
Hardening Binaries against More Memory Errors
Gregory J. Duck

Department of Computer Science
National University of Singapore

Singapore
gregory@comp.nus.edu.sg

Yuntong Zhang
Department of Computer Science
National University of Singapore

Singapore
yuntong@comp.nus.edu.sg

Roland H. C. Yap
Department of Computer Science
National University of Singapore

Singapore
ryap@comp.nus.edu.sg

Abstract
Memory errors, such as buffer overflows and use-after-free,
remain the root cause of many security vulnerabilities in
modern software. The use of closed source software fur-
ther exacerbates the problem, as source-based memory error
mitigation cannot be applied. While many memory error
detection tools exist, most are based on a single error detec-
tion methodology with resulting known limitations, such
as incomplete memory error detection (redzones) or false
error detections (low-fat pointers). In this paper we intro-
duce RedFat, a memory error hardening tool for stripped
binaries that is fast, practical and scalable. The core idea be-
hind RedFat is to combine complementary error detection
methodologies—redzones and low-fat pointers—in order to
detect more memory errors that can be detected by each in-
dividual methodology alone. However, complementary error
detection also inherits the limitations of each approach, such
as false error detections from low-fat pointers. To mitigate
this, we introduce a profile-based analysis that automatically
determines the strongest memory error protection possible
without negative side effects.

We implement RedFat on top of a scalable binary rewrit-
ing framework, and demonstrate low overheads compared to
the current state-of-the-art. We show RedFat to be language
agnostic on C/C++/Fortran binaries with minimal require-
ments, and works with stripped binaries for both position
independent/dependent code. We also show that the RedFat
instrumentation can scale to very large/complex binaries,
such as Google Chrome.

CCS Concepts: • Software and its engineering; • Secu-
rity and privacy→ Software and application security;
Systems security;

Keywords: Static binary rewriting, binary instrumentation,
binary hardening, memory safety, memory errors, buffer
overflows, use-after-free, low-fat pointers, redzones

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9162-7/22/04.
https://doi.org/10.1145/3492321.3519580

ACM Reference Format:
Gregory J. Duck, Yuntong Zhang, and Roland H. C. Yap. 2022.
Hardening Binaries against More Memory Errors. In Seventeenth
European Conference on Computer Systems (EuroSys ’22), April 5–
8, 2022, RENNES, France. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3492321.3519580

1 Introduction
The problem of memory errors, such as buffer overflows and
use-after-free, date back to the 1970s [33]. Unfortunately,
memory errors are still the major source of security vul-
nerabilities in modern software, with Google and Microsoft
reporting that “70% of our serious security bugs are memory
safety problems” [7, 22]. One mitigation is to harden the pro-
gram against memory errors using a suitable sanitizer [32],
such as AddressSanitizer (ASAN) [29] or LowFat [10]. Such
sanitizers work by instrumenting the program with explicit
memory safety checks, thereby detecting memory errors be-
fore they occur. However, most sanitizers are implemented
as compiler transformations, meaning that the availability
of source code is taken for granted.
For closed-sourced or Commercial Off-The-Shelf (COTS)

software, source-code-based sanitizers are not applicable.
However, binary-only software can be just as vulnerable
to memory errors and 0-day attack, meaning that harden-
ing against exploitation may still be necessary. Rather than
source-level instrumentation, we can attempt to instrument
the binary code directly. However, directly instrumenting bi-
nary code is known to be a challenging problem. For example,
(i) binaries are usually “stripped”, meaning that source-level
information, such as symbols and types, are not available;
(ii) instrumenting (modifying) the binary is difficult to do
in a reliable fashion; and (iii) the overheads of binary in-
strumentation are generally much higher than source-level
instrumentation. As such, most existing binary instrumen-
tation tools [5, 8, 25] have one or more limitations, such as
high overheads, limited programming language support (e.g.,
no C++ binaries), or only support specific types of binaries
(e.g., Position-Independent-Code (PIC) only).

Furthermore, due to the lack of type information at the
binary-level, existing tools are limited to specific classes
of memory error. For example, tools such as [5, 8, 25] de-
tect out-of-bounds errors (e.g., buffer overflows) by wrap-
ping objects with inaccessible poisoned redzones (or just red-
zones for short). However, a well-known limitation of this
method is the inability to detect out-of-bounds errors that

https://doi.org/10.1145/3492321.3519580
https://doi.org/10.1145/3492321.3519580

EuroSys ’22, April 5–8, 2022, RENNES, France Gregory J. Duck, Yuntong Zhang, and Roland H. C. Yap

“skip” redzones to access adjacent valid objects. For exam-
ple, given an array A of length 𝑛, then A[𝑛] will access the
redzone and be detected as an overflow. However, the “big-
ger” overflow of A[𝑛+16] will “skip” a redzone (of size 16)
altogether and access the next object (say B) in memory. The
“bigger” overflow will not be detected with redzone-based
tools, meaning that the instrumented binary may still be
vulnerable. Fixing the problem is non-trivial, since the lack
of type information means that it is difficult to distinguish
valid from invalid memory access. For example, the “invalid”
access A[𝑛+16] may be indistinguishable from “valid” ac-
cess (B−𝑛−16) [𝑛+16] at the binary level, since both can be
compiled into the same instruction.
In this paper, our objective is to harden binaries, includ-

ing COTS binaries, against memory errors with minimal
assumptions for broader applicability. We want to be lan-
guage and compiler agnostic, as well as to avoid making
special assumptions such as specific languages or PIC, which
may not hold for COTS binaries. We want to scale to large
binaries (e.g., Google Chrome at >100MB), all with a rea-
sonable performance overhead. Finally, we want to detect
“more” memory errors, i.e., detect as many memory errors as
is practically possible, including out-of-bounds errors that
skip over redzones. The latter is especially important for the
binary hardening use case, as opposed to testing and bug
detection, since the aim is to prevent the binary from being
exploited against an adaptable attacker. For hardening, it is
important to detect as many classes of memory error as is
practically possible.

In order to increase error detection coverage, our approach
is to harden binaries using “complementary” memory error
detection methodologies—specifically, we augment redzones
with pointer arithmetic checking in the form of low-fat point-
ers [10]. The basic idea is that low-fat pointers can detect
some classes of memory error that are missed by redzones
alone, and vice versa, leading to a synergistic combination.

However, adapting pointer arithmetic checking to binary
code faces several challenges. As noted above, one main chal-
lenge is that both valid and invalid memory access may be
compiled into identical instructions, making it impossible to
distinguish between the two cases by inspection alone. With-
out this distinction, naïve pointer arithmetic checking may
incorrectly flag some legitimate memory access as an out-of-
bounds error, i.e., a false detection (a.k.a., a false positive). To
address this challenge, our philosophy is opportunistic hard-
ening—i.e., harden the binary as much as possible without
compromising on scalability and negative side effects. For ex-
ample, to address the problem of false positives, we introduce
a profile-based analysis that can use dynamic information
to detect problematic memory access operations for which
pointer arithmetic checking may not be accurate. For such
operations, the instrumentation can be adapted accordingly,
thereby avoiding the problem of false positives in production
code. Finally, we show that affected operations are relatively

rare in practice, meaning that the majority of memory access
can still enjoy full redzone and pointer arithmetic checking.

Contributions. In this paper, we present RedFat—a binary
instrumentation tool that is primarily designed towards the
hardening use case, rather than testing/debugging. As such,
RedFat aims to detect “more” memory errors that other
tools can miss, including memory errors that could be used
by an attacker to bypass existing state-of-the-art tools. In
summary, the main contributions of this paper are:

• We present a complementary memory error protection
scheme for binaries, combining strengths of redzone and
low-fat pointer memory error detection. As such, RedFat
can detect more classes of memory error than the current
state-of-the-art tools that are based on redzones-only. This
will also be shown by our evaluation.

• We adapt pointer arithmetic checking, in the form of low-
fat pointers, to binaries. Specifically, we present a solution
to the problem of false positives using automatic allow-list
generation based on a profile-based analysis. We show this
approach is pragmatic.

• We present several optimizations which significantly re-
duce overheads introduced by binary rewriting.

• We have implemented our approach in the form of the
RedFat tool.We evaluate RedFat on standard benchmarks
as well as a web browser. The overhead is 1.55× for the full
SPEC CPU2006 benchmark for write protection, which is
sufficient to harden the binary against common attacks
and is usable for many (COTS) binaries. For protecting
both reads and writes, the overhead increases to 3.81×
(compared to 11.76× overhead for the current state-of-the-
art tool: Valgrind Memcheck [25, 30]). We show that the
RedFat instrumentation can scale to large and complex
binaries, such as the Chrome browser, which is particularly
challenging for binary instrumentation tools.

Open Source Release
https://github.com/GJDuck/RedFat

2 Background and Motivation
Our high-level aim is to harden binary programs against
memory errors, such as out-of-bounds errors (e.g., buffer
overflows) and use-after-free. Here, we summarize the cur-
rent memory error instrumentation technologies.

2.1 Memory Error Checking
Many different memory error checking methodologies exist.
These are broadly classified into object-based and pointer-
based methods. Object-based methodologies work by attach-
ing meta information to allocated objects, allowing for cer-
tain classes of memory errors to be detected when the object
is accessed. Pointer-based methodologies attach meta infor-
mation to pointers, allowing for invalid pointer arithmetic

https://github.com/GJDuck/RedFat

Hardening Binaries against More Memory Errors EuroSys ’22, April 5–8, 2022, RENNES, France

to be detected. Each approach has its own set of advantages
and disadvantages.

Redzones. One popular object-based methodology for de-
tecting memory errors is poisoned redzones—an approach
used by state-of-art memory safety tools such as Address-
Sanitizer (ASAN) [29] and Memcheck [30]. The basic idea
is to surround each allocated object (e.g., as returned by
malloc) with a small block of unused memory, i.e., the red-
zone. The redzone memory is not meant to be accessed, and
thus any malicious or unintentional access at runtime will
be deemed an out-of-bounds error.

A common method for implementing redzones is to map
the program’s virtual address space into a special shadow
memory region that tracks the state of corresponding mem-
ory. A basic implementation will track at least two states:
Allocated and Redzone. Only access to memory marked
as Allocated is allowed, and access to Redzone memory
will be detected as a memory error. This implements a form
of memory poisoning, i.e., the redzone memory is effectively
“poisoned” meaning that it cannot be accessed. Some imple-
mentations also implement a third state (Free) that marks
free’ed objects, allowing for use-after-free error detection.

Memory error detection is implemented using instrumen-
tation, i.e., additional code inserted into the program to detect
whether the accessed memory is poisoned or not. To do so,
a runtime system provides a state(𝑝𝑡𝑟) operation that maps
a pointer ptr to the state of the corresponding memory (e.g.,
stored in the shadow memory). The program is then instru-
mented using the following schema that explicitly checks
for poisoned memory before each read or write operation:

if (state(𝑝𝑡𝑟) ≠ Allocated)
error();

*ptr = val; or val = *ptr;
(Redzone)

Only access to Allocated memory is allowed. Access to
Free memory is detected as a use-after-free, and Redzone
memory is detected as an out-of-bounds error.
While redzones are effective at detecting many out-of-

bounds and use-after-free errors, not all errors can be de-
tected [29]. For example, consider the following pair of vul-
nerable code snippets:

int n = input();
for (i = 0; i < n; i++)

array[i] = val;

int i = input();
array[i] = val;

(a) incremental (b) non-incremental

An attacker that controls the input can induce an out-of-
bounds error in both snippets (a) and (b). Snippet (a) is in-
cremental—the code accesses memory sequentially. Snippet
(b) is non-incremental— array[𝑖] can be accessed without
constraint. A redzone-based defense will always detect the

1 static int
2 channelised_fill_sdh_g707_format(
3 sdh_g707_format_t* in_fmt ,
4 guint16 bit_flds ,
5 guint8 vc_size ,
6 guint8 speed)
7 {
8 int i = 0;
9 if (0 == vc_size)
10 return -1;
11 in_fmt ->m_vc_size = vc_size;
12 in_fmt ->m_sdh_line_rate = speed;
13 memset (&(in_fmt ->m_vc_index_array [0]),0xff ,
14 DECHAN_MAX_AUG_INDEX);
15 in_fmt ->m_vc_index_array[speed - 1] = 0;
16 // ...
17 return 0;
18 }

Figure 1. Code snippet for CVE-2012-4295. Line 15 has a
non-incremental out-of-bounds error.

overflow in the incremental snippet (a) when the buffer over-
flow runs into the redzone. However, for the non-incremental
snippet (b), the attacker can craft a value for i that can “skip-
over” one (or more) redzones and into other objects. As no
redzone memory is accessed, no memory error is detected.
This leads to our first problem statement:

Problem #1: Poisoned memory/redzones are effective
at detecting incremental out-of-bounds and

use-after-free errors, but ineffective at detecting
non-incremental out-of-bounds errors.

Example 1 (Non-incremental Overflow). We illustrate a
non-incremental memory error with a real world exam-
ple. The wireshark program contains a non-incremental
bug (CVE-2012-4295) as shown in Figure 1. The vulnerable
statement is at line 15. Here, im_fmt is a heap-allocated
struct, and im_fmt->m_vc_index_array is an array sub-
object with length DECHAN_MAX_AUG_INDEX (5) char ele-
ments. The input speed parameter can be controlled by an
attacker using a specially crafted packet, either sent through
the network or loaded through a malicious Packet Capture
(PCAP) file. Valgrind Memcheck [25, 30], a state-of-the-art
memory error detection tools for binaries, uses a 16 byte red-
zone by default, meaning that a large enough value for speed
(e.g., 200) is sufficient to “skip-over" the im_fmt struct’s red-
zone and bypass detection. This allows the attacker to zero
bytes in adjacent heap objects or malloc headers, which can
be used to change pointer or data values, and this may be
used as the basis for an attack. □

Low-fat pointers. One alternative to redzone-based mem-
ory error detection is low-fat pointers [10, 13]—a method for
encoding bounds meta information (e.g., object size and base)
directly into the pointer representation itself. Conceptually,

EuroSys ’22, April 5–8, 2022, RENNES, France Gregory J. Duck, Yuntong Zhang, and Roland H. C. Yap

... ...

M*32GB

su
bh
ea

p
#M

0x0 32GB

su
bh
ea

p
#1

64GB

su
bh
ea

p
#2

96GB

su
bh
ea

p
#3

Figure 2. The low-fat allocator memory layout. Here, the virtual address space of the program is partitioned into several
large (32GB) regions. Regions #1-#M are managed by the low-fat allocator, and each contains a subheap that services memory
allocations of a specific size range.

low-fat pointers could be implemented using the following
simple example encoding:

union {
void *ptr;
struct {

uintptr_t size:10; /* MSB */
uintptr_t unused:54;

};
};

Here, the object size can be directly retrieved using the size
field, i.e., (size(ptr)=ptr.size). Furthermore, by ensuring
that all allocated objects are size-aligned, the object base
address can also be retrieved by rounding-down ptr to the
nearest size-multiple, i.e.:

base(ptr) = ptr.ptr − (ptr.ptr mod ptr.size)

Finally, the pointer value itself (ptr.ptr) must be derefer-
encable, i.e., a native x86_64 machine pointer. The latter
differentiates low-fat pointers from traditional “fat pointers”,
such as those implemented by CCured [24], which are incom-
patible with existing binary code. By replacing the default
memory allocator (e.g., malloc) with a “low-fat” allocator
(e.g., lowfat_malloc), the base/size of allocated objects can
be easily tracked. For most binaries, the default memory
allocator can be replaced using the LD_PRELOAD trick.

The simplified low-fat pointer encoding (above) is difficult
to implement in practice, since it imposes strong constraints
on object placement in the program’s virtual address. In-
stead, we use the more sophisticated low-fat pointer encod-
ing of [10, 13]. This encoding works by partitioning the pro-
gram’s virtual address space into several large (e.g., 32GB)
equally-sized regions as illustrated by Figure 2. There are
two main types of regions: low-fat regions #1-#𝑀 (for some
predefined𝑀) that contain objects managed by the low-fat
allocator, and non-fat regions that contain everything else
(stack, globals, code, etc.). Each low-fat region will contain
a subheap that services allocations of a predetermined size
range. For example, under the default configuration of [13],
region #1 handles allocations of sizes 1-16 bytes, region #2
handles allocations of sizes 17-32 bytes, region #3 handles
sizes of 33-48 bytes, etc. As with the simplified encoding,
allocated objects are aligned to a multiple of the allocation
size. Under this design, we can define efficient size(ptr) and

base(ptr) operations as follows:
size(ptr) = SIZES[ptr / 32GB]
base(ptr) = ptr − (ptr mod size(ptr))

Here, 32GB is the region size, and SIZES is a predefined table
mapping region indices to allocation sizes. The size(ptr)
and base(ptr) operations are designed to be very fast, and
can be implemented in a few x86_64 instructions. Finally,
by defining SIZES[𝑖]=SIZE_MAX for non-fat regions #i, we
see that size(ptr)=SIZE_MAX and base(ptr)=NULL, meaning
that “over approximate” (but otherwise valid) bounds will be
returned for non-fat pointers (ptr). This ensures that non-fat
pointers will always be considered “in bounds”.

The low-fat allocator of [10, 13] has been implemented as
part of the LowFat tool [20]. Compared to glibc malloc,
the overheads of the low-fat allocator are low (∼1% perfor-
mance [11] and ∼3%memory [10]). The low-level implemen-
tation details of the low-fat allocator are complex, so we refer
the reader to [10] for more information.
The primary application of low-fat pointers is bounds

checking. Specifically, low-fat pointers can be used to check
whether pointer arithmetic is within the bounds of the allo-
cated object using the following instrumentation schema:

const void *lb = ptr + i;
const void *ub = ptr + i + sizeof(*ptr);
if (lb < base(ptr))

error();
if (ub > base(ptr) + size(ptr))

error();

ptr[i] = val; or val = ptr[i];

(LowFat)

Given a dereference of the form (ptr[i]), the (LowFat) check
enforces the property that the pointer arithmetic (ptr + i) is
valid w.r.t. the ptr . Since the (LowFat) check is protecting
the pointer arithmetic itself, any out-of-bounds error that
“skips-over” the space between objects can be detected as an
error. For example, in Example 1, a sufficiently large value for
the array index (speed) can be used to bypass the (Redzone)
check. However, given ptr=&in_fmt->m_vc_index_array
and 𝑖=speed−1, the same overflow will be detected by (Low-
Fat) check, regardless of the value of speed. As such, low-fat
pointers are useful for hardening applications where the at-
tacker is aware of the defense.

Hardening Binaries against More Memory Errors EuroSys ’22, April 5–8, 2022, RENNES, France

Although detecting non-incremental overflows is an ad-
vantage, low-fat pointers also have disadvantages. One dis-
advantage is that low-fat pointers may report false positives
in the case where the programmer (or compiler) intentionally
creates “out-of-bounds pointers”. For example, one known
C anti-idiom is to create an array indexed from a non-zero
value 𝐾 , i.e., array[𝐾] is the first element, array[𝐾+1] is
the second, etc. This can be implemented by subtracting 𝐾
from the array pointer before access, as illustrated by the
snippet:

array -= K;
int i = input2();
array[i] = val;

(c) false positive
For the sake of an example, we shall assume that input2()
always returns a valid index. Since the resulting array access
(array[i]) always targets the intended object, this snippet
will not be flagged by poisoned redzones instrumentation.
However, for low-fat pointers, this snippet appears to be an
out-of-bounds error overflowing whatever object happens
to be pointed to by array into the object pointed to by
array+i. The problem is also exacerbated at the binary level,
where the compiler can optimize the generated code to use
out-of-bounds pointers, even for cases where such pointers
do not exist at the source-code level.
It is tempting to use static binary analysis to distinguish

intentional and unintentional out-of-bounds memory access.
However, the problem is undecidable in the general case.
For example, assuming the compiler chooses the following
register assignment array=%rax, i=%rbx and val=%rcx,
then the assignment in snippets (b) and (c) can be plausibly
compiled into the same x86_64 instruction:

mov %rcx, (%rax,%rbx,4) # array[i] = val

Thus, to determine if this instruction is a false positive or not,
the context of the instruction must be analyzed. However,
even the sub-problem of determining all context instructions
is generally undecidable. This leads to the second problem
statement:

Problem #2: Low-fat pointers cannot distinguish
between intentional and unintentional out-of-bounds
pointer arithmetic, possibly leading to false positives.

It should be noted that Problem #2 also applies to source-level
low-fat pointers [10, 13]. However, the deliberate creation of
out-of-bounds pointers is undefined behavior under the C/C++
semantics, so such detection can still be justified. However,
this rationale cannot be applied to binary hardening, since
high-level C/C++ language semantics are not relevant at the
x86_64 binary-level.

Besides the potential for false positives, low-fat pointers
also have some additional challenges/limitations, namely:

- No use-after-free detection: Since the metadata is stored in
the pointer rather than the object, low-fat pointers do not
protect against use-after-free errors.

- Out-of-bounds detection granularity: A typical malloc im-
plementation will pad allocations in order to satisfy min-
imum size and alignment constraints. For example, an
allocation of size 13 bytes will be “rounded-up” to 16 bytes
by adding 3 bytes of padding. The low-fat pointer instru-
mentation of [10, 13] will not detect overflows into such
padding.

- Detecting pointer arithmetic: The detection of pointer arith-
metic at the binary-level can be difficult. For example,
the instruction (addq %rax, %rbx) may be used for both
pointer or integer arithmetic, and it may not be possible to
differentiate the two cases through static analysis.

2.2 Binary Rewriting
Our overall aim is to harden stripped binary code by inserting
instrumentation to check for memory errors. To do so, we
need some method for rewriting the original binary into a
new version with the instrumentation inserted. For this we
will use a form of binary rewriting [36].

One approach is Dynamic Binary Instrumentation (DBI)
which rewrites the binary code as the program executes, es-
sentially inserting the instrumentation on top of Just-in-Time
(JIT) execution. Well known DBI systems include PIN [21],
DynamoRIO [4] and Valgrind [25]. The main disadvantage
of DBI is the cost of the JIT as well as requiring a heavy-
weight infrastructure. Valgrind is one such tool designed for
heavyweight DBI and applications such as Memcheck [30].
Another approach is static binary rewriting, which aims to
rewrite binary files “on disk”. This approach does not require
a heavyweight infrastructure, but can also be difficult to get
right. For example, inserting new code can modify jump/call
targets, and this must be corrected in the output binary. Some
tools attempt to statically recover control flow information
(i.e., jump/call targets), usually resorting to heuristics/as-
sumptions about the input binary. For example, Egalito [37]
and RetroWrite [8] assume that the binary is compiled from
C and is Position Independent Code (PIC). As such, these tools
cannot rewrite binaries compiled from C++.

An alternative is trampoline-based static binary rewriting.
This approach attempts to minimize the number of moved
instructions, thereby preserving the original control-flow as
much as possible. To do so, the instrumentation is placed in
a trampoline that is placed at an (otherwise-unused) virtual
address. At the instrumentation point, the corresponding
instruction is replaced by a jump that redirects control-flow
to the trampoline. The trampoline executes (1) the instru-
mentation (2) the displaced instruction, and (3) a jump back
to the next instruction after the insertion point. This ap-
proach can scale better without making assumptions on
the source language, compiler or PIC requirements. Recent

EuroSys ’22, April 5–8, 2022, RENNES, France Gregory J. Duck, Yuntong Zhang, and Roland H. C. Yap

advances in trampoline-based rewriting for the x86_64—
namely, the E9Patch tool [9]—have made it possible to insert
jumps-to-trampolines at any location, regardless of instruc-
tion size. This approach has proven to be very scalable, and
is able to rewrite very large/complex programs including
web browsers (Google Chrome and FireFox). The details
are very technical, so we refer the reader to [6, 9] for more
information. In this paper, we employ E9Patch as the under-
lying binary rewriter, which allows RedFat to be language
(C/C++/Fortran), compiler (gcc/clang), and PIC agnostic.

3 Design
Both the redzone and low-fat pointer-based approaches have
pros and cons. The redzone approach can detect use-after-
free errors and incremental out-of-bounds errors, but may
not protect against non-incremental out-of-bounds errors.
The low-fat pointer approach can detect non-incremental
out-of-bounds errors, but not use-after-free errors and may
suffer from false positives. For security hardening, we ar-
gue that neither approach offers satisfactory protection. For
example, an attacker may exploit a non-incremental out-
of-bounds error to bypass the redzone check (i.e., Problem
#1) or a use-after-free to bypass the low-fat pointer check.
Instead of choosing one approach over the other, our core
idea is to combine the (Redzone)+(LowFat) instrumentation
together for “complementary” protection, meaning that an
attack missed by one defense can be detected by the other. As
such, complementary protection offers an overall stronger
defense than each individual protection can offer alone.
However, protecting all memory access with combined

(Redzone)+(LowFat) checking exhibits some practical dif-
ficulties. For example, in addition to false positives (see Sec-
tion 2, Problem #2), it is generally difficult to differentiate
pointer and integer arithmetic at the binary level. To ad-
dress these issues, our general design philosophy will be
opportunistic hardening, meaning that we should use the
stronger (Redzone)+(LowFat) checking as much as possi-
ble, and only fall back to (Redzone)-only checking when
the stronger check cannot be justified. As will be shown
by our experimental results (Section 7), most memory ac-
cess can be protected by the stronger (Redzone)+(LowFat)
check. The process of merging instrumentation methodolo-
gies also introduces technical challenges, such as managing
performance overheads.

We now summarize the main design decisions with corre-
sponding justification. Our overall aim is to build a practical
binary hardening tool that maximizes protection, provided
that correctness and scalability can be maintained.

Scalability and performance. We aim to build a usable bi-
nary hardening tool that can scale to large/complex bina-
ries, as well as being language/compiler/PIE agnostic. Gen-
erally we prioritize scalability over performance, and choose
a trampoline-based binary rewriting methodology (E9Patch)

as the foundation of the tool. To reduce the performance im-
pact as much as possible, we introduce several optimizations,
including check elimination, batching and merging.

Another concern is the design of the instrumented check
itself. Simply concatenating complementary protections to-
gether effectively doubles the number of checks, and this can
be another source of overhead. Existing redzone implemen-
tations have little synergy with existing low-fat pointer im-
plementations, meaning that the necessary object-tracking
bookkeeping is essentially doubled. One of our aims is to
design a hybrid (LowFat)+(Redzone) check so that as much
functionality overlaps as possible, minimizing the perfor-
mance impact and implementation effort. In summary:

Use a scalable trampoline-based binary rewriting
methodology, and optimize as much as possible.

Pointer arithmetic. The (LowFat) instrumentation checks
whether a pointer arithmetic operation (ptr+i) is within the
bounds of the object. However, x86_64 binary code lacks
type information, making it difficult to differentiate pointer
and integer arithmetic. One exception is x86_64 memory
operands, which combine pointer arithmetic and memory
access into a single instruction. For example, consider the
instruction ⟨movq %rax, (%rbx,%rcx,4) ⟩ with the mem-
ory operand highlighted. This instruction is a valid com-
pilation of the statement *(ptr+i)=val with ptr=%rbx,
i=%rcx, and val=%rax. Here, the pointer arithmetic is un-
ambiguous, meaning that the full (LowFat)+(Redzone) check
ought to be applied under the philosophy of opportunistic
hardening. In summary:

Use a conservative redzone-based policy by default,
otherwise opportunistically harden with

lowfat+redzone if pointer arithmetic is unambiguous.

False positives. The (LowFat) instrumentation may suffer
from false positives caused by the program deliberately using
out-of-bounds pointers. On one hand, false positives impact
on the utility of the defense. On the other hand, pure redzone-
based defenses may miss non-incremental out-of-bounds
errors, and this could be exploited by an attacker. Under
the philosophy of opportunistic hardening, we aim to use
the combined (Redzone)+(LowFat) for cases where false
positives are deemed unlikely to occur, and to fall back to
(Redzone) otherwise. In summary:

Use a conservative redzone-based policy by default,
and use a combined lowfat+redzone policy when

deemed safe from false positives.

Hardening Binaries against More Memory Errors EuroSys ’22, April 5–8, 2022, RENNES, France

STATE/SIZE

OBJECT

base(ptr)

size(ptr)

ptr

SIZE

(padding)

...

...

Figure 3. Illustration of the layout of an OBJECT allocated
by the replacement malloc(SIZE). In this illustration we
assume that addresses grow down. Here, each object is pre-
pended with a (16 byte) redzone that also stores state/size
metadata. Given a pointer (ptr) into the object, the metadata
can be quickly retrieved using the low-fat base(ptr) opera-
tion. The low-fat allocator may also (pad) the allocation in
order to satisfy size/alignment constraints.

The static detection of false positives is undecidable in the
general case. Instead, we propose a dynamic (profile-based)
analysis that can automatically generate an allow-list for all
memory access deemed to be (LowFat)-safe (see Section 5).
Members of the allow-list will therefore be instrumented
with the stronger (Redzone)+(LowFat) check, otherwise
the default (Redzone)-only check will be used. Although
dynamic analysis has known limitations, the approach is
nevertheless justified under opportunistic hardening.

4 Memory Error Detection
Our aim is to enforce the combined (Redzone)+(LowFat)
check whenever possible. A naïve approach would be to
simply concatenate the two instrumentation schemas, essen-
tially doubling the instrumentation. Instead, we propose a
more optimized approach, by redesigning each schema so
that as much functionality can be shared as possible.

4.1 Redzone and Low-fat Instrumentation
Redzone-based memory error detection works by (1) padding
objects with redzone memory (e.g., 16 bytes), and (2) main-
taining a shadow state mapping virtual addresses to an Al-
located, Free and Redzone state. The runtime system pro-
vides a state(ptr) operation that maps the given virtual ad-
dress ptr to the corresponding state. To pass the (Redzone)
check, the state must always be Allocated. AddressSani-
tizer (ASAN) [29], implements the state(ptr) operation using
a shadow memory—a reserved memory region storing the
state value of each corresponding 8 byte word. The state(ptr)
operation can be implemented as:

stateshadow (ptr) = *(SHADOW_MAP + (ptr ÷ 8))

The division can be efficiently implemented as a left shift.

We present an alternative implementation of redzones by
leveraging the low-fatmemory allocator and low-fat pointers.
The idea is to store metadata inside the redzone itself, since
redzone memory is otherwise unused, thereby eliminating
the need for a separate (large) shadow memory. To do so,
we implement a replacement memory allocator (malloc)
that is implemented as a wrapper over the underlying low-
fat allocator (lowfat_malloc) introduced in Section 2. The
wrapper transparently prepends a 16-byte redzone region to
the front of each allocated object, conceptually as follows:

malloc(SIZE) = lowfat_malloc(SIZE+16)+16

This region serves the dual purposes of: (1) the redzone mem-
ory, and (2) shadow memory to store object state/size meta
information. Under this design, the state can be quickly re-
trieved at runtime using the low-fat pointer base(ptr) opera-
tion. Invalid access to redzone memory itself can be detected
by calculating the distance from the accessed pointer and
base address. This leads to the following alternative defini-
tion for state(ptr):
statelowfat (ptr) = (ptr − base(ptr) < 16? Redzone : *base(ptr))

The modified OBJECT layout for an allocation of SIZE bytes
is illustrated in Figure 3. Here, a 16-byte redzone region
is prepended to the OBJECT, which also serves as shadow
memory for the STATE/SIZE. The statelowfat definition can
be used to implement the (Redzone) check. For our applica-
tion, the main advantage of statelowfat is that it implements
redzones only using low-fat pointer operations, meaning
that the base(ptr) operation can be shared between the (Red-
zone) and (LowFat) checks.
Finally, we note that a redzone region is only ever pre-

pended to the start of objects, and never to the end. However,
the redzone at the start of the next object in memory serves
as a redzone at the end of the current object, as illustrated in
Figure 3. This works even if the next object is unallocated.

Implementing low-fat pointers at the binary level. As we
work at the binary level, the (LowFat) instrumentation is
applied to memory operands. The general form of a mem-
ory operand is the highlighted portion of the following mov
instruction (in AT&T syntax):

mov %rax, seg:disp(base,idx,scale)

A memory operand is essentially a 5-tuple, comprising:
1. A segment register (seg)
2. A 32bit signed integer displacement (disp)
3. A base register (base)
4. An index register (idx)
5. An integer {1, 2, 4, 8} scale (scale)

Semantically, a memory operand represents the expression:

seg + disp + base + idx × scale

One or more components may be omitted, in which case the
following default values are used: zero (for seg, disp, base,

EuroSys ’22, April 5–8, 2022, RENNES, France Gregory J. Duck, Yuntong Zhang, and Roland H. C. Yap

1 void check(void *ptr ,
2 size_t i,
3 size_t len)
4 {
5 // STEP (1): Calculate memory access range
6 void *LB = ptr+i;
7 void *UB = ptr+i+len;
8
9 // STEP (2): Calculate object base address
10 size_t *BASE = NULL;
11 if (BASE == NULL)
12 BASE = base(ptr);// (LowFat) base
13 if (BASE == NULL)
14 BASE = base(LB); // (Redzone) base
15 if (BASE == NULL)
16 return; // Non -fat pointer
17
18 // STEP (3): Get object state & size
19 size_t STATE = state(BASE);
20 size_t SIZE = objectSize(BASE);
21
22 // STEP (4): Check for errors
23 if (SIZE > size(BASE)-16)
24 error (); // Corrupted metadata
25 if (STATE == FREE)
26 error (); // UaF check failed
27 if (LB < BASE +16)
28 error (); // LB check failed
29 if (UB > BASE +16+ SIZE)
30 error (); // UB check failed
31 }

Figure 4. Pseudo-code for memory hardening checking.
Here, the instrumented check takes a pointer (ptr), an in-
dex (i), and an access size (len) as input. The code on lines
11-12,23-24 is optional, and the code on lines 19-20,25-30
is mergeable. Here, we assume a redzone size of 16 bytes.

and idx) or one (for scale). We can implement the (LowFat)
instrumentation for memory operands by using the follow-
ing substitution: ptr=base and i=disp+scale×idx.

4.2 Complementary Instrumentation
The pseudo-code for the combined (Redzone)+(LowFat)
check is shown in Figure 4. Here, we represent the check as a
function, check(), that takes three arguments: a pointer ptr
(representing an address, i.e. 64-bit address), an index/offset
i, and a memory access size len. The error() function
will be called if a memory error is detected. The error()
function will abort execution (for hardening applications) or
log the error (for bug finding applications).
The check() function is divided into several steps. Step

(1), in lines 6-7, calculates the lower/upper bound of the
memory access (LB/UB). Step (2), in lines 10-16, calculates
the base address of the accessed object using the low-fat
base() operation. This calculation is done in two steps: first,
we attempt to calculate the base address from ptr, as in
(LowFat). If that fails because ptr is a non-fat pointer, we
calculate the base address from the accessed address itself
LB, as in (Redzone). In essence, this implements a form of
“fallback” checking: if ptr is a non-fat pointer, then we use

LB to calculate the base pointer in order to enforce redzone-
based protection. This covers the subtle case where a non-fat
pointer overflows into the heap. If the resulting address LB is
also a non-fat pointer, the check() function simply returns
(line 16).

Step (3), in lines 19-20, retrieves the metadata that is stored
at the base of the object, including the object’s allocation
STATE (Allocated/Free returned by state()) and the ob-
ject’s malloc SIZE (returned by objectSize()). Step (4),
in lines 23-30, implements the various checks, including:

1. lines 23-24: validating SIZE against the low-fat pointer
size size(BASE) for metadata hardening (see below);

2. lines 25-26: the use-after-free check;
3. lines 27-28: the lower-bound check;
4. lines 29-30: the upper-bound check;

Access to redzone memory is protected by the lower and up-
per bound checks. Note that both the lower and upper bounds
of the access are checked. Other schemes, such as [10] only
check the lower bound for efficiency reasons. However, this
can lead to undetected overflows, which is especially dan-
gerous when the metadata is stored in the redzone memory
itself. In effect, the Figure 4 instrumentation schema im-
plements accurate checking of both the lower and upper
bounds against the original malloc size (SIZE). This means
that overflows into padding (see (padding) from Figure 3)
will also be detected.

Metadata hardening. Under the object layout of Figure 3,
metadata is directly stored in the redzonememory prepended
to the start of each object. This protects the metadata from
direct modification by instrumented code. However, an at-
tacker may still attempt to modify the metadata using a
memory error in unprotected code, e.g., from an uninstru-
mented library. To mitigate this threat, lines 23-24 validates
the stored SIZE against the (immutable) low-fat size(BASE)
value, which limits potential secondary overflows to within
the allocation padding.

Optional code. Some code is optional (at the user’s discre-
tion). For example, we can exclusively use LB to calculate
the base pointer by removing the code on lines 11-12. This
effectively disables (LowFat) checking in place of exclusive
(Redzone) checking. Similarly, the check on lines 23-24 can
be removed to disable metadata hardening, trading some
security for better performance.

Mergeable code. The instrumentation can be made smaller
by merging code. One idea is to combine the representation
of the object’s state and size. For example, we can encode the
Allocated state by (SIZE > 0), and the free by (SIZE = 0).
This eliminates the need for a separate representation of
both values and thereby simplifying the code on lines 19-20.
Another optimization merges several checks into one. Since
the Free state is represented by (SIZE = 0), the use-after-free

Hardening Binaries against More Memory Errors EuroSys ’22, April 5–8, 2022, RENNES, France

prog.orig

(1)

RedFat

prog.proftestsuite

allow.lst

prog.orig

RedFat

prog.hard

(2)

Figure 5. Illustration of profile-based false positive elim-
ination. Step (1) is the profiling phase. Here, the original
binary (prog.orig) is instrumented with a modified Fig-
ure 4 instrumentation that is designed to detect all memory
access that passes the (LowFat) check. Next, the instru-
mented prog.prof binary is then run against a test suite
to generate an allow-list (allow.lst) of all passing mem-
ory access that are unlikely to trigger false positives. Step
(2) is the production phase. Here, the final hardened binary
(prog.hard) is generated using the allow.lst. For this,
all memory access from allow.lst is instrumented with
the full (Redzone)+(LowFat) check, and all other memory
access with the (Redzone)-only check.

check on lines 25-26 can be directly merged into the out-of-
bounds check on lines 27-30. In other words, if SIZE=0, the
bounds check will always fail, eliminating the need for a
separate UaF check. Finally, the lower bound check on lines
27-28 can be merged into the upper bound check on lines
29-30 by taking advantage of integer underflow. The basic
idea is to use the following alternative definition for UB:

void *UB =
(void *)(uint32_t)(LB - (BASE+16))

+ BASE+16+len;

If the LB is within bounds, the calculated UB will be the same
as the original value. Otherwise, an integer underflow will
occur, resulting in a large value for UB which will fail the
upper check on lines 29-30. Although this definition of UB
requires more operations, in our experience the removal of
an additional branch is worthwhile.

5 False Positive Mitigation
Complementary memory error protection inherits the bene-
fits of both redzones and low-fat pointers, but can also inherit
the limitations. Specifically, the low-fat pointer component
of the Figure 4 schema may still detect false positives for
intentional out-of-bounds pointers that are created by the
programmer or compiler, see Problem #2 from Section 2.
Since static analysis is impractical, we instead propose a

profile-based solution that attempts to find potential false
positives using dynamic analysis. The basic idea is to first
profile the binary in order to gather information on which
memory operations are likely to be false positives. Next,

this information is used to harden the binary for production.
The analysis itself is heuristic-based, and is based on the
following simple hypothesis:

Eachmemory operation is always a false positive
or never a false positive.

This hypothesis is based on common C anti-idioms that trig-
ger false positives. For example, consider the anti-idiom
(array-K)[i] to access array elements for positive con-
stant K (e.g., snippet (c) from Section 2). Then the base pointer
array-K will always be out-of-bounds of the array object,
for all possible executions. Thus, the above memory access
will always fail the (LowFat) check, regardless of the pro-
gram input or execution path. Conversely, idiomatic array
access array[i] will never trigger a false positive.

We can use this hypothesis to minimize false positives by
using a simple two-phase workflow, as illustrated in Figure 5:

1. Profiling Phase: A test binary is generated by instru-
menting the input binary with a variant of the Figure 4
check. The test binary is then run against a given test
suite that exercises normal program behavior. Only
the memory operations that are observed to always
pass the (LowFat) check are added to an allow-list.

2. Production Phase: A hardened production binary is gen-
erated by instrumenting the input binary with (Red-
zone)+(LowFat) for memory operations in the allow-
list, or (Redzone)-only otherwise. The production bi-
nary can then be deployed accordingly.

For example, the anti-idiom (array-K)[i] memory access
will fail the (LowFat) check during the profiling phase,
hence, will not be included in the generated allow-list. As will
be discussed in Section 7, this anti-idiom accounts for most
of the false positives observed in the SPEC benchmarks. All
other observed normal (i.e., idiomatic) memory access will be
added to the allow-list. In the production binary, the normal
memory access will enjoy the full (Redzone)+(LowFat) pro-
tection, whereas anti-idiom memory access will be protected
by the baseline (Redzone) check.

The allow-list generation step assumes that actual memory
errors are rare. If an actual memory error is encountered
during profiling, it may be incorrectly classified as a false
positive. This risk is mitigated by the testing process itself,
where unusual program behavior is more likely to be noticed
by the user. Conversely, a given memory operation may
only trigger a false positive sporadically (i.e., violating the
hypothesis), and this may be missed during testing. However,
our aim is to minimize false positives even if they cannot be
completely eliminated. We will also validate our approach
experimentally in Section 7.
As our approach is based on profiling, the quality of the

generated allow-list depends on the quality of the test suite,
especially in relation to coverage. This is an inherent limita-
tion of profile-based analysis. Nevertheless, under the phi-
losophy of opportunistic hardening, even partial coverage is

EuroSys ’22, April 5–8, 2022, RENNES, France Gregory J. Duck, Yuntong Zhang, and Roland H. C. Yap

jmpq .Ltrampoline2
jmpq .Ltrampoline1

jmpq .Ltrampoline3
jmpq .Ltrampoline4

check1(...)

jmpq .Linstruction2
mov %r10, 0x8(%rbx)

.Ltrampoline1

check3(...)

jmpq .Linstruction4
movq $0, 0x8(%rax)

.Ltrampoline3

check2(...)

jmpq .Linstruction3
mov %r8, (%rax)

.Ltrampoline2

check4(...)

jmpq .Linstruction5
movq $0, 0x10(%rax)

.Ltrampoline4

mov %r8, (%rax)
mov %r10, 0x8(%rbx)

movq $0, 0x8(%rax)
movq $0, 0x10(%rax)

mov %r8, (%rax)
jmpq .LtrampolineA

movq $0, 0x8(%rax)
movq $0, 0x10(%rax)

check1(...)

jmpq .Linstruction2
mov %r10, 0x8(%rbx)

.LtrampolineA

check2(...)
check3(...)
check4(...)

(a) (b) (c)

Figure 6. Illustration of the check batching optimization. Here, (a) is the original basic block, (b) instruments each instruction
with its own trampoline, and (c) batches all instrumented checks into a single trampoline.

better than none. Furthermore, automated coverage-guided
testing tools, such as the American Fuzzy Lop (AFL) [1] over
binaries [16], can be used to boost coverage. Finally, we
note that all memory access will still be protected by the
(Redzone) check, regardless of the allow-list. Thus, even an
incomplete allow-list can offer a stronger protection than
the current state-of-the-art.

6 Optimization
Another design goal is to minimize the performance impact
of the instrumented binary. We can mitigate much of the
overhead by designing three main optimizations: check elim-
ination, batching and merging.

Check elimination. The check elimination optimization
removes instrumentation on instructions that will never
fail the Figure 4 check. For example, consider the instruc-
tion: ⟨movq %rax,0x601000⟩. Under the low-fat malloc,
the pointer 0x601000 will always be non-fat, and thus the
instruction can never fail Figure 4. We can generalize this
to any memory operand that provably cannot reach heap
memory. This includes any memory operand:

1. With no index register ; and
2. With no base register, or a base register not within

±2GB (minimum/maximum displacement) from heap
memory.

Assuming the default locations for executable and stackmem-
ory (at least ±2GB from heap memory), the second rule can
also exclude memory operands using the instruction pointer
(%rip) or stack pointer (%rsp) as the base register. This elimi-
nates many instrumented checks for instructions that access
the global or stack memory.

Check batching. Trampoline-based binary rewriting is high-
ly scalable, but also introduces runtime overheads in the
form of jumps to/from trampolines. One direct way to re-
duce overhead is to minimize the number of trampolines and
jumps. This can be achieved by “batching” multiple checks
for consecutive memory operations into a single trampoline
whenever possible.

Example 2 (Check Batching). Consider the following in-
struction sequence which is part of the same basic block:

.Linstruction1: mov %r10,0x8(%rbx)

.Linstruction2: mov %r8,(%rax)

.Linstruction3: movq $0x0,0x8(%rax)

.Linstruction4: movq $0x0,0x10(%rax)

The instruction sequence is illustrated in Figure 6(a). Un-
der the baseline instrumentation schema, each memory op-
eration will need to be checked separately, leading to the
spaghetti-like code illustrated in Figure 6 (b). This fragments
the executable code over 1+4 = 5 non-contiguous locations
(the main program + four trampolines), and uses a total of
4+4 = 8 jumps. The loss of locality and additional control-
flow redirections can result in a non-trivial runtime overhead.
An optimized version is shown in Figure 6 (c). The optimized
version uses a single trampoline (.LtrampolineA) that is
invoked only once at first memory operation in the basic
block. This version uses a total of 1+1 = 2 locations and
1+1 = 2 jumps. □

In order to apply the check batching optimization, memory
access instructions are grouped into sequences ⟨I1, ..., I𝑛⟩
satisfying the following properties:

1. The ordering of ⟨I1, ..., I𝑛⟩ is the same as the program;
2. Each I𝑖 belongs to the same basic block as I1; and
3. Each I𝑖 can be reordered to position I1 without affect-

ing the memory access location.
If satisfied, the instrumented checks for ⟨I1, ..., I𝑛⟩ can be
combined into a single trampoline which is invoked exactly
once before I1, as illustrated by Figure 6 (c).

A static binary analysis is necessary to find sequences of
memory access instructions that can be batched. The reorder-
ing property can be established with a simple static register
usage analysis. The same basic block property can be estab-
lished using a control-flow (basic block) recovery analysis.
Although precise control-flow information is not perfectly
recoverable in the general case, an over approximation will
be sufficient for the purpose of optimization. For example,
suppose an instruction I𝑖 is misidentified as a jump/call tar-
get, then two smaller batches (⟨I1, ..., I𝑖−1⟩, ⟨I𝑖, ..., I𝑛⟩) will
be used instead of the optimal sequence ⟨I1, ..., I𝑛⟩. In other

Hardening Binaries against More Memory Errors EuroSys ’22, April 5–8, 2022, RENNES, France

mov %r8, (%rax)
jmpq .LtrampolineA

movq $0, 0x8(%rax)
movq $0, 0x10(%rax)

check1(...)

jmpq .Linstruction2
mov %r10, 0x8(%rbx)

.LtrampolineA

check234(...)

(d)

Figure 7. Illustration of the check merging optimization.

words, an over approximationmay result in suboptimal batch
sizes, but otherwise does not affect correctness. Similarly,
if the analysis were to yield an under approximation (i.e.,
missed targets due to anti-idiomatic calls/jumps), then the
coverage of the protection may be reduced (i.e., missed in-
strumented checks). However, this case also does not affect
correctness, and our implementation uses a conservative
control-flow recovery analysis that errs on the side of over
approximation rather than under.

Check merging. We can further improve the performance
of batching by merging instrumented checks for sufficiently
similar memory operations. For example, considering the
instruction sequence from Example 2. The instructions at
.Linstruction{2, 3, 4} all use a memory operand of the
same basic form:

disp(%rax) where disp ∈ {0x0, 0x8, 0x10} (MemOps)

Using check merging, we can treat the instructions as a single
“merged” memory access over the combined address range.

We can generalize this idea as follows. For the purpose
of the instrumentation (Figure 4), the memory access range
LB...UB can be defined as a pair of memory operands:

LB = seg:disp(base,idx,scale)
UB = seg:disp+len(base,idx,scale)

Here, len is the size of the memory access. The displacement
effectively defines a partial ordering as follows:

seg:disp1(base,idx,scale) < seg:disp2(base,idx,scale)
iff

disp1 < disp2
Using this partial ordering, we canmerge the checks formem-
ory operands that share the same segment, base, index and
scale. For example, in (MemOps) the memory operands only
differ by the displacement. Thus, we can define the following
merged bounds over all three memory access operations:

LBmerged = 0x0(%rax)
UBmerged = 0x10+8(%rax)

Themerged bounds LBmerged ...UBmerged need only be checked
once rather than three times. The check merging-optimized
version of Example 2 is illustrated in Figure 7 (d).

Additional low-level optimizations. The trampoline imple-
mentations of the (LowFat) and (Redzone) checks are imple-
mented using optimized x86_64 assembly code. In general,

the trampoline code needs 3-4 scratch registers and must
also preserve the flags register (%eflags). It is also common
for some registers to be clobbered after the instrumentation
point, in which case the corresponding values need not be
preserved. Our implementation uses a simple static analy-
sis to determine which registers (if any) are clobbered, and
specializes the trampoline code accordingly.

7 Experiments
We have implemented RedFat on top of the E9Patch binary
rewriting tool. RedFat takes a binary file as input, then out-
puts a hardened binary with all relevant memory operations
instrumented. The hardened binary can then be used as a
drop-in replacement for the original. To enable hardening, a
libredfat.so runtime library (which includes the low-fat
malloc implementation) must be LD_PRELOAD’ed. Our im-
plementation supports all of the optimizations described in
Section 6. The experiments are run on an Intel Xeon Silver
4114 CPU (clocked at 2.20GHz) with 32GB of RAM. Each
benchmark/program is compiled using gcc/g++/gfortran
compiler version 5.4.0.

7.1 Performance
We have evaluated the performance of RedFat against the
full SPEC CPU2006 benchmark suite [18], including C, C++,
and Fortran programs. All benchmarks are compiled with
the -O2 optimization level, with the exception of gamess,
which is compiled with -O1. This is to work around an ex-
isting and documented miscompare (incorrect output with
-O2) with the uninstrumented gamess benchmark at higher
optimization levels.1 To evaluate the performance of RedFat,
we compare against the original uninstrumented binaries
as well as Valgrind Memcheck [25]—a scalable, state-of-the-
art memory error detection tool for binary code. We note
that Memcheck is based on heavyweight dynamic binary
instrumentation rather than static rewriting, and primarily
intended for the testing/debugging use case rather than hard-
ening. To make the comparison as fair as possible, we disable
Memcheck’s leak checking (–leak-check=no) and unini-
tialized read checking (–undef-value-errors=no). To vali-
date the false positive minimization workflow (Section 5), the
benchmarks were instrumented using an allow-list generated
from the SPEC train workload used as the test suite.
The experimental results for the SPEC ref workload are

shown in Table 1. Here, the unoptimized column represents
the performance of RedFat-instrumentation without any op-
timization enabled. The +elim, +batch, +merge columns pro-
gressively enable the check elimination, batching andmerging
optimizations respectively. The RedFat tool also supports
the removal of some checks for better performance. The -
size and -reads columns remove the size metadata hardening
and read checking respectively. The latter can be justified

1See https://gcc.gnu.org/gcc-4.8/changes.html

https://gcc.gnu.org/gcc-4.8/changes.html

EuroSys ’22, April 5–8, 2022, RENNES, France Gregory J. Duck, Yuntong Zhang, and Roland H. C. Yap

Table 1. Performance of RedFat and Memcheck on the SPEC CPU2006 benchmark suite. The C / C++ / Fortran benchmarks
are highlighted with different colors. Legend: coverage denotes the percentage of memory operands covered by full (Red-
zone)+(LowFat) check (others are covered by (Redzone)-only). Baseline denotes the original binaries with no instrumentation;
+elim enables check elimination; +batch enables check batching; +merge enables check merging; -size disables size metadata
hardening; -reads disables read instrumentation; NR=not run due to known issues. Baseline column lists the timing in seconds;
other columns (except coverage column) list the slow-down as a factor compared to the Baseline. Memcheck is invoked with
–leak-check=no and –undef-value-errors=no. The main results are highlighted in bold.

Binary coverage
Baseline RedFat +elim +batch RedFat fully optimized Memcheck
(seconds)

unopti-
mized

+merge -size -reads

perlbench 88.9% 286 12.83× 9.82× 8.26× 7.46× 6.75× 2.26× 29.22×
bzip2 97.0% 452 7.38× 6.52× 5.99× 5.52× 4.75× 1.98× 7.36×
gcc 66.0% 242 5.34× 4.49× 4.21× 3.92× 3.52× 1.70× 14.32×
mcf 98.7% 280 3.69× 3.64× 3.33× 2.86× 2.67× 1.13× 4.74×
gobmk 90.7% 441 6.83× 4.62× 3.92× 3.75× 3.58× 1.56× 19.84×
hmmer 48.0% 341 17.88× 15.66× 12.94× 10.67× 9.52× 2.20× 12.07×
sjeng 98.6% 496 7.48× 5.84× 4.94× 4.75× 4.57× 1.51× 20.59×
libquantum 100.0% 309 3.32× 3.33× 3.39× 3.38× 2.80× 1.80× 4.73×
h264ref 20.0% 456 11.54× 8.87× 7.58× 7.19× 6.34× 1.52× 21.71×
omnetpp 62.8% 306 3.56× 3.42× 3.00× 2.89× 2.62× 1.40× 12.40×
astar 99.7% 389 4.84× 4.06× 3.75× 3.52× 3.23× 1.25× 7.82×
xalancbmk 78.9% 195 7.28× 6.47× 6.14× 6.02× 5.03× 1.13× 22.34×
milc 99.4% 456 3.98× 3.60× 3.59× 1.91× 1.80× 1.15× 4.68×
lbm 98.8% 236 5.44× 4.42× 3.79× 1.31× 1.23× 1.05× 7.15×
sphinx3 99.5% 502 7.36× 7.06× 6.86× 6.60× 5.91× 1.20× 12.85×
namd 100.0% 349 7.19× 5.95× 5.29× 2.63× 2.44× 1.28× 7.77×
dealII 81.7% 282 7.70× 6.70× 6.45× 5.70× 4.93× 1.71× NR
soplex 96.4% 212 5.00× 4.83× 4.57× 4.09× 3.68× 1.59× 6.24×
povray 99.9% 139 10.91× 8.86× 7.12× 5.35× 4.88× 1.81× 36.96×
bwaves 85.2% 344 7.54× 6.47× 6.25× 6.10× 5.57× 1.26× 10.87×
gamess 43.0% 680 9.04× 6.17× 5.40× 4.34× 4.31× 1.98× 15.41×
zeusmp 23.2% 319 4.85× 3.89× 3.42× 2.41× 2.42× 1.50× NR
gromacs 83.3% 270 7.40× 3.76× 3.50× 2.28× 2.07× 1.27× 12.72×
cactusADM 99.9% 460 8.97× 2.70× 2.56× 2.30× 2.11× 1.13× 14.43×
leslie3d 100.0% 262 9.38× 8.99× 8.63× 7.86× 7.00× 2.66× 11.23×
calculix 28.7% 760 4.74× 4.47× 5.09× 5.08× 4.68× 1.24× 10.83×
GemsFDTD 98.7% 331 7.27× 6.67× 6.39× 5.36× 4.93× 2.13× 8.35×
tonto 95.0% 454 5.85× 4.03× 3.92× 3.27× 2.90× 1.61× 14.81×
wrf 27.0% 420 8.54× 8.07× 7.82× 6.93× 6.19× 2.38× 13.98×
Geometric mean 72.6% 345 6.78× 5.50× 5.06× 4.18× 3.81× 1.55× 11.76×

for hardening applications where many common exploits
require a write operation as part of the attack sequence. The -
size column represents the performance of RedFat that most
closely aligns with Valgrind Memcheck (last column). On
average, RedFat has less overhead than Memcheck, with
a 3.81× slowdown (the -size column) for RedFat, versus
a 11.76× slowdown for Memcheck. For -reads, the perfor-
mance is further reduced to 1.55×, which is fast enough for
many practical applications while also protecting the binary
against many common attacks.

Aside from lower performance overheads, RedFat is also
able to instrument more binaries. ForMemcheck, the dealII

and zeusmp benchmarks failed to run because of known is-
sues documented in the Valgrind repository.2 These failures
are due to Valgrind being unable to handle large data seg-
ments, as well as only supporting 64-bit floating-point values
(instead of the full 80-bits supported by x87 instructions).
RedFat does not have such limitations, and is able to instru-
ment and run the full SPEC suite, including all C/C++/Fortran
benchmarks.

Coverage from profile-based hardening. The coverage col-
umn shows the percentage of dynamically reachable mem-
ory access instructions that were covered by the (Redzone)+

2See docs/internals/SPEC-notes.txt

Hardening Binaries against More Memory Errors EuroSys ’22, April 5–8, 2022, RENNES, France

(LowFat) check, versus those covered by (Redzone)-only.
The coverage is based on the profile-based false positive min-
imization workflow as explained in Section 5, and by using
the SPEC trainworkload to generate the allow-list. Overall,
the mean coverage is 72.6% for full (Redzone)+(LowFat)
protection. In contrast, the current state-of-art memory er-
ror detection tools for binaries are based on (Redzone)-only
checking, and therefore have an effective 0% coverage. Fi-
nally, we note that the coverage result could be further im-
proved by running additional tests during the profiling phase
(beyond the train workload). Nevertheless, we present the
results “as-is” for a consistent methodology.

Detected errors. Both the RedFat and Valgrind Memcheck
tools detect out-of-bounds read errors in the calculix and
wrf Fortran benchmarks. The calculix benchmark has 4
read underflows in the main() function, all of which are of
the form array[-1]. The wrf benchmark has a read over-
flow in the interp_fcn() function.

Optimizations. The experimental results in Table 1 show
that each optimization from Section 6 is significant. Specifi-
cally, check elimination (+elim) improves the overhead from
6.78× to 5.50×, check batching (+batch) further improves
the overhead to 5.06×, and check merging (+merge) further
improves the overhead to 4.18×. Overheads can be further
improved by removing checks, to 3.81× and 1.55×with (-size)
and (-reads) respectively.

False positives. We also reran the SPEC benchmarks with
full (Redzone)+(LowFat) checking enabled on all memory
access (i.e., no profile-based allow-list). In this case, some
false positives were reported, including: 1 from perlbench,
14 from gcc, 1 from gobmk, 1 from povray, 5 from bwaves,
3 from gromacs, 32 from GemsFDTD, 26 from wrf, and 2
from calculix. Some false positives are known and have
been reported previously [10]. Most of the false positives
were caused by accessing an array base pointer of the form
(array-K) for some K. Although this is an anti-idiom and
undefined behavior in C/C++, it is natively supported in For-
tran where the base index of an array need not be zero. For
example, the following is a false positive from the wrf bench-
mark:

REAL, DIMENSION(its:ite, kts:kte, 2) :: fqy
...

fqy(i, k, jp1) = ...

The code defines a Fortran multidimensional array with the
index ranges its...ite, kts...kte, and 1..2. The gfortran
compiler essentially normalizes the array base pointer to be
fqy-K, creating an intentional out-of-bounds pointer. Such
an out-of-bounds pointer will be detected as a false positive
when accessed using the (LowFat) check. False positives of
this form can be readily detected during the profile-based
analysis.

CVE entry Memcheck RedFat
CVE-2007-3476 (php) 0/1 (0%) 1/1 (100%)
CVE-2016-1903 (php) 0/1 (0%) 1/1 (100%)
CVE-2012-4295 (wireshark) 0/1 (0%) 1/1 (100%)
CVE-2016-2335 (7zip) 0/1 (0%) 1/1 (100%)
CWE-122-Heap-Buffer (Juliet) 0/480 (0%) 480/480 (100%)

Table 2. CVEs/CWEs for non-incremental bounds errors.

7.2 Non-incremental Overflows
The main advantage of the (LowFat) check is the ability to
detect non-incremental out-of-bounds errors. To evaluate
the effectiveness of our approach, we create a test suite that
includes (1) four real-world Common Vulnerabilities and Ex-
posures (CVEs) with non-incremental overflows, and (2) the
subset of Juliet test suite [26] with non-incremental over-
flows. The CVEs originate from vulnerable versions of php (a
general-purpose scripting language), wireshark (a network
protocol analyzer), and 7zip (a file archiver). For each test
case, we model an offset that is controlled by the attacker,
meaning that an adjacent heap object will be accessed. We
tested both RedFat and Valgrind Memcheck.

A summary of the results is shown in Table 2. Our experi-
ments show that RedFat is able to detect all non-incremental
errors from all test cases, which is the expected result un-
der RedFat’s design. On the other hand, Valgrind Mem-
check, which uses (Redzone)-only checking, cannot detect
these errors for suitably crafted offsets. Our results show
that non-incremental errors do exist in practice, and can
be used to bypass (Redzone)-only checking for an attacker
that is aware of the defense. Thus, the stronger protection
of (Redzone)+(LowFat) is justified in these cases.

7.3 Scalability
Scalability is important for practical tools, especially for hard-
ening applications, where the tool should mitigate existing
bugs and not introduce new bugs. To evaluate scalability,
we use RedFat to instrument the Google Chrome [17] web
browser version 80.0.3987.132 with (Redzone)+(LowFat)
checking for all write operations. The closed-source Chrome
binary is ∼149MB, which is much larger than the SPEC2006
binaries combined, and is considered challenging for binary
instrumentation. To measure the performance, we use the
Kraken browser benchmark [19] and the results are shown
in Figure 8. Here, RedFat is able to successfully instrument
Chrome and the resulting binary runs stable. Overall, the
instrumented binary exhibits a 1.28× overhead (geometric
mean) under the Kraken benchmarks.

7.4 Limitations
RedFat is designed to detect out-of-bounds and use-after-
free errors. However, RedFat cannot detect other kinds of
errors such as sub-object bounds errors (i.e., overflow an array

EuroSys ’22, April 5–8, 2022, RENNES, France Gregory J. Duck, Yuntong Zhang, and Roland H. C. Yap

member of a struct) or type confusion (i.e., bad casts). The
detection of these kinds of error depends on type information
(e.g., struct layouts) which is generally unavailable at the
binary-level. Similarly, the layout of global and stack objects
is also generally unavailable at the binary-level, meaning that
RedFat is focused on protecting heap objects only. That said,
most modern binaries partly mitigate stack write overflows
using stack canaries.
RedFat is designed to be compatible with most off-the-

shelf Linux ELF binaries. However, since RedFat is based
on E9Patch [9], RedFat inherits the limitations of the latter,
such as restrictions with self-modifying code. RedFat also
depends on replacing the default glibc malloc implemen-
tation in the instrumented binary. However, this approach
may not be effective for binaries which use their own Cus-
tom Memory Allocators (CMAs), or are otherwise designed
to minimize heap allocation altogether (e.g., by using stack-
/global memory). Finally, since RedFat is based on static
binary rewriting, only the binaries that are explicitly instru-
mented by RedFat will be protected. For example, if the
main program (e.g., main) is instrumented by RedFat, but
a dynamic library dependency (e.g., libdependency.so)
is not, then only the former will enjoy memory error pro-
tection at runtime. RedFat supports both ELF executables
and shared objects, meaning that it is possible to separately
instrument both the main program and any dynamic library
dependency as required.

8 Related Work
Many different source-level and binary-level memory safety
tools have been proposed [32]. Most [5, 8, 15, 25, 29] are based
on some variant of redzone protection, but others are based
on (low) fat pointers [10, 13, 24] or some other metadata
tracking scheme [2, 12, 14, 23, 24, 38].

Heavyweight Dynamic Binary Instrumentation tools, such
as DrMemory [5] and Valgrind Memcheck [25, 30], compete
with RedFat in terms of scalability. For example, Memcheck
is able to run most SPEC2006 benchmarks, and was able
to load Chrome to the start page under our testing. How-
ever, scalability is not perfect. Furthermore, these tools only
support a redzone-based checking. Memcheck also has high
overheads, at 11.76× evenwith some features disabled, which
is too slow for most applications.
Like RedFat, RetroWrite’s Binary ASAN [8] also imple-

ments memory error detection using static binary rewriting.
RetroWrite’s static binary rewriting methodology is based
on the notion of reassemblable disassembly [34, 35]. This is
feasible for some PIC binaries compiled from C code (C++
binaries are not supported). Unlike E9Patch, RetroWrite can
insert the instrumentation inline because of the assumptions
made.When applicable, this approach is generally faster than
trampoline-based binary rewriting. However, RetroWrite’s
Binary ASAN only implements redzone-only protection and

as
ta
r

be
at
-d
et
ec
ti
on df

t
ff
t

os
ci
ll
at
or

ga
us
si
an
-b
lu
r

da
rk
ro
om

de
sa
tu
ra
te

pa
rs
e-
fi
na
nc
ia
l

st
ri
ng
if
y-
ti
nd
er
bo
x
ae
s
cc
m

pb
kd
f2

sh
a2
56
-i
te
ra
ti
ve

Ge
om
etr
ic
Me
an

100%

150%

200%

250%

300%

Figure 8. Chrome overhead using the Kraken benchmarks.

the motivating application is fuzz testing rather than hard-
ening.

Tools such as DieHard [3], DieHarder [27], FreeGuard [31],
ASLR [28] are based on randomization rather than binary
rewriting and instrumentation. Such tools offer a probabilis-
tic defense, and are designed to make attacks more difficult
rather than impossible. While our current implementation
also incorporates basic heap randomization, a full integration
is orthogonal to the ideas here and left as future work.

9 Conclusion
In this paper, we have presented a binary instrumentation
system for detecting memory errors such as buffer overflows
and use-after-free. Our approach is primarily designed to-
wards the hardening use cases, rather than testing/debugging.
As such, we use a stronger memory error checking—based
on complementary redzone and low-fat pointer protection—
allowing for the detection of “more” memory errors com-
pared to each individual protection used alone. However,
adapting low-fat pointers to the binary level may result in
false positives due to the ambiguous nature of memory access
without type/symbol information. We present a solution, in
the form of a profile-based analysis, that can mitigate most
potential false positives in practice.

We have implemented our approach in the form of theRed-
Fat tool, which is scalable, language agnostic (e.g., C/C++/For-
tran binaries), applicable (e.g., PIC versus non-PIC binaries),
and achieves a much lower overhead compared to the cur-
rent state-of-the-art; all while offering a stronger defense
against memory errors.

Acknowledgements
This work was partially supported by the National Satellite
of Excellence in Trustworthy Software Systems, funded by
the National Research Foundation (NRF) Singapore under
the National Cybersecurity R&D (NCR) programme; and the
Ministry of Education, Singapore (Grant No. MOE2018-T2-1-
142). We also thank our shepherd, Valerio Schiavoni, as well
as the anonymous referees for their comments.

Hardening Binaries against More Memory Errors EuroSys ’22, April 5–8, 2022, RENNES, France

References
[1] AFL. 2022. https://github.com/google/AFL.
[2] P. Akritidis, M. Costa, M. Castro, and S. Hand. 2009. Baggy Bounds

Checking: An Efficient and Backwards-Compatible Defense Against
Out-of-Bounds Errors. In USENIX Security Symposium. USENIX.

[3] E. Berger and B. Zorn. 2006. DieHard: Probabilistic Memory Safety
for Unsafe Languages. In Programming Language Design and Imple-
mentation. ACM.

[4] D. Bruening, T. Garnett, and S. Amarasinghe. 2003. An Infrastructure
for Adaptive Dynamic Optimization. In Code Generation and Optimiza-
tion. IEEE.

[5] D. Bruening and Q. Zhao. 2011. Practical Memory Checking with Dr.
Memory. In Code Generation and Optimization. IEEE.

[6] B. Chamith, B. Svensson, L. Dalessandro, and R. Newton. 2017. Instruc-
tion Punning: Lightweight Instrumentation for x86-64. In Program
Design and Implementation. ACM.

[7] Chromium. 2022. https://www.chromium.org/Home/chromium-
security/memory-safety.

[8] S. Dinesh, N. Burow, D. Xu, , and M. Payer. 2020. RetroWrite : Statically
Instrumenting COTS Binaries for Fuzzing and Sanitization. In Security
and Privacy. IEEE.

[9] G. Duck, X. Gao, and A. Roychoudhury. 2020. Binary Rewriting with-
out Control Flow Recovery. In Programming Language Design and
Implementation. ACM.

[10] G. Duck and R. Yap. 2016. Heap Bounds Protection with Low Fat
Pointers. In Compiler Construction. ACM.

[11] G. Duck and R. Yap. 2018. An Extended Low Fat Allocator API and
Applications. https://arxiv.org/abs/1804.04812.

[12] G. Duck and R. Yap. 2018. EffectiveSan: Type and Memory Error
Detection using Dynamically Typed C/C++. In Programming Language
Design and Implementation. ACM.

[13] G. Duck, R. Yap, and L. Cavallaro. 2017. Stack Bounds Protection
with Low Fat Pointers. In Network and Distributed System Security
Symposium. Internet Society.

[14] F. Eigler. 2003. Mudflap: Pointer Use Checking for C/C++. In GCC
Developer’s Summit.

[15] A. Fioraldi, D. D’Elia, and L. Querzoni. 2020. Fuzzing Binaries for
Memory Safety Errors with QASan. In Secure Development. IEEE.

[16] X. Gao, G. Duck, and A. Roychoudhury. 2021. Scalable Fuzzing of
Program Binaries with E9AFL. In Automated Software Engineering.
IEEE.

[17] Google Chrome 2022. Google Chrome Web Browser. https://www.
google.com/chrome/.

[18] J. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. Computer
Architecture News 34, 4 (2006).

[19] Kraken. 2022. https://wiki.mozilla.org/Kraken.
[20] LowFat 2022. https://github.com/GJDuck/LowFat.
[21] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. Reddi, and K. Hazelwood. 2005. Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation. In Programming
Language Design and Implementation. ACM.

[22] Microsoft. 2019. Trends, Challenges, and Strategic Shifts in the
Software Vulnerability Mitigation Landscape. https://github.com/
Microsoft/MSRC-Security-Research/.

[23] S. Nagarakatte, Z. Santosh, M. Jianzhou, M. Martin, and S. Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C. In Programming Language Design and Implementation.
ACM.

[24] G. Necula, S. McPeak, and W. Weimer. 2002. CCured: Type-Safe
Retrofitting of Legacy Code. In Principles of Programming Languages.
ACM.

[25] N. Nethercote and J. Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Programming Language
Design and Implementation. ACM.

[26] NIST. 2022. Juliet Test Suite for C/C++ v1.3. https://samate.nist.gov/
SARD/testsuite.php

[27] G. Novark and E. Berger. 2010. DieHarder: Securing the Heap. In
Computer and Communications Security. ACM.

[28] Pax. 2022. Address Space Layout Randomization. http://pax.grsecurity.
net/docs/aslr.txt.

[29] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. 2012. Ad-
dressSanitizer: A Fast Address Sanity Checker. In Annual Technical
Conference. USENIX.

[30] J. Seward and N. Nethercote. 2005. Using Valgrind to Detect Unde-
fined Value Errors with Bit-Precision. In Annual Technical Conference.
USENIX.

[31] S. Silvestro, H. Liu, C. Crosser, Z. Lin, and T. Liu. 2017. FreeGuard:
A Faster Secure Heap Allocator. In Computer and Communications
Security. ACM.

[32] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz. 2019. SoK: Sanitizing for Security. In Security and Privacy.
IEEE.

[33] V. Veen, N. Sharma, L. Cavallaro, and H. Bos. 2012. Memory Errors:
The Past, the Present, and the Future. In Research in Attacks, Intrusions,
and Defenses.

[34] S. Wang, P. Wang, and D. Wu. 2015. Reassembleable Disassembling.
In Security Symposium. USENIX.

[35] S. Wang, P. Wang, and D. Wu. 2016. UROBOROS: Instrumenting
Stripped Binaries with Static Reassembling. In Software Analysis, Evo-
lution, and Reengineering. IEEE.

[36] M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl. 2019. From Hack
to Elaborate Technique - A Survey on Binary Rewriting. Computing
Surveys 52, 3 (2019).

[37] D. Williams-King, H. Kobayashi, K. Williams-King, G. Patterson, F.
Spano, Y. Wu, J. Yang, and V. Kemerlis. 2020. Egalito: Layout-Agnostic
Binary Recompilation. ACM.

[38] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and
Wouter W. Joosen. 2010. PAriCheck: An Efficient Pointer Arithmetic
Checker for C Programs. In Information, Computer and Communica-
tions Security. ACM.

https://github.com/google/AFL
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://arxiv.org/abs/1804.04812
https://www.google.com/chrome/
https://www.google.com/chrome/
https://wiki.mozilla.org/Kraken
https://github.com/GJDuck/LowFat
https://github.com/Microsoft/MSRC-Security-Research/
https://github.com/Microsoft/MSRC-Security-Research/
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Memory Error Checking
	2.2 Binary Rewriting

	3 Design
	4 Memory Error Detection
	4.1 Redzone and Low-fat Instrumentation
	4.2 Complementary Instrumentation

	5 False Positive Mitigation
	6 Optimization
	7 Experiments
	7.1 Performance
	7.2 Non-incremental Overflows
	7.3 Scalability
	7.4 Limitations

	8 Related Work
	9 Conclusion
	References

