
Abstract Interpretation for Constraint Handling Rules

Tom Schrijvers
∗

Department of Computer
Science

Katholieke Universiteit
Leuven, Belgium

toms@cs.kuleuven.ac.be

Peter J. Stuckey
NICTA Victoria Laboratory
Department of Computer

Science and Software
Engineering

The University of Melbourne,
Vic. 3010, Australia

pjs@cs.mu.oz.au

Gregory J. Duck
Department of Computer

Science and Software
Engineering

The University of Melbourne,
Vic. 3010, Australia

gjd@cs.mu.oz.au

ABSTRACT
Program analysis is essential for the optimized compilation
of Constraint Handling Rules (CHRs) as well as the infer-
ence of behavioral properties such as confluence and termin-
ation. Up to now all program analyses for CHRs have been
developed in an ad hoc fashion.

In this work we bring the general program analysis meth-
odology of abstract interpretation to CHRs: we formulate
an abstract interpretation framework over the call-based op-
erational semantics of CHRs. The abstract interpretation
framework is non-obvious since it needs to handle the highly
non-deterministic execution of CHRs. The use of the frame-
work is illustrated with two instantiations: the CHR-specific
late storage analysis and the more generally known ground-
ness analysis. In addition, we discuss optimizations based
on these analyses and present experimental results.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Constraint and logic languages; F.3.2 [Logics and

Meanings of Programs]: Semantics of Programming Lan-
guages—Program analysis

General Terms
Algorithms, Languages, Performance

Keywords
Abstract interpretation, Constraint Handling Rules

∗Research Assistant of the fund for Scientific Research -
Flanders (Belgium)(F.W.O. - Vlaanderen)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’05,July 11–13, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-090-6/05/0007 ...$5.00.

1. INTRODUCTION
Constraint Handling Rules (CHRs) [4] are a rule-based

language developed for expressing constraint solvers.
Although the language has existed for several years now

and has a reasonable reference implementation in SICStus
Prolog [7], there have been relatively few implementations.
The recent appearance of new CHR systems [2, 11] has given
rise to the need to communicate and compare between dif-
ferent CHR systems has given rise to the formulation of the
more deterministic refined operational semantics [3] shared
among CHR compilers.

Apart from the common formal semantics to be implemen-
ted by CHR compilers, there is also a need to communicate
and compare program analyses. As the complexity of CHR
compilers increases we need a better understanding of cur-
rent analyses and ways to extend and combine them. Most
of the currently existing analyses have been formulated in
an ad hoc way and no formal proofs of correctness exist.

Abstract interpretation [1] is a general methodology for
program analysis by abstractly executing the program code.
Abstract interpretation provides a remedy for the current
difficulties in correctly analyzing CHR programs, and should
enable optimizing CHR compilers to reach a new level of
complexity and correctness.

Overview First, in Section 2, we briefly introduce CHRs
and its relevant concepts. Second, Section 3 presents the
call-based refined operational semantics of CHRs that will
be abstractly interpreted. The general abstract interpreta-
tion framework is then defined in Section 4. Two instances
of the framework, late storage analysis and groundness ana-
lysis, illustrate the framework in Sections 5 and 6 respect-
ively. The implementation and experimental evaluation of
these analyses are subsequently reported on in Section 7.
Finally, we conclude in Section 8.

2. CONSTRAINT HANDLING RULES
INTRODUCTION

In this section we briefly introduce CHRs. For a more
thorough overview of CHRs we refer the reader to [4].

2.1 CHRs by Example
The set of constraint handling rules below defines a less-

than-or-equal constraint (leq/2) over numbers. The rules
illustrate several syntactical features of CHRs.

leq(X,X) <=> true.
leq(X,Y) <=> number(X), number(Y) | X =< Y.
leq(X,Y), leq(Y,X) <=> X = Y.
leq(X,Y) \ leq(X,Y) <=> true.
leq(X,Y), leq(Y,Z) ==> leq(X,Z).

The first, second and third rule are simplification rules,
indicated by the double arrow <=>. To the left of the arrow
is the head of the rule, while to the right is the body. A
simplification rule has the meaning that constraints match-
ing the head can be replaced by those in the body. The
meaning of this first rule should be clear: the leq relation is
reflexive, and hence leq(X,X) is trivially satisfied and bears
no information, so it can be removed (true represents the
empty set of constraints).

The second rule shows that a rule can be extended by a
guard, after the arrow (<=>) and before the vertical bar |. In
this case the guard is number(X), number(Y). The replace-
ment defined by the rule only occurs for constraints that
match the head and satisfy the guard. The guards are tech-
nically constraints that can be checked for entailment by the
underlying constraint system. In practice for CHRs defined
over logic programming languages they are goals that do
not constrain variables of the head. Rule two replaces the
constraint leq(X,Y) with a simple built-in inequality check
X =< Y if the arguments are bound to numbers.

The third rule illustrates that the head of a rule can con-
tain a conjunction of multiple constraints. It formulates the
antisymmetry property of the leq constraint.

The fifth rule with the ==> is a propagation rule. The
rule states that if we find constraints matching the head we
should add the constraints in the body. We should only do
this once for each combination.

The fourth rule is a “simpagation” rule. It has the same
meaning as a simplification rule where the constraints before
the backslash would be called again in the body. However
it is more efficient in that it never removes those head con-
straints and does not unnecessarily trigger more rules in that
way. In the leq constraint definition its role is to declare the
set semantics of the constraint, i.e. the number of copies of
a constraint is not important and hence it is more efficient
to keep only one.

2.2 CHR Semantics
The initial, theoretical operational semantics of CHRs [4]

was essentially a multiset rewriting system. In [3] this se-
mantics is defined as a transition system ωt.

The semantics ωt is highly non-deterministic, hence their
high level nature. The non-determinism is caused by several
factors. Firstly, several transition rules may be applicable at
any particular state; any of them may be chosen. Secondly,
the transition rules themselves are non-deterministic. At
any stage many different matches for a CHR rule may apply,
and the choice of which built-in or CHR constraint to add
to the store at any stage is open.

Although this ωt semantics is highly non-deterministic,
actual CHR compilers typically already resolve most of this
non-determinism statically. In fact, the refined operational
semantics ωr [3] reflects a large part of the increased determ-
inism that is present in most CHR compilers we are aware
of.

The ωr semantics is more involved, yet it no longer leaves
any non-determinism in what transition rule should be ap-
plied in what state. Furthermore, it limits the constraint

sequences to which a particular rule can be applied in a par-
ticular state. The order in which the execution stack is pro-
cessed, is also fixed. The only remaining non-determinism is
in the order in which triggered constraints are added to the
execution stack by the the addition of a built-in constraint
to the store, and the order in which matching partner con-
straints are tried in a rule.

3. THE CALL-BASED REFINED OPERA-
TIONAL SEMANTICS ωc

In this section we present the call-based refined opera-
tional semantics ωc. It is a variant of the refined opera-
tional semantics ωr [3] designed to make the analysis more
straightforward. For the analysis of logic programs, we do
not directly analyse over the derivations based operational
semantics, instead we introduce a call based semantics which
makes the number of abstract goals to be considered finite
(see e.g. [8]). We introduce the call-based refined opera-
tional semantics for CHRs for the same reason. We show in
[5] that ωc and ωr are equivalent.

The main difference between the two semantics lies in
their formulation. The transition system of ωr linearizes
the dynamic call-graph of CHR constraints into the execu-
tion stack of its execution states. In ωc on the other hand
constraints are treated as procedure calls: each newly ad-
ded active constraint searches for possible matching rules in
order, until all matching rules have been executed or the con-
straint is deleted from the store. As with a procedure, when
a matching rule fires other CHR constraints may be executed
as subcomputations and, when they finish, the execution re-
turns to finding rules for the current active constraint. The
latter semantics is much closer to the procedure-based tar-
get languages, like Prolog and HAL, of the current CHR
compilers.

We believe that this makes the ωc semantics much more
suitable for reasoning about optimizations. After all, optim-
izations are typically formulated on the level of the gener-
ated code in the target language.

A CHR program P is a sequence of CHR rules. The (call-
based) refined semantics for CHRs uses the notion of an
active constraint to determine which rules will be tested for
firing. The active constraint is checked against each of the
occurrences for its predicate in the program in turn. This
leads us to the keep track of occurrences of predicates. We
assume that each head constraint is numbered from 1, in
a top-down right-to-left manner. The numbered version of
the leq program is:

leq(X,X)1 <=> true.
leq(X,Y)2 <=> number(X), number(Y) | X =< Y.
leq(X,Y)4, leq(Y,X)3 <=> X = Y.
leq(X,Y)6 \ leq(X,Y)5 <=> true.
leq(X,Y)8, leq(Y,Z)7 ==> leq(X,Z).

The rest of this section is structured as follows. In Sections
3.1 and 3.2 we respectively present the execution state and
transition rules of ωc. Section 3.3 illustrates the semantics
on an example.

3.1 Execution State ofω
c

Formally, the execution state of the call-based refined se-
mantics is the tuple 〈G, A, S, B, T 〉n where G, A, S, B, T
and n, representing the goal, call stack, CHR store, built-in
store, propagation history and next free identity number re-

spectively. We define the domain of execution states to be
Σ and will denote elements as σ, σ0, σ1,

The goal G is a sequence of CHR constraints and built-in
constraints. We use 2 to denote the empty sequence, and
write it as true in programs.

An identified CHR constraint c#i is a CHR constraint c
associated with some unique integer i. This number serves
to differentiate among copies of the same constraint. We in-
troduce functions chr(c#i) = c and id(c#i) = i, and extend
them to sequences and sets of identified CHR constraints in
the obvious manner.

An occurrenced identified CHR constraint c#i : j indic-
ates the identified CHR constraint is being considered for
matches at occurrence j of constraint c.

The execution stack A is a sequence of constraints, identi-
fied CHR constraints and occurrenced identified CHR con-
straints.

The CHR store S is a set of identified CHR constraints.
The built-in constraint store B contains any built-in con-

straint that has been passed to the underlying solver. We
assume D is the constraint theory for the underlying solver.

The propagation history T is a set of sequences, each re-
cording the identities of the CHR constraints which fired
a rule, and the name of the rule itself. This is necessary
to prevent trivial non-termination for propagation rules: a
propagation rule is allowed to fire on a set of constraints
only if the constraints have not been used to fire the rule
before. Finally, the next free identity n represents the next
integer which can be used to number a CHR constraint.

Given initial goal G, the initial state is 〈G, 2, ∅, ∅, ∅〉1 .
The function pp returns the program point of an execution

state:

pp(〈G, A,S, B, T 〉n) = pp(G)
pp(c) = builtin (c built-in)

pp(p(x1, . . . , xn)) = p/n
pp(p(x1, . . . , xn)#i) = p/n

pp(p(x1, . . . , xn)#i : j) = p/n : j
pp([c1, . . . , cn]) = [pp(c1), . . . , pp(cn)]

The program point relates the execution state to compiled
code (see e.g. [6]): the program point p/n corresponds with
the code for the Activate transition of constraint p/n and
the program point p/n : i corresponds with the code for
occurrence i.

3.2 Transition Rules of ω
c

Execution proceeds by exhaustively applying transitions
to the initial execution state until the built-in solver state is
unsatisfiable or no transitions are applicable.

We define transitions from state σ0 to σ1 as σ0 �N σ1

where N is the (shorthand) name of the transition. We let�∗ be the reflexive transitive closure of � (for all names
N). We let ⊎ denote multiset union and ++ denote sequence
concatenation. Let vars(o) be the variables in object o. We
use ∃{v1,...,vn} to mean ∃v1 · · · ∃vn. We use ∃̄V F to mean
∃vars(F)−V , that is quantifing away all variables not in V .
The possible transitions are as follows:

1. Solve 〈c, A,S, B, T 〉n �So 〈2, A, S′, B′, T ′〉n′ where c
is a built-in constraint. If D |= ¬∃̄∅(c ∧ B), then S′ = S,
B′ = c ∧ B, T ′ = T , n′ = n. Otherwise (D |= ∃̄∅(c ∧ B)),
where

〈S1, A, S, c ∧B, T 〉n�∗ 〈2, A, S′, B′, T ′〉n′

and S1 = solve(S, B, c) is a subset of S satisfying the fol-
lowing conditions:

1. lower bound : For all M = H1 ++ H2 ⊆ S such that
there exists a rule r ∈ P :

H ′
1 \ H ′

2 ⇐⇒ g | C

and a substitution θ such that8<: chr(H1) = θ(H ′
1)

chr(H2) = θ(H ′
2)

D |= ¬(B → ∃vars(r)(θ ∧ g)) ∧ (B ∧ c→ ∃vars(r)(θ ∧ g))

then M ∩ S1 6= ∅

2. upper bound : If m ∈ S1 then vars(m) 6⊆ fixed(B),
where fixed(B) is the set of variables fixed by B.

The actual definition of the solve function will depend on
the underlying solver.
2a. Activate 〈c, A, S, B, T 〉n �A 〈c#n : 1, A, {c#n} ⊎
S, B, T 〉(n+1) where c is a CHR constraint which has never
been active.
2b. Reactivate 〈c#i, A, S, B, T 〉n�R 〈c#i :1, A, S, B, T 〉n
where c#i is a CHR constraint in the store (back in the
queue through Solve).
3. Drop 〈c#i : j, A,S, B, T 〉n �Dp 〈2, A, S, B, T 〉n where
c#i : j is an occurrenced active constraint and there is no
such occurrence j in P .
4. Simplify

〈c#i :j, A, {c#i} ⊎H1 ⊎H2 ⊎H3 ⊎ S, B, T 〉n�Si

〈2, A, S′, B′, T ′′〉n′

where

〈θ(C), A, H1 ⊎ S, θ ∧ B, T ′〉n �∗ 〈2, A, S′, B′, T ′′〉n′

where the jth occurrence of the CHR predicate of c is dj in
rule r ∈ P :

H ′
1 \ H ′

2, dj , H
′
3 ⇐⇒ g | C

and there exists matching substitution θ is such that c =
θ(dj), chr(H1) = θ(H ′

1), chr(H2) = θ(H ′
2), chr(H3) =

θ(H ′
3), andD |= B → ∃̄vars(r)(θ∧g), and the tuple id(H1) ++

[i] ++ id(H2) ++ id(H3) ++ [r] 6∈ T . The substitution
θ must also rename apart all variables appearing only in
g and C. In the intermediate transition sequence T ′ =
T ∪ {id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r]}.

If no such matching substitution exists then

〈c#i :j, A, S, B, T 〉n�Si 〈c#i :j + 1, A, S, B, T 〉n

5. Propagate

〈c#i :j, A, {c#i} ⊎ S, B, T 〉n�P 〈G, A, Sk, Bk, Tk〉nk

where the jth occurrence of the CHR predicate of c is dj in
rule r ∈ P :

H ′
1, dj , H

′
2 \ H ′

3 ⇐⇒ g | C

Let S0 = S ⊎ {c#i}, B0 = B, T0 = T, n0 = n.
Now assume, for 1 ≤ l ≤ k and k ≥ 0, the series of

transitions

〈Cl, [c#i :j|A], H1l⊎{c#i}⊎H2l⊎Rl, Bl−1, Tl−1∪{tl}〉nl−1�∗ 〈2, [c#i :j|A], Sl, Bl, Tl〉nl

where {c#i} ⊎H1l ⊎H2l ⊎H3l ⊎Rl = Sl−1 and there exists
a matching substitution θl such that8>>>>>>><>>>>>>>: c = θl(dj)

Cl = θl(C)
chr(H1l) = θl(H

′
1)

chr(H2l) = θl(H
′
2)

chr(H3l) = θl(H
′
3)

D |= Bl−1 → ∃̄θl(r)θl(g)
tl = id(H1l) ++ [i] ++ id(H2l) ++ id(H3l) ++ [r] 6∈Tl−1

where θl renames apart all variables only appearing in g and
C (separately for each l).

Furthermore, for k + 1 no such transition is possible.
The resulting goal G is either G = 2 if D |= ¬∃̄∅Bk (i.e.

failure occurred) or G = c#i :j + 1 otherwise.
The role of the propagation histories Tl is exactly the same

as with the theoretical operational semantics, ωt, to prevent
the same propagation rule firing twice.
6. Goal

〈[c|C], A, S, B, T 〉n�G 〈G, A, S′, B′, T ′〉n′

where [c|C] is a sequence of built-in and CHR constraints

〈c, A,S, B, T 〉n�∗ 〈2, A, S′, B′, T ′〉n′

and G = 2 if D |= ∃̄∅(¬B′) (i.e. calling c caused failure) or
G = C otherwise.

3.3 Example
Now we illustrate the call-based semantics on a small ex-

ample program:

p1 ==> q.
p2, t1 <=> r.
p3, r1 ==> true.
p4 ==> s.
p5, s1 <=> true.

All the occurrences of constraints in the above program
are indexed with their respective occurrence numbers. Start-
ing from an initial goal p the derivation under the call-based
refined operational semantics goes as follows (for brevity we
omit the propagation history, denoted by •):

For both the simplification Si and propagation rules P we
annotate the name with ¬ if the rule did not find a match.

〈p, [], ∅, ∅, •〉1�A 〈p#1:1, [], {p#1}, ∅, •〉2�P 〈p#1:2, [], {p#1, q#2}, ∅, •〉2
〈q, [p#1:1], {p#1}, ∅, •〉2�∗ 〈2, [p#1:1], {p#1, q#2}, ∅, •〉3�¬Si 〈p#1:3, [], {p#1, q#2}, ∅, •〉3�¬P 〈p#1:4, [], {p#1, q#2}, ∅, •〉3�P 〈p#1:5, [], {q#2}, ∅, •〉4
〈s, [p#1:4], {p#1, q#2}, ∅, •〉3�∗ 〈2, [p#1:4], {q#2}, ∅, •〉4�¬Si 〈p#1:6, [], {q#2}, ∅, •〉4�Dp 〈2, [], {q#2}, ∅, •〉4

The full subderivation executing q in the body of the first
rule is:

〈q, [p#1:1], {p#1}, ∅, •〉2�A 〈q#2:1, [p#1:1], {p#1, q#2}, ∅, •〉3�Dp 〈2, [p#1:1], {p#1, q#2}, ∅, •〉3

And the full subderivation executing s in the body of the
fourth rule is:

〈s, [p#1:4], {p#1, q#2}, ∅, •〉3�A 〈s#3:1, [p#1:4], {p#1, q#2, s#3}, ∅, •〉4�Si 〈2, [p#1:4], {q#2}, ∅, •〉4
〈2, [s#3:1, p#1:4], {p#1, q#2, s#3}, ∅, •〉4�∗ 〈2, [s#3:1, p#1:4], {p#1, q#2, s#3}, ∅, •〉4

4. ABSTRACT INTERPRETATION
FRAMEWORK

In this section we present our generic abstract interpret-
ation framework for CHRs. The framework for CHRs is
based on an abstraction of the operational semantics given
in the previous section. Instead of a concrete state, an ab-
stract state is used and similarly, abstract transition rules
are used instead of concrete ones.

In Sections 4.1 and 4.2 we discuss how a particular in-
stance of the framework, i.e. an analysis domain, should
specify its abstract state and abstract transition rules.

The generic, domain-independent aspects of the abstract
semantics, which are provided by the framework, are presen-
ted in Section 4.3. It covers how the framework applies the
abstract transition rules starting from what initial state and
how the framework deals with non-determinism.

4.1 Abstract State
Every instance of the abstract interpretation framework

should define a domain Σa of abstract states. The abstract
domain Σa has to be a lattice with partial ordering �, least
upper bound ⊔ and greatest lower bound ⊓ operations.

Furthermore an abstraction function α has to be defined
from a concrete state σ (as defined in Section 3.1) to an
abstract state s, and a concretisation function γ from an
abstract state to a set of concrete states.1

We impose an additional restriction on γ:

∀s ∈ Σa : ∀σ1, σ2 ∈ γ(s) : pp(σ1) = pp(σ2)

i.e. every abstract execution state should correspond with
exactly one program point. This allows us to extend the
domain of the pp function to abstract states:

pp(s) = pp(σ) with σ ∈ γ(s)

The restriction is imposed for two reasons:

• to be able to associate analysis information contained
in abstract states with the program points, and

• to determine whether a particular abstract state s is a
final state (i.e. pp(s) = 2).

The accurate program point information may complicate the
abstract semantics somewhat, but results in more accurate
analyses.

The framework will only make use of the least upper
bound operation s1⊔s2 on states corresponding to the same
program point (pp(s1) = pp(s2)).

4.2 Abstract Transition Rules
The abstract domain must provide the following abstract

operations corresponding to the transitions in the call based

1Typically we only specify α and assume γ to be defined as
γ(s) = {σ|α(σ) = s}.

semantics: AbstractSolve, AbstractActivate, AbstractReactiv-
ate, AbstractDrop, AbstractSimplify, AbstractPropagate and
AbstractGoal. These abstract operations are abstractions of
the transition rules defined by the call-based refined opera-
tional semantics of CHRs, as given in Section 3.2.

With the exception of AbstractSimplify, the abstract trans-
itions are transitions of the form Σa � Σa. In order for
the abstract transition rules to be consistent abstractions of
the concrete transition rules, we impose that: ∀σ1, σ2 ∈ Σ :
∀s1, s2 ∈ Σa : σ1 � σ2∧s1 = α(σ1)∧s1 � s2 ⇒ σ2 ∈ γ(s2).

The AbstractSimplify transition is a transition of the form
Σa � answers where answers = one(Σa) | two(Σa, Σa). Our
framework requires that the AbstractSimplify transition sat-
isfies the following constraint:

∀σ1, σ2 ∈ Σ : ∀s1, s2 ∈ Σa :
σ1 �Simplify σ2 ∧ s1 = α(σ1) ∧ s1 � one(s2)

⇓
σ2 ∈ γ(s2)

∀σ1, σ2 ∈ Σ : ∀s1, s2, s3 ∈ Σa :
σ1 �Simplify σ2 ∧ s1 = α(σ1) ∧ s1� two(s2, s3)

⇓
σ2 ∈ γ(s2) ∨ σ2 ∈ γ(s3)

For the other transition rules the program point of the res-
ulting state σ2 is completely determined by the program
point of the original state σ1. For the Simplify transition
there are two possibilities for the resulting program point
given the original program point p/n : i. If the active con-
straint is removed by the transition, the resulting program
point is 2 and if it is not, the program point is p/n : i + 1.

The way multiple resulting states are combined by the
framework is discussed below.

4.3 The Generic Abstract Semantics
Here we explain the generic semantics of the framework,

based on the analysis-specific implementations of the ab-
stract domain and abstract transition rules.

The concrete operational semantics specifies that a pro-
gram starts from an initial state and transition rules are
applied until a final state is reached. In the following we
describe what initial state is used by the framework and
how the final state is obtained by applying abstract trans-
ition rules. In particular the issues of non-determinism are
discussed.

4.3.1 Generic Initial State
For any CHR program, an infinite number of concrete

initial states are possible, namely any 〈G, [], ∅, ∅, ∅〉1 with G
any finite list of CHR constraints and built-in constraints.

This infinite number of initial states may lead to an infin-
ite number of abstract states, depending on the definition of
α. However, in the generic framework we avoid this poten-
tial blow-up of initial states by restricting the initial goal to
be a single CHR constraint c.

The above restriction is not a strong restriction. It is
always possible to encode a list of multiple goals c1, . . . , cn

in this way. Namely one can introduce a fresh constraint c
and a new simplification rule c⇔ c1, . . . , cn. This new c can
then serve as the single initial goal.

Similarly, it is possible to encode arbitrary sequences of
constraints, using random data generators. A random data
generator is no more than a built-in function that returns

a random value in some domain. For example a random
sequence of a and b constraints, denoted (a|b)∗ as a regular
expression, may be encoded as follows:

c <=> random_element([1,2,3],X), c(X).

c(1) <=> a, c.

c(2) <=> b, c.

c(3) <=> true.

Here the predicate random element/2 returns in its second
argument a random element from its first argument. The
constraint c serves as the initial goal.

4.3.2 Transition Rule Application
The generic framework applies the abstract transition

rules on an initial state until a final state is reached. For
most abstract program states, only one abstract transition
rule applies and hence the framework’s task is straightfor-
ward.

The AbstractSimplify is an exception, as already mentioned
in Section 4.2.

It is the framework’s task to take the determinism into
account and compute the appropriate results from the two
alternate possibilities.

Consider an abstract state s0 where the AbstractSimplify
transition applies. If s0 �AS one(s1) then s1 is the resulting
state. If s0 � two(s1, s2) then there are two possible results.
In order to find a least upper bound we must extend the
states to final states and then build the least upper bound.

The framework then computes the following final state s∗
for s0:

s∗ =

8<: s1 , if s0 �AS one(s1)
s∗1 ⊔ s∗2 , if s0 �AS two(s1, s2)

and s1�∗ s∗1, s2 �∗ s∗2

with �AS an application of the AbstractSimplify Rule.

4.3.3 Non-determinism in the Simplify and Propag-
ate Rules

While the above accounts for the non-determinism in sim-
plification matching caused by abstraction, it does no ac-
count for the inherent non-determinism of these transitions
in the concrete semantics.

Namely, for a simplification transition, if more than one
combination of partner constraints are possible, the concrete
semantics does not specify what particular combination is
chosen. To account for this non-determinism the formu-
lation of the AbstractSimplify transition should capture all
possible concrete transitions. In particular, if for concrete
state σ there are n different possible resulting final states
σ1, . . . , σn, then α(σ)�AS one(s′) or α(σ)�AS two(s′, s′′)
such that

Fn

i=1 α(σi) � s′.
Similarly, for a propagation transition, multiple combina-

tion transitions are possible. In addition, for a propagation
transition, multiple applications are possible in a sequence.
However, the order of the sequence is not specified by the
concrete semantics either. Hence, an abstract propagation
transition has to capture all possible partner combinations
and all possible sequences in which they are dealt with.

4.3.4 Non-determinism in the Solve Rule
The non-determinism inherent in the concrete Solve rule

lies in the order of the triggered constraints as they are put
on the execution stack: all possible orderings are allowed.

Hence, an abstract domain has to provide an abstraction
that takes into account all possible orderings.

One approach would be, if the abstract domain permits,
to compute the final state so for all o ∈ O with O the set of
all possible orderings and to combine these final states to a
single final state s as follows: s =

F
o∈O

so.
However, this requires sufficiently concrete information

about the number of triggered constraints in the abstract
domain. Typically the abstract domain cannot provide any
quantitative bound on the number of triggered constraints.
Hence an infinite number of orderings are possible: all pos-
sible permutations of constraint sequences of any integer
length.

A possible finite approximation of this infinite number
of possibilities is to perform the following fixpoint computa-
tion. Say {ci|1 ≤ i ≤ n} are all the possible distinct abstract
CHR constraints to trigger. Then, starting from abstract
state s0, the final state sf after triggering all constraints in
any quantity is sk, where:

sj =
G
{si

j |new goal(sj−1, ci)�∗ si
j ∧ final(si

j) ∧ 1 ≤ i ≤ n}

for j > 0 and k is the smallest integer such that sk = sk+1.
In the above formula new goal is the function that replaces
the empty goal in a final abstract state with a new goal.

This generic approach is illustrated in the prototype
groundness analysis, discussed in Section 6.

Due to its generality it may cause a huge loss of precision
as well as an exponential number of intermediate states.
Hence, in practice, better domain specific techniques should
be studied.

For example, in the late storage analysis discussed in the
next section, the worst possible abstract state is immediately
obtained in the AbstractSolve transition, before triggered
constraints are considered. Hence, there is no need to ac-
tually compute the triggering of constraints; the outcome is
already determined. This avoids substantial needless over-
head.

5. LATE STORAGE ANALYSIS
In this section we illustrate the use of the abstract inter-

pretation framework for CHRs with a CHR-specific analysis:
late storage. This analysis is useful in CHR compilers to
drive several optimizations.

In Section 5.1 we define the property that the analysis
tracks. Next, the abstract domain and transition rules of
the analysis are defined in Sections 5.2 and 5.3 respectively.
Section 5.4 illustrates the application on a small program.

5.1 The Observation Property
The aim of late storage analysis is to determine for an

active CHR constraint whether it can be stored later rather
than stored before its rules are searched for matching. The
manner in which this is done is by determining when the first
possible interaction will be with the active CHR constraint
when executing one of its bodies.

In general it is better to store a constraint in the con-
straint store as late as possible. The reason is that if the
constraint is deleted before it is actually stored, the over-
head of insertion in and removal from the constraint store
are avoided.

The refined operational semantics however dictates that
a constraint is inserted in the constraint store immediately

when it is at the top of the execution stack. We want to
avoid this when it does not make a difference to the final
state.

At the latest, a constraint that is not deleted, has to be
stored after all the rules have been tried out. There are
however reasons to store a constraint early. Namely, if a
rule applies, the body may be able to observe whether the
active constraint is in the constraint store or not. If the
active constraint may be observed, the constraint needs to
be in the constraint store. Otherwise it does not have to be
in the constraint store, because its presence cannot impact
the execution.

Definition 1 (Observed). A constraint in the
constraint store is observed, if it is triggered by a built-in
constraint or if it acts as a partner constraint to an active
constraint in a rule firing.

To correctly define the analysis of “observation” as an
abstract interpretation we have to extend the call-based op-
erational semantics to make this visible. We will only be
interested in finding the observed occurrences of constraints
in the activation stack.

Denote an observed occurrence c#i : j by starring e.g.
c#i :j∗. Define

obs(c#i :j) = c#i :j∗

obs(c#i :j∗) = c#i :j∗

obs([], S) = []
obs([c#i :j|G], S) = [obs(c#i :j)|obs(G, S)] c#i ∈ S
obs([c#i :j|G], S) = [c#i :j|obs(G, S)] c#i 6∈ S

We only need to redefine the Solve, Simplify and Propag-

ate rules slightly. Basically we modify the activation stack
to record which constraints have been observed by any of
these transitions.
1. Solve 〈c, A, S, B, T 〉n �So 〈2, A′, S′, B′, T ′〉n′ where c
is a built-in constraint. If D |= ¬∃̄∅(c ∧ B), then S′ = S,
B′ = c ∧ B, T ′ = T , n′ = n. Otherwise (D |= ∃̄∅(c ∧ B)),
where

〈S1, obs(A, S1), S, c ∧B, T 〉n�∗ 〈2, A′, S′, B′, T ′〉n′

and S1 = solve(S, B, c) .
4. Simplify

〈c#i :j, A, {c#i} ⊎H1 ⊎H2 ⊎H3 ⊎ S, B, T 〉n�Si

〈2, A′, S′, B′, T ′′〉n′

where

〈C, obs(A, H1 ∪H2 ∪H3),H1 ⊎ S, θ ∧B, T ′〉n�∗ 〈2, A′, S′, B′, T ′′〉n′

where the jth occurrence of the CHR predicate of c in a
(renamed apart) rule r ∈ P :

H ′
1 \ H ′

2, dj , H
′
3 ⇐⇒ g | C

and there exists matching substitution θ is such that c =
θ(dj), chr(H1) = θ(H ′

1), chr(H2) = θ(H ′
2), chr(H3) =

θ(H ′
3), andD |= B → ∃̄vars(r)(θ∧g), and the tuple id(H1) ++

[i] ++ id(H2) ++ id(H3) ++ [r] 6∈ T . The substitution
θ must also rename apart all variables appearing only in
g and C. In the intermediate transition sequence T ′ =
T ∪ {id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r]}.

If so such matching substitution exists then

〈c#i :j, A, S, B, T 〉n�Si 〈c#i :j + 1, A, S, B, T 〉n

5. Propagate

〈c#i :j, A, {c#i} ⊎ S, B,T 〉n �P 〈G, Ak, Sk, Bk, Tk〉nk

where the jth occurrence of the CHR predicate of c in a rule
r ∈ P :

H ′
1, dj , H

′
2 \ H ′

3 ⇐⇒ g | C

Let A0 = A, S0 = S ⊎ {c#i}, B0 = B, T0 = T, n0 = n.
Now assume, for 1 ≤ l ≤ k and k ≥ 0, the series of

transitions

〈Cl, [c#i :j|obs(Al−1, H1l ∪H2l ∪H3l)],
H1l⊎{c#i}⊎ H2l⊎Rl, Bl−1, Tl−1∪{tl}〉nl−1�∗ 〈2, [|Al], Sl, Bl, Tl〉nl

where {c#i} ⊎H1l ⊎H2l ⊎H3l ⊎Rl = Sl−1 and there exists
a matching substitution θl such that8>>>>>>><>>>>>>>: c = θl(dj)

Cl = θl(C)
chr(H1l) = θl(H

′
1)

chr(H2l) = θl(H
′
2)

chr(H3l) = θl(H
′
3)

D |= Bl−1 → ∃̄θl(r)θl(g)
tl = id(H1l) ++ [i] ++ id(H2l) ++ id(H3l) ++ [r] 6∈ Tl−1

where θl renames apart all variables only appearing in g and
C (separately for each l).

Furthermore, for k + 1 no such transition is possible.
The resulting goal G is either G = 2 if D |= ¬∃̄∅Bk (i.e.

failure occurred) or G = c#i :j + 1 otherwise.

Example 1. When examining the derivation shown in
Section 3.3 the altered versions of the transitions above make
one change. After the Simplify transition in the derivation
for s, the p in the store is observed, so the new state is�Si 〈2, [p#1:4∗], {q#2}, ∅, •〉4

5.2 Abstract Domain
The abstract state used for this analysis is rather simple.

We abstract CHR constraints by their predicate names, and
built-in constraints as simply the special predicate name
builtin. The abstract state simple holds an abstraction
of the goal or active constraint:occurrence, and an abstrac-
tion of the call stack A. The abstracted call stack is a set.
It denotes the predicate occurrences which have not been
observed.

Let c be a built-in constraint and p a CHR constraint, and
S a set or multiset of CHR constraints. We define the late
storage abstraction αls as follows:

αls(c) = builtin , c built-in
αls(p(t1, . . . , tn)) = p

αls(p(t1, . . . , tn)#i) = p
αls(p(t1, . . . , tn)#i :j) = p :j

αls([]) = []
αls([c|G]) = [αls(c)|αls(G)]

αls(S) = {αls(c)|c ∈ S} , S set
αls(〈G, A, , , 〉) = 〈αls(G), αls(unobserved(A))〉

where unobserved is defined as

unobserved(A) =

�
p

���� p(t1, . . . , tn)#i :j ∈ list2set(A),
¬∃p(t′1, . . . , t

′
n)#i′ :j′∗ ∈ list2set(A)

�

list2set(A) =

�
∅ , A = []
{a} ∪ list2set(A′) , A = [a|A′]

Note we abstract built-in constraints, and non-identified
CHR constraints by keeping the predicate. We abstract
identified CHR constraints by removing the identity num-
ber and occurrenced identified CHR constraints just keeping
track of the occurrence number. We eliminate observed con-
straints from the execution stack using the auxiliary function
unobserved.

The abstracted call stack is a set. It denotes the predicates
which have not been observed in the future computation.

The partial ordering on states is 〈G, A〉 �ls 〈G
′, A′〉 iff

G = G′ and A′ ⊆ A. Clearly the abstract domain forms
a lattice with the ordering relation �ls. The least upper
bound operator ⊔ls can be defined as follows:

〈G, A1〉 ⊔ls 〈G, A2〉 = 〈G, (A1 ∩A2)〉

5.3 Abstract Transition Rules
Each abstract operation must provide two things:

(a) whether it is applicable at the current state s0, and
(b) the resulting state afterwards s. We overload �∗ to in-
dicate the transitive reflexive closure of the abstract trans-
itions.

5.3.1 AbstractSolve

s0 = 〈builtin, A〉 �AS 〈2, ∅〉 = s Applicable always
when the goal is builtin.

A built-in constraint may possibly trigger any constraint
in the constraint store. Hence all the constraints in the call
stack are possibly observed.

For every constraint name c, the following subcomputa-
tion needs to be run to cover all execution paths, despite the
fact that no information is carried over to s: 〈c, ∅〉�∗ 〈2, ∅〉.

Technically, the output state of one triggered constraint
should become the input state of the next according to ωc.
Moreover, the constraints could be run in any order.

However, this computation is a safe approximation, since
every initial and final state has a known empty A.

5.3.2 Abstract(Re)Activate

s0 = 〈c, A〉 �AA 〈c : 1, A〉 = s. Applicable if c is a non-
occurrenced CHR constraint.

5.3.3 AbstractDrop

s0 = 〈c : j, A〉 �ADp 〈2, A〉 = s. Applicable if no occur-
rence j exists for CHR predicate c.

5.3.4 AbstractGoal

s0 = 〈[ck1
, . . . , ckn

], A〉�AG 〈2, A′〉 = s where

〈cki
, A〉�∗ 〈2, Ai〉

and A′ =
Tn

i=1 Ai

Technically, the output state of one goal should become
the input state of the next according to the call-based op-
erational semantics. However, this definition here captures
the meaning of possibly observed too: If a constraint in the
call stack is possibly observed by any goal in a conjunction,
it is possibly observed by the entire conjunction.

5.3.5 AbstractSimplify

s0 = 〈c : j, A0〉. Applicable if occurrence j is a simplifica-
tion occurrence is a rule r ∈ P :

H ′
1 \ H ′

2, dj , H
′
3 ⇐⇒ g | C

Let O = αls(H
′
1 ∪H ′

2 ∪H ′
3) and let A1 = A0 −O.

Assume

〈αls(C), A1〉�∗ 〈2, A2〉

Then s = 〈2, A2〉 and the result of the rule is:

• one(s), if r is an unconditional simplification rule, i.e.
of the form c(x̄)⇔ C with all x ∈ x̄ distinct variables.
Namely, the rule application only fails when the active
constraint is not in the constraint store, this leads to
a state 〈2, A0〉 which when lubbed with s gives s.

• two(s, 〈c :j + 1, A0〉) otherwise.

In the first case, the rule must always fire, the exception is
that the active constraint may have already been deleted.
In this case we can terminate with no new observation since
the active constraint cannot match further.

If the rule is not a unconditional simplification rule then
we simply either succeeded and observed, or move to the
next occurrence.

In fact we could just replace the second case by one(〈c :
j + 1, A2〉) without loss of accuracy, but we give the more
complicated definition to illustrate the use of two.

5.3.6 AbstractPropagate

s0 = 〈c :j, A0〉. Applicable if occurrence j is a propagation
occurrence in rule r ∈ P :

H ′
1, dj , H

′
2 \ H ′

3 ⇐⇒ g | C

Let O = αls(H
′
1 ∪ H ′

2 ∪ H ′
3), A1 = A0 − O. Let A2 =

A1 ∪ {αls(c)}.
Assume

〈αls(C), A2〉�∗ 〈2, A3〉

Let A4 = A3 \ ({αls(c)} \ A1), removing αls(c) from the
execution stack if it was not present initially.

Then the result of the rule is 〈c :j + 1, A4〉.
Note that the active constraint c may have been observed

in C iff c 6∈ A3.
Note here we treat the rule as if it always could have fired.

This is clearly safe.

5.4 Example Analysis
Consider the execution of the goal p with respect to the

following (numbered) CHR program

p1 ==> q.
p2, t1 <=> r.
p3, r1 ==> true.
p4 ==> s.
p5, s1 <=> true.

The example derivation is shown below. For simplification
rules we show the states s1 and s2 in the answer two(s1, s2)
after lines labelled first and second, and then give the two
derivations that lead to the lub.

〈p, ∅〉�AA 〈p :1, ∅〉

�AP 〈p :2, ∅〉 〈q, {p}〉 �∗ 〈2, {p}〉
first�ASi 〈2, ∅〉 〈r, ∅〉 �∗ 〈2, ∅〉
second�¬ASi 〈p :3, ∅〉�AP 〈p :4, ∅〉 〈2, {p}〉 �∗ 〈2, {p}〉�AP 〈p :5, ∅〉 〈s, {p}〉 �∗ 〈2, ∅〉

first�ASi 〈2, ∅〉 〈2, ∅〉 �∗ 〈2, ∅〉
second�¬ASi〈p :6, ∅〉�ADp 〈2, ∅〉
lub�⊔ 〈2, ∅〉

lub�⊔ 〈2, ∅〉

〈q, {p}〉�AA 〈q :1, {p}〉�ADp 〈2, {p}〉

〈r, ∅〉�AA 〈r :1, ∅〉�AP 〈r :2, ∅〉 〈2, {r :1}〉 �∗ 〈2, {r :1}〉�ADp 〈2, ∅〉

〈s, {p}〉�AA 〈s :1, {p}〉
first�ASi 〈2, ∅〉 〈2, ∅〉 �∗ 〈2, ∅〉
second�¬ASi 〈s :2, {p}〉�ADp 〈2, {p}〉
lub�⊔ 〈2, ∅〉

Note that we observe the p only in the derivation for s

hence we can safely delay storage of p until just before the
execution of this body.

6. GROUNDNESS ANALYSIS
In this section we illustrate the use of the abstract in-

terpretation framework by lifting the classical groundness
analysis for Prolog to CHRs.

In the groundness analysis for CHRs we capture the
groundness of variables at the scope of rules and arguments
of constraints. Unlike Prolog we do not go as far as captur-
ing groundness relations between all variables.

Sections 6.1 and 6.2 present the abstract domain and
transition rules respectively. The analysis is illustrated by
means of an example in Section 6.3.

6.1 Abstract Domain
In abstracting groundness properties of a CHR execution

we will be interested in three parts of the concrete state, the
goal, the CHR constraint store, and the built-in constraint
store.

Groundness is not directly affected by CHR constraints,
but only through built-in constraints of the underlying con-
straint domain D. Hence, we assume that we have an ab-

stract domain P for tracking groundness of the underlying
constraint domain D, providing the following:

• the operations αP ,�P ,⊔P , . . .

• the abstract conjunction, denoted by ∧P joins two ab-
stract descriptions

• the function AaddP joins an abstract description with
a concrete constraint

• the function groundsP(D), which returns the set of
variables grounded by abstract description D

• the abstract projection function ∃̄PV F which abstracts
the projection ∃̄V F the projection of F onto the vari-
ables V .

We abstract the state by an abstract goal, which only re-
moves occurrence numbers, an abstract store which stores,
for each CHR constraint, the least upper bound of the
groundness descriptions of the CHR constraint instances in
the store, and the abstract underlying store, which is just
given using the domain P restricted to the variables in the
goal.

αg(c) = c c is built-in
αg(p(t1, . . . , tn)) = p(t1, . . . , tn)

αg(p(t1, . . . , tn)#i) = p(t1, . . . , tn)
αg(p(t1, . . . , tn)#i :j) = p(t1, . . . , tn) :j

αg([]) = []
αg([c|G]) = [αg(c)|αg(G)]

αg(S) = {αg(c)|c ∈ S} S set or multiset

αg(p(t1, . . . , tn)#i, B) = p(x1, . . . , xn)← D
where D = ∃̄Px1,...,xn

αP(B ∧ x1 = t1 ∧ · · · ∧ xn = tn)

αg(S, B) = snf({αg(c, B)|c ∈ S}) S set or multiset
αg(〈G, , S, B, 〉) = 〈αg(G), αg(S, B), ∃̄Pvars(G)αP(B)〉

where the function snf creates a normal form of the ground-
ness description of the CHR constraint store, by ensuring
there is at most one entry per CHR predicate. It is defined
as follows:

snf(∅) = ∅
snf({p(x̄)← D1} ⊎ S) = snf({p(x̄)← D1 ⊔P D2} ⊎ S′)

where S = {p(x̄)← D2} ⊎ S′

snf({p(x̄)← D1} ⊎ S) = {p(x̄)← D1} ⊎ snf(S),
where ¬∃p(x̄)← D2 ∈ S

We define pred as follows:

pred(p(t1, . . . , tn)) = p
pred(p(x1, . . . , xn)← D) = p

pred([]) = []
pred([c|G]) = [pred(c)|pred(G)]

The partial ordering �g on states is

〈G, S, B〉 �g 〈G
′, S′, B′〉 ⇔ G = G′ ∧ B �P B′ ∧

(∀p(x̄)← D ∈ S : ∃p(x̄)← D′ ∈ S′ : D �P D′)

Clearly the abstract domain forms a lattice with the ordering
relation �g. The least upper bound operator ⊔g can be
defined as follows:

〈G, S, B〉 ⊔g 〈G, S′, B′〉 = 〈G, snf(S ∪ S′), B ⊔P B′〉

6.2 Abstract Transition Rules
Each abstract operation must provide two things:

(a) whether it is applicable at the current state s0, and
(b) the resulting state afterwards s.

6.2.1 AbstractSolve

s0 = 〈c, Sa ⊎ Sb, B〉. Applicable when c is a built-in con-
straint. Define Sa = {p(x̄) ← D | x̄ ⊆ groundsP(D)}. Let
Sb = {pi(x̄i)← Di | 1 ≤ i ≤ n}.

Let

S0 = Sa ⊎ Sb

sj = 〈2, Sj , 〉 = ⊔g{s
i
j | 〈pi(x̄i), Sj−1, Di〉�∗ si

j ∧
final(si

j) ∧ 1 ≤ i ≤ n}, j ≥ 1

and be k the smallest positive integer such that sk = sk−1.
Then s = 〈2, Sk, AaddP(c, B)〉.

6.2.2 Abstract(Re)Activate

s0 = 〈c, S, B〉. Applicable if c is a non-occurrenced CHR
constraint. s = 〈c :1, snf({αg(c, B)} ∪ S), B〉.

6.2.3 AbstractDrop

s0 = 〈c : j, S, B〉. Applicable if no occurrence j exists for
CHR predicate c. s = 〈2, S, B〉.

6.2.4 AbstractGoal

s0 = 〈[c|G], S0, B0〉. Let B1 = ∃̄vars(c)B0 and

〈c, S0, B1〉�∗ 〈2, S, B2〉

then s = 〈G, S, B0 ∧P B2〉.

6.2.5 AbstractSimplify

s0 = 〈c : j, S, B〉. Applicable if occurrence j is a simplific-
ation occurrence in rule r ∈ P :

H ′
1 \ H ′

2, dj , H
′
3 ⇐⇒ g | C

where exists θ such that c = θ(dj), H1 ∪H2 ∪H3 ⊆ S, and
pred(Hi) = pred(H ′

i), 1 ≤ i ≤ 3.
Suppose

Hi = [pi1(x̄i1)← Di1, . . . , pini
(x̄ini

)← Dini
]

θ(H ′
i) = [pi1(t̄i1), . . . , pini

(t̄ini
)]

Let

Di = Aadd(∧P{Dij | 1 ≤ j ≤ ni},∧
ni

j=1(x̄j = t̄j))
D = ∃̄vars(θ(C))Aadd((D1 ∧P D2 ∧P D3 ∧P B), g)

Suppose that 〈θ(C), S, D〉�∗ 〈2, S′, B′〉.
Then s = 〈2, S′, B ∧P ∃̄vars(c)B

′〉 and the result of the
rule is:

• one(s ⊔g 〈2, S, B〉), if r is an unconditional simplific-
ation rule, i.e. of the form c(x̄) ⇔ C with all x ∈ x̄
distinct variables. The second state encodes the pos-
sibility that the active constraint has already been de-
leted.

• two(s, 〈c :j + 1, S, B〉) otherwise.

We find a possible match for each CHR constraint in the
rule, assume that the guard holds, and determine the ab-
stract underlying constraint store that must exist for the
body of the rule from the matching. We execute the body
of the rule with this store, without removing any constraints
from the store (since we are not sure how many copies there

are). The resulting abstract underlying store is projected
back onto the active constraint and then added to the cur-
rent store.

6.2.6 AbstractPropagate

s0 = 〈c : j, S, B〉. Applicable if occurrence j is a propaga-
tion occurrence in rule r ∈ P :

H ′
1, dj , H

′
2 \ H ′

3 ⇐⇒ g | C

where exists θ such that c = θ(dj), H1 ∪H2 ∪H3 ⊆ S and
pred(Hi) = pred(H ′

i), 1 ≤ i ≤ 3.
Suppose

Hi = [pi1(x̄i1)← Di1, . . . , pini
(x̄ini

)← Dini
]

θ(H ′
i) = [pi1(t̄i1), . . . , pini

(t̄ini
)]

Let

Di = Aadd(∧P{Dij | 1 ≤ j ≤ ni},∧
ni

j=1(x̄j = t̄j))
D = ∃̄vars(θ(C))Aadd((D1 ∧P D2 ∧P D3 ∧P B), g)

Suppose that 〈θ(C), S, D〉 �∗ 〈2, S′, B′〉. Then s = 〈c :
j + 1, S′, B ∧P (∃̄vars(c)B

′〉 is the result assuming the rule
fired and s1 = 〈c :j +1, S, B〉 and is the result if the rule did
not fire the result of the rule is one(s ⊔g s1).

6.3 Example Analysis
In this example analysis we will use the following simple

abstract domain P :

• αP(c) = {x|x ∈ vars(c) ∧ c→ ground(x)}

• D1 �P D2 ⇔ D1 ⊇ D2

• D1 ⊔P D2 = D1 ∩D2

• D1 ∧P D2 = D1 ∪D2

• AaddP(D, c) = D ∪ {x ∈ vars(c)|∃D′ ⊆ D : (∀y ∈ D′ :
ground(y)) ∧ c→ ground(x)}

• groundsP(D) = D

• ∃̄PV D = D ∩ V

The example program we will analyze is primes, see [9],
extended with an appropriate main/0 constraint:

main1 <=> N = 10, candidate(N).
candidate(N)1 <=> N = 1 | true.
candidate(N)2 <=> prime(N), M is N - 1, candidate(M).
prime(Y)2 \ prime(X)1 <=> 0 =:= X mod Y | true.

It computes the prime numbers between 1 and 10. The
abstract derivation steps for the groundness analysis of this
program are the following.

For brevity the abstract stores are shown separately: S1 =
{main:-∅}, S2 = S1 ∪ {candidate(N):-{N}}, S3 = S2 ∪
{prime(N):-{N}}.

〈main, ∅, ∅〉�AA 〈main :1, S1, ∅〉�ASi 〈2, S3, ∅〉

〈[X = 10, candidate(X)], S1, ∅〉�AG 〈[candidate(X)], S1, {X}〉�AG 〈2, S3, {X}〉

〈X = 10, ∅, S1〉

�ASo 〈2, S1, {X}〉

〈candidate(X), S1, {X}〉�AA 〈candidate(X) :1, S2, {X}〉
first�ASi 〈2, S3, {X}〉
second�¬ASi 〈2, S2, {X}〉
lub�⊔ 〈2, S3, {X}〉

〈[prime(N), M is N − 1, candidate(M)], S2, {N}〉�AG 〈[M is N − 1, candidate(M)], S3, {N, M}〉�AG 〈[candidate(M)], S3, {N, M}〉�AG 〈2, S3, {N, M}〉

〈prime(N), S2, {N}〉�AA 〈prime(N) :1, S3, {N}〉
first�ASi 〈2, S3, {N}〉
second�¬ASi 〈prime(N) :2, S3, {N}〉�AP 〈prime(N) :3, S3, {N}〉�ADp 〈2, S3, {N}〉
lub�⊔ 〈2, S3, {N}〉

We omit identical derivations for [prime(N), M is N −
1, candidate(M)] and prime(N) starting with CHR store
S3 rather than S2. From this analysis we can conclude that
the CHR constraints are ground at all times in this program.

7. IMPLEMENTATION AND EVALUATION
We have implemented both the late storage analysis and

the groundness analysis in the hProlog version of the K.U.
Leuven CHR system [11].

We have implemented the late storage and ground ana-
lyses to always start from an initial goal 〈main, ∅〉 and
〈main, ∅, ∅〉 respectively. The rules for the constraint main/0
in a particular benchmark define all relevant call patterns
for that benchmark.

7.1 Late Storage Analysis
The results of this analysis are used for optimization in

our CHR compiler in the following way:

• The main philosophy in late storage is to delay con-
straint storage, so that some constraints are removed
before they have to be stored. Those constraints then
avoid the overhead of both storage and removal.

The reference CHR implementation in SICStus [7]
already has an approximate late storage optimization.
Namely, it does not store an activated constraint
straight away, but only ensures it is stored before a rule
body of a propagation occurrence is executed. With
this analysis, this optimization is improved: our com-
piler only ensures that an active constraint is stored
before the execution of a body of a propagation oc-
currence, if the constraint may be observed during the
execution of that body.

• For a particular class of constraints, our compiler de-
rives that they are never stored. Never stored con-

straints are not stored before an unconditional simpli-
fication occurrence. An unconditional simplification
occurrence, is an occurrence in a single-headed rule
without any matching or guard. The following optim-
izations are possible for never stored constraints:

– A constraint that is never stored, cannot be
triggered. Hence no checks are necessary to dis-
cern between activation and reactivation.

– A never stored constraint cannot be found in a
constraint store. Hence if it occurs in a multi-
headed rule, its partner constraints in that rule
should not actively try to apply that rule, i.e.
their occurrences are considered passive.

– A never stored constraint will not reconsider the
same propagation rule twice with the same part-
ner constraints. Hence no history needs to be
maintained for that rule.

Hence, the code generated by our compiler is much
closer to the code one would write for a deterministic
procedure in the host language than for an arbitrary
constraint without the never stored property.

In Table 1 we show the speed-ups caused by late storage
analysis. For ten benchmarks, see [9], we compare imme-
diate storage with the current implementation of the above
optimizations that are enabled by late storage analysis. The
timings for the optimized programs are given relative to
those of the unoptimized programs.

Table 1: Late storage analysis: runtime results of

optimized programs relative to unoptimized pro-

grams.

Benchmark Optimized / Unoptimized
bool 17.6%
fib 72.3%
fibonacci 72.7%
leq 75.7%
mergesort 86.5%
primes 94.6%
uf 97.4%
uf opt 106.5%
wfs 95.7%
zebra 89.1%

In Table 2 we show the number of dynamic constraint
store insertions and deletions for these benchmarks. The
number of insertions and and the number of deletions saved
out by late storage analysis is of course identical. The con-
siderable reduction of the bool benchmark is clearly ex-
plained by the drastic decrease in the number of opera-
tions. While even more operations have been saved out
in the leq benchmark, the impact on its runtime is more
modest, though still considerable. This is because the over-
all impact of these operations on the total runtime is less
dominant.

7.2 Groundness Analysis
Our implementation of the groundness analysis uses the

naive groundness domain for built-in constraints as it is de-
scribed in Section 6.3.

Table 2: Late storage analysis: store operations

without and with late storage.

Benchmark Without With
Insert Delete Insert Delete

bool 359,996 359,996 8.33% 8.33%
fib 114,603 114,580 50.01% 50.00%
fibonacci 81,000 39,000 51.85% 0.00%
leq 34,280 34,280 5.16% 5.16%
mergesort 37,170 34,610 30.97% 25.86%
primes 4,999 4,632 49.99% 46.03%
uf 7,994 6,994 37.50% 28.57%
uf opt 8,004 7,004 37.50% 28.57%
wfs 46,800 44,800 91.03% 90.62%
zebra 56,790 130,300 37.52% 28.60%

We use the derived groundness information in the follow-
ing way. Our current implementation only performs op-
timizations for constraints that are always ground. This
groundness information is supplied as groundness declara-
tions by the programmer. In this case however, instead of
programmer supplied declarations we derive the groundness
declarations from the results of the groundness analysis and
add them to the program. The compiler then takes these
annotations into account as usual, and may perform the fol-
lowing optimizations:

• Hash tables (with O(1) lookup, insertion and dele-
tion) may be used for indexing, if the lookup keys are
ground. The keys need to be ground in order to al-
ways generate the same integer hash value throughout
the program. This is not possible for variables and we
have not explored any alternatives for them yet.

• No delay provisions have to be taken for constraints
whose relevant arguments are ground. See [2, 10] for a
discussion of delay avoidance. The following optimiz-
ations are possible for constraints that do not trigger:

– No construction of a continuation goal to be ex-
ecuted on reactivation.

– No redundant attempt to look for delay variables.

– No history needs to be maintained for propaga-
tion rules that may be evaluated only once for
a particular sequence of head constraints. Re-
visiting a propagation rule is possible when con-
straints triggers or one constraint observes the
other before the latter has reached its occurrence
in the propagation rule. Hence this optimization
requires both input from the groundness and late
storage analysis.

We have experimentally evaluated our groundness ana-
lysis on the seven benchmarks from the previous section that
deal with ground constraints. Table 3 lists the runtime of
the optimized benchmarks relative to the unoptimized ones.

It turns out that the annotations derived from the ground-
ness analysis results are optimal for all but the uf and uf opt

benchmarks. Optimal means that the derived annotations
are as strong as the actual calling patterns of the constrains
in those benchmarks. For the uf and uf opt the derived an-
notations are nearly optimal and the runtime performance

Table 3: Groundness analysis: runtime results for

optimized programs relative to unoptimized pro-

grams.

Benchmark Optimized/Unoptimized
fib 57.4%
fibonacci 57.8%
mergesort 11.0%
primes 81.0%
uf 2.6%
uf opt 3.7%
wfs 73.3%

is not significantly different from optimal annotations. The
results also show that even with a fairly weak groundness
analysis for CHRs, fairly drastic speed-ups can be achieved
for some programs.

8. CONCLUSION
To the best of our knowledge, this is the first work on us-

ing abstract interpretation for CHRs. Many ad-hoc analyses
and optimizations have been developed for CHRs already:
delay avoidance [2, 10], late storage, continuation optimiz-
ation, and index optimization [2]. Typically the analysis
processed to obtain the necessary information for these ana-
lyses is only discussed informally or left out altogether.

We have shown that it is possible to apply the general
and structured ideas of abstract interpretation to CHRs.
Based on our definition of the call-based refined operational
semantics of CHRs, we have formulated a framework for
abstract interpretation. To illustrate the framework we have
formulated two analyses in it: the CHR specific late storage
analysis and the groundness analysis which we have lifted to
CHRs from logic programming. These examples show that
it is possible to formally define program analyses for CHRs
which yield useful information for program optimization.

8.1 Future Work
We have only presented rather straightforward analysis

domains as an illustration of the framework. These analyses
should of course be strengthened with additional control flow
information, derived from other analyses. It is for example
possible to derive from the late storage analysis the never
stored property for some constraints. This information re-
duces the set of constraints that may be reactivated.

Moreover the groundness analysis has only been exploited
in the case that arguments of constraints are ground
throughout their full lifetime. Of course it is also possible
to exploit the groundness information in other cases, i.e.
when arguments are ground from a certain occurrence or at
certain occurrences.

Many more analyses for CHRs should be considered within
the framework as well as the combination of these analyses.

Several efficiency issues have risen during the formulation
of our framework, namely the necessity for several fixpoint
computations. The impact of these computations on the
overall efficiency of analyses in our framework remains to
be explored. Possibly widening strategies are necessary to
avoid overly long analysis times for some domains. A com-
prehensive study of the time/accuracy trade-off is required.

The common abstract interpretation analysis technique
may facilitate the more unified view of host language and
CHRs to perform multi-language analysis. For example in
the case of CHRs in Prolog, a single groundness analysis for
both Prolog and its embedded CHR code seems required to
obtain the strongest results since there is a reciprocal in-
teraction between both languages. Probably a more unified
semantics of both is necessary to accomplish this.

Acknowledgments
We would like to thank Maŕıa Garćıa de la Banda and Bart
Demoen for their help and useful contributions to this paper.

9. REFERENCES
[1] P. Cousot and R. Cousot. Abstract interpretation: a

unifed lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proc. of
the 4th Symp. on Principles of Programming
Languages, pages 238–252. ACM, 1977.

[2] G. J. Duck, P. J. Stuckey, M. Garćıa de la Banda, and
C. Holzbaur. Extending arbitrary solvers with
constraint handling rules. In Proceedings of the 5th
ACM SIGPLAN international conference on
Principles and Practice of Declarative Programming,
pages 79–90. ACM Press, 2003.

[3] G. J. Duck, P. J. Stuckey, M. Garćıa de la Banda, and
C. Holzbaur. The refined operational semantics of
constraint handling rules. In 20th International
Conference on Logic Programming (ICLP’04), pages
90–104, Saint-Malo, France, September 2004.

[4] T. Frühwirth. Theory and Practice of Constraint
Handling Rules. In P. Stuckey and K. Marriot, editors,
Special Issue on Constraint Logic Programming,
volume 37, pages 95–138, October 1998.

[5] G. Duck and T. Schrijvers and P. Stuckey. An abstract
interpretation framework for constraint handling rules.
Report CW 391, Department of Computer Science,
K.U.Leuven, Leuven, Belgium, Sept. 2004.

[6] C. Holzbaur and T. Frühwirth. Compiling constraint
handling rules into Prolog with attributed variables.
In G. Nadathur, editor, Proceedings of the
International Conference on Principles and Practice
of Declarative Programming, number 1702 in LNCS,
pages 117–133. Springer Verlag, 1999.

[7] Intelligent Systems Laboratory. SICStus Prolog User’s
Manual. PO Box 1263, SE-164 29 Kista, Sweden,
October 2003.

[8] K. Marriott, H. Søndergaard, and N. Jones.
Denotational abstract interpretation of logic
programs. ACM Transactions on Programming
Languages and Systems, 16(3):607–648, 1994.

[9] T. Schrijvers. CHR benchmarks and programs,
October 2004. Available at
http://www.cs.kuleuven.ac.be/˜toms/Research/CHR/.

[10] T. Schrijvers and B. Demoen. Antimonotony-based
delay avoidance for CHR. Report CW 385,
K.U.Leuven, Department of Computer Science, July
2004.

[11] T. Schrijvers and B. Demoen. The K.U.Leuven CHR
system: implementation and application. In First
Workshop on Constraint Handling Rules: Selected
Contributions, number 2004-01, 2004. ISSN 0939-5091.

