,T,V), and valid
extensions o1 and oo of o, then we define 0¢1 =4 Teo to hold if

11

1. there ezists a valid extension oe3 of (0@0e1) such that (0D0e1)DOes & D02
2. V-V CV— V.o holds. O

We find that if 0.1 <, 0e2, 0 — 01, and 0 > 09, then (01 ® 0e1 | 02 ® 1)
implies (01 ® 0e2 | 02 @ 0e2). The means that the <, order respects joinability,
and thus reduces the number of states that must be tested in order to prove
confluence.

We define the following for notational convenience.

11" Although we believe that relation <, is a partial order, we omit a formal discussion
since none of our theoretical results require it to be.

10

Definition 15. Let YX.(o) be the set of all valid extensions of some state o,
and let XX (o) = {oe|lo. € Le(0) NI(0 @ 0.)} be the set of all valid extensions
satisfying the invariant Z. Finally, let MZ(c) be the <,-minimal elements of
XX(s). O

We define the following property, which we show to be equivalent to Z-local-
confluence.

Definition 16. A program P is minimal extension joinable if for all critical
pairs CP = (01, 02) with ancestor state ocp, and for all 0. € MZ(ocp), we have
that (01 @ 0c, 09 ® 0¢) is joinable.

Lemma 3. Given that <., is well-founded for all critical pairs CP, then: P is
ZI-local-confluent iff P is minimal extension joinable.

For terminating programs, we invoke Newman’s Lemma [6] to show that Z-local-
confluence implies Z-confluence.

Theorem 2. For all Z-terminating programs P, given that <4, s well-founded
for all critical pairs CP, then: P is Z-confluent iff P is minimal extension join-
able.

4.3 Z-Confluence Test

The standard confluence test for terminating CHR programs relies on showing
that all critical pairs are joinable. Based on Theorem 2, we can define a similar
test for the more general notion of Z-confluence. Instead of testing critical pairs,
we test critical pairs CP extended by the MZ(ocp) extension set.

For Theorem 2 to be used in practice, there are two issues that must be
resolved: (1) the order <., must be well-founded, and (2) for each critical pair
CP, the set of extensions MZ(ocp) must be computable.

Well-foundedness. Ordering <., is essentially a product order over the fields
in the CHR state. Thus for the G, S, 7 fields of a state, <., is the well-founded
subset ordering with the minimal element G = S = 7 = (). The set of variables
of interest V is ordered differently. In this case, extensions are ordered based
on the difference between V and some given reference set Vy. Again, this is (a
variant of) subset ordering with the minimal element V = V.

Where well-foundedness may be broken is the built-in store B. Indeed, for
some constraint domains, the set of extensions is not well-founded.

Ezample 4. Consider the constraint domain D of (in)equalities over the integers.
Consider the following sequence of extensions: o¢ = (0,0, X < 4,0, {X}). Since
for all j, k such that £ > j we have that D E X < j « (X < kA X < j) we
have that o7 <, o holds. Since the sequence is infinite, the relation <, is not
well-founded. O

There are also important examples of constraint domains that do preserve well-
foundedness:

11

Proposition 1. The order <, is well-founded for all o if D is equations over
the Herbrand domain.

Proposition 2. The order <, is well-founded for all o if D is a finite domain.

We can use Proposition 2 to find a practical solution to Example 4. Instead of
considering all possible integers, we can restrict ourselves to some finite range
of integers (e.g. those representable on a 32-bit CPU). The example is now well
founded, with the minimal element (@, 0, X < 2320, {X}).

Computability. Depending on the invariant Z, the set MZ(ocp) may be either
undecidable or be infinite. Even if MZ(o¢p) is decidable and finite, an algorithm
to compute it is dependent on the nature of Z. The computation of MZ(ocp) is
therefore instance-dependent.

Despite this, in Section 5 we look at several instances for Z and compute the
MZ(aep) for each critical pair.

5 Examples

We use Theorem 2 to verify observable confluence under the invariants we have
seen earlier in Section 2. In addition, we verify ground confluence.

5.1 Reachable Confluence

A naive definition of confluence states that: a program P is confluent if for all
input I, there is only one possible O such that I —* O. However, in [2] it was
shown that there exist non-confluent CHR programs that satisfy this alternative
definition. In this section, we reformulate the main theorem from [2] in terms of
our observable confluence results.

The key issue is the difference between reachable and unreachable states. A
reachable state is one that can be derived from some initial state (i.e. from some
initial goal).

Definition 17 (Reachability). We define the property that a state is reach-
able R(o) as follows:

— For all initial states o; = (G, 0, true, 0, vars(G)) R(o;) holds; and
— If o1 > 09 (or o1 = 02) and R(o1) holds, then R(o2) holds. O

By definition, R(c) is an invariant.

The naive definition of confluence is more precisely defined as R-confluence,
i.e. confluence with respect to the reachability invariant. In some systems, e.g.
in term rewriting, all states (terms) are potential initial states, and thus R-
confluence and confluence are equivalent. However, as was show in Section 2.3,
the same is not true for CHR. Our main counter-example is the following class
of CHR programs, which arise from the study of multi-parameter typeclasses
with functional dependencies [10].

Definition 18 (FD-CHR). A CHR program P is said to be in the FD-CHR
class of programs if it is of the form

12

rl @ p(Xy,..., Xq, Xgy1, .., Xp,), (X0, 0, Xg, Yaq, 00, Y5,) ==
Xi+1=Y441,..,. X, =Y,

2 @ p(f1,..., fn) <=> B.

r3 @ p(f1,.s fa Vi, Yoy) ==> Vi = fayn,.. Yo = f,.

where B is an arbitrary conjunction of built-in and user constraints, and f; are
arbitrary terms such that vars(fati,..., fr) C vars(fi,..., fa) We also require
P to be terminating. Here the indices 1..d represent the domain and indices
(d + 1)..r represent the range of the functional dependency. Also note that r is
allowed to be less than n. O

In [2] it was shown that the FD-CHR class of programs are R-confluent, however
many instances of Definition 18 are not confluent.

Ezample 5 (FD-CHR). Consider the following instance of Definition 18:12

rl @ £(A,B1,C), f(A,B2,D) ==> B1 = B2.
r2 @ f(int,bool,float) <=> true.
r3 @ f(int,B,C) ==> B = bool.

Consider the critical pair (o1, 02) between rules r1 and r2:

ocp = (0, {f(int,bool, float), f(int, B2, D)}, true, {t},{B2, D})
o1 = ({bool = B2},{ f(int,bool, float), f (int, B2, D)}, true,(,{B2, D})
oy = (0,{f(int, B2, D)}, true, {t},{B2,D})

where ¢ is the token (r1Qf(int, bool, float), f(int, B2, D)). The final states de-
rived from o; and oy are:

o1 —" (0,{f(int,bool, D)}, B2 = bool, D, {B2, D})
oo —"* (0, {f(int, B2, D)}, true, {t},{B2, D})

These states are not variants. In the final state for oy, the variable B2 is con-
strained to bool, but this is not the case for the final state for os. Thus the
critical pair is not joinable, and the program is not confluent. O

State o¢p is not reachable, since the lack of a token (r3Qf (int, B2, D)) sug-
gests rule r3 has already fired on constraint f(int, B2, D). If that rule did fire,
then we would expect the built-in store to entail B2 = bool, which is not the
case.

Thus, we consider the minimal set of extensions that make o¢p reachable.
This set is:

ME(oep) ={(0,0, true, {(r3Qf(int, B2, D))}, V), ({ B2 = bool}, §, true, , V),
(0,0, B2 = bool,0,V)}

It is easy to verify that for all 0. € M (oep) we have that o1 © o | 02D 0o.. We
can verify similar results for all other critical pairs in P, and thus, by Theorem 2,
program P is R-confluent.

We can generalise this basic approach, and restate the main theorem from [2].

12° An informal version of this example was seen in Section 2.3.

13

Corollary 1. All programs P € FD-CHR are R-confluent.

The alternative proof for Corollary 1 in [2] relied on showing that all programs
P € FD-CHR were related to a class of confluent programs, and that the relation
was sufficient to show R-confluence. In this paper, the proof relies on Theorem 2,
and thus is a far more direct proof of R-confluence.

5.2 Simple Confluence

It is common for programmers to implement non-confluent CHR programs that
are well behaved for some certain input. For example, the union-find program [8]
(also see Section 2.2) is non-confluent, however it is well behaved provided the
initial goal satisfies some certain conditions.

Let Z be an invariant that simply excludes non-joinable critical pairs from
consideration, then P is always Z-confluent. We define this as simple confluence.

Corollary 2 (Simple Confluence). Given an invariant T and an Z-terminat-
ing program P such that <, is well-founded for all o, then P is I-confluent if
for all critical pairs CP = (01, 02), either:

1. Z(ocp) holds, and o1 | o2; or
2. For all extensions o, we have that Z(ocp @ o) does not hold.

Via the above corollary and the blocks world invariant B from Example 1,
we can straightforwardly verify B-confluence of the blocks world program from
Section 2.1. Similarly, we can verify observable confluence of the union-find al-
gorithm in Section 2.2.

5.3 Ground Confluence

A state o is ground, i.e. G(o) holds, if all variables vars(o) are constrained to
be one value by the built-in store B of ¢. Groundness is an invariant for range
restricted'® CHR programs. Typically, the critical pair between two rules is not
ground, however we can invoke Theorem 2 to show G-confluence.

Corollary 3 (Ground Confluence). Given a G-terminating, range restricted
program P such that <, is well-founded for all o, then P is G-confluent if for all
critical pairs CP = (o1, 02) we have that (o1 ® oe) | (02 ® 0e) for all extensions
o € M(ocp) where:
M(oep) ={{0,0,Xo =do A ... AN Xy, = d, 0, Vep) |
{Xo,....,. X;,} = vars(oep),d; € D}

If D is an finite set, then M(o¢p) can be computed.

Ezample 6. Consider the following CHR, program over the Boolean domain.

p(X,Y) <=> not(X,Y). xor(0,0,Z) <=> Z = 0.
p(X,Y) <=> xor(1,X,Y). xor(0,1,Z) <=> Z = 1.
not(0,Y) <=> Y = 1. xor(1,0,Z2) <=> Z = 1.
not(1,Y) <=> Y = 0. xor(1,1,Z) <=> Z = 0.

13 A CHR program is range restricted if vars(Hi\Hs <= G|B) = vars(H: A Hz) for
all rules.

14

The critical state oep = (0, {p(X,Y)},true,0,{X,Y}) between the first two
rules is non-joinable, hence the program is non-confluent. Clearly G(o¢p) does
not hold, thus we evaluate M(ocp):

Moep) = {{0,0, X =0AY = 0,0, {X, Y}, (0,0, X =0AY = 1,0, {X,Y}),
<®a®7X: 1/\Y205®7{X7Y}>5<®7®5X:1/\Y217®3{X3Y}>}

For each of these extensions, the critical pair is joinable, and thus P is G-
confluent. O

6 Conclusion

We have shown that many non-confluent CHR programs are in fact observably
confluent in practice, and have presented a method for proving the observable
confluence of programs with respect to invariants. Furthermore, we have spe-
cialised our results for some common cases, such as simple confluence and ground
confluence.

To the best of our knowledge, we are the first to study observable confluence
in the context of a rule-based language. However, the notion of observable con-
fluence could easily be extended to other areas, such as term rewriting, which is
something we intend to investigate in the future.

References

1. S. Abdennadher. Operational semantics and confluence of constraint propagation
rules. In Proc. of CP’97, LNCS, pages 252—-266. Springer-Verlag, 1997.

2. G. J. Duck, P. J. Stuckey, and M. Sulzmann. Observable Confluence for Constraint
Handling Rules. Technical Report CW 452, Katholieke Universteit Leuven, 2006.
Proc. of CHR 2006, Third Workshop on Constraint Handling Rules.

3. T. Frihwirth. Constraint handling rules. In Constraint Programming: Basics and
Trends, LNCS. Springer-Verlag, 1995.

4. M. P. Jones. Type classes with functional dependencies. In Proc. of ESOP’00,
volume 1782 of LNCS. Springer-Verlag, 2000.

5. E. S. L. Lam and M. Sulzmann. Towards agent programming in CHR. Technical
Report CW 452, Katholieke Universteit Leuven, 2006. Proc. of CHR 2006, Third
Workshop on Constraint Handling Rules.

6. M. H. A. Newman. On theories with a combinatorial definition of equivalence.
Annals of Mathematics, 43(2):223-243, 1942.

7. S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

8. Tom Schrijvers and Thom W. Frithwirth. Analysing the CHR Implementation
of Union-Find. In Armin Wolf, Thom W. Frithwirth, and Marc Meister, editors,
W(C)LP, volume 2005-01 of Ulmer Informatik-Berichte, pages 135-146. Univer-
sitdt Ulm, Germany, 2005.

9. Tom Schrijvers and Thom W. Frithwirth. Optimal union-find in Constraint Han-
dling Rules. TPLP, 6(1-2):213-224, 2006.

10. M. Sulzmann, G. J. Duck, S. Peyton Jones, and P. J. Stuckey. Understanding
Functional Dependencies via Constraint Handling Rules. Journal of Functional
Programming, 17(1):83-129, 2007.

15

