
Compiling Ask Constraints

Gregory J. Duck1, Maŕıa Garćıa de la Banda2, and Peter J. Stuckey1

1 Department of Computer Science and Software Engineering
The University of Melbourne, Vic. 3010, Australia

{gjd,pjs}@cs.mu.oz.au
2 School of Computer Science and Software Engineering

Monash University, Vic. 3800, Australia
mbanda@csse.monash.edu.au

Abstract. In this paper we investigate how to extend a generic con-
straint solver that provides not only tell constraints (by adding the con-
straint to the store) but also ask tests (by checking whether the con-
straint is entailed by the store), with general ask constraints. Ask con-
straints are important for implementing constraint implication, extensi-
ble solvers using dynamic scheduling and reification. While the ask-test
must be implemented by the solver writer, the compiler can extend this
to provide ask behaviour for complex combinations of constraints, in-
cluding constraints from multiple solvers. We illustrate the use of this
approach within the HAL system.

1 Introduction

A constraint c of constraint domain D expresses relationships among variables
of D. All constraint programming frameworks (such as CLP (D) [4, 5]) use c
as a tell constraint, allowing the programmer to add the relationship to the
current constraint store C and check that the result is possible satisfiable, i.e.,
D |= ∃̃(C ∧ c). However, some frameworks (such as cc(D) [6]) also use c as an
ask constraint, allowing the programmer to detect constraints stores C for which
the relationship already holds, i.e., D |= C → c.

Ask constraints are often used to control execution by associating them to
some goal, which is to be executed if and when the associated ask constraints
succeed (i.e., become entailed by the constraint store).

Example 1. The following cc [6] definition of the constraint min(X,Y,Z)

min(X,Y,Z) :- X >= Y | Z = Y.

min(X,Y,Z) :- Y >= X | Z = X.

where Z is the minimum of X and Y is read as follows: when the min constraint
is executed, wait until one of the ask constraints to the left of the bar | holds
and then execute the tell constraint to the right of the bar. In the case of the
cc framework the implementation also encodes a commit: once one ask con-
straint holds the other will never be reconsidered. The code implements a form
of implication whose logical reading is:

min(x, y, z) ⇔ (x ≥ y → z = y) ∧ (y ≥ x → z = x) �

Note that it is not enough for the above framework to be able to test whether
a constraint c is entailed by the current constraint store (this one-off test will be
referred to in the future as the ask-test). It also needs to detect changes in the
constraint store that might affect the entailment of c, so that the ask-test can be
re-executed. Hence, ask constraints are strongly connected to logical implication.
In fact, it is this connection that makes them so useful for implementing many
important language extensions, such as those involving constraint solvers.

In this paper we consider a language that supports an ask construct of the
form (F1==>G1& . . . & Fn==>Gn), where each Fi is a complex formula over con-
straints. The construct waits until some Fi is entailed by the store, and then
executes its associated goal Gi. Several other languages, such as SICStus and
ECLiPSe, implement related constructs for dynamic scheduling. However, they
are typically hard-coded for a single solver, a pre-defined set of test conditions
and do not support handling of (explicit) existential variables. Also, they usually
only support formulas F made up of a single ask test condition. These restric-
tions considerably simplify the implementation of the construct.

This paper discusses the compilation of an ask construct with arbitrary ask-
constraints, that allows the programmer to write code which closely resembles
the logical specification. In particular, our contributions are as follows:

– We show how to extend an ask-test implemented by some underlying solver
to a full ask constraint supporting dynamic scheduling.

– We show how to compile complex ask constraints which include existential
variables and involve more than one solver, to the primitive ask-tests sup-
ported by the solvers.

– We show that the approach is feasible using an implementation in HAL [1].

2 Ask Constraints as High-level Dynamic Scheduling

This section formalizes the syntax, logical semantics and operational semantics
of our ask construct. Its basic syntax is as follows:

(<ask-formula>1 ==> goal1 & ... & <ask-formula>n ==> goaln)

where an <ask-formula>i is a formula made up of primitive ask constraints,
disjunction, conjunction, and existential quantification. Formally:

<ask-formula> := <ask-constraint> (primitive constraint)
<ask-formula> := <ask-formula> ’;’ <ask-formula> (disjunction)
<ask-formula> := <ask-formula> ’,’ <ask-formula> (conjunction)
<ask-formula> := exists <var-list> <ask-formula> (existential quantification)

where <ask-constraint> represents some primitive ask constraint provided by
a solver, <var-list> is a list of variables, and each ask-constraint/goal pair is
referred to as an ask branch.

The operational semantics of the above construct is as follows. As soon as
the solver(s) determine that an ask-formula is entailed, the corresponding de-
layed goal is called. The remaining ask branches will then never be considered,

2

thus effectively committing to one branch. This commit behaviour can be easily
avoided by specifying separate ask constructs for each branch. Note that ask
constraints are monotonic, i.e., once they hold at a point during a derivation,
they will always hold for the rest of the derivation. The advantage of monotonic-
ity is that delayed goals need only be executed once, as soon as the associated
ask constraints are entailed.

The declarative semantics of an ask branch F==>G is simply logical implica-
tion F → G. The semantics of the whole construct (F1==>G1& · · · & Fn==>Gn)
is a conjunction of implications, but in order to agree with the commit the pro-
grammer must promise that the individual implications agree. That is, that for
program P :

D ∧ P |= (Fi ∧ Fj) → (Gi ↔ Gj)

In other words, if the ask construct wakes on the formula Fi causing Gi to
execute, and later formula Fj is implied by the store, then Gj is already entailed
by Gi and need not be executed. Note that under these conditions the commit is
purely used for efficiency, it will not change the logical semantics of the program,
although it may of course change the operational behaviour since the underlying
solvers are likely to be incomplete.

Example 2. Consider the following implementation of the predicate either(X,Y)
which holds iff X or Y are true:

either(X,Y) :- (X = 0 ==> Y = 1 & Y = 0 ==> X = 1).

The logical reading is (X = 0 → Y = 1)∧ (Y = 0 → X = 1) which is equivalent
to (X = 1 ∨ Y = 1) in the Boolean domain. If both ask constraints are made
true (X = 0 ∧ Y = 0), the right hand sides are equivalent (Y = 1 ↔ X = 1) to
false. �

The proposed ask construct is indeed quite versatile. The following examples
show how to use it to implement reification constraints, build constraints that
involve more than one solver, and implement negation.

Example 3. A reified constraint b ⇔ c constrains the Boolean variable b to be
true if c is implied by the store, and b to be false if ¬c is implied by the store,
and vice versa. Consider defining a predicate B ↔ ∃Y.X = [Y, Y] which “reifies”
the right hand side. Note that the right hand side is equivalent to ∃E1∃E2.X =
[E1, E2], E1 = E2. This can be implemented using ask constraints as

reifcomp(B,X) :-

(B=0, (exists [E1,E2] X = [E1,E2]) ==> X=[E1,E2], E16=E2

& B=1 ==> X=[Y,Y]

& exists [Y] X=[Y,Y] ==> B=1

& X=[] ; (exists [E1] X=[E1]) ;

(exists [E1,E2,R] X=[E1,E2|R], (E16=E2 ; R6=[])) ==> B=0)

These definitions assume X only takes on list values. �

3

Example 4. The following program defines a length constraint which involves
variables from a finite domain constraint solver, and from a Herbrand constraint
solver for lists, and propagates information from one to the other:

length(L,N) :- (N = 0 ; L = [] ==> N = 0, L = []

& N >= 1 ; (exists [U1,U2] L = [U1|U2]) ==>

L = [|L1], N >= 1, length(L1,N-1)). �

Example 5. Consider the following definition of disequality

neq(X,Y) :- (X = Y ==> fail).

This (very weak) implementation of disequality waits until the arguments are
constrained to be equal and then causes failure. �

3 Compiling Primitive Ask Constructs

Let us now examine how to compile a primitive ask construct (i.e., one in which
the left hand side of every ask branch is a single ask constraint) to the low-level
dynamic scheduling supported by HAL.3

3.1 Low-level Dynamic Scheduling in HAL

HAL [1] provides four low-level type class methods that can be combined to
implement dynamic scheduling: get id(Id) which returns an unused identifier
for the delay construct; delay(eventi,Id,goal1) which takes a solver event, an
id and a goal, and stores the information in order to execute the goal whenever
the solver event occurs; kill(Id) which causes all goals delayed for the input id
to no longer wake up, and alive(Id) which succeeds if the input id is still alive.
In order for a constraint solver in HAL to support delay, it must provide an
implementation of the delay/3 method. Implementations of get id/1, kill/1
and alive/1 can either be given by the solver or be re-used from some other
source (such as the built-in system implementations). For more details see e.g. [1].

There are three major differences between HAL’s dynamic scheduling and our
ask construct. First, solver events (eventi) are single predicates representing an
event in the underlying solver, such as “the lower bound of variable X changes”.
No conjunction, disjunction or existential quantification of events is allowed.
Second, solver events need not be monotonic. Indeed, the example event “lower
bound has changed” is clearly not. And third, a delayed goal will be re-executed
every time its associated solver event occurs, until its id is explicitly killed.

Example 6. A finite domain integer (fdint) solver in HAL supporting dynamic
scheduling typically provides the following solver events:

fixed(V) The domain of V reduces to a single value;
lbc(V) The lower bound of V changes (increases);
ubc(V) The upper bound of V changes (decreases);
dc(V) The domain of V changes (reduces).

3 The compilation scheme can be adapted straightforwardly to other dynamic schedul-
ing systems supporting delay identifiers.

4

Note that solver events do not need to be mutually exclusive: if the domain
{1, 3, 5} of X changes to {1}, the events fixed(X), ubc(X) and dc(X) all occur.

Using the above events, a bounds propagator for the constraint X ≥ Y can
be written as

geq(X,Y) :- get id(Id),delay(lbc(Y),Id,set lb(X,max(lb(Y),lb(X)))),

delay(ubc(X),Id,set ub(Y,min(ub(X),ub(Y))).

where lb (and ub) are functions returning the current lower (and upper) bound
of their argument solver variable. Likewise, set lb (and set ub) set the lower
(and upper) bound of their first argument solver variable to the second argument.
The code gets a new delay id, and creates two delaying goals attached to this
id. The first executes every time the lower bound of Y changes, enforcing X to
be greater than this bound. The second implements the reverse direction. �

In addition to the four methods introduced above, HAL supports an “asks”
declaration initially introduced into HAL to support the compilation of con-
straint handling rules that interact with arbitrary solvers [2]. The declaration
allows constraints solvers to declare the relationship between a predicate im-
plementing constraint c as a tell constraint, the predicate implementing c as
an ask-test (a one-off test), and the list of solver events which might indicate
the answer to the ask-test has changed and, therefore, the ask-test should be
re-executed. Its syntax is as follows:

:- <ask-test> asks <tell-constraint> wakes <wakes-list>.

Example 7. The finite domain solver introduced in Example 6 might define the
ask-test and declaration for the geq constraint as follows.

:- ask geq(X,Y) asks geq(X,Y) wakes [lbc(X),ubc(Y)].

ask geq(X,Y) :- lb(X) >= ub(Y).

The predicate ask geq defines the ask-test for the geq constraint, and should be
revisited when either the lower bound of X or the upper bound of Y change. �

3.2 From Ask-Tests to Primitive Ask Constructs

The low-level dynamic scheduling of HAL allows us to compile the primitive ask
construct:

(c1(A
1

1, ..., A
1

m1
) ==> Goal1 & . . . & cn(An

1 , ..., An
mn

) ==> Goaln)

if for each ci, 1 ≤ i ≤ n, there exists the associated asks declaration:

:- ask ci(X1, ..., Xmi
) asks ci(X1, ..., Xmi

) wakes [eventi1, ..., eventin].

This is done by replacing the ask construct with:

get id(Id),delay c1(A
1

1, ..., A
1

m1
,Id,Goal1),. . .,delay c2(A

n

1 , ..., An

mn
,Id,Goaln)

and generating for each delay ci the following code:

5

delay ci(X1, ..., Xmi
,Id,Goal) :-

(alive(Id) -> (ask ci(X1, ..., Xmi
) -> kill(Id), call(Goal)

; Retest = retest ci(X1, ..., Xmi
,Id,Goal)

delay(eventi1,Id,Retest), . . . delay(eventini
,Id,Retest))

; true).

retest ci(X1, ..., Xmi
,Id,Goal) :-

(ask ci(X1, ..., Xmi
) -> kill(Id), call(Goal) ; true).

The code for delay ci first checks if the Id is alive, and if so determines
whether or not the constraint already holds by calling the ask-test ask ci/n.
If so, the Id is killed, the Goal is immediately called, and no other action is
necessary. If the constraint is not yet entailed, a closure for the retesting predicate
retest ci is associated to each of the relevant solver events so that, each time
a relevant solver event occurs, retest ci is executed. This predicates checks
whether the ask-test now succeeds and, if so, kills the Id and executes the goal.
Note that the delay predicate for each solver used in the ask construct must
support the same delay id type.

Example 8. Consider the asks declaration of Example 7. The compilation of

min(X,Y) :- (geq(X,Y) ==> Z = Y & geq(Y,X) ==> Z = X).

results in

min(X,Y) :- get id(Id), delay geq(X,Y,Id,Z = Y), delay geq(Y,X,Id,Z = X).

delay geq(X,Y,Id,Goal) :-

(alive(Id) -> (ask geq(X,Y) -> kill(Id), call(Goal)

; Retest = retest geq(X,Y,Id,Goal),

delay(lbc(X),Id,Retest),delay(ubc(Y),Id,Retest))

; true).

retest geq(X,Y,Id,Goal):- (ask geq(X,Y) -> kill(Id), call(Goal) ; true).�

4 Compiling Disjunctions and Conjunctions

Conjunctions and disjunctions in ask formulae can be compiled away by taking
advantage of the following logical identities:

1. Disjunctive implication: (a ∨ b) → c is equivalent to (a → c) ∧ (b → c); and
2. Conjunctive implication: (a ∧ b) → c is equivalent to (a → (b → c)).

Disjunctive implication is used to replace the branch
<ask-formula>1 ; <ask-formula>2 ==> Goal

in a construct, by the two branches
<ask-formula>1 ==> Goal & <ask-formula>2 ==> Goal

The two programs are operationally equivalent: the delayed Goal will be
called once, after either <ask-formula>1 or <ask-formula>2 (whichever is first)
hold. Similarly, conjunctive implication is used to replace the construct

<ask-formula>1 , <ask-formula>2 ==> Goal

by the construct:

6

(<ask-formula>1 ==> (<ask-formula>2 ==> Goal))

Again, the new code is operationally equivalent: the delayed goal Goal will only
be called once, after both <ask-formula>1 and <ask-formula>2 hold.

Note that the above simple conjunctive transformation cannot be directly
applied to a branch appearing in a construct with 2 or more branches, because
of the interaction with commit (the entire construct would be killed as soon
as <ask-formula>1 held, even if <ask-formula>2 never did). We can solve this
problem by using a newly created (local) delay id (LId) representing the delay
on <ask-formula>1 while using the original (global) delay id (GId) for the internal
delay (since if <ask-formula>2 also holds, the whole ask construct can commit).

An added complexity is that, for efficiency, we should kill the local delay id
LId whenever GId is killed (if, say, another branch commits) so that the low-level
HAL machinery does not re-execute (<ask-formula>2 ==> Goal) every time the
events associated to <ask-formula>1 become true. In order to do so we introduce
the predicate register(LId, GId) which links LId to GId, so that if GId is ever
killed, LId is also killed.

Example 9. Consider the compilation of

p(X,Y,Z,T) :- ((X >= Y ; X >= Z) ==> Z = T & (Y >= X, Z >= X) ==> X = T).

The resulting code is

p(X,Y,Z,T) :- get id(GId),

delay geq(X,Y,GId,Z = T), delay geq(X,Z,GId,Z = T),

get Id(LId), register(LId,GId),

delay geq(Y,X,LId,delay geq(Z,X,GId,X = T)). �

By iteratively applying these rules, we can remove all conjunctions and dis-
junctions from ask formulae (without existential quantifiers).

5 Normalization and Existential Quantification

One of the first steps performed by HAL during compilation is program nor-
malization, which ensures that every function and predicate has variables as
arguments. The normalization exhaustively applies the following rules:

1. Rewrite ∃x̄.C ∧ y = f(t1, . . . , ti, . . . , tn) where f is an n-ary function and ti
is either a non-variable term or a variable equal to some other tj , j 6= i, to
∃x̄∃v.C ∧ v = ti ∧ y = f(t1, . . . , v, . . . , tn), where v is a new variable.

2. Rewrite ∃x̄.C∧c(t1, . . . , ti, . . . , tn) where c is an n-ary constraint symbol and
ti is either a non-variable term or a variable equal to some other tj , j 6= i, to
∃x̄∃v.C ∧ v = ti ∧ c(t1, . . . , v, . . . , tn) where v is a new variable.

Example 10. Consider the following definition of a before-or-after constraint for
two tasks with start times T1 and T2 and durations D1 and D2 implements
T 2 ≥ T 1 + D1 ∨ T 1 ≥ T 2 + D2 without creating a choice.

before after(T1,D1,T2,D2) :- (T1 + D1 > T2 ==> T1 >= T2 + D2),

(T2 + D2 > T1 ==> T2 >= T1 + D1).

7

which will have the body normalized into:

(exists [U1] U1 = +(T1,D1), U1 > T2 ==> U2 = +(T2,D2), T1 >= U2),

(exists [U3] U3 = +(T2,D2), U3 > T1 ==> U4 = +(T1,D1), T2 >= U4).

thus adding the existentially quantified variables U1, . . . , U4. While the explicit
quantification can be omitted for the variables appearing in the tell constraints
on the right hand side (U2 and U4), this is not true for the ask constraints, since
the (implicit) existential quantifier escapes the negated context of the ask. �

Unfortunately, it is in general impossible to compile existential formulae down
to primitive ask constraints. Only the solver can answer general questions about
existential formulae.

Example 11. Consider an integer solver which supports the constraint X > Y and
the function X = abs(Y) (which constrains X to be the absolute value of Y).
The following ask construct (exists [N] abs(N) = 2, N > 1 ==> Goal) will
always hold. However, it is impossible to separate the two primitive constraints
occurring in the ask formula. Instead, we would have to ask the solver to treat
the entire conjunction at once. �

Thankfully, although normalization can lead to proliferation of existential
variables in ask formulae, in many cases such existential variables can be com-
piled away without requiring extra help from the solver. Consider the expression

(∃x̄∃v.v = f(y1, . . . , yn) ∧ C) → G

If f is a total function, such a v always exists and is unique. Thus, as long as
none of the variables y1, . . . , yn are existentially quantified (i.e appear in x̄) we
can replace the above expression by the equivalent one

∃v.v = f(y1, . . . , yn) ∧ ((∃x̄.C) → G)

Example 12. Returning to Example 10, we can transform the body code to

U1 = +(T1,D1), (U1 > T2 ==> U2 = +(T2,D2), T1 >= U2),

U3 = +(T2,D2), (U3 > T1 ==> U4 = +(T1,D1), T2 >= U4).

which does not require existential quantifiers in the ask-formula. �

There are other common cases that allow us to compile away existential
variables, but require some support from the solver. Consider the expression

(∃x̄∃v.v = f(y1, . . . , yn) ∧ C) → G

where f is a partial function and none of the variables y1, . . . , yn appears in x̄.
This is equivalent to

(∃v.v = f(y1, . . . , yn)) → (∃v.v = f(y1, . . . , yn) ∧ (∃x̄.C → G))

The result follows since if there exists a v of the form f(y1, . . . , yn), then it is
unique. Hence, the function f in the context of this test is effectively total. This
may not seem to simplify compilation, but if we provide an ask version of the
constraint ∃v, v = f(y1, . . . , yn) then we can indeed simplify the resulting code.

8

Example 13. Assuming we are dealing with integers, the expression (x + 2y ≥
2 → b = 1) is equivalent to (∃z′.z′ = 2y) → (∃z.z = 2y ∧ (x + z ≥ 2 → b = 1)).
If the compiler knows that the constraint ∃z′.z′ = 2y is equivalent to y ≥ 0,
compilation of the code

g(X,Y,B) :- (X + 2^Y ≥ 2 ==> B = 1)

results in g(X,Y,B) :- (Y ≥ 0 ==> (Z = 2^Y, (X + Z ≥ 2 ==> B = 1)). �

To use this simplification we need versions of the ask constraint for partial
functions. These can be provided using the already introduced mechanisms for
mapping tell constraints to ask constraints. For example, the mapping for z = 2y

for a finite domain solver can be defined as

:- nonneg(Y) asks exists [Z] Z = 2^Y wakes [lbc(Y)].

nonneg(Y) :- lb(Y) >= 0.

To apply either of the simplifications above we also require information about
total and partial functions. The HAL compiler already receives this information
from the solver in terms of mode declarations. Example mode declarations that
show the totality of + and the partialness of ^ are:

:- mode in + in ---> out is det.

:- mode in ^ in ---> out is semidet.

Partial functions are common in Herbrand constraints. Consider the con-
straint x = f(y1, . . . , yn), where f is a Herbrand constructor. This constraint
defines, among others, a partial (deconstruct) function f−1

i from x to each
yi, 1 ≤ i ≤ n. For this reason the compiler produces new ask tests bound f(X) for
each Herbrand constructor f , which check whether X is bound to the function
f . Herbrand term deconstructions are then compiled as if the asks declaration

:- bound f(X) asks exists [Y1,..,Yn] X = f(Y1,..,Yn) wakes [bound(X)]

appeared in the program. Note that in order to use this form of the ask constraint
we may have to introduce further existential variables.

Example 14. Consider the compilation of the fragment (exists [Y] X = [Y|Z]

==> p(X,Z)). Although neither transformation seems directly applicable we can
replace ∃Y.X = [Y |Z] by the equivalent ∃Y ∃V.X = [Y |V]∧V = Z and then use
the partial function compilation to obtain

’bound [|]’(X) ==> (X = [Y|V], (V = Z ==> p(X,Z))) �

6 Compiling Equality

The general compilation scheme presented in previous sections assumes the exis-
tence of a simple mapping between an ask-test, and a set of solver events which
indicate the answer to the ask-test may have changed. However, this is not al-
ways true, specially when dealing with structures that mix variables of different

9

solvers. Consider testing the equality of lists of finite domain integers. To do so
requires consulting both the Herbrand list solver and the fdint solver.

This problem is exacerbated by the fact that HAL supports polymorphic
types, where some part of the type may only be known at run-time. Currently,
the only solvers in HAL which include other solver types are Herbrand solvers
and, thus, we will focus on them. However, the same issues arise if we wish to
build sequence, multiset or set solvers over parametric types.

The problem of multiple types already arises when defining the ask-test ver-
sion of equality (==/2). We can solve this problem in HAL by using type classes,
i.e., by defining a type class for the ==/2 method and letting the compiler gen-
erate instances for this method for each Herbrand type.

Example 15. The code generated by the HAL compiler for the implementation
of method ==/2 in the case of the list(T) type is as follows:

X == Y :- ((var(X) ; var(Y)) -> X === Y

; X = [], Y = [] -> true

; X = [X1|X2], Y = [Y1|Y2], X1 == Y1, X2 == Y2).

where ===/2 succeeds if its arguments are (unbound) identical variables. �

Extending the above ask-test to an ask constraint has two problems. First
the only solver events currently supported by a Herbrand solver are: bound(X),
which occurs if X is bound to a non-variable term; and touched(X), which
occurs if the variable X is bound or unified with another variable (which also
has events of interest). The reason why these are the only events supported is
because they are the only ones that are independent of the type of the subterms
of X . Thus, the asks declaration can only be defined as:

:- X == Y asks X = Y wakes [touched(X),touched(Y)]

which results in a very weak behaviour since it only notices changes at the
topmost level of X and Y . For example, the goal ?- neq(X,Y), X = f(U), Y =

f(V), U = V. will not fail since even though X and Y are in the end identical,
the unification of U and V does not create a solver event to retest the equality.

It is possible, though complex, to use overloading to introduce a new over-
loaded solver event changed(X) which occurs if any subterm of X is changed in
some way (including unification with a variable). We could then provide an asks
declaration

:- X == Y asks X = Y wakes [changed(X),changed(Y)]

which does not suffer from the above problem. However, there is a second prob-
lem which affects both solutions: repeatedly calling ==/2 from the top of the
term is inefficient for large terms. A more efficient solution is to only partially
retest.

For this we introduce a new ask-test for Herbrand terms, and show how it
can be used to implement an efficient ask-test version of ==/2. The ask-test is
samefunctor(X,Y)which holds if X and Y have the same top-level functor, and
can be implemented in Prolog as follows:

samefunctor(X,Y) :- (var(X), X == Y -> true ;

nonvar(X), nonvar(Y), functor(X,F,A), functor(Y,F,A)).

10

The advantage of this simple ask-test is that it only needs to be re-tested
when touched(X) or bound(X), i.e., its asks declaration can be defined as :

:- samefunctor(X,Y) asks samefunctor(X,Y) wakes [touched(X),bound(Y)].

indicating that we need to recheck the ask-test if X is bound to another variable
(which fires the touched(X) event), since it could have been bound to Y ,4 and
if X or Y is bound (the touched(X) event will fire if X is bound). Note that
the ask-test has no corresponding tell version.

Let us now see how an efficient ask-test version for ==/2 can be written
using samefunctor. Suppose the type of the Herbrand terms is g(t1, . . . , tn)
where t1, . . . tn are types, and the type constructor g/n has f1/m1, ..., fk/mk

functor/arities. Then, the following implements (a high level view of) predicate
’delay == g n’ which waits until two terms X and Y of type g(t1, . . . , tn) are
equal to execute Goal. (Id @ AskConstruct) indicates the Id that should be
given to the delay predicate resulting from each branch in AskConstruct.

’delay == g n’(X,Y,GId,Goal) :-

(alive(GId) -> get id(LId), register(LId,GId),

LId @ (samefunctor(X,Y) ==>

(var(X) -> kill(GId), call(Goal)

; X = f1(X1, ...,Xm1
), Y = f1(Y1, ..., Ym1

),
GId @ (X1 = Y1, ..., Xm1

= Ym1
==> kill(GId), call(Goal))

; ...

; X = fk(X1, ...,Xmk
), Y = fk(Y1, ..., Ymk

),
GId @ (X1 = Y1, ..., Xmk

= Ymk
==> kill(GId), call(Goal))

)) ; true).

The code works as follows. If GId is alive, first a new local delay id LId is cre-
ated for delay on samefunctor, and this is registered with GId. The whole body
delays on the samefunctor ask constraint. When that holds, we test whether
the variables are identical (true if either is a variable) and, if so, fire the goal.
Otherwise, the two functors must be the same. Thus, we find the appropriate
case and then delay on the conjunction of equality of the arguments. Here we
can use the global delay identifier GId as the delay id for the ask formulae ap-
pearing for the arguments since at most one will be set up. The compilation of
these conjunctions will, of course, introduce new local identifiers. When and if
the arguments become equal, Goal will be called. Note that if the constructor
fi/mi has arity zero (i.e. mi = 0), then there are no arguments to delay until
equal, and the goal will be immediately called.

The outermost ask construct code contains no explicit delay on equality,
hence it can be compiled as described in the previous sections. The inner ask
constructs do contain equality, and will be recursively handled in the same way.

Example 16. The generated code for the type list(T) is:

4 We do not need to delay on touched(Y), since if touched(Y) occurs, causing X and
Y to become identical variables then touched(X) must have also occurred.

11

’delay == list 1’(X,Y,GId,Goal) :-

(alive(Id) -> get id(LId), register(LId,GId),

delay samefunctor(X,Y,LId,’delay == list 1 b’(X,Y,GId,Goal)

; true).

’delay == list 1 b’(X,Y,GId,Goal) :-

(var(X) -> kill(GId), call(Goal)

; X = [], Y = [], kill(GId), call(Goal)

; X = [X1|X2], Y = [Y1|Y2], get id(LId), register(LId,GId),

’delay ==’(X1,X2,LId,’delay ==’(X2,Y2,GId,Goal))). �

In order for the solution to work for polymorphic types, the ’delay ==’ pred-
icate is defined as a method for a corresponding type class. HAL automatically
generates the predicate ’delay == g n’ for every Herbrand type constructor
g/n that supports delay and creates an appropriate instance. For non-Herbrand
solver types, the instance must be created by the solver writer. Normal over-
loading resolution ensures that at runtime the appropriate method is called.

This solution kills two birds with one stone. Firstly, it resolves the problems
of delaying on equality by generating specialized predicates for each type. Sec-
ondly, because the predicate ’delay ==’ is overloaded, delay on equality is now
polymorphic. Thus, it is possible to implement a truly polymorphic version of,
for example, the neq/2 constraint. We can similarly implement a polymorphic
ask constraint for disequality.

7 Experimental Results

The purpose of our experimental evaluation is to show that compiling ask con-
straints is practical, and to compare performance with hand-implemented dy-
namic scheduling where applicable. In order to do so, a simple prototype ask
constraint compiler has been built into HAL. It does not yet handle existential
quantifiers automatically. In the future we plan to extend the compiler to do this
and also optimize the compilation where possible. All timings are the average
over 10 runs on a Dual Pentium II 400MHz with 648M of RAM running under
Linux RedHat 9 with kernel version 2.4.20 and are given in milliseconds.

The first experiment compares three versions of a Boolean solver written by
extending a Herbrand constraint solver. The first, hand, is implemented using
low-level dynamic scheduling (no compilation required). This is included as the
ideal “target” for high-level compiled versions. The second, equals, implements
the Boolean solver by delaying on equality, much like the either constraint
in Example 2. Here, equals treats X = t as a partial function and delays on
the specialised bound t(X). Finally, nonvar implements the Boolean solver by
delaying on the nonvar(X) ask-test (which holds if X is bound). Delaying on
nonvar requires less delayed goals, since nonvar(X) subsumes both X=t and
X=f. We believe an optimizing ask constraint compiler could translate equals to
nonvar automatically.

Table 1(a) compares the execution times in milliseconds of the Boolean
solvers on a test suite (details explained in [2]). Most of the overhead of non-

var compared to hand is due to the nonvar code retesting the nonvar ask-test

12

Prog hand equals nonvar

pigeon(8,7) 524 988 618
pigeon(24,24) 157 338 167
schur(13) 7 11 5
schur(14) 57 87 65
queens(18) 4652 9333 5313
mycie(4) 1055 1988 1218

fulladder(5) 260 410 320

Geom. mean 237 179% 107%

Prog poly mono

neq(10000) 575 413
neq(20000) 1146 848
neq(40000) 2312 1676
neq(80000) 4592 3362
square(4) 414 219
square(5) 5563 2789
square(6) 2476 1213
square(7) 358 175
square(8) 12816 6168
triples(3) 88 70
triples(4) 535 436
triples(5) 4200 3526

Geom. mean 1349 64%

(a) (b)

Table 1. Testing ask constraints: (a) Boolean benchmarks, (b) Sequence benchmarks

(which always holds if the retest predicate is woken up). The equals version adds
overhead with respect to nonvar by using a greater number of (more specialised)
ask constraints.

Our second experiment, shown in Table 1(b)), compares two versions of a
sequence (Herbrand lists of finite domain integers) solver built using both a Her-
brand solver for lists, and a finite domain (bounds propagation) solver. The re-
sulting sequence solver provides three ask constraints over “complex” structures:
length(Xs,L) (see Example 4), append(Xs,Ys,Zs) which constrains Zs to be
the result of appending Xs and Ys (concatenation constraint), and neq(Xs,Ys)

(see Example 5). The first benchmark neq(n) calls a single neq(Xs,Ys) con-
straint, then iteratively binds Xs and Ys to a list of length n (which eventually
leads to failure). The second benchmark square(n) tries to find a n× n square
of 1s and 0s such that no row/column/diagonal (in both directions) are equal.
This is solved by first building the sequences for each row, column, diagonal and
the reverse, then making each not equal to each other via the neq constraint,
and then labeling. Here, square(4) has no solution, but square(5-8) do. The
third benchmark triples(n) tries to find n triples of sequences of 1s and 0s
such that (1) the length of each sequence is ≤ n (2) each sequence is not equal
to any other sequence (from any triple); and (3) the concatenation for all triples
must be equal. This example makes use of all three constraints, length, append
and neq. All of triples(3-5) have solutions.

We use two versions of the sequence constraints. The first poly uses the
polymorphic delay on equality for the neq constraints. The second, mono is a
hand-edited version of poly where (1) all polymorphism has been specialised; and
(2) a more efficient representation of the global id type is used. We can only use
this more efficient global id type if we know in advance the types of the local ids,
something not possible when using polymorphism. We see that, overall, mono is
36% faster than the more näıve poly.

13

Another interesting result is the linear behaviour of the neq(n) benchmarks
with respect to n. As each list becomes more instantiated, we do not retest for
equality over the entire list, rather we only retest the parts that have changed.
If we retested the entire list, then we would expect quadratic behaviour.

8 Related Work and Conclusions

Ask constraints are closely related to dynamic scheduling, CHRs, reification and
concurrent constraint programming.

The closest relation to this work is the when declarations of SICStus Prolog
that allow a goal to delay until a test succeeds. These tests are similar to ask
formulae (omitting existential quantification) over the primitive ask constraints
nonvar(X), ground(X) and ?=(X,Y). The last succeeds when X and Y are ei-
ther known to be equal or not equal. The SICStus compiler appears to do much
the same translation of conjunctions and disjunctions as defined in Section 4,
but does not allow (explicit) existential quantification. The ?=(X,Y) constraint
includes the functionality of the ask equals defined in Section 6, but the SIC-
Stus implementation only deals with the a single constraint solver (Herbrand).
The second difference is that the SICStus implementation does not break down
testing of equality so that previous equal parts need not be retested.

CHRs are also closely related to this work, since an ask constraint is analogous
to the guard of a CHR rule. We can consider the CHR rule (H<=>G|B) as
equivalent to (H<=>(G==>B)) using ask constraints. This translation is generally
inefficient, as delayed goals will be set up for every possible matching of H
against the CHR store, and it is incompatible with some CHR optimisations,
e.g. join ordering [3] and wakeup specialisation [2]. Instead, the guards for all
rules are considered as a whole, and delayed goals are set up which may check
multiple rules if a solver event occurs (see [2] for more details). Another difference
is that non-Herbrand existential variables are not yet handled by any CHR
implementation we are aware of, this remains future work.

Reified constraints allow similar functionality to ask constraints, particularly
when combined with delaying an arbitrary goal until a Boolean variable is true.
Both SICStus Prolog and ECLiPSe support reification of various constraints in
their finite domain (and finite set) solvers, including conjunction, disjunction
and implication. Again they do not handle explicit existential quantification.

One of the advantages of ask constraints over reification is they allow us to
implement reified complex constraints which cannot be implemented using reifi-
cation alone due to the interaction with existential quantifiers, as in Example 3.
In that sense the ask construct is strictly more expressive than reification alone.

In both SICStus and ECLiPSe existential variables arising through normal-
ization appear to be treated using the total function simplification described in
Section 5, this can lead to erroneous behaviour. For example, in ECLiPSe the
goal ic:(Y < 0), ic:(B =:= (X + sqrt(Y) >= 2)) analogous to Example 13
incorrectly fails rather than set B = 0.

Guarded Horn Clauses [8] allows the programming of behaviour equivalent
to ask formula for Herbrand constraints including conjunction, disjunction, and

14

implicit existential quantifiers. The cc(FD) [9] language includes a blocking im-
plication similar to ask constraints without commit, but only allows single con-
straints on the left hand side. However, one could use the cardinality constraint
to mimic conjunction and disjunction. Both approaches treat a single solver, and
do not handle explicit existential quantifiers.

Oz supports complex ask formula using constraint combinators [7]. Here ask
constraints are executed in a separate constraint store which is checked for en-
tailment by the original constraint store. This is a powerful approach which can
handle examples that our approach cannot. However, its handling of existential
variables is weaker than ours. For instance, the Oz equivalent to Example 13
will not set B to 1 when X ≥ 0 and Y ≥ 1. It would be interesting to extend
Oz to handle existential variables better.

A constraint programming language supporting multiple solvers should sup-
port compilation of complex ask constraints. In this paper we have defined a
solver-independent approach to this compilation, implemented it in HAL, and
shown the resulting approach is practical and expressive. There is a significant
amount of improvement that can be made to the näıve compilation strategy
defined here, by transformations such as collecting calls for the same event. In
the future we plan to investigate several optimizations.

References

1. M. Garćıa de la Banda, B. Demoen, K. Marriott, and P.J. Stuckey. To the gates
of HAL: a HAL tutorial. In Proceedings of the Sixth International Symposium on
Functional and Logic Programming, number 2441 in LNCS, pages 47–66. Springer-
Verlag, 2002.

2. G.J. Duck, P.J. Stuckey, M. Garćıa de la Banda, and C. Holzbaur. Extending
arbitrary solvers with constraint handling rules. In D. Miller, editor, Proceedings of
the Fifth ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, pages 79–90. ACM Press, 2003.

3. C. Holzbaur, P.J. Stuckey, M. Garćıa de la Banda, and D. Jeffery. Optimizing
compilation of constraint handling rules. In P. Codognet, editor, Logic Programming:
Proceedings of the 17th International Conference, LNCS, pages 74–89. Springer-
Verlag, 2001.

4. J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proc. Fourteenth ACM
Symp. Principles of Programming Languages, pages 111–119. ACM Press, 1987.

5. J. Jaffar, M. Maher, K. Marriott, and P.J. Stuckey. The semantics of constraint
logic programs. Journal of Logic Programming, 37(1–3):1–46, 1998.

6. V. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-
Mellon University, 1989.

7. C. Schulte. Programming deep concurrent constraint combinators. In Practical
Aspects of Declarative Languages (PADL 2000), volume 1753 of LNCS, pages 215–
229. Springer, 2000.

8. K. Ueda. Guarded horn clauses. In E. Shapiro, editor, Concurrent Prolog: Collected
Papers, pages 140–156. MIT Press, 1987.

9. P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation, and
evaluation of the constraint language cc(FD). Journal of Logic Programming, 37(1–
3):139–164, 1998.

15

