
Large Language Model powered Symbolic Execution

YIHE LI, National University of Singapore, Singapore
RUIJIE MENG, National University of Singapore, Singapore
GREGORY J. DUCK, National University of Singapore, Singapore

Large Language Models (LLMs) have emerged as a promising alternative to traditional static program analysis
methods, such as symbolic execution, offering the ability to reason over code directly without relying on
theorem provers or SMT solvers. However, LLMs are also inherently probabilistic by nature, and therefore
face significant challenges in relation to the accuracy and scale of the analysis in real-world application. Such
issues often necessitate the use of larger LLMs with higher token limits, but this requires enterprise-grade
hardware (GPUs) and thus limits accessibility for many users.
In this paper, we propose LLM-based symbolic execution—a novel approach that enhances LLM inference via a
path-based decomposition of the program analysis tasks into smaller (more tractable) sub-tasks. The core idea
is to generalize path constraints using a generic code-based representation that the LLM can directly reason
over, and without translation into another (less-expressive) formal language. We implement our approach in
the form of AutoExe, an LLM-based symbolic execution engine that is lightweight and language-agnostic,
making it a practical tool for analyzing code that is challenging for traditional approaches. We show that
AutoExe can improve both the accuracy and scale of LLM-based program analysis, especially for smaller
LLMs that can run on consumer grade hardware.

1 Introduction
Program analysis is a foundational discipline in computer science that aims to understand program
behavior through various systematic techniques. Traditional forms of program analysis include static
methods—such as symbolic execution [39], abstract interpretation [19, 20], and model checking [17]—
that analyze the program without executing it, as well as dynamic methods—such as fuzzing [51,
76], concolic execution [29, 61], instrumentation [53, 62], and profiling [31]—that analyze program
behavior based on observations of actual executions. In general, program analysis has many
applications, such as program testing [11, 18, 29, 30, 33, 56, 58, 61, 71, 79], debugging [2, 25, 75],
verification [28, 34], repair [43, 46], reverse engineering [52], and vulnerability detection [38].
One recent alternative to traditional program analysis methods has emerged in the form of Large
Language Models (LLMs) [10, 14, 45, 54, 66]. Here, LLMs can make inferences over code directly
with properties expressed in code or natural language and have become powerful enough to
handle many traditional program analysis applications. As such, many LLM-based testing [15, 50],
debugging [47], and repair [73, 77, 78] tools have recently emerged.

We contrast traditional program analysis (symbolic execution) with LLM-based program analysis.
Here, symbolic execution is a static program analysis method based on the idea of executing a
program with symbolic inputs/values, typically represented as logical formulae over some under-
lying theories (e.g., linear arithmetic, bit vectors, and arrays). Symbolic execution systematically
transforms these symbolic values (a.k.a. the symbolic state) based on the program’s statements,
effectively executing multiple concrete paths simultaneously. These symbolic states can then be
used for various analysis tasks, such as verifying the truth of an assertion or generating test cases,
using deductive inference with the help of some underlying theorem prover or SMT solver [21]. In
contrast, LLM-based program analysis involves engineering a prompt (or sequence of prompts) that
queries an LLM as an oracle. A typical prompt consists of the relevant code (or code fragments),
as well as instructions explaining the analysis task expressed in natural language. The LLM uses

Authors’ Contact Information: Yihe Li, National University of Singapore, Singapore, yihe.li@u.nus.edu; Ruijie Meng, National
University of Singapore, Singapore, ruijie@comp.nus.edu.sg; Gregory J. Duck, National University of Singapore, Singapore,
gregory@comp.nus.edu.sg.

2 Yihe Li, Ruijie Meng, and Gregory J. Duck

probabilistic inference (based on the training data) to solve the task, rather than the strict deductive
inference used by a theorem prover. As such, LLM-based program analysis is typically ad hoc and
tailored to specific tasks rather than general and principled.
Both traditional and LLM-based program analysis face significant challenges in practice. For

example, traditional symbolic execution has several well-known limitations [6, 12, 48], such as:
the handling of unbounded loops, the handling of external environment/libraries, and the handling
of memory/heap-manipulating programs—all of which are common-place in real-world code. We
consider how KLEE [11], a prominent symbolic execution engine, treats each iteration of a loop as
a separate path, leading to non-termination for unbounded loops (e.g., while(𝑖 < input) {...}). In
contrast, LLMs have the ability to directly reason over loops, environment, and heaps, avoiding
problems such as non-termination. That said, LLMs face other challenges, such as scalability (e.g.,
the 8192 token limit for GPT-4 [10]) and accuracy [27, 44] due to probabilistic reasoning. Recent
studies also correlate the accuracy of LLMs with prompt size [44], meaning that more concise and
targeted prompts generally perform better.
In this paper, our aim is to improve the accuracy and scale of LLM-based program analysis.

Our first main insight is that the strengths/weaknesses of traditional and LLM-based program
analysis are complementary, meaning that a hybrid design can help address the limitations of
either approach. To this end, we propose combining the path-based decomposition of symbolic
execution with probabilistic inference via an LLM—a.k.a. LLM-based symbolic execution. The core
idea is a principled decomposition of the original program analysis task into smaller sub-tasks
based on paths in the original program—helping to mitigate some of the scalability and accuracy
concerns with LLMs. Our second main insight is that since LLMs are primarily trained on code, the
representation of symbolic states should also be in terms of code rather than logical formulae. To
this end, we propose a generic path constraint representation of the form of a strongest post-condition
(sp) predicate transformer [23] over sub-programs derived from the original program, where each
sub-program represents a path. Since we represent path constraints as ordinary code, we can use an
LLM prompting directly, disposing of any verification conditions (VCs) generated by the symbolic
execution process. Our approach also avoids many of the limitations associated with the translation
of paths into formulae for a theorem prover (e.g., environment and heaps.). Our final insight is that
our path constraint representation can be generalized into sets of paths (e.g., all iterations of an
unbounded loop), ensuring that LLM-based symbolic execution will always terminate.

We study LLM-based symbolic execution both in theory and practice. We show that LLM-based
symbolic execution mitigates many of the limitations of both traditional and LLM-based program
analysis. We have implemented our approach in the form of AutoExe—an automated LLM-based
symbolic execution engine. AutoExe uses a path-based decomposition of a program analysis
task into smaller (more-tractable) sub-tasks that are suitable for LLM inference. Based on the
observation that LLMs are inherently approximate oracles, we propose a lightweight design of
AutoExe that is language agnostic and does not rely on any heavyweight compiler infrastructure.
AutoExe is designed to be a practical program analysis tool that can be applied to code that is
difficult-to-analyze with traditional methods. In summary, the main contributions of this paper are:

• We introduce the concept of LLM-based symbolic execution—a symbolic execution methodology
using LLMs for direct reasoning over the original programming language (e.g., C/Java/Python/etc.).
Our approach uses a path-based decomposition of program analysis tasks into more concise
LLM prompts, improving the accuracy and scalability of LLM inference.
• We implement our approach in the form of AutoExe—a lightweight LLM-based symbolic

execution engine that supports multiple programming languages without relying on heavyweight
compiler infrastructure.

Large Language Model powered Symbolic Execution 3

• We evaluate AutoExe against various program analysis tasks for C/Python/Java code. We show
that AutoExe improves both accuracy and scale, especially for smaller models that can run on
consumer grade hardware.

2 Motivation
2.1 Background
2.1.1 Symbolic Execution. Symbolic execution [6, 39] is an established program analysis methodol-
ogy based on running the program with symbolic values representing sets of concrete inputs (rather
than a single concrete input for normal execution). For each symbolic input, symbolic execution
will systematically explore multiple execution paths of the program, allowing for applications such
as error detection, verifying correctness, or finding vulnerabilities.
Symbolic execution works with symbolic states, a.k.a. path constraints, that are traditionally

represented as a set of variables (e.g., x, y, etc.) subject to constraints (e.g., x < y, etc.). The symbolic
state represents the set of concrete states (e.g., {(x, y) | x < y}) that is reachable from the symbolic
input. Symbolic execution can be defined in terms of operations over symbolic states, e.g., symbolic
execution over C-style increment statement (x++) can be represented as the Hoare triple [34]:

{S} x++ {∃𝑧 : x = 𝑧 + 1 ∧ S[x ↦→ 𝑧]}

Given a symbolic state (S), the triple describes the resulting symbolic state (S′) after the execution
of the increment operator. For example, given S = (x < y), then S′ = (∃𝑧 : x = 𝑧 + 1 ∧ 𝑧 < y),
or equivalently, S′ = (x ≤ y). Conditional statements (e.g., if 𝑐 then 𝑇 else 𝐸 end) are typically
handled by forking the symbolic state (S) into separate S1 = (S ∧ 𝑐) and S2 = (S ∧ ¬𝑐), and
then continuing the execution along the individual then- and else-branches. As similar strategy
is used for loops (e.g., while 𝑐 do 𝐵 done). Finally, for each path (𝜋) through the program, a final
path constraint S𝜋 will be generated. This can be used to prove properties over the path, such as
whether a final post-condition (Q) holds, i.e., whether the verification condition (VC) of the form
(S𝜋 |= Q) holds or not. The VCs can be (dis)proved (i.e., disposed of) with the help of a suitable
theorem prover, such as an SMT solver [21]. By executing sets of concrete inputs at once, symbolic
execution will exhaustively explore the (infinite) space of program behaviors—something cannot
be explored by concrete execution alone.

Example 2.1. Consider the simple program (if x > y then z := x + 2 else z := x ∗ y end) and the
post-condition Q = (z > y). Then the following VC will be generated for the else-path:

x > y ∧ z = x × y |= z > y (VC-Else)

A theorem prover disproves (VC-Else), meaning (Q) does not hold for the whole program. □

2.1.2 Large Language Models. The emergence of Large Language Models (LLMs) [10, 14, 45, 54,
66] presents a new alternative for reasoning over program code. Trained on extensive datasets,
including millions of lines of real-world code written in multiple languages, LLMs can reason
over C/Java/Python/etc. code directly, including many traditional program analysis tasks, such as
testing [15, 50], debugging [47], repair [73, 77, 78], etc. For example, instead of relying on symbolic
execution, LLMs can reason over code using a suitable prompt expressed in natural language, such
as “there is a bug present in the following Python code segment, please suggest the possible root causes
of the bug and corresponding fixes”. Most modern LLMs can analyze the code, and generate possible
suggestions and patches automatically, based on the understanding of code and defects present in
the training set.
Unlike traditional program analysis methods, LLMs do not aim to be perfectly precise. Rather,

LLMs can be thought of as approximate oracles that are sometimes incomplete or give the wrong

4 Yihe Li, Ruijie Meng, and Gregory J. Duck

(a) original program

#define SIZE 100
typedef struct NODE {

const char *key , *val;
struct NODE *next;

} NODE;
NODE *db = NULL;
pthread_mutex_t mutx = PTHREAD_MUTEX_INITIALIZER;

void handle_client(int s) {
char buf[SIZE], rep[SIZE];
while (true) {

ssize_t r = recv(s, buf , SIZE -1, 0);
if (r <= 0) break;
buf[r] = '\0';
char cmd[SIZE] = {0}, key[SIZE], val[SIZE];
sscanf(buf , "%s %s %s", cmd , key , val);
if (strcmp(cmd , "GET") == 0) {

snprintf(rep , SIZE , "ERROR\n");
NODE *n, *p = NULL;
pthread_mutex_lock (&mutx);
for (n = db; n != NULL; p = n, n = n->next) {

if (strcmp(n->key , key) != 0)
continue;

if (p != NULL) p->next = n->next;
else db = n->next;

}
pthread_mutex_unlock (&mutx);
if (n != NULL) {

snprintf(rep , SIZE , "%s\n", n->val);
free(n->key); free(n->val); free(n);

} else
snprintf(rep , SIZE , "ERROR\n");

} else if (strcmp(cmd , "PUT") == 0) {
NODE *n = (NODE *) malloc(sizeof(NODE));
pthread_mutex_lock (&mutx);
n->key = strdup(key);
n->val = strdup(val);
n->next = db; db = n;
pthread_mutex_unlock (&mutx);
snprintf(rep , SIZE , "OK\n");

} else
snprintf(rep , SIZE , "ERROR\n");

send(s, rep , strlen(rep), 0);
}
close(s);

}

(b) slice for “mutx is unlocked”

pthread_mutex_t mutx = PTHREAD_MUTEX_INITIALIZER;

void handle_client(int s) {
while (true) {

if (...) break;
if (...) {

pthread_mutex_lock (&mutx);
pthread_mutex_unlock (&mutx);

} else {
pthread_mutex_lock (&mutx);
pthread_mutex_unlock (&mutx);

}
}

}

(c) slice for “db->key ≠ NULL”

#define SIZE 100
typedef struct NODE {

const char *key;
} NODE;
NODE *db = NULL;

void handle_client(int s) {
char buf[SIZE];
while (true) {

ssize_t r = recv(s, buf , SIZE -1, 0);
if (...) break;
buf[r] = '\0';
char cmd[SIZE] = {0}, key[SIZE], val[SIZE];
sscanf(buf , "%s %s %s", cmd , key , val);
if (...) {

NODE *n = (NODE *) malloc(sizeof(NODE));
n->key = strdup(key);
db = n;

}
}

}

Fig. 1. An example program (a) that implements a simple key-value server. The example program includes

an unbounded loop (while (true) ...), interaction with the external environment (recv/send), and heap

manipulating data-structures (NODE). In addition, slices (b) and (c) corresponds to the post-conditions “mutx
is unlocked” (always holds) and “db->key ≠ NULL” (may not hold) respectively.

answer. This is because LLMs fundamentally rely on learned patterns and probabilistic reasoning,
rather than classical deductive reasoning used by traditional theorem provers. Despite the difference,
LLMs are clearly useful, with an explosion of applications for real-world analysis problems.

2.2 Limitations of Symbolic Execution
While symbolic execution has many applications (e.g., bug detection, security analysis, debugging,
and program repair, etc.), it also has well-known limitations regarding loops, environment, and
heap manipulating programs. We elaborate on the ideas from [48], as summarized below:

2.2.1 Limitation: Handling Loops (and Recursion). Unbounded loops (and recursion) are a known
problem for symbolic execution. Here, symbolic state forking (Section 2.1.1) can lead to an infinite
unrolling of the loop, where each possible loop iteration {0, 1, 2, ...} is treated as a separate path.

Large Language Model powered Symbolic Execution 5

Popular symbolic execution tools, such as KLEE [11], handle this problem using a concrete iteration
bound—exchanging potential infinite exploration with an incomplete exploration, as necessary.

An alternative is to use loop invariants. If known, the invariant allows symbolic execution to pass
over a loop without explicit unrolling. Loop invariants can be manually provided, or discovered
automatically, such as using abstract interpretation [19] over some known domain, constraint solving
(CBMC [41]), or machine learning (Code2Inv [64]). However, loop invariant discovery may only
work for simple loops, and the general case is either computationally hard or undecidable.

2.2.2 Limitation: Handling External Environment. Another known problem is the handling of
external functions (e.g., calls to third-party libraries without source code) and/or external inputs (e.g.,
recv from a socket), collectively the external environment. Since the underlying symbolic execution
theorem prover uses deductive reasoning, a precise specification of all external operations and/or
inputs is usually required. As such, the environment is usually handled through a combination of
stubs, modeling, or concretization. For example, the user can manually model an external function
call by implementing a replacement stub function that specifies necessary specification using
klee_assume(). However, this approach is manual, and modeling arbitrary code or inputs can
require significant effort, meaning that the approach tends to rarely scale.
Another approach is concretization, where the symbolic execution algorithm assigns concrete

values to some symbolic variables, allowing external functions to be executed with these values.
However, concretization can also lead to an incomplete exploration of program behavior.

2.2.3 Limitation: Heap Manipulating Programs. Traditional theorem provers and SMT solvers
tend to have limited support for reasoning over (mutable) data-structures with complex structural
invariants, such as singly- and doubly-linked lists, binary trees, red-black trees, DAGs, etc. By
extension, traditional symbolic execution tools inherit these limitations. Some tools are based on
Separation Logic [59], which does support reasoning over heap manipulating programs, as used
by VeriFast [35] and Infer [24]. However, VeriFast is manual and annotation-heavy, and Infer is
limited to heuristic-based inference based on common structural invariants, such as linked-lists.

Discussion. Figure 1 (a) is an example of a program that exhibits all three limitations, including
unbounded loops (while (true) ...), interaction with the external environment (recv/send),
and is a heap manipulating program (NODE). Although this program is relatively simple, it still
presents a significant challenge for traditional symbolic execution tools such as KLEE.

2.3 Limitations of LLMs
LLMs are trained on a huge corpus of data, and do not necessarily have the same limitations of
symbolic execution. For example, an LLM can reason over Figure 1 (a), and can answer queries
about the program. That said, LLMs also have known limitations, as summarized below:

2.3.1 Limitation: Scale. LLMs typically have a limited ability to reason over large and complex
code bases. For example, the token limit imposes a maximum number of tokens for the given input
(and output), and a medium-to-large code base can easily exceed this limit.

2.3.2 Limitation: Approximate Oracles. LLMs are approximate oracles in that they use probabilistic
reasoning, and may not necessarily generate accurate answers. Even if the token limit (2.3.1) is not
exceeded, studies have shown that LLMs generally perform worse with overly verbose prompts
that include irrelevant information [44]. This concept could be described as a soft token limit, i.e.,
that prompts should be concise and targeted in order to maximize LLM accuracy.

Discussion. Although scale and accuracy are concerns, LLMs can typically handle more classes of
programs than traditional analysis methods such as symbolic execution. Furthermore, the relative

6 Yihe Li, Ruijie Meng, and Gregory J. Duck

completeness of LLMs, in the absence of precise specifications, means that LLMs can be easily
applied to a wide range of applications. The completeness/applicability can often be of greater
pragmatic interest than perfect accuracy, and this is one reason behind the explosion of real-world
applications.

2.4 Our Approach
Many of the limitations of traditional symbolic execution are limitations of the underlying theo-
rem prover. Specifically, existing theorem provers and SMT solvers only accept queries in some
formal input language, with limited expressiveness compared to the original source language (e.g.,
C/Java/Python). For example, an SMT solver will only accept queries in the form of a Boolean
formula over a given set of theories (T), such as linear inequalities, bit vectors, or arrays. In contrast,
the C programming language is significantly more expressive, with complex control-flow (loops),
memory, pointers, library calls, data-structures, environmental interactions, etc. The discrepancy
in the expressiveness complicates the translation from the high-level programming language into
the solver input language—such as “unrolling” loops into flat quantifier-free formula—and such
translation may also be incomplete (e.g., unbounded loops). Furthermore, the SMT solver may not
support the necessary theories for reasoning over complex programs, such as heap manipulating
data-structures, external environment interactions, etc.

Our underlying approach is to use the path-based decomposition of symbolic execution, but to
replace the traditional theorem prover with an LLM. The key advantage of LLMs is that they can
reason over the source code directly—eliminating the need for translation into a less expressive solver
input language and the associated limitations. Instead, our approach represents the path constraint
as a generic strongest post-condition sp(𝑆,P) predicate transformer [23] over a pre-condition P,
and a derived sub-program 𝑆 which represents a path or set of paths. Our key insight is that LLMs
can reason over sp-constraints directly, since 𝑆 is just ordinary source code, without the need for
“translation”. Essentially, we can view the LLM as an effective solver for untranslated sp-constraints
“as-is”. We demonstrate this concept with a simple example.

Example 2.2 (Simple). Consider the simple program (if x > y then z := x + 2 else z := x ∗ y end)
and post-condition Q = (z > y) once more (see Example 2.1). Then the path constraint for the
else-branch can be represented as a formula (𝜑) or a sub-program (𝑆), as follows:

Formula (𝜑) Strongest Post-Condition over a Sub-program (𝑆)
x > y ∧ z = x × y sp(𝑆, true) where 𝑆 = {assume(x ≤ y); z := x ∗ y}

The key idea is that both (𝜑) and sp(𝑆, true) are equivalent representations of the same path
constraint—i.e., one can be derived from the other under the definition of the language semantics
(sp). While the formula is suitable for a theorem prover, the sub-program is suitable for an LLM:

“Given {assume(x ≤ y); z := x ∗ y}, does the post-condition z > y always hold?” (VC-Else-2)

The LLM determines the VC does not hold, e.g., the following GPT4 [10] output (emphasis original):
“The post-condition z > y does not always hold. A simple counterexample is when
x = 1, where z = y instead of z > y. Hence, the claim is false.” □

Our approach is to enumerate all sub-programs based on a partitioning of paths through the
original program. Here, each sub-program is algorithmically derived from the original code, and
contains all statements that (1) are visited by any path from the partition, and (2) of which post-
condition Q is data- or control-flow dependent. Like traditional symbolic execution, our approach is
a path-based decomposition of the original program analysis problem into smaller (more tractable)
sub-problems. This decomposition helps to address some of the limitations of direct LLM-based

Large Language Model powered Symbolic Execution 7

reasoning (Section 2.3), such as scale and accuracy. Furthermore, since our approach uses an LLM, it
avoids many of the limitations of traditional symbolic execution (Section 2.2) caused by translation.
We summarize the benefits as follows:
▷ Handling Loops (and Recursion). Our approach avoids translation of (unbounded) into a less

expressive language, and loops/recursion can be represented “as-is” in the derived sub-program(s).
Similarly, our approach does not need explicit loop invariant recovery or annotation, as LLMs
are capable of reasoning over loops without any special intervention.

▷ Handling External Environment. Rather than manual modeling or concretization, our approach is
to use the LLM to infer the likely behavior of the environment or external function call. Since
LLMs are trained on a huge corpus of real-world code, they have significant exposure to common
libraries, file formats, protocols, etc. Furthermore, even if the external environment is novel,
LLMs can still infer the most likely behavior based on clues from the context (function names,
variable names, code comments, placement within the algorithm, etc.), as a form of abductive
reasoning, or inference to the best explanation, without the need for explicit modeling.

▷ Heap Manipulating Programs. LLMs can directly interpret heap-manipulating programs without
the need for any special logical framework. LLMs can also (abductively) infer the (likely) structural
invariants based on direct interpretation of the code, without explicit annotation.

▷ Scale. Like traditional symbolic execution, our approach decomposes program analysis problems
into smaller (tractable) sub-problems, helping to avoid any hard or soft limit of the LLM. This
allows our approach to scale to large/complex programs and analysis problems.

▷ Approximate Oracles. Studies [44] show that LLMs perform better with more targeted and concise
prompts. By decomposing program analysis problems into sub-problems that capture only the
relevant parts of the original (possibly large) code base, we help to focus the LLM and improve
the overall accuracy of the analysis.

The decomposition and lack of translation mean that our approach can handle programs that are
difficult for traditional program analysis. We illustrate with an example.

Example 2.3 (LLM-based Symbolic Execution). Consider the Figure 1 (a) program that cannot easily
be handled by traditional symbolic execution methods (Section 2.2), and a simple program analysis
problem that verifies each lock(&mutx) operation is paired with an unlock(&mutx) operation.
Furthermore, assume that (for the sake of example) the (a) program is too complex for an LLM to
handle directly (Section 2.3).1 We can express this as a natural language pre- and post-condition (P
and Q respectively) that “mutx is unlocked”. Then Figure 1 (b) is an example of a derived sub-program
that acts as a substitute for the original program with respect to P and Q. We have that:

sp((b),P) |= Q ⇒ sp((a),P) |= Q (VeriCond)

Thus, to prove Q for holds (a), it is sufficient to prove that Q holds for (b). Furthermore, program
(b) is targeted to the specific program analysis task (that mutx is unlocked), and is ∼80% smaller
than in terms of token count (419 vs 81).2 The LLM can determine that VeriCond holds using the
program (b).
Another example is Figure 1 (c) and the post-condition (db->key ≠ NULL). Assuming the same

condition initially holds, then (c) is∼64% smaller (419 vs 149 tokens). In this case, the LLMdetermines
the post-condition does not hold using (c), since strdup() may return NULL. □

1This is not necessarily true, but is an assumption for the sake of an example that can fit within the page limit.
2As counted by https://platform.openai.com/tokenizer at the time of writing

https://platform.openai.com/tokenizer

8 Yihe Li, Ruijie Meng, and Gregory J. Duck

Property Tradition Symbolic Execution LLM-based Symbolic Execution

D
es
ig
n

Overall method Decomposition & solving path constraints Decomposition & solving path constraints
Decomposition method Decomposition into a formal language Decomposition into sub-programs
Reasoning engine Theorem prover or SMT solver Large Language Model (LLM)
Reasoning method Deductive Probabilistic, deductive, abductive
Path representation Formal language (unfolded sp-path constraints) Untranslated sp-constraints over truncated slices
Specification language Formal language Either formal, code, or natural language

C
ap
.

Weaknesses Loops, environment, heaps Complex integer, linear, Boolean reasoning
Unbounded loops Infinite unfolding or loop invariants LLM reasons over loops “as-is”
Environment Manual modeling/specifications required LLM abductive reasoning or training data
Heap manipulation Manual annotation + Separation Logic LLM reasons over heaps “as-is”

Im
p. Programming languages Language specific (C+KLEE [11], Java+SPF [57]) Programming language agnostic

Compiler infrastructure Close integration (LLVM [42]+KLEE, etc.) Lightweight (AST-level) implementation

Fig. 2. Summary of the main similarities and differences between traditional and LLM-based symbolic execu-

tion. Here (Cap =Capabilities), (Imp = Implementation), (sp = strongest post-condition), and (the key differences).

Input: A Hoare triple {P}𝐶 {Q}
Output: HOLDS or a counter-example 𝑆

1 Function LLMSymExe({P}𝐶 {Q}):
2 AST ← Parse(𝐶)

3 CFG ← GenCFG(AST)
4 partitions← GenPartitions(CFG)
5 for Π ∈ partitions do
6 𝑆 ← GenSubProg(P,Π, Q)
7 prompt ← "assuming P" ++
8 Render(𝑆,AST) ++
9 "does Q hold?"

10 result ← LLM(prompt)
11 if result = FALSE then return 𝑆

12 return HOLDS

Algorithm 1: LLM-based Symbolic Execution

Algorithm. An overview of our LLM-based sym-
bolic execution algorithm is summarized in Al-
gorithm 1. Here, the algorithm’s frontend is sim-
ilar to that of a standard compiler, and parses
the program into an Abstract Syntax Tree (AST,
line 2), and then generates a Control Flow Graph
(CFG, line 3). Next, the algorithm generates a
representation of the set of all paths through
the CFG (line 4). Here, the set of all paths is
represented as a set of path partitions such that
(paths = Π1 ∪ ... ∪ Π𝑛), where each partition
Π𝑖 represents some (possibly infinite) subset of
paths. One challenge is how to generate a good
set of partitioning (to be discussed in Section 3).
Next, for each partition Π, the algorithm gener-
ates a derived sub-program 𝑆 that generalizes
the partition (line 6). For example, Figure 1 (b) and (c) are possible derived sub-programs of Figure 1
(a). Each sub-program 𝑆 is used to construct a corresponding prompt (line 7), including rendering
the 𝑆 back into a text-based source-code representation (line 8). The prompt (line 7) is a natural
language representation of the Hoare triple {P}𝑆{Q}, which holds iff sp(𝑆,P) |= Q. Finally, the
prompt is sent to the LLM for inference (line 10). Algorithm 1 can be used to prove or disprove
the post-condition modulo the LLM’s reasoning capabilities. Assuming that the partitions are
ordered based on slice, Algorithm 1 will return the least sub-program 𝑆 that is deemed to refute the
post-condition. Otherwise, if no such refutation is found, Algorithm 1 deems that the triple holds
(HOLDS).

Summary. Like traditional symbolic execution, LLM-based symbolic execution (Algorithm 1) rep-
resents a path-based decomposition the original program analysis task into smaller sub-tasks. A
summary of the main similarities and differences are shown in Figure 2. The substitution of a theo-
rem prover with an LLM changes to various aspects of the design, capabilities, and implementation
of the symbolic execution engine. For example, LLMs use probabilistic and adbuctive reasoning, or
rely on information learned during the training process, meaning that LLMs do not need precise
specifications or environment modeling. Likewise, the lack of translation into some (less expressive)
formal language allows the LLM to reason over loops or heap manipulation “as-is”, without relying
on loop/data-structure invariant discovery.

Large Language Model powered Symbolic Execution 9

In this paper, we study the concept of program analysis via LLM-based symbolic execution.
First, we study the principles of LLM-based symbolic execution in terms of the idealized procedural
programming language used by Hoare logic [34]. We show that program analysis tasks can be
decomposed into tasks over derived sub-programs representing paths, or sets of paths (truncated
slices), through the original program. Furthermore, we also show that only a finite number of
partitions (Algorithm 1, line 4) needs to be considered, ensuring that LLM-based symbolic execution
will always terminate—even for unbounded loops.

In addition, we study the application of LLM-based symbolic execution in practice. For this, we
design AutoExe—an LLM-based symbolic execution engine for real-world programming languages
such as C/Java/Python. Our approach is based on the observation that Algorithm 1 is mostly
language agnostic except for specific aspects, such as the parser. This means our approach can be
readily ported to other programming languages. Furthermore, we also observe that, since LLMs
are fundamentally approximate, we can build a lightweight implementation that uses approximate
parsing and dependency analysis—without relying on any heavyweight and/or language-specific
compiler framework.

3 Principles of LLM-based Symbolic Execution
Our goal is to adapt traditional symbolic execution methods to LLMs that reason over code directly,
rather than translation into a (less expressive) theorem prover input language.

3.1 Symbolic Execution Foundations
We use the minimal imperative language defined by Hoare logic [34] augmented with an explicit
assume-statement.3 We define the language syntax as follows:

𝐶 ::= skip | 𝐶;𝐶 | assume(𝐵) | 𝑥 := 𝐸 | if 𝐵 then 𝐶 else 𝐶 end | while 𝐵 do 𝐶 done

Where 𝐸 represents some base language (e.g., arithmetic expressions) and 𝐵 represents Boolean
expressions over 𝐸. We also use 𝜖 to sometimes represent an empty program (equivalent to skip).
The language semantics are defined inductively (i.e., least relation) in terms of the strongest post-
condition (sp) relation defined as follows:

sp(skip,P) = P sp({𝐶1;𝐶2},P) = sp(𝐶2, sp(𝐶1,P)) sp(assume(𝑏),P) = 𝑏 ∧ P
sp(𝑥 := 𝑒,P) = ∃𝑦 : 𝑥 = 𝑒 [𝑥 ↦→ 𝑦] ∧ P[𝑥 ↦→ 𝑦]

sp(if 𝑏 then 𝐶1 else 𝐶2 end,P) = sp(𝐶1, 𝑏 ∧ P) ∨ sp(𝐶2,¬𝑏 ∧ P)
sp(while 𝑏 do 𝐶 done,P) = sp(𝐶;while 𝑏 do 𝐶 done, 𝑏 ∧ P) ∨ (¬𝑏 ∧ P)

We define a linear program to be any program comprising only skip-, assume-, and assignment-
statements (without conditionals or loops). We define a path to be a linear program that is derived
by unfolding the original program 𝐶 using the following rules:

unfold (skip, 𝜋) = {𝜋 ; skip} unfold (assume(𝑏), 𝜋) = {𝜋 ; assume(𝑏)} unfold (𝑥 := 𝑒, 𝜋) = {𝜋 ;𝑥 := 𝑒}
unfold ({𝐶1;𝐶2}, 𝜋) = ∪{unfold (𝐶2, 𝜋

′) | 𝜋 ′ ∈ unfold (𝐶1, 𝑆)}

unfold (if 𝑏 then 𝐶1 else 𝐶2 end, 𝜋) = ∪
{
unfold (𝐶1, {𝜋 ; assume(𝑏)})
unfold (𝐶2, {𝜋 ; assume(¬𝑏)})

unfold (while 𝑏 do 𝐶 done, 𝜋) = ∪
{
unfold ({𝐶;while 𝑏 do 𝐶 done}, {𝜋 ; assume(𝑏)})
{𝜋 ; assume(¬𝑏)}

3Note assume(𝐵) can be emulated as (while ¬𝐵 do skip done) under partial correctness, but is treated as a special case.

10 Yihe Li, Ruijie Meng, and Gregory J. Duck

We abstractly define symbolic execution to be any algorithm that combines path unfolding with
Verification Condition (VC) solving. Given a program analysis task represented as a Hoare [34] triple
{P}𝐶{Q}, then a symbolic execution algorithm:
(1) exhaustively generates the set of all paths = unfold (𝐶, 𝜖) through the program; and
(2) solves each corresponding VC (sp(path,P) |= Q) for each path ∈ paths.
That is, a symbolic execution algorithm computes the following using explicit enumeration:

{P}𝐶{Q} iff
∧
{sp(𝜋,P) |= Q | 𝜋 ∈ unfold (𝐶, 𝜖)} (SymExe)

The triple is deemed to hold if each individual VC holds for the corresponding path (𝜋), and to not
hold otherwise. Here, each sp(𝜋,P) is defined to be the path condition for the corresponding path
𝜋 . Essentially, a symbolic execution algorithm decomposes the original program analysis task into
simpler sub-tasks that can be solved separately.

3.1.1 Traditional Symbolic Execution. “Traditional” symbolic execution algorithms solve each VC
using a suitable theorem prover, such as an SMT solver [21]. To do so, the sp-constraints for each
path are translated into a logical formula 𝜑 over the domain of 𝐸, by applying the (linear program
subset of the) sp-rules defined above. The translated VC (𝜑 |= Q) is then solved using a theorem
prover. Note that the translation is necessary since traditional theorem provers are limited to a
specific input language (e.g., SMT-LIB), and cannot make inferences over an abstract sp-constraint
directly. In addition, most practical symbolic execution tools implement several optimizations,
including incremental path unfolding, incremental sp-translation, pruning infeasible paths, and the
merging of similar paths. For example, rather than pre-computing the set of paths upfront, most
practical implementations maintain a symbolic state comprising a current location, a (partially
constructed) path constraint/condition, and a set of current variables-of-interest. Such optimizations
are consistent with abstract symbolic execution (SymExe) defined above.
We can also understand the limitations of Section 2.2. Firstly, the number of paths in the set

unfold (𝐶, 𝜖) may be very large (exponential) or even infinite (unbounded loops, Section 2.2.1). This
is known as the path explosion problem, and is a well-known limitation of symbolic execution
methods. Secondly, the sp-translation will be limited for programs that contain operations that
are not supported—such as common interactions with the external environment (Section 2.2.2).
Finally, the underlying theorem prover itself may be limited. For example, KLEE [11] uses the Z3 [6]
SMT solver over the domain of linear arithmetic, arrays, and bit-vectors by default. However, this
configuration does not support reasoning over heap manipulating programs (Section 2.2.3).

3.2 LLM-based Symbolic Execution (Path-based)
The basic idea behind “LLM-based” symbolic execution is to use a Large Language Model (LLM)
as the underlying reasoning engine instead of a theorem prover. Thus, given a VC of the form
(sp(𝜋,P) |= Q), we can use the LLM to reason directly over the path constraint and post-condition
Q. This is possible since, through its training process, the LLM can interpret both the syntax of
the path 𝜋 (represented as ordinary code), as well as the language semantics represented by the
sp-rules. We illustrate with the following example.

Example 3.1 (Path-based LLM-based Symbolic Execution). We consider the simple example
shown in Figure 3 (a) which is based on [40] Figure 7 (a.k.a. Example Program 3). We assume
that xs is a data-structure implementing a multi-set, and insert/delete/size can be expanded to
sub-programs with a suitable multi-set implementation (e.g., a singly linked list), and is initially
empty. Furthermore, we assume that the (read) operation always returns positive number, which
can be expressed in natural language or as a formal rule (∀x,R : sp(read(x),R) → x > 0). Under
these assumptions, the final size of xs should equal n. We can express this as the following triple:

Large Language Model powered Symbolic Execution 11

(a) simple program (𝐶simple) (b) path (𝜋simple) (c) truncation (𝑇simple)

1 i := 1;
2 while i ≤ n do
3 read(x) ;
4 if x < 0 then
5 xs.delete (−x) ;
6 else
7 xs.insert (x) ;
8 z := xs.size () ;
9 write(z) ;

10 i := i + 1;

1 i := 1;
2 assume(i ≤ n) ;
3 read(x) ;
4 assume(¬(x < 0)) ;
5 xs.insert (x) ;
6 z := xs.size () ;
7 write(z) ;
8 i := i + 1;
9 assume(i ≤ n) ;

10 read(x) ;
11 assume(¬(x < 0)) ;
12 xs.insert (x) ;
13 z := xs.size () ;
14 write(z) ;
15 i := i + 1;
16 assume(¬(i ≤ n)) ;

1 i := 1;
2 while i ≤ n do
3 read(x) ;
4 assume(¬(x < 0)) ;
5 xs.insert (x) ;
6 z := xs.size () ;
7 write(z) ;
8 i := i + 1;

(d) slice (𝑆base)
1 i := 1;
2 while i ≤ n do
3 read(x) ;
4 xs.insert (x) ;
5 i := i + 1;

Fig. 3. (a) A simple example program (𝐶simple), (b) one example path (𝜋simple) through (𝐶simple), (c) a truncation

(𝑇simple) of (𝐶simple) assuming only the inner 𝑡ℎ𝑒𝑛-branch is taken, and (d) a slice (𝑆simple) of (𝑇simple) assuming

{n, xs} are the vars-of-interest.

{n ≥ 0 ∧ xs.size() = 0 ∧ “read(x) always returns a positive number”} 𝐶simple {xs.size() = n} (Triple)

Although conceptually simple, the Figure 3 (a) program is challenging for several reasons, including
an unbounded loop, environmental input (read), and data-structure reasoning (xs). We may prove
(Triple) by enumerating paths, such as (𝜋simple) from Figure 3 (b) representing two iterations of the
loop. We can encode the VC (sp(𝜋simple,P) |= Q) as a prompt, which is confirmed using an LLM:

“Given the pre-condition P and the code 𝜋simple , does the post-condition Q hold?” □

This example shows how LLMs can solve tasks that are challenging for traditional program analysis
methods. That said, a simple path-based decomposition still inherits some limitations. Firstly,
there can still be an infinite number of paths (i.e., path explosion), leading to non-termination.
Secondly, each individual path could still be too long for the LLM to effectively reason over (e.g.,
path 𝜋simple from Figure 3 (b) can be generalized to any length). Finally, paths can accumulate
irrelevant statements, such as variable z, that can also exacerbate the path length problem.

3.3 LLM-based Symbolic Execution (Slice-based)
To address the path-explosion problem, our core idea is to merge individual sp-constraints (repre-
senting individual paths) into generalized sp-constraints representing (possibly infinite) sets of paths.
Given a partition Π ⊆ unfold (𝐶, 𝜖), our approach constructs a truncated sub-program 𝑇Π such that:

sp(𝜋,P) |= sp(𝑇Π,P) for all 𝜋 ∈ Π (Generalization)

Thus, instead of disposing of a (possibly infinite) number of verification conditions (VCs) of the form
(sp(𝜋,P) |= Q) for each 𝜋 ∈ Π, our approach disposes of a single VC of the form (sp(𝑇Π,P) |= Q)
for the entire set (Π). First, we shall present a method for constructing a truncated sub-program
for a given partition. Next, we shall present a partitioning algorithm that need only consider a
finite number of subsets, even for programs with infinite paths (unbounded loops), ensuring the
symbolic execution algorithm always terminates.

3.3.1 Construction. We consider the construction of truncated sub-programs.

12 Yihe Li, Ruijie Meng, and Gregory J. Duck

Truncation. Given a program 𝐶 and a (possibly infinite) subset of Π ⊆ unfold (𝐶, 𝜖), we derive a
truncated sub-program 𝑇Π equivalent to 𝐶 for all 𝜋 ∈ paths, and is unreachable otherwise:

Π ⊆ unfoldreachable (𝑇Π, 𝜖) ⊆ unfold (𝐶, 𝜖) (Truncation)

Here, (unfoldreachable) excludes all paths that terminate abnormally via a special assume(0) (i.e., as-
sume false) statement. Thus, assume(0) represents a statement that is assumed to be unreachable.4
Consider all statements (𝑠) in𝐶 that are not covered by any path 𝜋 ∈ Π, then we can construct𝑇Π by
replacing all such (𝑠) with assume(0). We can represent this idea using the following rewrite rule:5

𝑠 → assume(0) if 𝑠 ∉ 𝜋 for all 𝜋 ∈ paths (Unreachable)

We may also apply the following rules to further simplify the resulting sub-program:
assume(0);𝐶2 → assume(0) 𝐶1; assume(0) → assume(0)

if 𝑏 then 𝐶1 else assume(0) end→ assume(𝑏);𝐶1 if 𝑏 then assume(0) else 𝐶2 end→ assume(¬𝑏);𝐶2

while 𝑏 do assume(0) done→ assume(¬𝑏)

These rules preserve the (Truncation) property while also reducing the size (token count) of the
resulting 𝑇Π , which is beneficial for LLM prompting.

Slicing. We can further reduce the size of the truncated sub-program using program slicing [70].
We define a slice (𝑆Π) to be a sub-program derived from 𝑇Π by deleting (i.e., replacing by 𝜖) any
statement (𝑠) in 𝑇Π that does not violate the condition:

sp(𝑇Π,P) |= Q iff sp(𝑆Π,P) |= Q (Slice)

Our main result is as follows. If (sp(𝑆Π,P) |= Q) holds, then:
(1) (sp(𝑇Π,P) |= Q) holds by (Slice); and
(2) (sp(𝜋,P) |= Q) for all 𝜋 ∈ Π holds by (1) and (Generalization).

In other words, the single VC (sp(𝑆Π,P) |= Q) is sufficient to dispose of the entire partition (Π). We
can apply standard slicing methods, such as Weiser’s back slicing algorithm [70] (with vars(Q) as
the slice criterion), to construct 𝑆Π from 𝑇Π . The back slicing algorithm traverses the Control Flow
Graph (CFG), and deletes any statement that is not data- or control-flow-dependent on vars(Q).
The slicing algorithm is illustrated in Algorithm 2.

Example 3.2 (Slice-based Symbolic Execution). We consider Example 3.1 once more. Here, the
truncated slice (𝑆simple) in Figure 3 (d) is a generalization of the infinite partition (Π) representing
all feasible paths through the while-loop, including the Figure 3 (b) path (𝜋simple). An LLM can be
used to verify the generalized verification condition (VC) encoded in natural language.

“Given the pre-condition P and the code 𝑆simple , does the post-condition Q hold?”
Path-based symbolic execution will infinitely unroll the while-loop, generating a new VC for each
loop iteration. In contrast, slice-based symbolic execution requires only a single VC to be checked.
Furthermore, (𝑆simple , 5 lines, 28 tokens) is simpler and more compact than all of (𝐶simple , 10 lines,
56 tokens), (𝑇simple , 8 lines, 48 tokens), and (𝜋simple , 16 lines, 85 tokens). Truncation and slicing are
useful for removing irrelevant statements while preserving paths, meaning that the corresponding
prompt is simpler and more concise, thereby improving LLM accuracy. □

Discussion. Our approach is related to path merging and loop invariants in traditional symbolic
execution. Here, given a set of 𝑛 path constraints, represented as translated logical formulae 𝜑𝑖 , 𝑖 ∈
1..𝑛, the idea is to find a formula 𝜙 that is generalization (𝜑𝑖 |= 𝜙). Thus, the 𝑛 verification conditions
4Similar to __builtin_unreachable() from gcc.
5We use the standard notation (lhs→ rhs) to mean that any term matching the lhs is rewritten to the term matching rhs.

Large Language Model powered Symbolic Execution 13

(𝜑𝑖 |= Q) can be combined into a single verification condition (𝜙 |= Q), helping to mitigate the path
explosion problem. Similarly, the (possibly infinite) set of path constraints 𝜚𝑖 through a loop can
be generalized into a loop invariant 𝐼 , such that (𝜚𝑖 |= 𝐼), allowing the loop to be handled without
infinite unrolling. However, loop invariants discovery over formulae is difficult and undecidable in
the general case. In contrast, our approach avoids the problem, since the sp-constraints are never
translated into a different representation.

Input: A CFG sub-graph𝐺 ; reverse topological order
Output: A slice ⊆ 𝐺

1 Function GenSlice(𝐺 , Q):
2 slice← ∅; vars← getVars(Q)
3 for 𝑠 ∈ 𝐺 do
4 if 𝑠 modifies any 𝑣 ∈ vars, or
5 conditional 𝑠 reads any 𝑣 ∈ vars then
6 slice← slice ∪ {𝑠 }
7 vars← vars ∪ getDependencies(𝑠)
8 end
9 return slice

Algorithm 2: Basic back-slicing algorithm.

3.3.2 Partitioning. Section 3.3.1 describes the
construction of a truncated slice 𝑆 given a parti-
tion (Π) that subset of paths (Π ⊆ unfold (𝐶, 𝜖)).
In principle, any partitioning (Π1 ∪ ... ∪ Π𝑛 =

unfold (𝐶, 𝜖)) can be used. However, a good par-
titioning aims to minimize the slice (𝑆𝑖) size
for each Π𝑖 , 𝑖 ∈ 1..𝑛, in order to simplify the
prompts ultimately sent to the LLM. Our ap-
proach is to construct a partitioning based on
path coverage.

Path Coverage. Under Section 3.1, we define a
path (𝜋) to be a linear program over statements
or branches (represented as assertions) from
𝐶 . Here, we define a Control Flow Graph (CFG)
path to be a sequence nodes (a.k.a. locations) ⟨𝑙1, ..., 𝑙𝑚⟩ through the CFG representation of𝐶 . Given
a CFG path (𝜋), we define path coverage to be the set (cov(𝜋) = {𝑙1, ..., 𝑙𝑚}), i.e., the reinterpretation
of (𝜋) from a sequence to a set. It is common for distinct paths to have the same coverage, e.g.,
different iterations of the same loop with be distinct sequences, but will be equivalent sets (i.e.,
cover the same nodes). We make two key insights. First, paths with distinct coverage will have
distinct truncations, since each path must differ by at least one location. This will be used as the
basis for partitioning. Secondly, the number of distinct paths w.r.t. coverage is finite, meaning that
LLM-based symbolic execution (slice-based) necessarily terminates—even for unbounded loops.

Input: The Control-Flow Graph (CFG)
Output: A coverage-based partitioning
Globals :Coverage map (covMap), end node (end)

1 Function GenPartitions(node, pathCov, path):
2 if pathCov ∈ covMap then return ∅
3 pathCov ← pathCov ∪ {node}
4 path← path ++ node
5 covMap← covMap ∪ {path}
6 if node = end then return {path}
7 partitions← ∅
8 for succ ∈ successors(node) do
9 partitions← partitions ∪

10 GenPartitions(succ, pathCov, path)
11 return partitions

Algorithm 3: Path partitioning algorithm

Partitioning Algorithm. The core idea is to enu-
merate CFG paths (𝜋cov) with distinct coverage
(cov). Each partition (Πcov ⊆ unfold (𝐶, 𝜖)) is
implicitly defined as all paths with the same
path coverage as (cov). The algorithm uses a
Depth First Search (DFS) exploration over the
CFG, and is illustrated in Algorithm 3. Here,
the algorithm takes a CFG representation fo
𝐶 , and generates a partitioning as a set of rep-
resentative paths (𝜋cov) for each distinct cov-
erage class (cov). The algorithm works are as
a standard DFS path construct algorithm, but
also maintains a coverage map (covMap) that
tracks previously-seen coverage prefixes.When
a (node ∈ CFG) is visited, the coverage map is
consulted (line 2), and the path is pruned if the
prefix has been observed before. The coverage
map ensures that Algorithm 3 both (1) terminates, and (2) only returns paths (partitions) that differ

14 Yihe Li, Ruijie Meng, and Gregory J. Duck

void f(LIST *xs, int n) {
 for (int i = 1; i <= n; i++)
 { int x = read();
 if (x < 0)
 xs = delete(xs, x);
 else
 xs = insert(xs, x);
 int z = size(xs);
 write(x); }
}

(a)

Func

For

Block

Decl IfThenElse Stmt Stmt

StmtExpr Stmt

...

...

(b)

Func

For

Block

Decl

Stmt

IfThenElse Stmt Stmt

StmtExpr

...

...

(c)

void f(LIST *xs, int n) {
 for (int i = 1; i <= n; i++)
 { int x = read();
 assert (!(x < 0));
 xs = insert(xs, x);
 }
}

(d)

For the following code slice, assume
 n >= 0, lsize(xs) = 0, and
read() always returns a positive int.

For all paths through the slice, does
the following post-condition hold?
 size(xs) = n

...

(e)

FAIL

PASS✓

LLM

(f)

Fig. 4. Example workflow. Here, (a) is the original source code, (b) is the Abstract Syntax Tree (AST) parsed
from the code, (c) is a generated path slice (Algorithm 3 and Algorithm 2), (d) is the slice rendered back

into the original source code, and (e) is the generated prompt comprising a pre-condition, the slice, and the

post-condition, and (f) is the LLM inference.

by at least one location/node. Each output path (𝜋cov) corresponds to a partition (Πcov), which is
then used to construct a corresponding truncated sub-programs (𝑇cov) and slice (𝑆cov) which is used
for LLM prompting.
Given two distinct coverages (cov, cov′), the resulting slices (i.e., 𝑆cov , 𝑆cov′) can sometimes

be equivalent (𝑆cov = 𝑆cov′) if all distinguishing nodes are removed by the slicer. Furthermore,
some truncated slices may generalize others, i.e., (sp(𝑆cov,P) |= sp(𝑆cov′ ,P)). For example, under
Algorithm 3, then 𝑆 = ⟨i := 1; assume(¬(i ≤ n))⟩ is also a valid slice of (𝐶simple, Figure 3)
representing zero iterations of the while-loop. Nevertheless, our LLM-based symbolic execution
algorithm orders VCs by size, in order to find a least refutation of the post-condition (Q).
Discussion. Algorithm 3 is guaranteed to terminate, since the number of possible distinct coverage
sets is finite. Thus, unlike path-based symbolic execution, slice-based symbolic execution will
always terminate, even for programs with unbounded loops. For example, the truncated slice
(𝑆simple) from Figure 3 (b) generalizes infinitely many paths through the loop (for any number
of iterations). Furthermore, the size of each slice 𝑆 is always bounded by the size of the original
program 𝐶 , whereas unrolled paths can exceed any length.

4 LLM-based Symbolic Execution in Practice
The truncated slice-based symbolic execution algorithm of Section 3 is defined for an idealized
programming language (the language of Hoare triples). In this section, our aim is to port our abstract
approach to real-world programming languages (e.g., C/Java/Python). Our first main insight is
that the main symbolic execution and slicing algorithms are agnostic to the target programming
language—provided there is a method for parsing the source code into some suitable representation
for path generation and slicing. Our second main insight is that, since LLMs are approximate
oracles, the greater workflow can also be approximate—meaning that each individual step need not
be perfectly precise, provided the overall accuracy is not significantly degraded. These insights
significantly simplify our overall design.
An example of the workflow is illustrated in Figure 4. First, our workflow uses a lightweight

parsing framework (specifically, tree-sitter [9]) to parse the source code (a) into an Abstract
Syntax Tree (AST) representation (b). From the AST, a Control-Flow Graph (CFG) is constructed,
allowing for the finite enumeration of all path partitions using Algorithm 3. For each enumerated
partition, a truncation and slice is constructed (c), by removing statements that are not control- or
data-flow dependent on the post-condition Q, using Algorithm 2. Next, the slice is rendered back
into the original source language (d). Essentially, this means emitting sliced path elements, deleting
(i.e., not emitting) non-sliced path elements, and replacing (i.e., replace by assume(0)) all other
non-path elements. The resulting slice generalizes a (possibly infinite) set of paths through the
program. Finally, the slice is used to construct a text-based prompt (e) used to query an LLM (f).

Large Language Model powered Symbolic Execution 15

if (z != 0)

 x = y / z;

else

 System.err.println("div by 0!");

if z != 0 :

 x = y / z

else:

 os.write(2, "div by 0!\n")

if (z != 0)

 x = y / z;

else

 fputs("div by 0!\n", stderr);

(AST)IfThenElse

Stmt StmtExpr

Fig. 5. Example AST representation of an if-then-else statement across the C, Java, and Python programming

languages. Each AST node is represented generically by the file range from which the element was parsed, as

illustrated by the nested colored boxes.

steps (c)-(f) are repeated for each partition using Algorithm 1, until exhaustion or the discovery of
a counter-example.

4.1 Partitioning and Truncated Slice Generation

Parsing.We use the tree-sitter framework [9] to parse the source code into an AST. Each AST
node comprises a node type representing some syntactic element, the file range (source file and
offset range) from which the element was parsed, and zero or more sub-element children. The AST
is unified in that shared language features are mapped to the same representation, as illustrated by
Figure 5. Although tree-sitter does not guarantee perfect parsing, this is tolerable under our
approximate design. Our approach also avoids heavyweight and specialized compiler frameworks
necessary for precise parsing (e.g., clang [42] for C, javac [4] for Java, CPython [67] for Python,
etc.), significantly simplifying the implementation.

CFG Construction. The next step lowers the AST into a Control Flow Graph (CFG), where each node
represents a statement or conditional, followed by one (or more) control-flow edges to successor
nodes. The CFG is language agnostic, and common language features (e.g., if-then-else, while-loops,
etc.) are lowered into common CFG patterns.

Slice generation. The path partitioning is generated using Algorithm 3. For each partition Π, a
corresponding truncated sub-program 𝑇Π is generated by substitution non-covered nodes/sub-
programs with an assume(0) statement, followed by simplification. From this, a truncated slice 𝑆Π
is generated by applying Weiser’s back-slicing algorithm (as illustrated in Algorithm 2). Here, the
variables from the post-condition (Q) are used as the slicing criterion, and Algorithm 2 removes all
nodes from 𝑇Π of which Q is not control- or data-flow dependent.

4.2 Truncated Slice Rendering
So far, each slice (𝑆Π) is represented as a sub-graph of the (truncated) CFG. Our ultimate target is an
off-the-shelf LLM, meaning that the slice must be rendered back into a generic text form. For this
we leverage the underlying AST representation based on file ranges. For the rendering algorithm,
we use an interval tree (𝐼) mapping ranges to strings. For each CFG node (and corresponding AST
statement 𝑠), we insert all 𝑠 ∈ 𝑆Π into 𝐼 .

Context. We also include the AST path from the root down to each sliced (𝑠), such as the enclosing
function, control-flow context (if-then-else, while-loops, etc.), or class definitions (for Java). This
ensures the rendered slice is coherent (re-parsable) code, rather than a collection of isolated
statements. Furthermore, it is often useful to include all relevant non-executable AST nodes from
which each 𝑠 depends, including: variable declarations, type declarations, member declarations,
function declarations, global declarations, macro definitions, etc. Such dependencies are matched
based on the AST name. For example, given the executable statement (xs = insert(xs, x)),
then any function declaration or macro definition matching the name “insert” can be included
in the context. Since we rely on lightweight parsing and not a compiler front-end with semantic

16 Yihe Li, Ruijie Meng, and Gregory J. Duck

information, name-based matching may over-approximate dependencies. However, this is allowable
under our approximate workflow, and the LLM will often ignore irrelevant context.

The slice renderer also preserves the original formatting, including the preceding and succeeding
whitespace and comments. Preserving such information is not strictly necessary for C and Java, but
is essential for whitespace-sensitive languages such as Python. Furthermore, source-code comments
can provide additional context, such as programmer intent, etc., which can assist LLM inference.

Example. An example rendered slice is illustrated in Figure 4 (d). Here, all sliced executable state-
ments are preserved, aswell as the enclosing context (e.g., function declaration for f()). Furthermore,
the inner if-then-else has been simplified to an assertion, and the formatting (whitespace) has been
preserved. The resulting slice is coherent C code in its own right. Crucially, each path through the
slice corresponds to an equivalent path in the original programming, meaning that any inference
on the slice is also a valid inference for the original code.

LLM Inference. Once the rendered slice has been generated, the final step is prompt construction
and LLM inference. This step can be highly customized, but for our basic design, we use a prompt
structure that mirrors a Hoare triple {P}𝑆{Q} where P is a pre-condition, Q is a post-condition,
and 𝑆 is the generated slice (see Example 2.3, Example 3.2, and Figure 4 (e)). In addition, some basic
instructions for the LLM are provided, such as the output format. Here, we assume that the LLM
will generate one of two possible responses to the prompt; namely PASS (the post-condition holds)
or FAIL (the post-condition does not hold)

4.3 Implementation
We have implemented our workflow in the form of the AutoExe tool. AutoExe takes as input
a program 𝐶 in a supported programming language (currently C/Java/Python), pre- and post-
conditions (P and Q) expressed as code, constraints, or natural language. AutoExe automatically
decomposes the program into a sequence of truncated slices, and then constructs a sequence of
prompts (a.k.a. verification conditions) to be sent to the LLM for inference. The slices are ordered by
size, as to find the least counter-example to the post-condition where applicable. AutoExe is also
language agnostic modulo the parser and some elements of the renderer. Furthermore, AutoExe is
lightweight and approximate by design—significantly simplifying the implementation (i.e., does not
rely on language-specific compiler infrastructure). This also reflects the nature of LLM inference,
which is heuristical by nature, rather than relying on precise parsing and semantic analysis, and
yet can still make useful inference for many real-world applications.

5 Evaluation
To evaluate the effectiveness of LLM-based symbolic execution implemented by AutoExe, we
consider the following research questions:
RQ1 Accuracy: What is the accuracy of AutoExe compared to existing methods?
RQ2 Scale: Can AutoExe scale to large code bases?
RQ3 Language Agnostic: Can the AutoExeworkflow support multiple programming languages?

5.1 Experiments Dataset and Baseline
The dataset used in the experiments is gathered from two primary sources. The first source is
the REval database [13], which consists of curated Python solutions to LeetCode problems with
accompanying test suites. These subjects were selected based on the presence of multiple control
flow constructs, including nested conditionals and loops, ensuring a diverse set of program behaviors
that cannot be solved easily by traditional symbolic execution methods nor whole-program LLM
prompting. Additionally, we curated a dataset of C-language solutions to LeetCode problems to

Large Language Model powered Symbolic Execution 17

complement the REval dataset and assess the tool’s ability to generalize across programming
languages. These C solutions were selected following similar criteria, emphasizing functions with
multiple control flow branches to ensure the dataset’s representativeness.

One challenge was the construction of non-trivial Hoare triples for evaluation since REval only
provides the code and a test suite, while the LeetCode database we used only consists of code and
problem descriptions. For this, we use two distinct methods:
• Python-Desc: Utilizing the availability of program descriptions, this case used the description
of the problem as the natural-language post-conditions of the Hoare triple and also used the
restrictions on input (if any) as the pre-condition.
• Mixed-Curated: A set of 31 subjects that consists of both Python and C programs curated from
both the problem solutions in the original REval dataset and the LeetCode dataset, that comes
with handwritten and nontrivial pre- and post-conditions that reflect hidden properties of the
original problem and implementation.

We consider two main baselines for comparison. The first is traditional symbolic execution tools.
For Python, we considered CrossHair [60], PyExZ3 [7], and pySym [8]. However, with the exception
of CrossHair, most traditional symbolic execution tools are unmaintained (6 years or more, as
of writing). For C, we consider KLEE [11] as a mature traditional symbolic execution tool. One
practical issue with traditional tools is the lack of expressivity in the pre- and post-conditions,
which must be specified in either code or a formal language. For some subjects (Python-Desc), the
pre-/post-conditions are expressed in natural language, which can be handled by LLMs but not
traditional tools.
For the second baseline, we consider an “ad hoc” LLM-based program analysis over the entire

subject. For this baseline, we query the LLM for a counter-example (if one exists) or whether the
post-condition always holds for inputs that satisfy the pre-condition. While such an approach may
yield reasonable results for more straightforward programs, it lacks the systematic partitioning
capabilities that are provided by our framework.

Test Models. We tested AutoExe on several open-source LLMs:
• Meta’s Llama3 series [32]: Instruction-tuned models that are fine-tuned and optimized for
general use cases like dialogue and chatting.
• Microsoft’s Phi-4 [1]: A 14B model that is built on high-quality data from filtered public domain
websites and acquired academic books, designed to aid research on language models.
• DeepSeek’s DeepSeek-R1: A first-generation reasoning model coming from DeepSeek, achieving
performance comparable to OpenAI-o1 [22] across math, code and reasoning tasks with much
smaller parameters.
• Google’s Gemma3 [65]: A lightweight family of multimodal models that features a larger context
window of 128K.

Note that AutoExe is optimized for local models, since it potentially generates a large amount of
prompt traffic. All experiments are run using ollama version v0.5.7.

5.2 RQ1: Accuracy
To evaluate the accuracy of AutoExe in generating counter-examples and verifying post-conditions,
we compare the results of the baseline approach and the output of AutoExe for the above dataset.
Specifically, for each program, we executed AutoExe and the baseline approach, recording their
respective outputs (verified, unknown, or unverified with a counter-example) under the same
prompt and LLM model. Each test is run 5 times, and the most common output is selected as the
final result to mitigate random variations in the results. The accuracy of each test is measured

18 Yihe Li, Ruijie Meng, and Gregory J. Duck

by comparing the result against ground truth derived from the provided test suites and manual
verification.

Model Method Python-Desc Mixed-Curated
Total Correct Accuracy Total Correct Accuracy

Llama3-8B AutoExe 85 82 96.5% 31 23 74.2%
Baseline 85 79 92.9% 31 22 71.0%

Llama3.1-8B AutoExe 85 84 98.8% 31 24 77.4%
Baseline 85 71 83.5% 31 19 61.3%

Llama3.3-70B AutoExe 85 72 84.7% 31 27 87.1%
Baseline 85 70 82.4% 31 22 71.0%

Phi-4-14B AutoExe 85 74 87.1% 31 24 77.4%
Baseline 85 72 84.7% 31 24 77.4%

DeepSeek-R1-70B AutoExe 85 85 100.0% 31 19 61.3%
Baseline 85 82 96.5% 31 17 54.8%

Gemma3-4B AutoExe 85 73 85.9% 31 20 64.5%
Baseline 85 64 75.3% 31 16 51.6%

Gemma3-27B AutoExe 85 72 84.7% 31 20 64.5%
Baseline 85 76 89.4% 31 23 74.2%

Average AutoExe 85 77.4 91.1% 31 22.4 72.4%
Baseline 85 73.4 86.4% 31 20.4 65.9%

Fig. 6. Accuracy of the baseline method and AutoExe under different datasets.

Main result. Figure 6 shows the results of evaluating AutoExe on different datasets presented
above. Compared against the baseline available, the experimental results demonstrate thatAutoExe
generally improves accuracy compared to the baseline across the models and datasets being tested,
though the extent of improvement varies. For the Python-Desc dataset, AutoExe consistently
outperforms the baseline for most subjects and models. Meanwhile, on theMixed-Curated dataset,
improvement in accuracy is less obvious due to the dataset consisting of more complex programs
with a lower-level language, but AutoExe still presents similar performance compared to baseline
methods, even in such settings. We also note that the baseline accuracy for LeetCode-derived
datasets is already high due to the relatively small size of the subjects. We examine some more
realistic case studies in RQ2, where the impact of partitioning is stronger.

We also attempted to run CrossHair [60] on the Python portion of the Mixed-Curated dataset
since the post-conditions are expressed in executable Python code. However, CrossHair was unable
to identify any counterexample for all Python subjects—likely due to the limitations of traditional
symbolic execution as well as the specific implementation. The other subjects, including Python-
Desc, express the post-condition as natural language descriptions and thus are unsuitable for
CrossHair (or other surveyed traditional symbolic execution tools).

AutoExe enhances accuracy compared to the baseline methods for most subjects. AutoExe
is more applicable than traditional symbolic execution tools such as CrossHair [60], and can
handle pre- and post-conditions expressed in code or natural language.

Impact of different LLMs. Figure 6 above also evaluates AutoExe on multiple different LLMs, includ-
ing Meta’s Llama3, Llama3.1, and Llama3.3 models [32] of various parameter sizes, Microsoft’s
Phi-4 model [1], 4B and 27B versions of Google’s Gemma3 model [65], and the 70B distilled version
of DeepSeek-R1 model [22]. Interestingly, the results reveal some notable differences in perfor-
mance across various LLMs, highlighting the impact of model size and specialization on the results.
Among the tested models, the most significant improvement in accuracy is observed with Llama3.1-
8B, where AutoExe achieves 98.8% accuracy compared to the baseline’s 83.5%, highlighting the

Large Language Model powered Symbolic Execution 19

benefits of partitioning in improving the accuracy of LLM reasoning for comparatively small models.
In contrast, on larger models like Llama3.3-70B and DeepSeek-R1-70B, such improvements in
accuracy are more subtle, mainly due to the fact that larger models inherently have a stronger
reasoning ability. This is a positive result—smaller LLMs can be run locally on consumer hardware,
and AutoExe exhibits a clear benefit for these use cases. For larger models, the result is still positive,
with the exception of Gemma3-27B. We expect that the relatively small size of the test subjects
benefits ad hoc analysis. We shall test larger subjects in RQ2.

AutoExe improves accuracy over the tested LLMs, where smaller LLMs benefit the most.

Method Python-Desc Mixed-Curated
AutoExeMin-Counter TCs 203.4 ± 75.5 113.3 ± 39.0

Baseline TCs 224.8 ± 85.9 146.9 ± 48.7

Fig. 7. The average LLM token counts (TCs) for AutoExe and baseline methods under different datasets. Each

entry is reported in the form of Mean±Standard Deviation.

Prompt size. The statistics for the average Token Counts (TCs) across different datasets are shown
in Figure 7. The TCs for each query to the LLM are calculated using tiktoken [36], with the
corresponding Byte-Pair Encoding (BDE) token encoding (also used by GPT-4o mini [55]). In
the table, we compare the average TCs for the baseline method against the average TCs for the
minimum counterexample for each test case in AutoExe’s execution using Llama3.1-8B as the LLM.
From the table, AutoExe demonstrates practical token count reduction ability compared to

the baseline method—reducing the length and complexity of the prompt—with reductions of
approximately 9.5% and 22.9% on average, respectively, for Python-Desc and Mixed-Curated
datasets. We shall also test larger subjects in RQ2.

AutoExe reduces the average token count needed for LLM queries to find the minimum counter-
example for all tested datasets, where larger datasets benefit the most.

Case study.We present Figure 8 as a concrete example. Here, the pre- and post-conditions of the
original Python function (shown in Figure 8 (a)) are indicated with the corresponding PRE and
POST comments. In this example, the original function has a pre-condition that value is not empty,
which is indicated by the (assume len(value) > 0) statement located at the beginning of the
function. The post-condition of the function is listed as |res| ≤ |float (value) |, which does not
always hold, as the given function will round up any decimal input ending in “.5”. For example,
closest_integer (’1.5’) = 2, thus violating the post-condition. We find that most small LLMs cannot
correctly analyze the whole program. A typical response of GPT-4o mini [55] when fed with the
entirety of the original program is:

“Rounding using ceil or floor will always produce a result that is at least less than or
equal to the absolute value of value.”

The LLM then proceeds to incorrectly declare that the post-condition of the program will always
be satisfied. In this instance, we speculate that the LLM is reasoning over what the program is
supposed to do rather than what the program actually does—i.e., a form of hallucination.

In contrast, AutoExe decomposes the input program into truncated slices. Two of the generated
slices of the original Python function are shown in Figure 8 (b) and (c). A key observation of

20 Yihe Li, Ruijie Meng, and Gregory J. Duck

(a) original Python function

def closest_integer(value):
assume len(value) > 0 # PRE

if value.count('.') == 1:
remove trailing zeros
while value[-1] == '0':

value = value [:-1]

num = float(value)
if value [-2:] == '.5':

if num > 0:
res = ceil(num)

else:
res = floor(num)

elif len(value) > 1 or value [0] != '0':
res = int(round(num))

else:
res = 0

assert abs(res) <= abs(float(value)) # POST

(b) truncated slice #1

def closest_integer(value):
assume len(value) > 0 # PRE
if value.count('.') == 1:

remove trailing zeros
while value[-1] == '0':

value = value [:-1]
num = float(value)
assume value [-2:] != '.5'
assume len(value) > 1 or value [0] != '0'
res = int(round(num))
assert abs(res) <= abs(float(value)) # POST

(c) truncated slice #2

def closest_integer(value):
assume len(value) > 0 # PRE
assume value.count('.') != 1
num = float(value)
assume value [-2:] == '.5'
assume num > 0
res = ceil(num)
assert abs(res) <= abs(float(value)) # POST

Fig. 8. An example buggy Python program (a) that implements a simple function that takes a value (string)

representing a number and returns the closest integer to it. If the number is equidistant from two integers,

round it away from zero. The example program includes an unbounded loop (while value[-1] == ’0’:
...), interaction with standard library APIs (ceil, floor, and abs), and complex language constructs like

list slicing. In addition, slices (b) and (c) correspond to input "0.0" and "2.5", respectively.

those generated slices are their reduced complexity. For example, in (b), only the elif branch
is considered, with the others truncated, forming implicit pre-conditions in the form of assume-
statements. In (c), only the second if branch is assumed to be taken. In this example, we can see that
AutoExe significantly reduces the complexity and size of the resulting truncated slices. Specifically,
the original Python code (a) contains 430 tokens, which is reduced to 103 tokens (∼76% reduction)
for (b) and 69 tokens (∼84% reduction) for (c). Together with the reduced CFG complexity, the slices
form a smaller and more targeted prompt, increasing the chance of a correct validation result. With
the truncated slices, the LLM correctly infers the post-condition holds for (b) but does not hold
for (c). For example, GPT-4o mini outputs the following for (c) (emphasis original):

“There are cases (in fact, all cases where num > 0 and ends in '.5') that violate
the POST condition since abs(res) will always be greater than abs(float(value)).
Thus, the answer is No, the post-condition (POST) does not always hold.”

Since there exists a counter-example (c), we have shown that the post-condition does not hold for
the original program (a).

We also attempted to analyze Figure 8 (a) using CrossHair [60], a traditional symbolic execution
engine for Python. However, CrossHair terminates after failing to find any violation of the post-
condition.We believe this is due to an incomplete search or incomplete solving of the path constraint
by the underlying SMT solver (z3). In contrast, AutoExe can exhaustively enumerate all path
partitions, and the underlying LLM makes the correct inferences on the corresponding slice. Even
this simple case study highlights the challenges with traditional methods.

5.3 RQ2: Scale
To evaluate the ability of AutoExe to scale, we consider a large read-world project, specifically the
X11 [74] client libraries and applications, of which several recent crashes were found via fuzzing [49].
For these tests, we construct post-conditions by negating the crash condition, e.g., (ptr != NULL) for

Large Language Model powered Symbolic Execution 21

Token Count Llama3.1 Gemma3
Subject Bug File Func Slice File Func Slice File Func Slice
xinput NULL-pointer 4281 1197 178 ✗ ✗ ✓ ✗ ✗ ✓

xlsclients NULL-pointer 140120 1090 229 ✗ ✗ ✗ ✗ ✗ ✗
xmodmap NULL-pointer 18683 2189 279 ✗ ✗ ✓ ✗ ✗ ✓
xset Divide-by-zero 17078 3164 506 ✗ ✓ ✓ ✗ ✓ ✓

xwininfo Buffer-overflow 152020 2560 597 ✗ ✗ ✗ ✗ ✗ ✗

Average 66436 3.07% 0.54% 0% 20% 60% 0% 20% 60%

Fig. 9. The token counts for file-based (File), function-based (Func), and slice-based (Slice) decompositions of

real-world bugs from X11 client applications. Here (✓) means the LLM correct detects the bug, and (✗) means

the token limit is exceeded, or the bug was not detected.

NULL-pointer dereference. The test suite consists of ∼244K sLOC of C code (∼4.96M tokens)—far too
large for analysis within a single prompt—meaning that some kind of decomposition is necessary.
We consider the following decompositions: (File) only relevant source files included, (Func) only
relevant functions included, (Slice) the AutoExe minimum counter-example assessed against the
ground truth. The results are shown in Figure 9. We consider five X11 client applications (xinput,
xlsclients, xmodmap, xset, xwininfo).

XIDeviceInfo*
XIQueryDevice(Display *dpy , int deviceid ,

int *ndevices_return)
{

xXIQueryDeviceReply reply;
XExtDisplayInfo *extinfo = XInput_find_display(dpy);
...
*ndevices_return = -1;
return NULL;

}
void XIFreeDeviceInfo(XIDeviceInfo* info)
{

// POST: info != NULL
}
static int list_xi2(Display *display ,

enum print_format format)
{

// PRE: true
int ndev;
XIDeviceInfo *info , *dev;
info = XIQueryDevice(display , XIAllDevices , &ndev);
XIFreeDeviceInfo(info);

}

Fig. 10. Example slice for xinput.

The results are shown in Figure 9. Unsurpris-
ingly, the slice-based decomposition (Slice) is
the most effective at reducing the total token
count over the naïve (File) and (Func) based
methods. The reduction in the prompt size and
complexity also has a noticeable impact on LLM
inference. For this test, we consider two small
models (Llama3.1-8B and Gemma3-4B) and see
that (Slice) achieves 60% accuracy (3/5), com-
pared to 20% for (Func) and 0% for (File). We
also note that, for larger subjects, the reduction
in token counts and accuracy are far more im-
pactful than the relatively small subjects of RQ1.
An example slice for xinput is shown in Fig-
ure 10. Once the program has been reduced, the
bug becomes apparent: the XIQueryDevice()
function returns NULL (derived from an error-
handling path), and this value is immediately
passed to XIFreeDeviceInfo() (the interme-
diate code was removed by the slicer), thus violating the post-condition. After the truncation and
slicing, the violation is readily apparent to even small LLMs. In the non-sliced code, the bug is
significantly more obfuscated by additional (and irrelevant) code. For the original code, see here
and here.

The truncated slicing of AutoExe can significantly reduce the size and complexity of prompts for
a real-world case study. The distilled prompts correlate to improved accuracy of LLM inference.

5.4 RQ3: Language Agnosticism
AutoExe implements a lightweight workflow that is language agnostic. To evaluate AutoExe’s
ability to analyze different programming languages, we analyze the same subjects implemented

https://gitlab.freedesktop.org/xorg/app/xinput/-/blob/29e7ec5a3d7e920950d5a5c97020ce82b30c4888/src/list.c#L292
https://gitlab.freedesktop.org/xorg/lib/libxi/-/blob/557b60798a9da49386f1034b133838332735de22/src/XIQueryDevice.c

22 Yihe Li, Ruijie Meng, and Gregory J. Duck

Model Method Translated-C-Desc Translated-Java-Desc
Total Correct Accuracy Total Correct Accuracy

Average AutoExe 85 73.3 86.2% 85 76.0 89.4%
Baseline 85 66.5 78.2% 85 71.3 83.8%

Fig. 11. Accuracy of the baseline method and AutoExe under original and translated datasets.

in Python, C, and Java. For this, we use GPT-4o-mini to automatically translate the Python-Desc
dataset into equivalent C and Java programs. The translated program is then gathered to form the
Translated-C-Desc and Translated-Java-Desc datasets, also consisting of 85 programs. Note
that the translation is not necessarily faithful, but can still be processed by AutoExe using the
same evaluation framework detailed in RQ1. The results are summarized in Figure 11.

Compared against the original Python dataset, we can see there is a general decline in accuracy
for both baseline methods and AutoExe. Nevertheless, AutoExe is still able to improve accuracy
compared to the baselinemethod for the translated datasets, demonstrating its versatility in handling
multi-language programs that is the direct result of its language-agnostic workflow and the inherent
ability for LLM to understand multiple languages. These results are achieved with reliance on
precise parsers and/or language-specific compiler front-ends.

AutoExe’s language-agnostic design maintains similar performance and accuracy results for
the same subjects implemented in different programming languages (C, Python and Java).

5.5 Discussion
Our results show that path-based decomposition of program analysis tasks is effective at improving
LLM-based program analysis, especially for small LLMs and real-world problems. The significance
is that it allows for higher accuracy to be achieved with smaller models that can be run on consumer-
grade hardware. In addition, we prove that a lightweight and language agnostic workflow is feasible
and can still achieve good results.

Limitations. LLM-based program analysis is applicable to program analysis tasks that cannot be
handled by traditional means. That said, the probabilistic reasoning on LLMs is not suitable for
all applications, even with improved accuracy. LLMs are also unlikely to ever achieve the same
accuracy as traditional solvers for some tasks, such as solving systems of linear equations. As such,
we propose LLM-based symbolic execution as a complementary method that does not necessarily
replace traditional approaches for all use cases. Another limitation is that path-based decomposition
may still explode, even when our approach is guaranteed to terminate. This is an inherent limitation
of path-based reasoning. However, we believe that the truncated-slice based decomposition is a
significant mitigation.

6 Related Work

Static program analysis via symbolic execution. Symbolic execution [39] is an established method
for static programs whose origins also relate to early work formalizing programs as mathematical
logic. The idea is to execute symbolic states, representing sets of concrete inputs, allowing for the
exhaustive exploration of program behavior. Over the decades, many different symbolic execution
engines and frameworks have been developed, such as: KLEE [11], Owi [3], Symbolic PathFinder
(SPF) [57], Java PathFinder (JPF) [68], CrossHair [60], Angr [63], S2E [16], PyExZ3 [7], etc. Unlike
our approach, such traditional tools translate paths into some underlying formal language for
theorem proving and thus inherit many of the limitations discussed in this paper. Furthermore, most

Large Language Model powered Symbolic Execution 23

existing tools are specialized to a specific language (C, Java, binary, etc.) and are closely integrated
into specific compiler frameworks (e.g., LLVM [42] for KLEE). That said, LLMs use a fundamentally
different type of reasoning compared to the deductive reasoning of theorem provers. As such,
traditional approaches are suitable for problems that can be handled by traditional methods and for
applications where perfect accuracy is required.

LLM-based program analysis. One recent alternative to traditional program analysis methods is
Large Language Models (LLMs). LLMs are very general tools and can be applied to a wide variety
of tasks, including fuzzing [5, 50], vulnerability detection [78], and program repair [26]. Another
recent innovation is LLM-based agents [72], which are algorithms where decisions are made by
the LLM. Our core Algorithm 1 is traditional and not agent-based. However, an agentized version
could be made, but decisions (e.g., which branch to explore first) could be deferred to the LLM.

Intersection between symbolic execution and LLMs. There are some other nascent works combining
LLMs and symbolic execution. LLM-Sym [69] is an agent-based symbolic execution framework
for Python code that uses an LLM to translate paths into traditional path constraints suitable for
solving via z3 [21]. LLM-Sym is fundamentally different in that our approach avoids translation
altogether, instead directly using the LLM itself as a solver. Since LLM-Sym still uses translation to
z3, it still inherits many of the limitations of traditional symbolic execution engines discussed in
this paper. Similarly, Loopy [37] aims to discover loop invariants using LLMs, which can then be
applied to symbolic analysis. Our approach avoids the need for invariant discovery since it is not
based on translation.

7 Conclusion
Large Language Model (LLM)-based program analysis has enjoyed an explosion of application over
the past few years. The ability of LLMs to reason over code directly has advantages over traditional
static program analysis methods, such as symbolic execution, that have significant limitations
regarding difficult-to-analyze programs (e.g., loops, environment, heaps, etc.). That said, LLMs
also have inherent limitations. For example, since LLMs essentially use a form of approximate or
probabilistic reasoning, they are not always accurate, which may limit their application to certain
tasks. Another limitation is scale, where the LLM token limit restricts the size and scope of the
program to be analyzed. Such problems can be mitigated using a larger LLM, but this has additional
costs, such as the requirement of enterprise grade GPUs in order to run the model.

In this paper, we introduce a variant of symbolic execution that uses an LLM as the underlying
reasoning engine instead of a traditional theorem prover or SMT solver. Our approach introduces a
generic path constraint representation in terms of the original code—allowing the LLM to reason di-
rectly over the path constraint and avoiding translation into a (less expressive) formal language. Our
approach allows for a path-based decomposition of the analysis task into smaller (more tractable)
sub-tasks, which use less tokens (helping scale), and are more targeted (helping accuracy). We imple-
mented our approach in the form of AutoExe—a practical LLM-based symbolic execution engine
that supports multiple programming languages (i.e., language agnostic, supporting C/Python/Java)
without depending on heavyweight compiler infrastructure. Our experimental results demonstrate
measurable improvements in terms of both accuracy and scale, especially in smaller models that
can run on consumer grade GPUs.

References
[1] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael Harrison,

Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li, Weishung Liu, Caio
C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel

24 Yihe Li, Ruijie Meng, and Gregory J. Duck

Ward, Yue Wu, Dingli Yu, Cyril Zhang, and Yi Zhang. 2024. Phi-4 Technical Report. arXiv:2412.08905 [cs.CL]
https://arxiv.org/abs/2412.08905

[2] Hiralal Agrawal, Richard A. Demillo, and Eugene H. Spafford. 1993. Debugging with dynamic slicing and backtracking.
Softw. Pract. Exper. 23, 6 (June 1993), 589–616. doi:10.1002/spe.4380230603

[3] Léo Andrès, Filipe Marques, Arthur Carcano, Pierre Chambart, José Fragoso Santos, and Jean-Christophe Filliâtre.
2024. Owi: Performant Parallel Symbolic Execution Made Easy, an Application to WebAssembly. The Art, Science, and
Engineering of Programming 9, 1 (Oct. 2024). doi:10.22152/programming-journal.org/2025/9/3

[4] Ken Arnold, James Gosling, and David Holmes. 2005. The Java programming language. Addison Wesley Professional.
[5] Asmita, Yaroslav Oliinyk, Michael Scott, Ryan Tsang, Chongzhou Fang, and Houman Homayoun. 2024. Fuzzing Busy-

Box: Leveraging LLM and Crash Reuse for Embedded Bug Unearthing. In 33rd USENIX Security Symposium (USENIX
Security 24). USENIX Association, Philadelphia, PA, 883–900. https://www.usenix.org/conference/usenixsecurity24/
presentation/asmita

[6] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of
Symbolic Execution Techniques. ACM Comput. Surv. 51, 3, Article 50 (May 2018), 39 pages. doi:10.1145/3182657

[7] Thomas BALL, Jakub DANIEL, and Thomas Ball. 2015. Deconstructing Dynamic Symbolic Execution (proceedings of the
2014marktoberdorf summer school on dependable software systems engineering, the 2014marktober summer school on
deop ed.). Technical Report MSR-TR-2015-95. https://www.microsoft.com/en-us/research/publication/deconstructing-
dynamic-symbolic-execution/ Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, Boston,
MA.

[8] Michael Bann. 2016. pySym: Python Symbolic Execution. https://github.com/bannsec/pySym.
[9] Max Brunsfeld, Amaan Qureshi, Andrew Hlynskyi, Patrick Thomson, ObserverOfTime, Josh Vera, dundargoc, Phil

Turnbull, Timothy Clem, Douglas Creager, Andrew Helwer, Rob Rix, Daumantas Kavolis, Hendrik van Antwerpen,
Michael Davis, Will Lillis, Christian Clason, Ika, Tuan-Anh Nguyen, Riley Bruins, Amin Ya, Stafford Brunk, Matt
Massicotte, bfredl, Niranjan Hasabnis, Mingkai Dong, Samuel Moelius, Steven Kalt, and Segev Finer. 2025. tree-
sitter/tree-sitter: v0.25.1. doi:10.5281/zenodo.14788680

[10] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat
Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks of
Artificial General Intelligence: Early experiments with GPT-4. arXiv:2303.12712 [cs.CL] https://arxiv.org/abs/2303.
12712

[11] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In 8th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 08). USENIX Association, San Diego, CA. https://www.usenix.org/conference/osdi-08/klee-unassisted-
and-automatic-generation-high-coverage-tests-complex-systems

[12] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing: three decades later. Commun. ACM
56, 2 (Feb. 2013), 82–90. doi:10.1145/2408776.2408795

[13] Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. 2024. Reasoning Runtime Behavior of a Program
with LLM: How Far Are We? arXiv:2403.16437 [cs.SE] https://arxiv.org/abs/2403.16437

[14] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser,
Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak,
Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan
Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
2021. Evaluating Large Language Models Trained on Code. arXiv:2107.03374 [cs.LG] https://arxiv.org/abs/2107.03374

[15] Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. 2024. ChatUniTest: A Framework
for LLM-Based Test Generation. In Companion Proceedings of the 32nd ACM International Conference on the Foundations
of Software Engineering (Porto de Galinhas, Brazil) (FSE 2024). Association for Computing Machinery, New York, NY,
USA, 572–576. doi:10.1145/3663529.3663801

[16] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E Platform: Design, Implementation, and
Applications. ACM Trans. Comput. Syst. 30, 1, Article 2 (Feb. 2012), 49 pages. doi:10.1145/2110356.2110358

[17] Edmund M. Clarke and E. Allen Emerson. 1982. Design and synthesis of synchronization skeletons using branching
time temporal logic. In Logics of Programs, Dexter Kozen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 52–71.

[18] L.A. Clarke. 1976. A System to Generate Test Data and Symbolically Execute Programs. IEEE Transactions on Software
Engineering SE-2, 3 (1976), 215–222. doi:10.1109/TSE.1976.233817

https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://doi.org/10.1002/spe.4380230603
https://doi.org/10.22152/programming-journal.org/2025/9/3
https://www.usenix.org/conference/usenixsecurity24/presentation/asmita
https://www.usenix.org/conference/usenixsecurity24/presentation/asmita
https://doi.org/10.1145/3182657
https://www.microsoft.com/en-us/research/publication/deconstructing-dynamic-symbolic-execution/
https://www.microsoft.com/en-us/research/publication/deconstructing-dynamic-symbolic-execution/
https://github.com/bannsec/pySym
https://doi.org/10.5281/zenodo.14788680
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://doi.org/10.1145/2408776.2408795
https://arxiv.org/abs/2403.16437
https://arxiv.org/abs/2403.16437
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3663529.3663801
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1109/TSE.1976.233817

Large Language Model powered Symbolic Execution 25

[19] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (Los Angeles, California) (POPL ’77). Association for Computing Machinery, New York, NY,
USA, 238–252. doi:10.1145/512950.512973

[20] Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In Proceedings of the
6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (San Antonio, Texas) (POPL ’79).
Association for Computing Machinery, New York, NY, USA, 269–282. doi:10.1145/567752.567778

[21] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In 2008 Tools and Algorithms for Construction
and Analysis of Systems. Springer, Berlin, Heidelberg, 337–340. https://www.microsoft.com/en-us/research/publication/
z3-an-efficient-smt-solver/

[22] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao,
Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu
Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo
Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong
Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S.
Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia
Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng
Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song,
Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao,
Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong,
Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng,
Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,
Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. 2025.
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv:2501.12948 [cs.CL]
https://arxiv.org/abs/2501.12948

[23] E.W. Dijkstra. 1975. Guarded commands, nondeterminancy and formal derivation of programs. Commun. ACM 18, 8
(1975), 453–457. doi:10.1145/360933.360975

[24] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling static analyses at Facebook.
Commun. ACM 62, 8 (July 2019), 62–70. doi:10.1145/3338112

[25] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. 2001. Bugs as deviant behavior: a general
approach to inferring errors in systems code. SIGOPS Oper. Syst. Rev. 35, 5 (Oct. 2001), 57–72. doi:10.1145/502059.502041

[26] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. 2023. Automated Repair of Programs
from Large Language Models. In Proceedings of the 45th International Conference on Software Engineering (Melbourne,
Victoria, Australia) (ICSE ’23). IEEE Press, 1469–1481. doi:10.1109/ICSE48619.2023.00128

[27] Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu Zhang, Ruijie Fang, Asmita, Ryan Tsang, Najmeh
Nazari, Han Wang, and Houman Homayoun. 2024. Large language models for code analysis: do LLMs really do their
job?. In Proceedings of the 33rd USENIX Conference on Security Symposium (Philadelphia, PA, USA) (SEC ’24). USENIX
Association, USA, Article 47, 18 pages.

[28] Robert W. Floyd. 1967. Assigning Meanings to Programs. Proceedings of Symposium on Applied Mathematics 19 (1967),
19–32. http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf

[29] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed automated random testing. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (Chicago, IL, USA) (PLDI
’05). Association for Computing Machinery, New York, NY, USA, 213–223. doi:10.1145/1065010.1065036

[30] John B. Goodenough and Susan L. Gerhart. 1975. Toward a theory of test data selection. In Proceedings of the
International Conference on Reliable Software (Los Angeles, California). Association for Computing Machinery, New
York, NY, USA, 493–510. doi:10.1145/800027.808473

[31] Susan L. Graham, Peter B. Kessler, andMarshall K. Mckusick. 1982. Gprof: A call graph execution profiler. In Proceedings
of the 1982 SIGPLAN Symposium on Compiler Construction (Boston, Massachusetts, USA) (SIGPLAN ’82). Association

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://www.microsoft.com/en-us/research/publication/z3-an-efficient-smt-solver/
https://www.microsoft.com/en-us/research/publication/z3-an-efficient-smt-solver/
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/3338112
https://doi.org/10.1145/502059.502041
https://doi.org/10.1109/ICSE48619.2023.00128
http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/800027.808473

26 Yihe Li, Ruijie Meng, and Gregory J. Duck

for Computing Machinery, New York, NY, USA, 120–126. doi:10.1145/800230.806987
[32] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha

Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte
Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang
Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke
Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail,
Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong,
Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo
Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya
Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan,
Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman
Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon
Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel,
Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini,
Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra,
Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler,
Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn,
Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong
Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag,
Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert,
Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado,
Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie
Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman,
Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou,
Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana
Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery,
Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen
Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski,
James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy
Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan
McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal,
Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo,
Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus,
Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao

https://doi.org/10.1145/800230.806987

Large Language Model powered Symbolic Execution 27

Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini
Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil
Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub,
Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto,
Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil,
Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng,
Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked,
Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu,
Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu,
Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi
Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and
Zhiyu Ma. 2024. The Llama 3 Herd of Models. arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783

[33] R. G. Hamlet. 1977. Testing Programs with the Aid of a Compiler. IEEE Trans. Softw. Eng. 3, 4 (July 1977), 279–290.
doi:10.1109/TSE.1977.231145

[34] C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct. 1969), 576–580.
doi:10.1145/363235.363259

[35] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A
Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods, Mihaela Bobaru, Klaus Havelund,
Gerard J. Holzmann, and Rajeev Joshi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 41–55.

[36] Shantanu Jain. 2025. tiktoken: A fast BPE tokeniser for use with OpenAI’s models. https://github.com/openai/tiktoken.
[37] Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deligiannis, Shuvendu K. Lahiri, Akash Lal,

Aseem Rastogi, Subhajit Roy, and Rahul Sharma. 2023. Finding Inductive Loop Invariants using Large Language
Models. arXiv:2311.07948 [cs.PL] https://arxiv.org/abs/2311.07948

[38] Arvinder Kaur and Ruchikaa Nayyar. 2020. A Comparative Study of Static Code Analysis tools for Vulnerability
Detection in C/C++ and JAVA Source Code. Procedia Computer Science 171 (01 2020), 2023–2029. doi:10.1016/j.procs.
2020.04.217

[39] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385–394. doi:10.1145/
360248.360252

[40] Bogdan Korel and Janusz Laski. 1988. Dynamic program slicing. Inform. Process. Lett. 29, 3 (1988), 155–163. doi:10.
1016/0020-0190(88)90054-3

[41] Daniel Kroening and Michael Tautschnig. 2014. CBMC – C Bounded Model Checker. In Tools and Algorithms for the
Construction and Analysis of Systems, Erika Ábrahám and Klaus Havelund (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 389–391.

[42] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis and Transfor-
mation. San Jose, CA, USA, 75–88.

[43] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012. GenProg: A Generic Method for
Automatic Software Repair. IEEE Transactions on Software Engineering 38, 1 (2012), 54–72. doi:10.1109/TSE.2011.104

[44] Mosh Levy, Alon Jacoby, and Yoav Goldberg. 2024. Same Task, More Tokens: the Impact of Input Length on the
Reasoning Performance of Large Language Models. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association
for Computational Linguistics, Bangkok, Thailand, 15339–15353. doi:10.18653/v1/2024.acl-long.818

[45] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling,
Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun
Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme
Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-level
code generation with AlphaCode. Science 378, 6624 (Dec. 2022), 1092–1097. doi:10.1126/science.abq1158

[46] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. SIGPLAN Not. 51, 1 (Jan.
2016), 298–312. doi:10.1145/2914770.2837617

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1145/363235.363259
https://github.com/openai/tiktoken
https://arxiv.org/abs/2311.07948
https://arxiv.org/abs/2311.07948
https://doi.org/10.1016/j.procs.2020.04.217
https://doi.org/10.1016/j.procs.2020.04.217
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1016/0020-0190(88)90054-3
https://doi.org/10.1016/0020-0190(88)90054-3
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.18653/v1/2024.acl-long.818
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1145/2914770.2837617

28 Yihe Li, Ruijie Meng, and Gregory J. Duck

[47] Yacine Majdoub and Eya Ben Charrada. 2024. Debugging with Open-Source Large Language Models: An Evaluation.
In Proceedings of the 18th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(Barcelona, Spain) (ESEM ’24). Association for Computing Machinery, New York, NY, USA, 510–516. doi:10.1145/
3674805.3690758

[48] Ruijie Meng, Gregory J. Duck, and Abhik Roychoudhury. 2024. Large Language Model assisted Hybrid Fuzzing.
arXiv:2412.15931 [cs.SE] https://arxiv.org/abs/2412.15931

[49] Ruijie Meng, Gregory J. Duck, and Abhik Roychoudhury. 2024. Program Environment Fuzzing. In Proceedings of
the 2024 on ACM SIGSAC Conference on Computer and Communications Security (Salt Lake City, UT, USA) (CCS ’24).
Association for Computing Machinery, New York, NY, USA, 720–734. doi:10.1145/3658644.3690229

[50] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024. Large Language Model guided Protocol
Fuzzing. In Proceedings of the 31st Annual Network and Distributed System Security Symposium (NDSS).

[51] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An empirical study of the reliability of UNIX utilities. Commun.
ACM 33, 12 (Dec. 1990), 32–44. doi:10.1145/96267.96279

[52] Michael L. Nelson. 2005. A Survey of Reverse Engineering and Program Comprehension. arXiv:cs/0503068 [cs.SE]
https://arxiv.org/abs/cs/0503068

[53] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavyweight dynamic binary instrumentation.
SIGPLAN Not. 42, 6 (June 2007), 89–100. doi:10.1145/1273442.1250746

[54] OpenAI. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https://arxiv.org/abs/2303.08774
[55] OpenAI. 2024. GPT-4o mini: advancing cost-efficient intelligence. https://openai.com/index/gpt-4o-mini-advancing-

cost-efficient-intelligence/
[56] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: feedback-directed random testing for Java. In Companion to

the 22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications Companion (Montreal,
Quebec, Canada) (OOPSLA ’07). Association for Computing Machinery, New York, NY, USA, 815–816. doi:10.1145/
1297846.1297902

[57] Corina S. Păsăreanu and Neha Rungta. 2010. Symbolic PathFinder: symbolic execution of Java bytecode. In Proceedings
of the 25th IEEE/ACM International Conference on Automated Software Engineering (Antwerp, Belgium) (ASE ’10).
Association for Computing Machinery, New York, NY, USA, 179–180. doi:10.1145/1858996.1859035

[58] S. Rapps and E.J. Weyuker. 1985. Selecting Software Test Data Using Data Flow Information. IEEE Transactions on
Software Engineering SE-11, 4 (1985), 367–375. doi:10.1109/TSE.1985.232226

[59] J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In Proceedings 17th Annual IEEE
Symposium on Logic in Computer Science. 55–74. doi:10.1109/LICS.2002.1029817

[60] Phillip Schanely. 2017. CrossHair: Symbolic Execution for Python. https://github.com/pschanely/CrossHair.
[61] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing engine for C. In Proceedings of

the 10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Lisbon, Portugal) (ESEC/FSE-13). Association for Computing Machinery, New
York, NY, USA, 263–272. doi:10.1145/1081706.1081750

[62] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. 2012. AddressSanitizer: a fast
address sanity checker. In Proceedings of the 2012 USENIX Conference on Annual Technical Conference (Boston, MA)
(USENIX ATC’12). USENIX Association, USA, 28.

[63] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SOK: (State of) The Art of War: Offensive
Techniques in Binary Analysis. In 2016 IEEE Symposium on Security and Privacy (SP). 138–157. doi:10.1109/SP.2016.17

[64] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. 2018. Learning loop invariants for program
verification. Advances in Neural Information Processing Systems 31 (2018).

[65] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe Sessa, Aakanksha
Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea
Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-
Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng
Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan
Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan,
Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund,
Lisa Lee, Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum
Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni,
Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Sebastian
Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan,
Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran,

https://doi.org/10.1145/3674805.3690758
https://doi.org/10.1145/3674805.3690758
https://arxiv.org/abs/2412.15931
https://arxiv.org/abs/2412.15931
https://doi.org/10.1145/3658644.3690229
https://doi.org/10.1145/96267.96279
https://arxiv.org/abs/cs/0503068
https://arxiv.org/abs/cs/0503068
https://doi.org/10.1145/1273442.1250746
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1109/TSE.1985.232226
https://doi.org/10.1109/LICS.2002.1029817
https://github.com/pschanely/CrossHair
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1109/SP.2016.17

Large Language Model powered Symbolic Execution 29

Minh Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani,
Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and
Kathleen Kenealy. 2024. Gemma: Open Models Based on Gemini Research and Technology. arXiv:2403.08295 [cs.CL]
https://arxiv.org/abs/2403.08295

[66] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume
Lample. 2023. LLaMA: Open and Efficient Foundation Language Models. arXiv:2302.13971 [cs.CL] https://arxiv.org/
abs/2302.13971

[67] G. van Rossum. 1995. Python tutorial. Technical Report CS-R9526. Centrum voor Wiskunde en Informatica (CWI),
Amsterdam.

[68] Willem Visser, Corina S. Pundefinedsundefinedreanu, and Sarfraz Khurshid. 2004. Test input generation with java
PathFinder. In Proceedings of the 2004 ACM SIGSOFT International Symposium on Software Testing and Analysis
(Boston, Massachusetts, USA) (ISSTA ’04). Association for Computing Machinery, New York, NY, USA, 97–107.
doi:10.1145/1007512.1007526

[69] Wenhan Wang, Kaibo Liu, An Ran Chen, Ge Li, Zhi Jin, Gang Huang, and Lei Ma. 2024. Python Symbolic Execution
with LLM-powered Code Generation. arXiv:2409.09271 [cs.SE] https://arxiv.org/abs/2409.09271

[70] Mark Weiser. 1981. Program slicing. In Proceedings of the 5th International Conference on Software Engineering (San
Diego, California, USA) (ICSE ’81). IEEE Press, 439–449.

[71] Elaine J. Weyuker. 1983. Assessing Test Data Adequacy through Program Inference. ACM Trans. Program. Lang. Syst.
5, 4 (Oct. 1983), 641–655. doi:10.1145/69575.357231

[72] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu
Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou,
Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing
Huang, Qi Zhang, and Tao Gui. 2025. The rise and potential of large language model based agents: a survey. Science
China Information Sciences 68, 2 (17 Jan 2025), 121101. doi:10.1007/s11432-024-4222-0

[73] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated Program Repair in the Era of Large Pre-
trained Language Models. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 1482–1494.
doi:10.1109/ICSE48619.2023.00129

[74] X.Org Foundation. 2024. X Window System (X11). https://www.x.org
[75] Andreas Zeller. 2005. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.
[76] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler. 2024. The Fuzzing Book. CISPA

Helmholtz Center for Information Security. https://www.fuzzingbook.org/ Retrieved 2024-07-01 16:50:18+02:00.
[77] Xin Zhou, Sicong Cao, Xiaobing Sun, and David Lo. 2024. Large Language Model for Vulnerability Detection and

Repair: Literature Review and the Road Ahead. ACM Trans. Softw. Eng. Methodol. (Dec. 2024). doi:10.1145/3708522
Just Accepted.

[78] Xin Zhou, Ting Zhang, and David Lo. 2024. Large Language Model for Vulnerability Detection: Emerging Results and
Future Directions. In Proceedings of the 2024 ACM/IEEE 44th International Conference on Software Engineering: New
Ideas and Emerging Results (Lisbon, Portugal) (ICSE-NIER’24). Association for Computing Machinery, New York, NY,
USA, 47–51. doi:10.1145/3639476.3639762

[79] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software unit test coverage and adequacy. ACM Comput. Surv.
29, 4 (Dec. 1997), 366–427. doi:10.1145/267580.267590

https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1145/1007512.1007526
https://arxiv.org/abs/2409.09271
https://arxiv.org/abs/2409.09271
https://doi.org/10.1145/69575.357231
https://doi.org/10.1007/s11432-024-4222-0
https://doi.org/10.1109/ICSE48619.2023.00129
https://www.x.org
https://www.fuzzingbook.org/
https://doi.org/10.1145/3708522
https://doi.org/10.1145/3639476.3639762
https://doi.org/10.1145/267580.267590

	Abstract
	1 Introduction
	2 Motivation
	2.1 Background
	2.2 Limitations of Symbolic Execution
	2.3 Limitations of LLMs
	2.4 Our Approach

	3 Principles of LLM-based Symbolic Execution
	3.1 Symbolic Execution Foundations
	3.2 LLM-based Symbolic Execution (Path-based)
	3.3 LLM-based Symbolic Execution (Slice-based)

	4 LLM-based Symbolic Execution in Practice
	4.1 Partitioning and Truncated Slice Generation
	4.2 Truncated Slice Rendering
	4.3 Implementation

	5 Evaluation
	5.1 Experiments Dataset and Baseline
	5.2 RQ1: Accuracy
	5.3 RQ2: Scale
	5.4 RQ3: Language Agnosticism
	5.5 Discussion

	6 Related Work
	7 Conclusion
	References

