
An Extended Low Fat Allocator API and Applications
Gregory J. Duck

Department of Computer Science

National University of Singapore

gregory@comp.nus.edu.sg

Roland H. C. Yap

Department of Computer Science

National University of Singapore

ryap@comp.nus.edu.sg

Abstract
The primary function of memory allocators is to allocate and

deallocate chunks of memory primarily through the malloc
API. Many memory allocators also implement other API

extensions, such as deriving the size of an allocated object

from the object’s pointer, or calculating the base address of an

allocation from an interior pointer. In this paper, we propose

a general purpose extended allocator API built around these

common extensions. We argue that such extended APIs have

many applications and demonstrate several use cases, such as

(manual) memory error detection, meta data storage, typed

pointers and compact data-structures. Because most existing

allocators were not designed for the extended API, traditional

implementations are expensive or not possible.

Recently, the LowFat allocator for heap and stack objects

has been developed. The LowFat allocator is an implemen-

tation of the idea of low-fat pointers, where object bounds

information (size and base) are encoded into the native ma-

chine pointer representation itself. The “killer app” for low-

fat pointers is automated bounds check instrumentation for

program hardening and bug detection. However, the Low-

Fat allocator can also be used to implement highly optimized

version of the extended allocator API, which makes the new

applications (listed above) possible. In this paper, we im-

plement and evaluate several applications based efficient

memory allocator API extensions using low-fat pointers. We

also extend the LowFat allocator to cover global objects for

the first time.

1 Introduction
Memory allocators are used heavily in languages without

garbage collection, for example, in C/C++. Memory allocation

(and deallocation), canonically this is through malloc/free
(or C++’s new operators), is well understood and studied [18].

There are many widely used memory allocators, to name

a few, the Lea [2], jemalloc [1], and TCMalloc [4]. Most

allocators provide APIs for allocating (malloc and friends)

and deallocation (free and friends). For brevity, we will

simply call this the malloc API.
The nub of the malloc API has remained fairly static for

a long time, focusing on the core functionality of alloca-

tion and deallocation of memory. However, there is other

functionality which can be offered, separate from the main

Technical Report, 2018, NUS
2018.

allocation and deallocation tasks. Indeed, some allocators

provide some extended non-core functionality, and we ar-

gue that extensions, such as returning information about

allocated objects, is both useful and can support a variety

of applications. While some allocators have some non-core

malloc API extensions, we propose a unifying set of malloc

API extensions.

Our extensions leverage the LowFat allocator which has

been recently developed for efficient bounds checking [8, 10].

The LowFat allocator allows for certain operations, such as

calculating the allocation size/base/offset of pointers very

efficiently, which forms the foundation of our API extensions.

This is important for applications where the extended API

is heavily used, e.g., in bounds checking potentially every

read/write can make use of LowFat operations. Our API

extension also allows for uniform treatment of all objects

(globals, stack and heap), in contrast, traditional memory

allocators only provide APIs for heap objects. Although some

similar APIs already exist — e.g., the Boehm conservative

garbage collector [6] also provides some similar functionality

since the garbage collector also needs some of the operations

we propose— by exploiting the properties of LowFat pointers,

our implementation is very efficient, with many operations

implementable in a few inlined low-latency instructions.

While low-fat pointers have been implemented for heap [8]

and stack [10] objects, in this paper we also extend low-fat

pointers to also cover global objects, thereby covering all

three main object kinds.

We show how to apply the extended malloc API to several

applications, including: (manual) memory error checking,

efficient and general meta data storage and retrieval, typed

pointers, and compact data-structures. For each application

we provide some (mini)benchmarks to support our claims.

Berger et al. [5] propose the need for composable memory

allocators, here, we argue the case for applications which

leverage new functionality beyond memory allocation/deal-

location.

In summary, the main contributions of this paper are the

following:

• Low-fat Globals: In addition to heap and stack objects,

we extend low-fat pointers to also cover global objects

for the first time. This means that low-fat pointers are

now applicable to all three main object kinds: heap,

stack and globals.

1

ar
X

iv
:1

80
4.

04
81

2v
1

 [
cs

.P
L

]
 1

3
A

pr
 2

01
8

Technical Report, 2018, NUS Gregory J. Duck and Roland H. C. Yap

• An Extended LowFat Allocator API : We present an ex-

tended version of the malloc API which gives addi-

tional operations outside the core allocation functional-

ity. The extended API leverages low-fat pointers which

allows for very efficient implementation of key opera-

tions.

• Applications: We present several novel applications,

made possible by the extended malloc API, for non-

traditional use cases, including: manual memory error

checking; hidden meta-data; typed/tagged pointers;

and compact vectors. We also evaluate the applications

to show that they are efficient either from a time or

space perspective.

The paper is organized as follows: Section 2 summarizes

the existing LowFat allocator for heap and stack objects,

and then we present a novel extension for low-fat global

objects. We also evaluate the performance of the LowFat al-

locator against some more established competitors. Section 3

presents the LowFat allocator extended API, as well as details

the efficient implementation of each operation. Finally, in

Section 4, we present and evaluate several applications of

the extended LowFat allocator API.

2 LowFat Allocation Design and
Implementation

This section describes the LowFat allocator’s design and

implementation. In a memory allocator, the precise system

details can be important. Throughout this paper, we will

tailor the implementation details for the x86_64 architecture

and Linux operating system.

2.1 Background: Low-fat Pointers
Low-fat pointers [8, 10, 14] are a method for encoding object

bounds information (object’s size and base) into the native

machine pointer representation itself. For example, a highly

simplified low-fat pointer encoding may be implemented as

follows:

union { void *ptr;
struct {uintptr_t size:10; // MSB
uintptr_t unused:54; } meta;} p;

Here the object size is represented explicitly as a field size,
and the base address can be encoded implicitly by ensuring

object’s are aligned to an address that is a multiple of size,
thus base(p) = p − (p mod p.size). Crucially we see that

a low-fat pointer is the same size as a machine pointer, i.e.

(sizeof(p) == sizeof(void *)). Low-fat pointers gen-
erally require a machine architecture with sufficient bit-

width, i.e., 48 or 64bit pointers, such as the x86_64.
This simplified low-fat pointer encoding is difficult to im-

plement in practice as it imposes strong constraints on the

program’s virtual address space layout. Instead we focus on

the flexible low-fat pointer encoding of [8, 10], which we

shall refer to as LowFat . The general idea of LowFat is to

partition the program’s virtual address space into several

large equally-sized regions. There are two main types of re-

gions: low-fat regions which contain objects managed by the

LowFat allocator, and non-fat regions that contain everything
else. In [8], region #0 is non-fat, and we will also follow that

approach. The basic idea is that each low-fat region will

service allocations of a given size range, as illustrated in Fig-

ure 1. For example, region #1 handle allocations of sizes 1-16

bytes, region #2 handles sizes 17-32 bytes, region #3 33-48

bytes, etc. The mapping between sizes and low-fat regions is

called the size configuration [8], represented by a sequence

Sizes. For example, the Sizes for [10] is as follows:

Sizes = ⟨16, 32, 48, 64, 80, 96, 112, 128, 144, ..⟩

Generally, the size configuration should have the following

properties:

1. All sizes must be a multiple of 16bytes;

2. Sizes must include a power-of-two sub-sequence, i.e.:

Sizes ∪ ⟨16, 32, 64, 128, 256, ..⟩ = Sizes; and
3. Large multi-page sizes should be powers-of-two, i.e.:

Sizes ∪ ⟨16KB, 32KB, 64KB, ..⟩ = Sizes; and
Property 1 ensures the allocator obeys the default alignment

of standard malloc for 64-bit systems. Property 2 is needed

to support both the stack and global low-fat pointers (dis-

cussed below) as well as support for the memalignAPI. Prop-

erty 3 keeps |Sizes | compact, since large multi-page objects

can be “rounded-up” to the nearest power-of-two multiple

without wasting memory (the “padding” will remain virtual).

Note that properties 1, 2 and 3 are consistent with each other.

The full low-fat allocator parameters used in this paper are

listed in Appendix A.

During allocation, an object of size is rounded-up to the

next allocation size (allocSize ≥ size) that fits, which some

caveats discussed below. For the objectO to qualify as low-fat,
two main properties must be satisfied:

• Region: The object O is allocated from the sub-heap

in region #I, where Sizes[I] = allocSz; and
• Alignment: The object O is allocSz-aligned.

These two properties ensure that the object’s size and base

address can be quickly calculated from a (possibly interior)

pointer to the object O . This will be elaborated on in Sec-

tion 3.

Memory for the low-fat regions is created during program

initialization, e.g., as a preinit_array callback. Regions do

not grow or shrink during program execution, rather, the

initial size is assumed to be large enough to accommodate all

“reasonable” future memory requirements of the program.

For example, the implementation of [10] assumes a region

size of 32GB. The low-fat regions are initially virtual mem-
ory reserved using mmap using the NORESERVE flag, and thus

does not initially consume any RAM/swap resources. Mem-

ory resources are only consumed for the parts of each region

that are actually allocated and used by the program. Finally,

2

An Extended Low Fat Allocator API Technical Report, 2018, NUS

...

freeptr
region #2

Figure 1. LowFat memory layout.

each region is further partitioned into three heap/stack/-

global sub-regions to handle allocations of the corresponding
memory type (see Figure 1). This will be discussed further

below.

2.2 LowFat Heap Allocation
The exact memory allocation algorithm used for heap objects

within each region is left open. The [8, 10] implementation

uses a simple free-list allocator design that partitions the

heap sub-region into used and unused space. Objects in the

used space are either allocated and in use by the program,

or have been freed and placed on a “free list” awaiting re-

allocation. When a call to lowfat_malloc(s) occurs, the

LowFat allocator:

1. Determines which region #i corresponding to size s
should the allocation be serviced from; and

2. Pops an entry from the free-list for region #i if non-
empty; else

3. Allocate a new object from the unused space otherwise.

Calls to free(p) are handled by pushing the allocated space

pointed to by p onto the corresponding free-list. For large

objects, it is sometimes necessary to return free’ed mem-

ory back to the operating system, which is done using the

madvise system call with the DONTNEED flag.

Since all allocations of a particular size class are serviced

from a single region, this has the side-effect of simplifying

the overall allocator design. For example, merging of adja-

cent free objects is disallowed, thus the corresponding logic

to do so is not needed by the allocator. The trade-off is that

this may lead to more fragmented memory since free’ed ob-

jects can only be reallocated as objects within the same size

class. On the other hand, since the allocation size can be de-

termined from the pointer (i.e., which region does the pointer

point to?), and since there is no need to implement adjacent

free object merging, the LowFat allocator also eliminates

the need to store an explicit “malloc header”, meaning that

objects are tightly packed. In contrast, the standard stdlib
malloc implementation for Linux appends a 16byte header

to every object. That said, we highlight that in this paper, the

main aim of the LowFat allocator is to support an enriched

LowFat allocator API presented in Section 3, rather than to

design an allocator that directly competes with the current

state-of-the-art on performance.

Benchmarking the LowFat Heap Allocator
We present some benchmarks to evaluate the performance

of the LowFat allocator against some more established alter-

natives. All experiments (including in later sections) are run

on a Xeon E5-2630v4 processor (clocked at 2.20GHz) with

32GB of RAM on Linux. The compiler used is LLVM 4.0.0

at -O2, and we evaluate against the SPEC2006 benchmark

suite. We compare the LowFat implementation of [3] against

stdlib malloc, jemalloc [1], and the Boehm malloc (in

manual memory management mode) [6]. The results on the

SPEC2006 benchmark suite are shown in Figure 2. The geo-

metric mean for stdlib malloc is 277.8 (100%), LowFat is

280.9 (101.1%), jemalloc is 266.8 (96.0%), and Boehm is 283.6

(102.1%).

Overall we see that the LowFat allocator is competitive

against the alternatives. The LowFat allocator described in

this paper is intended to be a basic prototype without the

many optimizations used in mature memory allocators, so

we expect higher overheads compared to more optimized

memory allocators such as jemalloc. Furthermore, the Low-

Fat allocator is a relatively young system, meaning that fur-

ther optimizations may be implemented in the future. We

also highlight that only the LowFat allocator supports the

optimized LowFat API, which is the main focus of this pa-

per. The memory overhead for the LowFat allocator is ∼3%
compared to stdlib malloc [8, 10].

2.3 LowFat Stack Allocation
A LowFat allocator for stack memory is presented in [10],

which we briefly summarize here. The low-fat stack allocator

works by maintaining a linear mapping between the stack

sub-regions (Figure 1) and themain program stack.When the

program requests a stack allocation of size, the LowFat stack
allocator performs the following steps:

1. Round-up size to the nearest power-of-two allocation

size (allocSize) that fits;
2. Mask the stack pointer %rsp with allocSize − 1. This

allocSize-aligns %rsp;
3. Decrement %rsp by allocSize, allocating space;

4. Map %rsp to a pointer ptr to the stack sub-region

corresponding to allocSize using the linear mapping.

The ptr now points to the newly allocated low-fat stack

object.

This mapping is implemented as a compiler transforma-

tion [3]. Power-of-two sizes are used since this simplifies

object alignment at the cost of increased space overheads.

Stack deallocation is handled the same as before, i.e., by

restoring %rsp to some previous value. The LowFat stack

allocation method is similar to the notion of parallel shadow
stacks [7], but with multiple shadow stacks (one for each

sub-region) and some additional steps allocSize-aligning ob-

jects. Having multiple shadow stacks may waste memory,

however, this can be mitigated by mapping each shadow

3

Technical Report, 2018, NUS Gregory J. Duck and Roland H. C. Yap

pe
rl

be
nc

h

bz
ip

2
gc

c
mc

f
go

bm
k

hm
me

r
sj

en
g

li
bq

ua
nt

um

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k
mi

lc
na

md

de
al

II

so
pl

ex

po
vr

ay lb
m

sp
hi

nx
3

100s

200s

300s

400s

500s

stdlib
LowFat

jemalloc
Boehm

Figure 2. Evaluation of the LowFat and other heap allocators against the SPEC2006 benchmark suite.

stack to the same physical memory. See the memory aliasing
optimization from [10].

2.4 LowFat Global Allocation
Previous work on low-fat pointers are restricted to heap [8]

and stack [10] objects only. In this paper, we present an ex-

tension of LowFat to also cover global objects. The basic idea

is to statically allocate global objects from the global sub-

region for the corresponding allocation size. To achieve this,

we use a program transformation which annotates global ob-

jects using a section attribute and then uses a special linker

script to control the location of objects. Namely, objects of

given size are annotated with a

attribute(section("lowfat_region_idx"))
section attribute, where idx corresponds to the region in-

dex for the global object’s size. The static location of the

objects can then be controled via an appropriate linker script
(ld), e.g.:

. = (global sub-region #1 address)
lowfat_region_1 :

KEEP(*(lowfat_region_1))
...

In addition to location, alignment of global objects is con-

trolled using the aligned attribute. Due to the power-of-two

limitation of the aligned attribute, global objects are placed

into the nearest power-of-two sized region that fits (as is the

case with stack objects).

There are some (compiler tool-chain) caveats for generat-

ing global low-fat pointers. Firstly, the dynamic linker does
not support the section directive meaning that dynamically

linked globals (e.g., from shared objects) will not be low-fat

pointers. This does not affect program behavior but limits

the applicability of the LowFat API for such objects. The sec-

ond caveat is that the compiler may assume all global objects

occupy the first 4GB of the virtual address space. This allows

the compiler to generate slightly faster code for the x86_64
architecture. This assumption is violated by global low-fat

pointers, meaning that the program must be compiled using

Operation Inlined? Related?

I

lowfat_malloc ✗ ✓

lowfat_realloc ✗ ✓

lowfat_free ✗ ✓

· · · · · · · · ·

II

lowfat_is_ptr ✓ N.A.

lowfat_is_heap_ptr ✓ ✗

lowfat_is_stack_ptr ✓ ✗

lowfat_is_global_ptr ✓ ✗

III

lowfat_index ✓ N.A.

lowfat_size ✓ ✓∗

lowfat_base ✓ Boehm

lowfat_offset ✓ Boehm
†

lowfat_usable_size ✓ Boehm
†

Figure 3. Summary of the LowFat API. Here (Inlined?) indi-
cates whether the operation can be inlined, and (Related?)
indicates whether a operation is implemented by some other

related malloc API. The caveat (∗) means implemented with

the limitation that the pointer must be a base pointer, and

(†) means operation is not implemented directly, but can be

implemented using the API with minimal effort.

the (-mcmodel=large) option which disables the assump-

tion. The final caveat this that, like the LowFat stack allocator,

global objects are not low-fat by default unless the compiler

transformations described in this section are employed.

3 LowFat Allocator API
The core motivation for the allocator design is to support

the LowFat memory API, as summarized in Figure 3. It is

divided into three classes. Class I refers to the (traditional)

malloc API. The focus of this paper will be on classes II and

III detailed below.

3.1 Standard allocator functionality
Our LowFat allocator supports standard replacements for

libc’s memory allocation functions (Figure 3 class I), such as,

4

An Extended Low Fat Allocator API Technical Report, 2018, NUS

malloc, free, realloc, memalign, etc. The LowFat replace-
ments are also aliased to versions prefixed by “lowfat_”, e.g.
lowfat_malloc, etc.

Stack and global objects can be transformed automatically

as a compiler pass (e.g., as used by [10]). As such, stack and

global support is optional, and programmers may opt not to

use it.

3.2 Core LowFat functionality
The motivation behind LowFat allocation is that allows for

some key pointer operations to be implemented efficiently,

namely, calculating the size, base, offset, etc., of a pointer

p with respect to the original allocation. We highlight that

the operations take only a few machine instructions mak-

ing them suitable for inlining which helps efficiency and

compiler optimizations. Since these operations are not tra-

ditionally supported by the malloc API, we refer to these

operations as the extended memory allocation API.

By design, unlike the malloc API, these operations work

uniformly, regardless of whether the pointer is for a heap,

stack, global, interior or exterior, just as long as the pointer

is lowfat as per Section 2. In Section 4, we will describe some

applications of the API.

Given the memory layout of Figure 1, we can define a

fundamental operation, lowfat_index, that maps a pointer

ptr to the region index to which ptr belongs, as follows:

lowfat_index(ptr) = ptr / LOWFAT_REGION_SIZE

Here LOWFAT_REGION_SIZE is the region size and is as-

sumed to be a power-of-two. For example, our reference im-

plementation assumes LOWFAT_REGION_SIZE is 32GB. Cru-
cially, the lowfat_index is fast, compiling down into a sin-

gle x86_64 shift instruction with this default:

shrq $35,%rax /* 2^35 = 32GB */

Size (lowfat_size)
One common memory allocator API operation is to deter-

mine the size of the allocation based on a pointer to an

object. This exists in the form of malloc_usable_size for

stdlib’s malloc, HeapSize for the Window’s HeapAlloc,
and GC_size for the Boehm collector, amongst others. Note

that all of these functions assume a pointer to the base of

the allocated object. Furthermore, such extensions typically

differ on whether the size returned accounts for any addi-

tional bytes of padding that may have been added by the

allocator. For example, malloc_usable_size returns the

size including the padding, whereas HeapSize returns the

original requested allocation size, depending on the version

of Windows.

We define lowfat_size to return the allocation size of a

pointer including any padding, similar to malloc_usable_-
size:

lowfat_size(ptr) = LOWFAT_SIZES[lowfat_index(ptr)]

Here, LOWFAT_SIZES is a constant lookup table mapping

region indices to the allocation sizes according to the size
configuration defined in Section 2. For region indices i that
are not associated with LowFat allocation, we define:

LOWFAT_SIZES[i] = SIZE_MAX
This definition simplifies some applications relating to bounds

checking.

Note that, unlike related allocators, the lowfat_size
works for any interior pointer and does not assume the

base address. The other advantage is that the lowfat_size
compiles down into two x86_64 instructions, one shift for

lowfat_index followed by a memory read:

movq LOWFAT_SIZES(,%rax,8),%rbx

Base (lowfat_base) and offset (lowfat_offset)
Given a pointer ptr to an allocated object O of size, then

{ptr + 1, .., ptr + size}
are the interior pointers ofO , and ptr is the base pointer (a.k.a.
exterior pointer) of O . We can map any (possibly interior)

pointer ptr ′ ∈ I to object O to the base pointer ptr using the

following operation:

lowfat_base(ptr) =
(ptr / lowfat_size(ptr)) * lowfat_size(ptr)

This assumes 64bit integer arithmetic, and is also equivalent

to ptr − ptr % lowfat_size(ptr). This also relies on the

LowFat allocator ensuring that all allocated objects are size-
aligned. Assuming the pointer is stored in register %rax (and

is an implicit argument), and the allocation size in %rbx, then
the lowfat_base operation reduces to two instructions:

divq %rbx
imulq %rbx

As noted in [8], the 64bit divq operation is relatively

slow (high throughput and latency [13]), which may not

be desirable. There are two main approaches to optimizing

lowfat_base, namely:

1. Use a power-of-two-only size configuration; or

2. Use fixed-point or floating-point arithmetic.

The first allows for the slow division to be replaced by a fast

bitmask operation, for example:

lowfat_base(ptr) =
ptr & LOWFAT_MASKS[lowfat_index(ptr)]

where LOWFAT_MASKS[i] is defined to be (LOWFAT_SIZES[i]−
1) for low-fat region #i, or 0 otherwise. The main disadvan-

tage with this approach is that object sizes are rounded to

the nearest power-of-two, which leads to increased space

overheads. An alternative approach is to use fixed-point arith-
metic by defining:

LOWFAT_MAGICS[i] = ((1 << R) / LOWFAT_SIZES[i]) + 1

for low-fat region #i, or 0 otherwise. The (+1) term is for error

control, see [8] Section 5.1.1. Here R defines the position of

5

Technical Report, 2018, NUS Gregory J. Duck and Roland H. C. Yap

1 void memcpy (void *dst , void *src , int n)
2 {
3 void * dst_base = lowfat_base (dst);
4 size_t dst_size = lowfat_size (dst);
5 void * src_base = lowfat_base (src);
6 size_t src_size = lowfat_size (src);
7 for (int i = 0; i < n; i++) {
8 void * dst_tmp = dst + i;
9 void * src_tmp = src + i;
10 if (isOOB (dst_tmp , dst_base , dst_size))
11 error ();
12 if (isOOB (src_tmp , src_base , src_size))
13 error ();
14 * dst_tmp = * src_tmp ;
15 }
16 }

(a) Automatically instrumented (see [10]).

1 void memcpy (void *dst , void *src , int n)
2 {
3 size_t dst_size = lowfat_usable_size (dst);
4 if (n > dst_size)
5 error ();
6 size_t src_size = lowfat_usable_size (src);
7 if (n > src_size)
8 error ();
9 for (int i = 0; i < n; i++)
10 dst[i] = src[i];
11 }

(b) Optimally instrumented.

Figure 4. Two bounds-check instrumented variants of (simple) memcpy. The instrumentation is highlighted.

the radix point. This approach and allows for a more efficient

implementation of the base operation that effectively turns

a slow division operation into a fast(er) multiplication:

lowfat_base(ptr) =
(((ptr * LOWFAT_MAGICS[lowfat_index(ptr)])) >> R)

* lowfat_size(ptr)

A good value for R is 64, as this takes advantage of the

x86_64’s 128bit integer multiplier, meaning the R-right shift
operation “compiles away” into a mere register renaming.

It is also possible to use floating-point arithmetic, which is

more intuitive, by defining:

LOWFAT_MAGICS[i] = (1.0 / LOWFAT_SIZES[i])

However, fixed-point avoid conversions to-and-from float-

ing point numbers so is generally more efficient. The main

disadvantage of fixed/floating point arithmetic is that calcu-

lations may be affected by precision errors, which mainly

affect large allocations. Using the (+1) term for error control,

precision errors will only affect pointers to “near the end” of

these large allocations. This problem is mitigated by modi-

fying the allocator to take precision errors into account [8].

Namely, if an object of a given size is potentially affected by

a precision errors in region #i , then the allocator will instead

service the allocation from the next (larger) region #(i + 1).
The maximum possible precision error for each region is

calculated in advance [8].

The Boehm conservative garbage collector [6] also sup-

ports GC_base (equivalent to our lowfat_base) as an O(1)
operation. However, the Boehm implementation is slower

and larger (in terms of code size) to that of low-fat pointers.

Due to the larger code size, the Boehm GC_base operation

generally cannot be inlined.

Finally, we define a lowfat_offset operation that re-

turns the difference from the current pointer and the base:

lowfat_offset(ptr) = ptr - lowfat_base(ptr)

It is also possible to implement the lowfat_offset directly

with fixed-point arithmetic, i.e., by multiplying the fixed-

point mantissa by the allocation size. However, since the

mantissa represents the least significant bits, a fixed-point

implementation of lowfat_offset is impractical due to

precision errors.

Usable size (lowfat_usable_size)
Recall that the lowfat_size returns the allocation size for

the base or any interior pointer to the object, and this size is

the same regardless of the pointer’s offset. For many appli-

cations, we wish to know how many bytes are left until we

reach the end of the allocated space. For this we define:

lowfat_usable_size(ptr) =
lowfat_size(ptr) - lowfat_offset(ptr)

For example, given a pointer p into a buffer buf, then the

lowfat_usable_size operation can determine how many

bytes are left inside buf fromp until a buffer overflow occurs.

Tests (lowfat_is_ptr, · · · , lowfat_is_global_ptr)
It is sometimes useful to test whether a pointer is low-fat

or not. The motivation is to allow inter-operation with non

low-fat pointers, possibly, from other memory allocators. It

can also be useful to test whether or not the pointer is a

low-fat heap/stack/global pointer. These operations reduce

to simple range tests, e.g.:

lowfat_is_ptr(ptr) =
(ptr >= &(region #1)) && (ptr < &(region #M+1))

Here 1..M (M is the last region) are the indices of the low-fat

regions. The test starts from region #1 as region #0 is non-

fat as per [8]. The narrower heap/stack/global variants

additionally test which sub-region (see Figure 1) the pointer

points to.

6

An Extended Low Fat Allocator API Technical Report, 2018, NUS

4 Applications
The LowFat allocator implementation supports efficient im-

plementations of some operations. This enables some appli-

cations that would otherwise be too slow for other memory

management systems. In this section we explore examples of

such applications, including: manual bounds checking, hid-

den meta-data, typed pointers and compact data-structure

representations.

4.1 Detecting Memory Errors
Automated bounds check instrumentation is the “killer app”

for low-fat pointers, and this idea has been explored by

previous literature [8, 10]. The basic idea is to instrument

all pointer arithmetic and memory access with an explicit

bounds check (isOOB) defined as follows:

(p < base) || (p > base+size−sizeof(*p)) (isOOB)

Automatic bounds instrumentation follows the schema intro-

duced in [8]. The basic idea is as follows: for all input pointers
q (function arguments, return values, or pointer values read

from memory), we calculate the bounds meta information
by calling the lowfat_size/lowfat_base operations. For

example:

void f(int *q) {
void *q_base = lowfat_base(q);
size_t q_size = lowfat_size(q); ...

Next, for all pointers p derived from an input pointer q
through pointer arithmetic (p = q+k) or field access (p =
&q->field), we instrument any access to p with an (isOOB)
check. For example:

int *p = q + k;
if (isOOB(p, q_base, q_size)) error();
x = *p; or *p = x;

Such bounds-check instrumentation is implemented as a

LLVM [16] compiler pass, see [3].

An automatically instrumented version of a (simple) imple-

mentation of memcpy is shown in Figure 4a (based off [10] Fig-

ure 2). Here the instrumented lines are highlighted, including

the bounds meta data calculation using lowfat_size/low-
fat_base shown in lines 3–6. Automated bounds checking

has an overhead of 64% for heap/stack/global objects [3],

although lower overheads are possible depending on what

optimizations are enabled (generally trading error coverage

for speed).

Manual Bounds Checking
Automatic bounds instrumentation has the advantage in

that it requires minimal intervention on behalf of the pro-

grammer (e.g., changing the compiler’s flags). However, the

automatically generated instrumentation is generally sub-

optimal. For example, in the code from Figure 4a, there are

two instrumented bounds checks for each iteration of the

loop (one for the read and one for the write). A more “natu-

ral”/optimal approach is to check the bounds once for each

pointer outside of the loop, as shown in Figure 4b. Here

we use lowfat_usable_size to determine the number of

bytes available in the src and dst buffers, and verify that

this is consistent with the parameter n. Such instrumentation

can be added manually by the programmer, assuming that

objects are allocated using the LowFat allocator.

In principle, the automatic instrumentation could be fur-

ther optimized, e.g., by using program analysis to automati-

cally transform Figure 4a into 4b. However, program analysis

generally has limitations, and cannot optimize all cases. Fur-

thermore, in some applications the programmer needs fine

grained control over what to instrument, in order to achieve

an acceptable overhead versus security ratio. Thus, the pro-

grammer can restrict instrumentation to specific operations

(e.g., memcpy) or specific pointers to sensitive data.

The overheads of manual bounds checking depend on how

much is instrumented.

Bonus: Finding free API errors
The LowFat API can be also be used to find some memory

errors relating to free. For example, a stack or global object

should not be free’ed:

if (lowfat_is_heap_ptr(ptr)) lowfat_free(ptr);
else error();

In a similar vein, a pointer which is not the base of a heap

object, e.g. an interior heap pointer, should not be free’ed:

if (lowfat_is_heap_ptr(ptr) &&
!lowfat_offset(ptr)) lowfat_free(ptr);

else error();

We remark that general use-after-free checking is beyond

the scope of the LowFat API. Testing if a pointer is free

or not is known to suffer from races (test versus usage) in

multi-threaded environments.

4.2 Conservative Garbage Collection
Another application of the LowFat allocator is for marking

in conservative garabage collection for C/C++. Under this

idea, the LowFat heap allocator itself is modified to automat-

ically invoke a mark-sweep collection phase eliminating the

need to manually free objects. As is the standard approach,

the “mark” phase scans for all objects reachable from some

root set of pointers, typically global and stack memory. Any

reachable object is “marked” using internal meta-data asso-

ciated with each object. Next, a “sweep” frees all unmarked

(unreachable) objects since these are no longer referenced by

the program. The garbage collector is conservative meaning

that it does not rely on C/C++ type information — rather

any bit pattern that could be a pointer is assumed to be a

pointer. The trade-offs for conservative collection are well

known, e.g., see [6].

7

Technical Report, 2018, NUS Gregory J. Duck and Roland H. C. Yap

1 void mark(void *ptr)
2 {
3 void *base = lowfat_base (ptr);
4 if (base == NULL)
5 return ; // Not low - fat
6 if (set_mark (base))
7 return ; // Already marked .
8 void ** itr = (void **) base ,
9 ** end = (void **)(base + lowfat_size (base));
10 for (; itr < end; itr ++)
11 mark (* itr);
12 }

Figure 5. LowFat API enhanced marking algorithm.

m
e
t
a

object

base(p) p

Figure 6. (Hidden) meta-data stored at the base of an object.

The low-fat API can assist with marking algorithm as

shown in Figure 5. Here, given a potential pointer value

ptr, we first check if ptr points to a heap object (lines 3–

4). Since ptr may be an interior pointer, i.e., point inside an
allocated object, we next retrieve the object’s base address by

a call to lowfat_base (line 5). We assume that set_mark
marks the object in some disjoint meta-data (lines 6–7), and

returns true if the object was already marked (to terminate

loops). Finally, we scan the object (lines 8–12) and mark any

bitpatten that happens to be a valid pointer. The disjoint

meta-data itself is implemented as a collection of bitmaps

(one for each region, created using mmap), with one bit for

every object within the corresponding region.

Note that the Boehm conservative garbage collector [6]

implements a similar marking algorithm, but with its own

implementations of the size and base operations. This is also

one reason why the extended Boehm GC API is similar to

the LowFat API.

4.3 Hidden Meta-Data
The LowFat API can also be used to associate arbitrary meta-

data to allocated objects. The basic idea is to store the meta-

data at the base of the object, as illustrated in Figure 6. Here p
is a (possibly interior) pointer to a LowFat allocated (object),
and the meta-data (meta) is stored at the base of the alloca-

tion. The meta-data can be transparently bound to an object

by wrapping memory allocation, such as the following:

void *meta_malloc(size_t size, META m) {
META *ptr = lowfat_malloc(size + sizeof(META));
*ptr = m;
return (ptr + 1);

}

Note the function returns (ptr + 1), meaning that the meta-

data is hidden from the program, analogous to a hidden

malloc header that occupies the memory immediately be-

fore the allocated object. However, a crucial difference with

malloc headers is that in malloc accessing the header is

restricted through a base pointer, here, we have no restric-

tions. Later, the meta-data can be retrieved via a call to

lowfat_base, as follows:
m = *(META *)lowfat_base(p);

The same basic idea can be extended to both stack and global

objects, but requires a compiler transformation. Stack alloca-

tion is transformed in a similar way to malloc, where
ptr = alloca(size);

is transformed into:

META *mptr = lowfat_alloca(size + sizeof(META));
*mptr = m;
ptr = (mptr + 1);

Here, lowfat_alloca is itself expanded via program trans-

formation, as per [10]. We note that the usage of alloca is

just for the sake of an example, and the transform is applica-

ble to all forms of stack allocation. In particular, the use of

alloca can be internal to the compiler as is the case with

LLVM.

Globals are more difficult to transform, since a global is

also a symbol that may be referenced externally, possibly by

code not subject to the automatic program transformation.

Thus, we cannot rely on solutions that change theApplication
Binary Interface (ABI). To fix this, we use a simple symbol-
within-a-symbol trick. The basic idea is as follows: given the

original global variable definition:

T global = definition;
We first define a wrapper type of the form:

struct wrapper { META m; T data; };
We also ensure that the structure is packed (e.g. by using the

GCC packed attribute), meaning that there will be no gap

between the m and data fields. Next, we replace the original

global with the wrapped version

struct wrapper wrappedGlobal = {m, definition};
The program (including external modules) may still reference

the original global symbol. To fix this we define global to
point to the data field insidewrappedGlobal. Themost direct

way to do this is via (module-level) inline assembly:

asm (".globl global"
".set global, wrappedGlobal+size");

where size=sizeof(META). By using this symbol-within-a-

symbol trick, the global variable (global) can be used as nor-

mal by the program, including by external untransformed

modules.

A form of the hidden meta-data approach is used by Effec-

tiveSan [9] to store object dynamic type information, a.k.a.,

the effective type of allocated objects, in order to support dy-

namic type checking for C/C++. However, there is no limit on

the kinds of meta-data that can be stored. Like other generic

8

An Extended Low Fat Allocator API Technical Report, 2018, NUS

t
p

..q

(a) Header Pointers

..pq t

(b) Tagged Pointers

..q p

(c) Partitioned Pointers

Figure 7. Common typed-pointer representations.

meta-data storage schemes, such as Padding Area MetaData
(PAMD), there exist many other potential applications, in-

cluding accurate (exact object size) bounds-checking, profil-

ing and statistics, flow tracking, and data race detection [15].

METAlloc [12] is another general meta data framework, but

uses its own shadow memory scheme, and is quite different

to our approach and PAMD.

4.4 Typed Pointers
A typed pointer is one of various methods for associating

dynamic type information with pointers. There are several

existing methods [11] for associating a type t to a pointer p
to form a typed-pointer q. These include:

- Headers: store t within the object pointed to by p (Fig-

ure 7a);

- Tagged: fold t into the representation of p itself (Figure 7b);

- Partitioned: allocate p from different regions based on t
(Figure 7c).

Each approach as its own advantages/disadvantages: header
pointers is portable but consumes memory to store t ; tagged
pointers and partitioned pointers do not consume more mem-

ory, but rely on knowledge about the underlying memory

management system.

In this section we explore some alternatives/extensions

based on the LowFat API, namely: size-typed pointers and

extended tagged pointers.

Size-typed pointers
One idea is to distinguish pointer types based on the alloca-

tion size, a.k.a. size-typed pointers. The size can be determined

very quickly via the lowfat_index API call, however, this

approach is only applicable to objects where each supported

dynamic type happens to correspond to a different allocation

size. That said, real-world applications exist, as illustrated

by the following example:

Example 1 (2-3-4 Trees). To illustrate size-typed pointers

we consider an implementation of 2-3-4 trees [17]. A 2-3-4

tree is a self-balancing tree data-structure that can be used

to implement associative arrays mapping keys to values. For

example, the following

5

1 2 8 96

is a 2-3-4 tree consisting of a root 2-node, a left child 3-node,

and a right child 4-node. The name “2-3-4” represents the

three node types: 2-nodes, 3-nodes, and 4-nodes, which are of

sizes (in 8byte words) of 3, 5, and 7 respectively. This means

the nodes will be allocated from different region #2, #3, and

#5 respectively, assuming the standard size configuration.

Thus, given a pointer ptr to a (undetermined) 2-3-4 node,

we can efficiently determine the dynamic type by using the

lowfat_index operation. □

Size-typed pointers are essentially a special case of parti-

tioned pointers. The main advantage is that the LowFat allo-

cator supports the functionality directly, rather than requir-

ing the programmer to implement a specialized allocator.

Extended Tagged Pointers
Sized-typed pointers have limited applicability, since the

mapping from types to allocation sizes must be one-to-one.

Tagged pointers are more general, but the number of tag bits

can be limited. For this, we introduce the notion of extended
tagged pointers which are a generalization of standard tagged
pointers using the unused lower N -bits (typically N=4) of
allocated objects. Assuming N=4 this allows for 16 distinct
types, whereas extended tagged pointers can store up to size
distinct types, where size is the allocation size of the object.

Normally, for standard tagged pointers, the type (tag) can
be retrieved via a simple bitmask operation, e.g.,

tag = ptr & 0xF

However, using the LowFat API, we can generalize this as

follows:

tag = lowfat_offset(ptr)

This supports all possible tag valueswithin the range [0..size).
Alternatively, tagged pointers may use the unused high bits

(typically 16 bits for x86_64). Extended tagged pointers may

replace or be used in conjunction with high tag bits, depend-

ing the application.

The lowfat_offset operation is generally slower than

the constant bitmask operation required standard tagged

pointers, especially if fixed-point arithmetic is used. Thus,

there exists trade-off between performance and number of

types, meaning the usefulness is application dependent. We

provide one such application in Section 4.5.

9

Technical Report, 2018, NUS Gregory J. Duck and Roland H. C. Yap

10 20 30 40 50 60 70 80 90 100

0.5s

1.0s

1.5s

2.0s

(×1 million)

2-3-4 tree search

LowFat (tag)

Boehm (tag)

LowFat (size)

Boehm (size)

LowFat (extended)

Boehm (extended)

Figure 8. 2-3-4 tree typed pointer performance results.

Evaluation: 2-3-4 trees
We evaluate both size-typed and extended tagged pointers

for 2-3-4 trees. Our benchmark consists of a searching for

every key in a 2-3-4 tree of size N , measured in seconds. We

compare six different versions: a standard tagged pointer im-

plementation (tag) using the lower 4 tag bits, an implemen-

tation using size-typed pointers (size), and an implementa-

tion using extended tagged pointers (extended). Although
extended tagged pointers are overkill for 2-3-4 trees, it is

nevertheless a useful test for performance evaluation. We

compare each version implemented either the LowFat API,

or using the similar Boehm GC API. For the Boehm tests, we

use manual memory management mode.

The results are shown in Figure 8. Unsurprisingly, the

(tag) tests (which do not use any special API calls) show lit-

tle difference in performance between the two versions. For

LowFat , size-typed pointers (size) are even faster than tra-

ditional tagged pointers by ∼20%. This shows that size-typed
pointers are a good alternative for performance critical code,

under the caveat that size-typing is applicable to target data-

structure. Extended tagged pointers (extended) are slower
than traditional tagged pointers by ∼27%, so should only be

used for applications that require extra tag bits. Also unsur-

prisingly, the Boehm variants of size-typed and extended

tagged pointers were much slower than the LowFat version,

e.g. >×2 for extended tagged pointers. This is because the

LowFat API is highly optimized and inlined for the size/base

operations, whereas the Boehm API requires library calls.

4.5 Low-fat Vectors
A very common data-structure is a vector, for example C++’s
std::vector, which typically consists of three core com-

ponents: an array of items data (vector data), a length len
(vector length), and a current position pos (next free item).

Vectors are normally implemented as structures containing

these three components:

struct vector {size_t len;
size_t pos;
item *data;}

We refer to such representations as “fat” vectors.

10 20 30 40 50 60 70 80 90 100

1s

2s

3s

4s

5s

6s

7s

(×10 million)

vector construction

LowFat

LowFat Pow2

Fat

10 20 30 40 50 60 70 80 90 100

1s

2s

3s

4s

5s

6s

7s

(×10 million)

vector access

LowFat

LowFat Pow2

Fat

Figure 9. Low-fat vector benchmarks in seconds.

Using the LowFat API we can implement a more compact

representation, a.k.a. “low-fat” vectors. For this, we define a

vector to be an array of items: (typedef item *vector). The
len field becomes implicit, and can be calculated dynamically

using lowfat_size:

len = lowfat_size(vector) / sizeof(item)

The pos can be stored as an extended tag, i.e.

pos = lowfat_offset(vector)
data = lowfat_base(vector)

Evaluation: Low-fat vectors
The main advantage of low-fat vectors is that they elim-

inate the need to explicitly store the len, pos and data
fields. Assuming that len, pos, (item *) and item are all

1-word in size, then if a fat vector consumes n words, the

corresponding low-fat vector will consume (n − 3) words.
The trade-off is that (re)calculating fields incurs additional

overheads compared to storing the values directly. To evalu-

ate the performance of low-fat vectors, we benchmark con-

structing a single vector of integers using the push_back
operation. Next, we evaluate the time taken to calculate the

sum of all elements of the vector. The results are shown

in Figure 9 illustrating the classic space-time tradeoff. We

see that constructing low-fat vectors is ∼2× overhead for

non-power-of-two sizes, ∼1.33× overhead for power-of-two

sizes. Reading from low-fat vector incurs a ∼1.2× overhead

for both versions. Thus, low-fat vectors are best suited for

programs that create large numbers of small vectors and

where optimizing memory overheads are the priority.

10

An Extended Low Fat Allocator API Technical Report, 2018, NUS

5 Conclusions
In this paper we presented an extended LowFat memory

allocation API. The main advantage of the LowFat API exten-

sions is that some operations, namely, finding the size/base/off-

set of pointers, relative to the original allocation, are very

fast operations (typically can be implemented in a few in-

lined instructions). We argue that these properties enable

several applications for the LowFat allocator that are not

feasible with existing allocators, such as bounds checking,

generic meta-data storage, typed pointers and compact data-

structures. We evaluated several of these ideas, with promis-

ing results. The malloc API has been essentially unchanged

for a long time, we believe that the idea of memory allocation

API extensions going beyond the core allocator function is a

genuinely useful and practical addition.

Acknowledgements
This research was partially supported by a grant from the

National Research Foundation, Prime Minister’s Office, Sin-

gapore under its National Cybersecurity R&D Program (TSU-

NAMi project, No. NRF2014NCR-NCR001-21) and adminis-

tered by the National Cybersecurity R&D Directorate.

References
[1] 2018. jemalloc memory allocator. http://jemalloc.net/
[2] 2018. LeaMemory Allocator. http://g.oswego.edu/dl/html/malloc.html
[3] 2018. LowFat: Lean C/C++ Bounds Checking with Low-Fat Pointers.

https://github.com/GJDuck/LowFat
[4] 2018. TCMalloc: Thread-Caching Malloc. http://goog-perftools.

sourceforge.net/doc/tcmalloc.html
[5] E. Berger, B. Zorn, and K. McKinley. 2001. Composing High-

performance Memory Allocators. In Programming Language Design
and Implementation. ACM.

[6] H. Boehm andM.Weiser. 1988. Garbage collection in an uncooperative

environment. Software Prac. Experience 18, 9 (Sept. 1988), 807–820.
[7] T. Dang, P. Maniatis, and D. Wagner. 2015. The Performance Cost of

Shadow Stacks and Stack Canaries. In ACM Symposium on Information,
Computer and Communications Security. ACM.

[8] G. Duck and R. Yap. 2016. Heap Bounds Protection with Low Fat

Pointers. In Compiler Construction. ACM.

[9] G. Duck and R. Yap. 2018. EffectiveSan: Type and Memory Error

Detection using Dynamically Typed C/C++. In Programming Language
Design and Implementation. ACM.

[10] G. Duck, R. Yap, and L. Cavallaro. 2017. Stack Bounds Protection

with Low Fat Pointers. In Network and Distributed System Security
Symposium. The Internet Society.

[11] D. Gudeman. 1993. Representing Type Information in Dynamically

Typed Languages. Technical Report.

[12] I. Haller, E. Kouwe, C. Giuffrida, and H. Bos. 2016. METAlloc: Effi-

cient and Comprehensive Metadata Management for Software Security

Hardening. In European Workshop on System Security. ACM.

[13] Intel Corporation. 2018. Intel 64 and IA-32 Architectures Optimization

Reference Manual.

[14] A. Kwon, U. Dhawan, J. Smith, T. Knight, and A. DeHon. 2013. Low-fat

Pointers: Compact Encoding and Efficient Gate-level Implementation

of Fat Pointers for Spatial Safety and Capability-based Security. In

Computer and Communications Security. ACM.

[15] Z. Liu and J. Criswell. 2017. Flexible and Efficient Memory Object

Metadata. In International Symposium on Memory Management. ACM.

[16] LLVM 2018. http://llvm.org.
[17] R. Sedgewick and K. Wayne. 2011. Algorithms (4th ed.). Addison-

Wesley Professional.

[18] P. Wilson, M. Johnstone, M. Neely, and D. Boles. 1995. Dynamic Storage
Allocation: a Survey and Critical Review. Springer.

A Low-fat Parameters
LOWFAT_REGION_SIZE = 32GB

M = |Sizes| = 61

Sizes =

⟨16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 192, 224, 256,
272, 320, 384, 448, 512, 528, 640, 768, 896, 1024, 1040,

1280, 1536, 1792, 2048, 2064, 2560, 3072, 3584, 4096,

4112, 5120, 6144, 7168, 8192, 8208, 10240, 12288,

16KB, 32KB, 64KB, 128KB, 256KB, 512KB, 1MB,
2MB, 4MB, 8MB, 16MB, 32MB, 64MB, 128MB,
256MB, 512MB, 1GB, 2GB, 4GB, 8GB⟩

11

http://jemalloc.net/
http://g.oswego.edu/dl/html/malloc.html
https://github.com/GJDuck/LowFat
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

	Abstract
	1 Introduction
	2 LowFat Allocation Design and Implementation
	2.1 Background: Low-fat Pointers
	2.2 LowFat Heap Allocation
	2.3 LowFat Stack Allocation
	2.4 LowFat Global Allocation

	3 LowFat Allocator API
	3.1 Standard allocator functionality
	3.2 Core LowFat functionality

	4 Applications
	4.1 Detecting Memory Errors
	4.2 Conservative Garbage Collection
	4.3 Hidden Meta-Data
	4.4 Typed Pointers
	4.5 Low-fat Vectors

	5 Conclusions
	References
	A Low-fat Parameters

