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ABSTRACT

Program vulnerabilities, even when detected and reported, are not
fixed immediately. The time lag between the reporting and fixing
of a vulnerability causes open-source software systems to suffer
from significant exposure to possible attacks. In this paper, we pro-
pose a counter-example guided inductive inference procedure over
program states to define likely invariants at possible fix locations.
The likely invariants are constructed via mutation over states at
the fix location, which turns out to be more effective for inductive
property inference, as compared to the usual greybox fuzzing over
program inputs. Once such likely invariants, which we call patch
invariants, are identified, we can use them to construct patches
via simple patch templates. Our work assumes that only one fail-
ing input (representing the exploit) is available to start the repair
process. Experiments on the VulnLoc data-set of 39 vulnerabilities,
which has been curated in previous works on vulnerability repair,
show the effectiveness of our repair procedure. As compared to
proposed approaches for vulnerability repair such as CPR or SenX
which are based on concolic and symbolic execution respectively,
we can repair significantly more vulnerabilities. Our results show
the potential for program repair via inductive constraint inference,
as opposed to generating repair constraints via deductive/symbolic
analysis of a given test-suite.
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• Software and its engineering→ Automatic programming;
Software testing and debugging; • Security and privacy →
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1 INTRODUCTION

In recent years, we have seen the rise of automated program repair
(APR) techniques [16] and tools that automatically fix software bugs
and vulnerabilities. These techniques fix program bugs by making
patched programs satisfy a given correctness criterion. In the most
commonly studied problem formulation, the correctness criterion
is given as a test-suite. Such APR techniques are called test-driven
automated program repair. Specifically, when fixing vulnerabilities,
given (1) a vulnerable program Prog, (2) a set of failing tests 𝑇𝑓
that can trigger the vulnerability, and (3) a set of passing tests 𝑇𝑝
representing the functionality that should be preserved, test-driven
APR fixes Prog at a fix location 𝐿 to pass both 𝑇𝑓 and 𝑇𝑝 .

A prominent group of APR techniques fix vulnerabilities by (1)
inferring a repair constraint at the fix location 𝐿 under which the
vulnerability cannot be triggered, and (2) generating a patch to
ensure the repair constraint is always satisfied at 𝐿 [12, 21, 26, 31].
In this work, we examine the possibility of finding probable or likely
repair constraints via inductive (as opposed to deductive) inference.
These likely repair constraints are called patch invariants.

Formally, suppose 𝑆 is the program states seen at location 𝐿 in
program executions, 𝑆benign represents benign program states of
the passing tests, and 𝑆vul are the vulnerable states of the failing
tests. The inferred patch invariant 𝐼 holds on observed benign
state 𝑠 ∈ 𝑆benign, but does not hold on observed vulnerable state
𝑠 ′ ∈ 𝑆vul . A patch disables vulnerable executions by ensuring 𝐼

always holds at 𝐿. Such patch invariant can be inferred by either
static or dynamic program analyses. The static approaches reason
about all the feasible program paths soundly by inspecting program
code directly. However, doing so usually relies on symbolic program
analysis, leading to expensive computations [10, 23, 26]. In contrast,
dynamic approaches infer the patch invariant according to a set
of program execution traces over a sample of test cases. These
approaches limit their attention to the given test cases, and thus
can scale to large programs. However, the inferred invariant and
the generated patches may work on the given test suite, but cannot
be generalized to the other tests. In other words, the inferred patch
invariant 𝐼 only holds on given 𝑆benign, but not on other benign
states. In program repair literature, this is called the overfitting
problem.

To alleviate the overfitting problem, one idea is to generate more
test cases, so that, we can infer more precise patch invariants and
generate higher-quality patches. Grey-box fuzzing, e.g., AFL [32]
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and LibFuzzer [1], is an efficient test generation approach in detect-
ing software bugs/vulnerabilities. These techniques rely on light-
weight instrumentation to collect coverage information to guide
the test generation. The test generation goal is to maximize code
coverage and hence the possibility to detect bugs. Coverage-based
greybox fuzzing can be applied to repair vulnerabilities via (1) gen-
erating a test suite by fuzzing the program, (2) classifying the test
suites into vulnerable and benign inputs depending on whether a
test triggers the vulnerability, (3) inferring patch invariant using
the augmented vulnerable and benign test suite, and (4) using the
invariant to generate a patch. However, we argue this approach is
ineffective for the following two reasons. First, to infer a precise
patch invariant to discriminate between vulnerable and benign
executions, we need the fuzzer to explore the program states at
the fix location - generating representative benign and vulnerable
states. However, traditional grey-box fuzzing is mainly designed to
maximize code coverage, instead of exploring the program states at
certain points. Second, to infer a patch invariant at a certain point
(the fix location), the fuzzer is required to generate a large number
of tests that can reach this location (reachability problem). However,
solving the reachability problem is considered challenging even for
directed grey-box fuzzing tool [5]. According to [5], generating a
test to reach a certain point in large programs takes around two
hours, which is not efficient enough for our purposes, since we
have to generate many such tests.

To address the above challenges, we propose snapshot fuzzing to
efficiently explore program states with the goal of inferring precise
patch invariants. Specifically, instead of mutating the test inputs
at the entry point of a program, snapshot fuzzing heuristically
mutates the program state (i.e., snapshot) at certain program points.
We remark that these mutated program states may not be reachable
from the beginning of the program, and the patch invariant is
inferred using both feasible and infeasible program states. The
impact of infeasible states on our patch invariants is not significant,
and it is examined in detail in Section 3.2.

The workflow of inferring patch invariant is as follows: with
some initial candidate invariant generated from a limited test suite
(the given tests plus the tests obtained from traditional fuzzing),
snapshot fuzzing attempts to invalidate the current invariant by
mutating program states to find counterexamples. Given a candidate
invariant, the mutation step invokes an SMT solver to obtain new
values for variables that appeared in the invariant. Such mutation
finds a counterexample if the program execution result is different
from what the candidate invariant suggests - if a program state
satisfying the candidate invariant leads to a failure in execution, this
state is considered to be a counterexample to the candidate invariant.
These new counterexample program states are then used to refine
the candidate invariant, which in turn guides the next round of
mutation. We realized our idea in a tool called VulnFix for fixing
vulnerabilities using Daikon [8] and cvc5 [3] as backend invariant
inference engines. Note that, we did not change the inference engine
itself, instead, we just focus on producing more valuable tests/states
for inferring high-quality invariants. We evaluated VulnFix on a
dataset including 39 real-world vulnerabilities. We assume there is
only one failing input representing the exploit available to our tool.
With Daikon and cvc5 as backend, VulnFix correctly fixes 19 out
of 39 vulnerabilities, outperforming state-of-the-art vulnerability

1 sect = find_section_by_type (filedata , SHT_OPTIONS);
2 + if (sect ->sh_size < sizeof (* eopt))
3 + return FALSE; // developer patch
4 eopt = get_data (NULL , filedata , options_offset , 1,

sect ->sh_size , (" options "));
5 if (eopt) {
6 ...
7 while (offset <= sect ->sh_size - sizeof (* eopt)) {
8 Elf_External_Options * eoption;
9 eoption = (Elf_External_Options *) ((char *) eopt

+ offset);
10 option ->kind = BYTE_GET (eoption ->kind);
11 option ->size = BYTE_GET (eoption ->size);
12 ...
13 offset += option ->size;
14 ++ option;
15 }
16 }

Figure 1: Simplified code snippet for CVE-2019-9077.

repair tools. When comparing with program input fuzzers AFL [32]
and ConcFuzz [27], our approach is more efficient in generating
counterexamples for refining the inferred invariants.

Contributions The contributions of this paper include:
• We propose an approach for fixing vulnerabilities based on
counterexample-guided inductive inference. This helps reduce
the over-fitting problem in automated program repair, without
any significant deductive machinery.
• We implemented our technique in a tool called VulnFix to gen-
erate patches in the form of conditions and evaluated it on 39
real-world vulnerabilities. Evaluation results show that our snap-
shot fuzzing outperformed traditional grey-box fuzzing in gener-
ating useful test cases, and VulnFix outperforms state-of-the-art
vulnerability repair tools.

2 MOTIVATING EXAMPLE

In this section, we illustrate the workflow of VulnFix for inferring
patch invariants to repair a security vulnerability in a real-world
application. The vulnerability used in this section is CVE-2019-
9077 1, which is a heap-based buffer overflow vulnerability in the
GNU Binutils. Figure 1 shows the code snippet of this bug.

At line 4, the function call get_data allocates a buffer of size
sect->sh_size, which is pointed to by eopt. As the two variables
used on the right-hand side of the while condition at line 7 are of
type unsigned long, if sect->sh_size is less than sizeof(*eopt),
the subtraction operation can underflow to a very large number.
This causes the while condition to unexpectedly pass, resulting
in buffer overflow read at line 11 with the call to BYTE_GET. The
developer fixed this bug by adding a check at line 3 to prevent the
integer underflow from happening in the while condition, thereby
preventing the buffer overflow. In the rest of this section, we de-
scribe how VulnFix generates a patch invariant for this example
and how it can help fix this bug.

Input-level Fuzzing. Given one exploit input that triggers the bug
and the target location Lpatch for inferring invariants, input-level
fuzzing generates inputs to observe more vulnerable or benign pro-
gram states at Lpatch. In this example, we set Lpatch as the code at
line 3, which is the same place as the developer patch. Input-level

1https://sourceware.org/bugzilla/show_bug.cgi?id=24243
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Table 1: Patch invariants and new values generated for Binutils CVE-2019-9077, where e_shnum denotes filedata->file
_header.e_shum in the program.

Phase #Inv Examples of New Program States Benign? Invariant Example

Exploit-only - { e_shnum=4, do_segments=1, sect->sh_size=1, symtabno=0, ... } vulnerable -

Input-level
Fuzzing 23

{ e_shnum=4, do_segments=1, sect->sh_size=9, symtabno=0, ... } benign
e_shnum < sect->sh_size{ e_shnum=4, do_segments=1, sect->sh_size=255, symtabno=0, ... } benign

{ e_shnum=2, do_segments=1, sect->sh_size=1, symtabno=0, ... } vulnerable
SF Round_1 4 { e_shnum=32, do_segments=1, sect->sh_size=32, symtabno=0, ... } benign do_segments < sect->sh_size

SF Round_2 3 { e_shnum=4, do_segments=-1, sect->sh_size=1, symtabno=0, ... } vulnerable sect->sh_size-symtabno >= 9

SF Round_3 1 { e_shnum=4, do_segments=1, sect->sh_size=8, symtabno=0, ... } benign sect->sh_size >= 8

SF Round_4 1 { e_shnum=4, do_segments=1, sect->sh_size=7, symtabno=0, ... } vulnerable sect->sh_size >= 8

SF Round_5 1 { e_shnum=4, do_segments=1, sect->sh_size=10, symtabno=0, ... } benign sect->sh_size >= 8

......

fuzzing generates a few more test inputs that can trigger the same
buffer overflow with different program states. For instance, row
Input-level Fuzzing of Table 1 shows a program state that can
trigger this bug with a different value of e_shnum. With the aug-
mented program states that demonstrate various scenarios where
the bug can be triggered (or not triggered), it is expected that a
high-quality invariant can be inferred to classify the vulnerable and
benign executions. Based on the observed benign and vulnerable
snapshots (given exploit plus the tests generated by AFL), the in-
variant inference engine infers 23 candidate patch invariants. The
last column of Table 1 shows one example invariant. Unfortunately,
none of them is correct. Actually, input-level fuzzing only generates
limited program states, because they cannot generate enough test
inputs that drive program execution to line 3. Even reaching line 3,
input-level fuzzing does not generate various program states that
are sufficient to infer the correct invariant.

Snapshot fuzzing. To further refine the generated invariant, we
use snapshot fuzzing to generate counterexamples by directly mu-
tating the program states. A program state, denoted as a snapshot,
is a mapping from all visible program variables at Lpatch to their
corresponding values. Compared with input-level fuzzing, the main
advantage of snapshot fuzzing is that it could bypass the reachabil-
ity problem and mutate the program states directly in a controlled
way. So that a large number of representative program states could
be generated at Lpatch efficiently, which can drive the inference en-
gine to infer a high-quality invariant. Specifically, given an existing
snapshot, we mutate it with the goal of generating counterexample
states that can refine the current patch invariants. For instance,
given the current patch invariant (e_shnum < sect->sh_size),
in the first round (SF Round_1), snapshot fuzzing generates a new
state {e_shnum=32, sect->sh_size=32, ...}. This new state is
a counterexample since it violates the above patch invariant but
does not trigger the buffer overflow. The refined candidate invari-
ants then guide the next round of snapshot fuzzing. This process
continues until a stable solution is reached or time out. In this ex-
ample, after SF Round_3, no candidate invariant is removed (the
number of candidate invariants (#Inv) is not reduced), and the re-
maining invariant (sect->sh_size >= 8) is no longer changed
even with more rounds. Actually, the remaining patch invariant is
the correct one which can help to generate the following patch that
is semantically equivalent to the developer patch (sizeof(*eopt)

VulnFix
Snapshot fuzzing

Exploit

Buggy  
program

Patch  
location

Input-level
fuzzing

Limited  
test suite

Snapshot
logging

Counter-
example

generation

Invariant
inference

Snapshot
pool

Patch
invariants

Final
invariant

Patch
generation

Patch

Figure 2: Workflow of VulnFix.

is a constant which is equal to 8).

+ if (sect->sh_size < 8) return FALSE;

Infeasible States. As wementioned above, snapshot fuzzing could
generate infeasible states. In this example, the variable do_segments
is of type int, but the program uses it as an implicit boolean type
and only assigns 0 or 1 to it, so all feasible states can only have
the value of do_segments to be 0 or 1. Since VulnFix does not
perform any static analysis on the code, it has no information about
this restriction of state feasibility, and it can potentially change the
value of do_segments to other values, resulting in an infeasible
state. Such an infeasible state is shown in SF Round_2 in Table 1.
However, the infeasible states would not affect the correctness of
the inferred invariant. Instead, the patch invariants generated based
on both feasible and infeasible states are stronger. Meaning that
the inferred invariant is not only satisfied when do_segments are
0 or 1, but also on other values of do_segments.

3 METHODOLOGY

The workflow of VulnFix is shown in Figure 2. VulnFix takes as
input a vulnerable program Prog, an “exploit” input Iexploit that
triggers a known target vulnerability, and a patch location Lpatch
that indicates where a patch should be applied. We assume that the
target vulnerability can be observed via abnormal program termi-
nation or crash, including hardware exceptions (SIGSEGV, SIGFPE,
etc.), assertion failure, or failed sanitizer check (e.g. AddressSani-
tizer [25]). We also assume a patch location that indicates where
the vulnerability should be fixed. In practice, the patch location can
be decided using fix localization [29] or provided manually.
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VulnFix tries to infer a patch invariant at the given patch lo-
cation Lpatch according to the set of observed program states 𝑆
(donated as snapshots) at Lpatch. Snapshots 𝑆 can be partitioned
into the set of benign program states 𝑆benign (that do not trigger
the target vulnerability) and the set of vulnerable program states
𝑆vul (that do trigger the target vulnerability). The output of our
workflow is a patch invariant that holds for all observed benign
program states 𝑠 ∈ 𝑆benign, but does not hold for all observed vul-
nerable program states 𝑠 ′ ∈ 𝑆vul . The patch invariants capture the
underlying conditions that are observed necessary to avoid trigger-
ing the vulnerability. Enforcement of the patch invariants can be
used to guide program repair. Note that, in this paper, we focus on
patch invariant inference, and the way of using patch invariants to
generate patches follows existing techniques [10, 12].

VulnFix consists of two main phases input-level fuzzing and
snapshot fuzzing. Input-level fuzzing is used to collect an initial set of
state observations at the patch location Lpatch. To avoid overfitting,
the second phase snapshot fuzzing increases the diversity of states
with the aim of generalizing the initial set of patch invariants.

3.1 Input-Level Fuzzing

Our workflow begins with an initial exploit (Iexploit ) which triggers
the vulnerability. In the initial phase, the goal of input-level fuzzing
is to expand the initial exploit into a test suite that exhibits a diversity
of both vulnerable and benign program states. The purpose of the
initial test-suite is twofold: (1) help to infer an initial set of patch
invariants based on observed states at the patch location Lpatch,
which acts as a starting point for the alternating loop of invariant
refinement and inference, and (2) generate an initial set of snapshots
that will be mutated in the second phase for invariant refinement.

Specifically, input-level fuzzing plays the role of exploring differ-
ent paths from the entry point to Lpatch as shown in Figure 3 (the
green solid lines). As we mentioned in Section 2, snapshot fuzzing
directly mutates the program states at Lpatch, while not changing
the execution paths between the entry and Lpatch. Because of the
fact that snapshot fuzzing just mutates a small part of program
states (e.g., integer values, boolean values) while keeping most of
the states unchanged (e.g., the overall memory layout), it may miss
some valid program states. Fortunately, traditional coverage-guided
input-level fuzzing can fill this gap by exploring different paths
from the entry to Lpatch. As illustrated in Figure 3, input-level

fuzzing explores different paths to the patch location, while snap-
shot fuzzing further explores the program states along with each
path by directly mutating the states.

Initial Test Suite. Our current design builds the first phase on top of
standard coverage-based greybox fuzzing tools, namely AFL [32],
with a few modifications. Standard fuzzing generates new inputs
by mutating the existing inputs, with a higher priority assigned
to inputs that increase code coverage. The prioritised inputs are
further mutated in the next rounds. This process continues with
the goal of increasing code coverage. However, our goal is to find a
diversity of inputs that reach the patch location Lpatch. In addition
to code coverage, we thus modify AFL to prioritize inputs that reach
Lpatch. The tests that drive execution to Lpatch are saved as the
initial test suite.

Snapshot Logging. Once the initial test suite T is generated, the
next step is to generate a set of program states (a.k.a., snapshots) 𝑠 at
the patch location Lpatch for each test 𝑡 ∈ T . From each snapshot
𝑠 , we log information useful for invariant inference, including:
(1) a name-value mapping of live variables at the patch location

(Lpatch), including global variables, function parameters, and
local variables within the current scope;

(2) a name-value mapping of pre-defined ghost variables that con-
tain useful values not explicitly represented by the set of live
variables; and

(3) a classification of whether the snapshot 𝑠 triggers the vulnera-
bility (𝑠 ∈ 𝑆vul ) or not (𝑠 ∈ 𝑆benign).

The name-value pairs including basic type variables (e.g., int, bool,
char, etc.), pointer variables (e.g., ptr), pointer dereference (e.g.,
*ptr), and struct/class/union member variables. Since structs,
unions, and pointers can be nested (e.g., x->y.z, etc.), the snapshot
logger recursively retrieves the nested member variables up to a
configurable depth. Pointer values also have a special representation
as discussed below.

In addition to the live variables, we also log implicit (a.k.a. ghost)
variables that may contain useful information at the patch location
Lpatch. Such ghost variables may be necessary for inferring a use-
ful invariant that separates the benign and vulnerable cases. For
instance, the size of arrays or buffers is usually important when clas-
sifying out-of-bound accesses, however, the size of arrays may not
be saved in a live variable. Currently, the snapshot logger supports
the following ghost variables:
• The size of a global, stack, or heap-allocated buffer. If a buffer is
pointed by a visible pointer variable ptr, this ghost variable is
denoted by size(ptr).
• The base address of the buffer pointed to by a visible pointer
variable ptr. This ghost variable is denoted by base(ptr). In this
case, ptr can point to any address within a buffer, and base(ptr)
is the base address of the buffer.

To obtain the values for size(ptr) and base(ptr) from the value
of a pointer ptr, we retrieve the meta-information associated with
the corresponding memory defined by sanitizers at runtime. In the
current design, we utilise the allocation meta-data from Address-
Sanitizer [25] to derive the values of the ghost variables.

Our snapshot logger also represents pointer values (e.g., ptr)
in terms of ghost variables. Specifically, a ptr is represented as
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the offset between ptr and base(ptr) values, which means ptr is
transformed into offset(ptr)=ptr−base(ptr) in the snapshots.
For example, if ptr=base(ptr)+8, then ptr is represented by the
offset +8, regardless of the actual value of ptr interpreted as an
integer. This is because, for most programs, the vulnerability de-
pends on the pointer offset rather than the absolute pointer value
at runtime.

The final logged information is the classification. For a single
input test 𝑡 , it is possible that multiple snapshots will be recorded,
since the execution of 𝑡 may reach Lpatch more than one time (e.g.,
loops, repeated function calls, etc.). For a given 𝑡 with snapshots
[𝑠1, 𝑠2, ...𝑠𝑘 ], we classify them as follows:

(1) If executing 𝑡 does not trigger the vulnerability, then all
snapshots 𝑠1, 𝑠2, ..., 𝑠𝑘 are classified as benign.

(2) If executing 𝑡 does trigger the vulnerability, we classify
𝑠1, 𝑠2, ..., 𝑠𝑘−1 as benign, and 𝑠𝑘 is vulnerable.

The rationale for (2) is that, if 𝑡 triggers the vulnerability, 𝑠𝑘 is the
last state being observed before the program terminates abnormally.
The vulnerability could, in principle, be fixed in the last state. Finally,
there is a third case where 𝑡 triggers an unrelated vulnerability.
Currently, our tool is designed to fix one vulnerability at a time, so
this case is discarded.

Patch invariant Inference. Given sets of benign and vulnerable snap-
shots in the snapshot pool, the next step is to infer a set of invariants.
Here, an invariant is a formula over program variables appearing in
the snapshots, which evaluates to true for variable values in benign
snapshots and false for variable values in vulnerable snapshots.
Essentially, this step attempts to infer a formula that separates two
sets of concrete values. For this, we use dynamic likely invariant
inference [8]. Dynamic invariant inference systems, such as Daikon
[8], infer likely program invariants that hold at certain program
points for all observed program executions. It works by instantiat-
ing invariants according to a list of pre-defined templates. It then
uses variable values derived from the observed executions to test
the validity of the instantiated invariants. This process eliminates
potential invariants that are violated by one or more of the observed
executions. The remaining (not eliminated) invariants are deemed
“likely invariants” [8], i.e., properties that are invariant over all
observed states. With sufficient samples, the remaining invariants
can be reasonably accurate, but may “overfit” the invariants to the
observations. We slightly generalize the idea of dynamic invariant
inference by considering two sets of observations (i.e., 𝑆benign and
𝑆vul ) instead of one. A template is filtered if it either violates a state
from 𝑆benign, or passes a state from 𝑆vul . The remaining instantiated
templates are deemed likely patch invariants.

Besides dynamic invariant inference systems, it is also possible to
use program synthesizers such as cvc5 [3] to synthesize a function
that classifies the benign and vulnerable values (more details in
Section 4).

3.2 Snapshot Fuzzing

From the given exploit Iexploit and inputs produced by input-level
fuzzing, if there are observed benign and vulnerable states atLpatch,
patch invariant inference produces an initial set of candidate patch
invariants that distinguishes between the observed benign and
vulnerable states. However, since the initial invariants were derived

Algorithm 1: Basic snapshot fuzzing loop
Input: initial snapshot corpus 𝑆 , candidate invariants Φ
Output: Refined invariants Φ

1 while !Timeout() do
2 𝑠 ← Select(𝑆)

3 𝑠 ′ ← Mutate(𝑠)

4 𝑟 ← Execute(𝑃, 𝑠 ′)
5 if isCounterExample(𝑟,Φ) then
6 𝑆 ← 𝑆 ∪ {𝑠 ′}
7 Φ← GenerateInv(𝑆)

8 end

only from observed states, these invariants may be overfitting and
not generalize to other possible benign/vulnerable states that could
arise during the execution of the program. One idea would be to
run input-level fuzzing for longer, generating yet more states that
can be used to generate more accurate invariants. However, this
tends to suffer from the problem of diminishing returns, a well-
known problem with fuzz testing [4], meaning that ever-larger
resources are required for ever-smaller progress. To circumvent this
problem, we propose snapshot fuzzing to directly mutate states in
order to refine the invariants. Unlike input-level fuzzing, snapshot
fuzzing can generate large numbers of states quickly, and bypass
the reachability problem, meaning that it is not necessary to find
inputs corresponding to each mutant state.

Basic Algorithm. The basic snapshot fuzzing algorithm is initialized
with: (1) an initial set of patch invariants Φ, and (2) an initial snapshot
corpus 𝑆 consisting of an initial collection of benign/vulnerable
states (𝑆benign/𝑆vul ). Both (1) and (2) are generated by (and fed from)
input-level fuzzing in the first phase. The goal of the snapshot
fuzzing algorithm is to derive counterexamples to the current patch
invariants set Φ. Here, a counterexample is a state 𝑠 ′ satisfying the
following property for any 𝜙 ∈ Φ:
𝜙 (𝑠 ′) but 𝑠 ′ is vulnerable OR ¬𝜙 (𝑠 ′) but 𝑠 ′ is benign

Where 𝜙 (𝑠 ′) means that 𝜙 is satisfied on state 𝑠 ′. The counterexam-
ple 𝑠 ′ is a witness demonstrating that the current patch invariants
Φ are inaccurate and need refinement. The snapshot fuzzing al-
gorithm is shown in Algorithm 1. The loop (line 1) repeats the
following steps: (1) selects an element 𝑠 ∈ 𝑆 from the current snap-
shot corpus (line 2), (2) mutates 𝑠 into a new snapshot 𝑠 ′ (line 3), and
(3) tests the 𝑠 ′ against both the current patch invariants Φ and the
program 𝑃 (lines 4,5). Here, Execute(𝑃, 𝑠 ′) resumes the execution of
the program from state 𝑠 ′ and observes the result, analogous to run-
ning a program from a core dump using a debugger (e.g., gdb). The
result 𝑟 ∈ {benign, vulnerable} indicates whether the target bug (at
location Lvulnerability ) was observed or not. If a counterexample 𝑠 ′
is discovered, then 𝑠 ′ is added to the snapshot corpus 𝑆 , which is
then used to derive a new (and refined) set of patch invariants. The
process continues until a timeout is reached.

Infeasible States. We note that the Mutate operator (line 3) is not
guaranteed to preserve feasibility, i.e., the mutant state 𝑠 ′ need not
be reachable from any program input. To clarify the effects of the
generated infeasible states on the inferred patch invariant, we show
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all states
feasible states
(feasible) vulnerable states
observed benign states
observed vulnerable states
generated benign states
generated vulnerable states
inferred classifier

Figure 4: Relationship among different program states.

the relationship among various types of states in Figure 4. Although
the inferred classifier (i.e. patch invariant) is based on both feasible
and infeasible states, it still correctly separates all the observed be-
nign states and observed vulnerable states, which means the patch
invariant will still be correct with respect to all the observed states.
However, it is indeed possible that the inferred patch invariant is
unsatisfied not only by the vulnerable states (both observed and
generated), but also by some unobserved feasible benign states at
the patch location. These unobserved feasible benign states are illus-
trated in Figure 4 by the two light grey regions inside the inferred
classifier oval. Although the inferred classifier can be unsatisfied
by some unobserved feasible benign states, we emphasize that this
is bound to happen due to inductive inference - where we infer
the patch invariant based on the observed states; it is not due to
the generation of infeasible states by snapshot fuzzing. Input-level
fuzzing techniques, which only generate feasible observed states
and generalize the patch invariant from those states, could also
result in a patch invariant that is unsatisfied by certain feasible
benign states, if they have not been observed.

Mutation Strategy. Algorithm 1 generates new states 𝑠 ′ by directly
mutating an existing state selected from the current snapshot corpus
𝑆 . Since the goal is to refine the current patch invariants Φ, we only
mutate the visible variables observed by snapshot logging from
Section 3.1 (e.g., local variables, members, etc.) at location Lpatch.
Other program states (e.g., arbitrary memory addresses, etc.) are
not considered by Φ, and will not be mutated.

In principle, the snapshot variables can be mutated arbitrarily
within specific constraints (see below). However, we can optimize
the mutation strategy with the reference to the current patch in-
variants Φ which are assumed to be “mostly” correct. Therefore, in
addition to random perturbation, we bias mutation towards points
that are closer to the boundary defined by Φ (the boundary between
benign and vulnerable executions). Here, given a patch invariant
𝜙 ∈ Φ over variables −→𝑥 = ⟨𝑥1, .., 𝑥𝑛⟩, then 𝑝 = ⟨𝑣1, .., 𝑣𝑛⟩ is a bound-
ary point if there exists another point 𝑝 ′ ≠ 𝑝 such that𝜙 (𝑝), ¬𝜙 (𝑝 ′)
hold (or vice versa) and there exists no intermediate point between
𝑝 and 𝑝 ′ w.r.t. Euclidean distance. The intuition behind this strategy
is that any inaccuracies within 𝜙 are more likely to be exposed by
points close to the boundary, as opposed to arbitrary points that
comfortably satisfy either 𝜙 or its negation. We use an SMT solver
to generate boundary points in order to guide mutation.

Mutation constraints. Mutations are constrained by variable types
and other assumptions. For example, a variable 𝑐 of type char can
only be mutated to values within the range CHAR_MIN..CHAR_MAX.
Mutations to ghost variables are similarly constrained to make sure

their semantics are preserved. For example, given a pointer ptr,
the corresponding ghost variable offset(ptr) is only mutated
to values within the range 0..size(ptr), so that ptr still points
to the original underlying object after mutation. Note that when
offset(ptr) is mutated, the actual value for ptr is also mutated
to reflect the changes in offset(ptr).

Object mutation. Since the ghost variable size(ptr) represents
the size of the underlying object pointed by ptr, to preserve its
semantics, mutation of size(ptr) should be accompanied by the
mutation of the actual underlying object obj stored in memory.
Mutation of the actual object can be achieved by either extending
or contracting the length of obj. When mutating object length, it
is desirable to extend/contract objects in place instead of moving
them to other locations in memory, so that pointer values can
be preserved even at program locations not captured by snapshot
logging. In-place contraction can be performed by forbidding access
to some bytes at end of the object, while in-place extension requires
more design considerations to avoid corrupting other adjacent
objects. Our implementation makes use of the AddressSanitizer [25]
allocator for in-place extension/contraction, which automatically
pads all allocations with a configurable redzone to detect out-of-
bounds errors using memory poisoning. We exploit this technique
to implement object extensions, by an in-place reallocation of (some
part of) the redzonememory to extend the associated object. During
this reallocation, the AddressSanitizer shadow map is updated and
the extended region of memory is zero-initialized. Similarly, in-
place contraction can be implemented by growing the associated
redzone, also by updating the shadow map.

Object

RedzoneObject

Redzone

Object Redzone

In-place extension In-place contraction

Object Redzone

In-place extension and contraction.

4 IMPLEMENTATION

The current implementation of VulnFix consists of three com-
ponents: (1) an instrumentation module for snapshot logging and
mutation, (2) a driver module for counterexample generation, and (3)
a backend for invariant inference. The instrumentation and driver
modules form a frontend that generates snapshots for the backend.

Instrumentation. The instrumentation module (written in C) is
built on the static binary rewriter e9patch [7]. At the patch loca-
tion Lpatch of the vulnerable program, the instrumentation module
inserts a function to record current values of the variables in scope,
and optionally mutate some of the variable values based on a given
argument. To read and write program variable values at runtime,
the instrumented code parses the DWARF debugging information
to establish a mapping between variable names and their corre-
sponding runtime locations.

Driver. The driver module (written in Python) invokes various
components and communicates data (snapshots, patch invariants)
between them. It processes the snapshots produced by the instru-
mentation code and classifies them based on the program execution
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status. It also implements the core of snapshot fuzzing for generat-
ing counterexample snapshots based on the given patch invariants
and test inputs. We use z3 [6] SMT solver for finding boundary
values to guide mutation.

Backend. The backend component takes in sets of benign and
vulnerable snapshots and performs invariant inference based on
them. The current implementation of VulnFix supports two back-
ends: Daikon-based and cvc5-based. For the Daikon backend, we
first use Daikon to infer a set of invariantsΦ0 from 𝑆𝑏𝑒𝑛𝑖𝑔𝑛 , and then
perform a filtering step that only returns 𝜙 ∈ Φ0 if 𝜙 is violated by
all 𝑠 ∈ 𝑆𝑣𝑢𝑙 . The filtering step is implemented on top of the Daikon
InvariantChecker utility. Since Daikon initiates invariants based
on templates, we add a few extra templates applicable for patching
security vulnerabilities:
• 𝑥 − 𝑦 >= 𝑎, where 𝑥,𝑦 are variables and 𝑎 is a constant;
• 𝑥 < 2𝑛 , where 𝑥 is a variable, and 2𝑛 is power-of-two con-
stant representing boundary values for integers.

Cvc5 [3] is a program synthesizer, which takes as input a set
of input-output pairs {𝑖1 ↦→ 𝑜1, . . . , 𝑖𝑛 ↦→ 𝑜𝑛} and synthesizes a
function 𝑓 such that 𝑓 (𝑖𝑘 ) = 𝑜𝑘 for 𝑘 ∈ {1, . . . , 𝑛}. In our context,
we use the cvc5 backend to synthesize a function 𝑓 , such that
𝑓 (𝑠) = True for 𝑠 ∈ 𝑆𝑏𝑒𝑛𝑖𝑔𝑛 and 𝑓 (𝑠 ′) = False for 𝑠 ′ ∈ 𝑆𝑣𝑢𝑙 . The
grammar used for synthesis includes all variables in the snapshot,
arithmetic operators (+,−,×), relational operators (⩾, ⩽,=), logical
operators (and, or, not), and constants (1 to 100, power-of-two
values).

Use of sanitizers. Since the snapshots need to be classified into be-
nign and vulnerable based on observing program execution status,
we use AddressSanitizer (ASan) [25] and UndefinedBehaviorSani-
tizer (UBSan) [2] to transform the vulnerabilities into crashes. We
also read and write to the ASan redzone metadata for logging and
mutating ghost variable values.

5 EVALUATION

In this section, we aim to answer the following research questions:
• RQ1: How effective is VulnFix (with different backends) in syn-
thesizing conditions for fixing real-world CVEs?
• RQ2: What are the strengths and weaknesses of VulnFix com-
pared with other APR tools?
• RQ3: How effective is snapshot fuzzing in refining patch invari-
ants compared to input-level fuzzing?

Benchmark subjects. We evaluate VulnFix on a subset of the
VulnLoc [27] benchmark. The VulnLoc benchmark is extended
from the ExtractFix [10] and SenX [12] benchmark, and contains 43
real-world CVEs. Out of the 43 vulnerabilities in the VulnLoc bench-
mark, 4 vulnerabilities cannot be reproduced in our environment
(ubuntu-18.04 and gcc-7.5/clang-10) because they are incompat-
ible with the experimental system or libraries. The remaining 39
vulnerabilities are used in our evaluation.

Experiment setup. All of our experiments are performed on a
40-core 2.60GHz 64GB RAM Intel Xeon machine, Ubuntu 18.04. We
note that the current implementation of VulnFix does not support
parallelism and the experiments are performed with sequential
algorithms. For most vulnerabilities in the evaluation, we use the

following configuration: (1) the developer patch location is used
as the target location to infer invariants; (2) the initial input set
supplied to VulnFix only includes one exploit input obtained from
online bug reports. VulnFix infers a patch invariant classifying
the benign and vulnerable execution. We use the patch invariant
to disable the vulnerable execution by either (1) integrating the
invariant to the original condition if the target location is an if,
for, or while statement; or (2) generating an if-guard in the form
of

if(!constraint) exit(ERROR_NUM);

5.1 RQ1: Efficacy with different backends

We evaluated the efficacy of VulnFix with two different backends -
Daikon and cvc5. Daikon uses pre-defined templates for instantiat-
ing invariant candidates and enumerates the candidates to find the
ones that are satisfied on the given traces. While cvc5 synthesizes
an expression based on a given grammar via Satisfiability Modulo
Theories (SMT) solving. Given that cvc5 is built on top of SMT, it
is less scalable than Daikon and takes more time to run especially
when the number and size of snapshots grow. In order to obtain
meaningful results, for each vulnerability in the benchmark, we
set the total timeout to be 30 minutes for Daikon-backend and
3 hours for cvc5-backend. The first 10 minutes are allocated for
the input-level fuzzing phase, and the remaining is allocated to
snapshot fuzzing and invariant inference.

Since VulnFix infers a patch invariant over existing program
variables (as well as ghost variables), which is then used to disable
vulnerable executions, VulnFix is not applicable to some vulnera-
bilities in the benchmark. These vulnerabilities include those that
(1) cannot be fixed by modifying or inserting conditions, or (2) re-
quire introducing new program variables that are not included in
our ghost variable scheme. We identified nine such vulnerabilities
according to their developer patches and marked them as “NA” (not
applicable). These nine vulnerabilities are included in the results
for completeness.

For the remaining vulnerabilities, we evaluate the correctness of
the generated patches by manually comparing them with developer
patches. “Correct (equiv)” means that the result of VulnFix is
semantically equivalent to the developer patch; “Correct (not equiv)”
means that the produced patch is not semantically equivalent to
the developer patch, but still correctly fixes the vulnerability (see
examples in the following). “Wrong” means that VulnFix fails to
produce a correct patch before timeout. We only regard a result
as correct if it is the only patch produced by VulnFix and the
produced patch correctly fixes the vulnerability.

Results. Table 2 shows the evaluation results, where columns
“Daikon backend” and “cvc5 backend” list the result of VulnFix
when the corresponding backend is used. Overall, both backends
show similar results in producing correct patches (both produce 19
correct patches). On CVE-2017-14745, Daikon backend fails because
it produces two patches in the end, while cvc5 backend produces
exactly one correct patch. On Gnubug-25003, cvc5 backend fails
while Daikon backend produces the correct patch.

VulnFix produces correct but not equivalent patches on six
vulnerabilities. The main reason is that the patch produced by Vul-
nFix is strictly based on whether a vulnerable program behavior is
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Table 2: Experimental results of VulnFix (with different backends), CPR, and SenX on the VulnLoc benchmark.

Subject Bug ID

VulnFix CPR SenX

Daikon backend Correct? cvc5 backend Correct? Rank Ratio Correct?

Binutils CVE-2017-6965 Correct (not equiv) ✓ Correct (not equiv) ✓ Timeout Timeout ✗

Binutils CVE-2017-14745 Wrong ✗ Correct (equiv) ✓ 109 0% ✗

Binutils CVE-2017-15020 NA NA NA NA NA NA ✗

Binutils CVE-2017-15025 Correct (equiv) ✓ Correct (equiv) ✓ 36 0% NA
Coreutils Gnubug-19784 Correct (equiv) ✓ Correct (equiv) ✓ 393 0% ✗

Coreutils Gnubug-25003 Correct (not equiv) ✓ Wrong ✗ 29 59% ✗

Coreutils Gnubug-25023 Correct (not equiv) ✓ Correct (not equiv) ✓ 56 0% ✗

Coreutils Gnubug-26545 Wrong (not spt) ✗ Wrong ✗ 168 46% ✗

Jasper CVE-2016-8691 Correct (equiv) ✓ Correct (equiv) ✓ 1 75% NA
Jasper CVE-2016-9557 Wrong (not spt) ✗ Wrong ✗ Timeout Timeout ✗

Libarchive CVE-2016-5844 Correct (not equiv) ✓ Correct (not equiv) ✓ 31 54% ✗

Libjpeg CVE-2012-2806 Correct (equiv) ✓ Correct (equiv) ✓ 24 50% ✗

Libjpeg CVE-2017-15232 Correct (equiv) ✓ Correct (equiv) ✓ 36 0% NA
Libjpeg CVE-2018-14498 NA NA NA NA NA NA ✗

Libjpeg CVE-2018-19664 Wrong ✗ Wrong ✗ 1 48% ✗

Libming CVE-2016-9264 Correct (equiv) ✓ Correct (equiv) ✓ 39 57% ✗

Libming CVE-2018-8806 NA NA NA NA NA NA NA
Libming CVE-2018-8964 NA NA NA NA NA NA NA
Libtiff Bugzilla-2611 NA NA NA NA 1 61% NA
Libtiff Bugzilla-2633 Wrong ✗ Wrong ✗ 46 48% ✓

Libtiff CVE-2016-5321 Correct (equiv) ✓ Correct (equiv) ✓ 11 47% ✗

Libtiff CVE-2016-9273 NA NA NA NA 57 48% ✗

Libtiff CVE-2016-9532 Wrong (not spt) ✗ Wrong ✗ Timeout Timeout ✗

Libtiff CVE-2016-10092 NA NA NA NA 5 0% ✗

Libtiff CVE-2016-10094 Wrong (not spt) ✗ Wrong (not spt) ✗ 27 57% ✓

Libtiff CVE-2016-10272 NA NA NA NA 5 0% ✗

Libtiff CVE-2017-5225 NA NA NA NA NA NA ✓

Libtiff CVE-2017-7595 Correct (equiv) ✓ Correct (equiv) ✓ 1 48% NA
Libtiff CVE-2017-7599 Wrong (not spt) ✗ Wrong (not spt) ✗ 8 0% ✗

Libtiff CVE-2017-7600 Wrong (not spt) ✗ Wrong (not spt) ✗ 45 0% ✗

Libtiff CVE-2017-7601 Correct (not equiv) ✓ Correct (not equiv) ✓ 56 48% ✗

Libxml2 CVE-2012-5134 Correct (equiv) ✓ Correct (equiv) ✓ 36 49% ✗

Libxml2 CVE-2016-1838 Wrong (not spt) ✗ Wrong ✗ 31 0% ✗

Libxml2 CVE-2016-1839 Correct (equiv) ✓ Correct (equiv) ✓ 79 0% ✗

Libxml2 CVE-2017-5969 Correct (equiv) ✓ Correct (equiv) ✓ 3 45% NA
Potrace CVE-2013-7437 Correct (equiv) ✓ Correct (equiv) ✓ Error Error ✓

Zziplib CVE-2017-5974 Correct (not equiv) ✓ Correct (not equiv) ✓ 130 0% ✗

Zziplib CVE-2017-5975 Correct (equiv) ✓ Correct (equiv) ✓ 36 0% ✗

Zziplib CVE-2017-5976 Wrong ✗ Wrong ✗ Timeout Timeout ✗

Total - - 19/39 - 19/39 4/39 - 4/39

observed, while the developer patch may also take insights from
program-specific semantic information. For example, Libtiff con-
sists of an integer overflow vulnerability (CVE-2017-7601), and
its relevant code snippet is shown in Figure 5. The bug is trig-
gered when the value of td->td_bitspersample is greater than
62, causing the left shift on line 10 to overflow. The developer patch
on lines 4-6 adds a check on its value and returns if the value is
too big, with the bound 16 chosen based on file format specifica-
tion. On the other hand, VulnFix produces the patch invariant
td->td_bitspersample <= 62, where 62 is the maximum value
allowed for the left shift on line 10 to not overflow. In this case,
VulnFix produces a patch that correctly separates the benign and
vulnerable behaviors, while the developer patch additionally con-
siders other program semantics.

As discussed in Section 3.2, it is possible that the patch invari-
ant generated from inductive inference is unsatisfied by certain
unobserved feasible benign states. Such patch variants can lead
to patches that disable more feasible program behavior than de-
sired, thereby changing the benign functionality of the program. To
understand the effect of such patch invariants experimentally, we
examined the six correct but not equivalent patches, and found one
of them (CVE-2017-6965) restricts more behavior than the developer
patch. For this CVE, we applied the VulnFix patch and developer
patch to the vulnerable program, and then conducted a 24-hour
differential fuzzing campaign to check whether the two patches
exhibit different behaviors. After 24 hours of fuzzing, there were
no input executions that evaluate the VulnFix patch and developer
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1 switch (sp->photometric) {
2 case PHOTOMETRIC_YCBCR:
3 ...
4 + if( td->td_bitspersample > 16 ) {
5 + return (0);
6 + }
7 {
8 float *ref;
9 if (! TIFFGetField(tif , TIFFTAG , &ref)) {
10 top = 1L << td->td_bitspersample;

// !integer overflow!
11 }
12 }}

Figure 5: Simplified code snippet of CVE-2017-7601.

patch differently, which means no significant restriction of benign
functionality was observed from our experimentation.

Besides, there are 11 vulnerabilitiesmarked as “Wrong” or “Wrong
(not spt)”. “Wrong (not spt)” means that the current VulnFix imple-
mentation does not support generating the correct invariant. For
example, the correct invariant for CVE-2016-9532 involves inequal-
ity with scalar multiplication (e.g., x * y * z <= constant), which
is not supported by Daikon. Daikon infers invariants based on a set
of templates, and invariants that cannot be represented as one of
the templates cannot be inferred. As cvc5 synthesizes invariants
based on grammar instead of fixed templates, it was expected that
cvc5 outperforms Daikon on these vulnerabilities. However, the
experimental result shows otherwise: cvc5 backend fails to produce
correct patches on the vulnerabilities that Daikon does not sup-
port (marked as “Wrong”). This is because these patches usually
consist of complex expressions, and cvc5 backend times out before
synthesizing such expressions.

Overall, the Daikon and cvc5 backend each produced 19
correct patches, with a time budget of 30 minutes and 3
hours. From this comparison, Daikon appears to be a more
practical backend.

5.2 RQ2: Comparison with other APR tools

Comparison with CPR. To understand the strength and weak-
ness of VulnFix in repairing security vulnerabilities, we perform a
comparison with CPR [26], a state-of-the-art program repair tool.
CPR works by first synthesizing a pool of patch candidates from a
given set of patch ingredients, then discarding overfitting patches
from the pool by exploring the input space with concolic execu-
tion, and finally ranking the remaining patches. This workflow is
conceptually similar to counterexample-guided inductive synthesis
(CEGIS), i.e., infer initial candidates and then generate new test
inputs (counterexample) to rule out incorrect candidates.

In our experiments, we set the timeout for each vulnerability
to be 30 minutes for CPR. Since CPR requires patch ingredients
to be provided for patch synthesis, we supply five variables at the
patch location (including all the variables used in the developer
patch) and necessary arithmetic/comparison operators as patch
ingredients to the synthesizer used in CPR. Besides, since CPR
currently repairs only boolean and integer expressions [26], and
does not automatically introduce new program variables, it is not

applicable to some vulnerabilities in the benchmark. We identified
five such vulnerabilities and marked them as “NA” (not applicable).

Results. The evaluation results of CPR are shown in the “CPR”
columns in Table 2. Column “Rank” shows the rank of the correct
patch in the final patch pool. Column “Ratio” shows the patch pool
reduction ratio, which is the percentage of initial patches that are
discarded by co-exploration of the patch space and input space.
“Timeout” indicates that CPR did not generate patches before the
30-minute timeout, and “Error” indicates that an error occurred dur-
ing concolic execution and CPR aborted. Overall, with a 30-minute
timeout, CPR ranks the correct patch at the top-1 position for four
out of 39 vulnerabilities. For 16 vulnerabilities, CPR discards more
than 40% of the initial patch candidates by performing concolic
execution. However, for 13 other vulnerabilities, CPR has 0% patch
space reduction potentially due to the longer paths from loop un-
rolling [26]. In other words, concolic execution cannot find any test
input that can reach patch location or discard plausible patches. In-
stead of relying on concolic execution, VulnFix performs snapshot
mutation to discard overfitting patch invariants, which is shown to
be more efficient based on the experimental results.

Comparison with SenX. We also performed a comparison with
the security vulnerability repair tool SenX [12], which generates
patches based on a pre-specified set of safety properties. The same
benchmark consisting of 39 vulnerabilities is used, and the timeout
for each vulnerability is set to be 30 minutes. Since SenX currently
only supports repairing buffer overflows, bad casts, and integer
overflows [12], vulnerabilities that are not of these types are not
applicable. There are eight such vulnerabilities in the benchmark,
which are marked as “NA” (not applicable).

Results. The evaluation results of SenX are shown in the “SenX”
column in Table 2. Overall, SenX produces correct patches for four
out of 39 vulnerabilities. For the remaining vulnerabilities that are
applicable to SenX, either no patch was produced, or the produced
patch did not correctly fix the vulnerability.

VulnFix generated 19 correct patches with 30 minutes
for each, while CPR and SenX each produced four correct
patches (by just checking the top-ranked patch for CPR).

5.3 RQ3: Comparison with input-level fuzzing

To understand whether snapshot fuzzing can generate states that
refine the invariants effectively, we also compare it with traditional
input-level fuzzing. Specifically, we replace the snapshot fuzzing
step in VulnFixwith traditional input-level fuzzing techniques and
compare their effectiveness in generating correct patches. For the
tests generated by input-level fuzzing, we collect the benign/vul-
nerable snapshots by considering the non-redundant tests that can
reach the fix location.

We consider two input-level fuzzing tools: AFL [32] and Conc-
Fuzz [27]. AFL is a widely used grey-box fuzzing tool, which has
been proved to be efficient in detecting software vulnerabilities
and bugs. For AFL, we re-use the modified version described in
Section 3.1 to generate input tests. ConcFuzz “concentrates” on the
neighborhood of the given exploit. Specifically, it builds a “con-
centrated” test suite that drives the program execution to reach
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Table 3: Comparison with input-level fuzzing, where Vuln-

Fix
𝐶
represents replacing the snapshot fuzzingmodule with

ConcFuzz, while VulnFix
𝐴
means that snapshot fuzzing is

replaced by AFL.

Bug ID

VulnFix VulnFix
𝐶

VulnFix
𝐴

#Inv result #Inv result #Inv result

CVE-2017-6965 1 ✓ 1 ✗ 1 ✓

CVE-2017-14745 2 ✗ 0 ✗ 5 ✗

CVE-2017-15025 1 ✓ 0 ✗ 5 ✗

Gnubug-19784 1 ✓ 1 ✓ 1 ✓

Gnubug-25003 1 ✓ 34 ✗ 23 ✗

Gnubug-25023 1 ✓ 8 ✗ 7 ✗

Gnubug-26545 0 ✗ 1 ✗ 0 ✗

CVE-2016-8691 1 ✓ 25 ✗ 17 ✗

CVE-2016-9557 0 ✗ 0 ✗ 0 ✗

CVE-2016-5844 1 ✓ 0 ✗ 60 ✗

CVE-2012-2806 1 ✓ 6 ✗ 6 ✗

CVE-2017-15232 1 ✓ 0 ✗ 15 ✗

CVE-2018-19664 2 ✗ 0 ✗ 18 ✗

CVE-2016-9264 1 ✓ 4 ✗ 6 ✗

Bugzilla-2633 2 ✗ 0 ✗ 50 ✗

CVE-2016-5321 1 ✓ 3 ✗ 5 ✗

CVE-2016-9532 36 ✗ 38 ✗ 36 ✗

CVE-2016-10094 9 ✗ 24 ✗ 23 ✗

CVE-2017-7595 1 ✓ 14 ✗ 3 ✗

CVE-2017-7599 0 ✗ 0 ✗ 0 ✗

CVE-2017-7600 0 ✗ 0 ✗ 0 ✗

CVE-2017-7601 1 ✓ 2 ✗ 1 ✗

CVE-2012-5134 1 ✓ 6 ✗ 4 ✗

CVE-2016-1838 3 ✗ 0 ✗ 3 ✗

CVE-2016-1839 1 ✓ 0 ✗ 1 ✓

CVE-2017-5969 1 ✓ 1 ✓ 1 ✓

CVE-2013-7437 1 ✓ 0 ✗ 1 ✓

CVE-2017-5974 1 ✓ 8 ✗ 5 ✗

CVE-2017-5975 1 ✓ 0 ✗ 1 ✓

CVE-2017-5976 0 ✗ 0 ✗ 0 ✗

Total - 19/30 - 2/30 - 6/30

each branch location of the given exploit execution trace. Based
on the “concentrated” test suite, ConcFuzz can then estimate the
probability of each branch being executed by vulnerable inputs and
hence determine the fault locations. For the application of invariant
inference, exploring the neighborhood of patch location instead of
the entire trace is sufficient. Therefore, we implement a modified
version of ConcFuzz that only “concentrates” on the patch location.
In the experiment, we set a 30-minute timeout for both AFL and
ConcFuzz, which is the same as the total time budget for VulnFix.
The nine vulnerabilities in the benchmark which are not applicable
to VulnFix are excluded from this experiment, as they are also not
applicable when snapshot fuzzing is replaced by input-level fuzzing
techniques.

Results. The evaluation results of input-level fuzzing are shown
in Table 3. Column “VulnFix𝐶 ” represents the result when re-
placing the snapshot fuzzing module in VulnFix with ConcFuzz,
while “VulnFix𝐴” is the result when snapshot fuzzing is replaced
by AFL. The column “#Inv” shows the number of invariants pro-
duced when the time budget is exhausted and the column “result”

indicates whether a single correct patch is produced in the end.
Overall, VulnFix produces 19 correct patches out of 39 vulnera-
bilities, while VulnFix𝐶 and VulnFix𝐴 only produce two and six
correct patches, respectively. VulnFix𝐶 and VulnFix𝐴 produce
very few correct patches because (1) they generate multiple can-
didate invariants (#Inv is greater than 1), and some of them are
incorrect; or (2) although they produce only one candidate invariant
on some vulnerabilities, the produced invariant is incorrect and
overfits to the generated test inputs. In contrast, directly mutating
snapshots enables VulnFix to generate fewer but more precise
invariants and hence more correct patches.

Compared to input-level fuzzing AFL and ConcFuzz, snap-
shot fuzzing enables VulnFix to generate fewer but more
precise invariants and hence more correct patches.

5.4 Threats to Validity

A few threats may affect the validity of our evaluation. The main
threat to validity is that the correctness of generated invariants/-
patches cannot be guaranteed. Although snapshot fuzzing can ex-
plore the program states in a more controlled way, it still cannot
ensure that all reachable program states at a fix location are ex-
haustively explored. Fortunately, the incompleteness does not seem
to have a big impact on the effectiveness of VulnFix. The second
threat is that we manually inspect whether the generated patches
are semantically equivalent to developer patches, which might be
error-prone. To mitigate this, two authors of the paper double-
checked the generated patches.

Another threat to validity is that our selection of subject pro-
grams may not generalize to all programs. To mitigate this threat
we used a data-set of subjects developed in a previous work [27].
We evaluated our technique on this existing dataset (filter out some
vulnerabilities that cannot be reproduced). In the future, it may be
worthwhile to evaluate VulnFix on more CVEs and vulnerabilities.

6 RELATEDWORK

The contributions of this paper are related to several areas of re-
search: automated program repair, vulnerability repair and coun-
terexample guided invariant inference. In this section, we present
the related work as follows.

Automated program repair. Automated program repair techniques
take in a buggy program, and a set of specifications, and aim to
generate a patched program satisfying the given specifications [16].
Test-driven automated program repair treats the provided test suite
as the specification of intended behavior and generates patches to
make the patched program pass all the given tests [15, 18, 19, 21].
Since test cases are incomplete program specifications, the gener-
ated patches may overfit the given tests, i.e., the patched program
works on the given tests but cannot be generalized to other tests.
VulnFix is designed to alleviate the overfitting problem.

Existing work alleviates the overfitting issue by ranking the
patches according to their probability of being correct [14, 18], re-
ferring to reference implementation [20] or designing customized
repair strategies [28]. Typically, those approaches try to generate
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correct patches by referring to additional program artifacts. Com-
pared with those approaches, VulnFix does not rely on additional
inputs (such as reference programs), which gives VulnFix more
flexibility. Besides, some approaches alleviate overfitting problem
by generatingmore test cases [9, 30]. Compared to those approaches
that generate test inputs, snapshot fuzzing directly mutates pro-
gram states, which enables VulnFix to bypass the reachability
problem in test case generation.

Vulnerability repair. In recent years, we have seen a rising trend
of research on automatically fixing vulnerabilities. SenX [12] aims to
repair vulnerabilities relying on vulnerability-specific and human-
specified safety properties. Some other repair approaches are de-
signed to repair a specific type of vulnerabilities, such as fixing
memory errors [17] or concurrency bugs [13]. Compared to SenX
and these approaches which are limited to specific classes of bugs,
VulnFix does not rely on pre-defined safety properties and is not
limited to certain vulnerabilities. ExtractFix [10] fixes vulnerabilities
by first inferring crash-free constraints, propagating the constraints
to fix location, and synthesizing patches to satisfy the constraints.
CPR [26] fixes vulnerabilities by (1) generating a candidate patch
space, and (2) detecting and discarding overfitting patches via a
systematic co-exploration of the patch space and input space. It
leverages concolic execution to systematically traverse the input
space (and generate inputs), and uses the produced test inputs to
rule out the overfitting patches from the patch space. Compared to
ExtractFix and CPR, VulnFix does not rely on heavy symbolic and
concolic executions, enabling it to scale to large programs.

Counter-example guided invariant inference. Recent works (e.g.,
PIE [24], ICE [11], CEGIR [22]) present CounterExample Guided In-
variant geneRation (CEGIR), i.e., infer a initial set of candidate invari-
ants and then improve them using counterexamples. Specifically,
if an initial invariant is invalid for some input, these approaches
search for counterexamples which can help to refine the invariant.
Such approaches are more efficient than traditional dynamic or
static invariant inference, However, they still cannot get rid of the
dependence on heavy program analysis. For instance, they still rely
on symbolic execution or concolic execution [22, 33] to discover
counterexamples. Instead of relying on heavy symbolic analysis,
VulnFix investigates using light-weight input/state generation to
verify the candidate invariants. Therefore, VulnFix is largely in-
dependent of the complexity or size of the programs and thus can
scale to large programs.

7 DISCUSSION

In this work, we have presented an approach for automatically
repairing program vulnerabilities from a single exploiting test in-
put. Our approach is based on obtaining more states at the fix
location via state mutations, and inductively inferring a likely in-
variant, which is then used to construct patches. Evaluation on a
previously proposed data-set of vulnerabilities show higher effec-
tiveness compared to state-of-the-art vulnerability repair engines
like SenX and CPR. While our approach is currently focused on
fixing vulnerabilities, it shows that inductive inference approaches
can be promising for general-purpose program repair. This would
contrast with deductive or symbolic approaches for program repair

[21] which deduce a repair constraint by symbolically analyzing a
given test-suite.

Open Source Release

https://github.com/yuntongzhang/vulnfix
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