
Satisfiability Modulo Constraint Handling Rules (Extended Abstract)∗

Gregory J. Duck
School of Computing, National University of Singapore

gregory@comp.nus.edu.sg

Abstract
Satisfiability Modulo Constraint Handling Rules
(SMCHR) is the integration of the Constraint Han-
dling Rules (CHRs) solver programming language
into a Satisfiability Modulo Theories (SMT) solver
framework. Constraint solvers are implemented in
CHR as a set of high-level rules that specify the
simplification (rewriting) and constraint propaga-
tion behavior. The traditional CHR execution al-
gorithm manipulates a global store representing a
flat conjunction of constraints. This paper intro-
duces SMCHR: a tight integration of CHR with a
modern Boolean Satisfiability (SAT) solver. Unlike
CHR, SMCHR can handle (quantifier-free) formu-
lae with an arbitrary propositional structure. SM-
CHR is essentially a Satisfiability Modulo Theories
(SMT) solver where the theory T is implemented
in CHR.

1 Introduction
Constraint Handling Rules (CHR) [Frühwirth, 1998] is an es-
tablished [Sneyers et al., 2010] rule-based programming lan-
guage for the specification and implementation of constraint
solvers. CHR has two main types of rules: simplification
rules (H ⇐⇒ B) that rewrites constraints H to B, and prop-
agation rules (H =⇒ B) that adds (propagates) constraints
B for every H . Constraint solvers are specified as sets of
rules.

Example 1 (Bounds Propagation Solver). A bounds propa-
gation solver propagates constraints of the form (x ≥ l) and
(x ≤ u) for numeric constants l (lower bound) and u (upper
bound). We can specify bounds propagation through addition
via the following rules:

plus(x, y, z) ∧ lb(y, ly) ∧ lb(z, lz) =⇒ lb(x, ly + lz)

plus(x, y, z) ∧ ub(y, uy) ∧ ub(z, uz) =⇒ ub(x, uy + uz)

Here plus(x, y, z) represents x = y + z, lb(x, l) represents
x ≥ l, and ub(x, u) represents x ≤ u. Given an initial goal

∗The paper on which this extended abstract is based was the re-
cipient of the best paper award of the 2012 International Conference
on Logic Programming [Duck, 2012].

plus(a, b, c) ∧ lb(b, 3) ∧ ub(b, 10) ∧ lb(c, 4) ∧ ub(c, 6), the
rules will propagate lb(a, 7) ∧ ub(a, 16). We can similarly
write rules to propagate bounds in other directions.

The operational semantics of CHR [Frühwirth,
1998][Duck et al., 2004][Sneyers et al., 2010] manipu-
late a global constraint store. The store represents a flat
conjunction of constraints. By default CHR does not support
goals/stores that are formulae with a rich propositional struc-
ture, i.e. containing disjunction, negation, etc. Some CHR
systems, such as the K.U.Leuven CHR system [Schrijvers
and Demoen, 2004], rely on the host language to provide
such functionality. For example, using Prolog’s backtracking
search to implement disjunction.

In this paper we use a different approach: we extend CHR
with a modern Boolean Satisfiability (SAT) solver to form
Satisfiability Modulo Constraint Handling Rules (SMCHR).
The idea is to specify constraint solvers using CHR in the
usual way, such as the rules in Example 1. SMCHR goals
are then quantifier-free formulae of CHR constraints over any
arbitrary propositional structure.
Example 2 (SMCHR Goal). For example, the following SM-
CHR goal encodes the classic n-queens problem for the in-
stance n = 2.

(Q1 = 1 ∨Q1 = 2) ∧ (Q2 = 1 ∨Q2 = 2) ∧
¬(Q1 = Q2) ∧ ¬(Q1 = Q2 + 1) ∧ ¬(Q2 = Q1 + 1)

This goal can be evaluated using an extended version of the
bounds propagation solver from Example 1. For n = 2 the
goal is unsatisfiable.
SMCHR is essentially an extensible Satisfiability Modulo
Theory (SMT) solver [Moura and Bjørner, 2011] where
the theory T solver is implemented in CHR. CHR is a
well established [Sneyers et al., 2010] solver specifica-
tion/implementation language, and is therefore a natural
choice for implementing theory solvers.

This paper is organized as follows: Section 2 introduces
the CHR language, Section 3 introduces the extended SM-
CHR language, Section 4 presents the SMCHR execution
algorithm DPLL(CHR), Section 5 presents an experimental
evaluation, and in Section 6 we conclude.

2 Constraint Handling Rules
This section presents an informal overview of Con-
straint Handling Rules (CHR). For a formal treatment,

see [Frühwirth, 1998].
CHR is a rule-based programming language with three

types of rules:
H ⇐⇒ B (simplification)

H =⇒ B (propagation)

H1 \ H2 ⇐⇒ B (simpagation)

where the head H , H1, H2, and body B are conjunctions
of constraints. CHR solvers apply rules to a set (represent-
ing a conjunction) of constraints S known as the constraint
store. The store may contain both CHR constraints (as de-
fined by the rules) and/or built-in constraints such as equality
x = y, etc. Given a store S, subsets H ′, E ⊆ S where E
are equality constraints, and a matching substitution θ such
that E → θ.H = H ′, then a simplification rule (H ⇐⇒ B)
rewrites H ′ to (θ.B), i.e. S := (S\H ′) ∪ (θ.B). Likewise,
a propagation rule (H =⇒ B) adds (θ.B) whilst retain-
ing H ′, i.e. S := S ∪ (θ.B). Finally a simpagation rule
(H1\H2 =⇒ B) is a hybrid between a simplification and
propagation rule, where only the constraints H ′2 ⊆ S match-
ing H2 are rewritten, i.e. S := (S\H ′2) ∪ (θ.B). The body
B may also contain built-in constraints. The CHR execution
algorithm repeatedly applies rules to the store until a fixed-
point is reached or failure occurs.
Example 3 (Less-than-or-equal-to Solver). The following
is a simple “less-than-or-equal-to” solver implemented in
CHR:

leq(X,X) ⇐⇒ true (1)
leq(X,Y) ∧ leq(Y,X) ⇐⇒ X = Y (2)
leq(X,Y) ∧ leq(Y, Z) =⇒ leq(X,Z) (3)

This solver defines a leq constraint with three rules. Rule
(1) simplifies any constraint of the form leq(X,X) to the
true constraint. Rule (2) simplifies constraints leq(X,Y) ∧
leq(Y,X) to X = Y . Finally, propagation rule (3) adds a
constraint leq(X,Z) for every pair leq(X,Y) ∧ leq(Y,Z).

Consider the initial store (a.k.a. the goal)G ≡ leq(A,B)∧
leq(B,C) ∧ leq(C,A), then one possible execution sequence
(a.k.a. derivation) is as follows:
{leq(A,B), leq(B,C), leq(C,A)} Apply (3)

�{leq(A,B), leq(B,C), leq(C,A), leq(A,C)} Apply (2)

�{leq(A,B), leq(B,C), A = C} Apply (2)

�{A = B,A = C}
Here the underlined constraints indicate where the rule is ap-
plied. Execution proceeds by first applying the propagation
rule (3) which adds the constraint leq(A,C). Next, the sim-
plification rule (2) is applied twice, replacing the leq con-
straints with equalities. In the final store, no more rules are
applicable, so execution stops. In general there may be more
than one possible derivation for a given goal.

The logical semantics (or logical interpretation) JRK of a
given rule R is defined as follows:

JH ⇐⇒ BK = ∀(H ↔ B)

JH =⇒ BK = ∀(H → B)

JH1 \H2 ⇐⇒ BK = ∀(H1 ∧H2 ↔ H1 ∧B)

where ∀F represents the universal closure of F . Here and
throughout this paper we assume vars(B) ⊆ vars(H).
Example 4 (Logical Semantics). The logical interpretation
of each rule from Example 3 is a corresponding partial order
axiom, namely: rule (1) is reflexivity ∀x : x ≤ x, rule (2) is
antisymmetry ∀x, y : x ≤ y ∧ y ≤ x ↔ x = y, and rule (3)
is transitivity ∀x, y, z : x ≤ y ∧ y ≤ z → x ≤ z.
Note the close correspondence between the syntax of CHR
and the logical interpretation.

3 Satisfiability Modulo CHR
Satisfiability Modulo Constraint Handling Rules (SMCHR)
differs from CHR in several ways. This section outlines the
differences.

The SMCHR language is an extension of CHR. Unlike
CHR, SMCHR allows negation in rules.
Example 5 (Negation in SMCHR). If we assume that leq is
a total order relation, then we can extend Example 3 with the
following rules defining the negation of leq:

¬leq(X,Y) ∧ ¬leq(Y,X) =⇒ false (4)
¬leq(X,Y) ∧ ¬leq(Y, Z) =⇒ ¬leq(X,Z) (5)

Operationally, these rules match negated constraints that ex-
plicitly appear in the store, e.g:

{¬leq(A,B),¬leq(B,C)} Apply (5)

�{¬leq(A,B),¬leq(B,C),¬leq(A,C)}

The logical semantics of CHR is also extended to allow for
negation. The logical interpretation for the above rules is:

∀x, y : ¬(x ≤ y) ∧ ¬(y ≤ x)→ false

∀x, y, z : ¬(x ≤ y) ∧ ¬(y ≤ z)→ ¬(x ≤ z)

Other key differences between CHR and SMCHR include:
- Range-Restricted: We assume all SMCHR rules are

range restricted, i.e. for rule head H and body B we
have that vars(B) ⊆ vars(H). CHR does not have such
a restriction.

- Set-Semantics: CHR uses a multi-set semantics by de-
fault, meaning that more than one copy of a constraint
may appear in the store at once. SMCHR assumes set-
semantics that assumes at most one copy. This is equiv-
alent to assuming the following rules are “built-in” for
each constraint symbol c:

c(x̄) \ c(x̄)⇐⇒ true and c(x̄) ∧ ¬c(x̄) =⇒ false

Set-Semantics ensures that each constraint c(x̄) can be associ-
ated with exactly one propositional variable b. This simplifies
the overall design of the SMCHR system.

Goals in CHR are flat conjunctions of constraints. In con-
trast, SMCHR allows for goals that are any (quantifier-free)
formulae with an arbitrary propositional structure, such as
that shown in Example 2. Range-Restricted CHR programs
ensure that no new (existentially) quantified variables are in-
troduced by rule application.

For a given goal G and a CHR program P , SMCHR gen-
erates one of two possible answers: UNSAT or UNKNOWN.

UNSAT means that G is unsatisfiable w.r.t. the theory JP K,
i.e. JP K |= ∀¬G. The answer UNKNOWN means that
SMCHR was unable to prove unsatisfiability. This may be
because G is satisfiable, or that the solver P is incomplete
and unable to prove unsatisfiability. This behavior mirrors
CHR: if G �∗ false , then G is unsatisfiable. Otherwise if
G�∗ S 6= false , then it is unknown if G is (un)satisfiable.

4 DPLL(CHR): Execution Algorithm
The SMCHR execution algorithm is based on a variant of
the Davis-Putnam-Logemann-Loveland (DPLL) [Davis et al.,
1962] decision procedure for propositional formulae com-
bined with CHR solving, i.e. DPLL(CHR).

The first step is to translate the goal G into normal form
B ∧D such that:

1. B is a pure propositional formula in CNF;
2. D is a conjunction of equivalences of the form b↔ c(x̄)

where b is a propositional variable and c(x̄) is a con-
straint; and

3. For all valuations (functions mapping variables to val-
ues) s there exists a valuation s′ such that

JP K |= s(G) iff JP K |= s′(B ∧D)

and s(v) = s′(v) for all v ∈ vars(G).
The last condition ensures that B ∧D is equisatisfiable to G
and the solutions of G and B ∧ D correspond. There may
be many possible normalizations for a given goal G, and the
exact normalization algorithm is left to the implementation.

The propositional component B is solved with a Boolean
Satisfiability (SAT) solver using a variant of DPLL algorithm.
Let Clauses be the set of clauses in B. We assume each
clause is a set of the form {l1, .., ln} (representing the dis-
junction l1 ∨ .. ∨ ln), where each li is a literal b or ¬b for
some propositional variable b ∈ vars(B). The pseudo-code
for the DPLL algorithm is as follows:
function dpll(Clauses) =

while ∃b ∈ vars(Clauses) : unset(b)
l := selectLiteral(Clauses)
Clauses := setLiteral(Clauses, l)
Clauses := unitPropagate(Clauses)
if ∅ ∈ Clauses

Clauses := backtrack(Clauses)
if Level = 0 return UNSAT

return UNKNOWN

The DPLL algorithm works by periodically selecting literals
l (via selectLiteral()) and setting l to true (via setLiteral()).
Next unit propagation (via unitPropagate()) propagates the
change through Clauses by eliminating unit clauses {l} and
setting l. If this process generates the empty clauses ∅, then
the algorithm backtracks (via backtrack()) to a previous state
and the search resumes. If the entire search space has been ex-
plored (represented by Level = 0), then UNSAT is returned.
Otherwise, the algorithm has constructed a valuation s over
the propositional variables vars(B) that satisfies B, and the
answer UNKNOWN is returned.1 Our pseudo-code is a sim-
plification. An actual SMCHR implementation will typically

1The answer is “UNKNOWN” since s satisfies B, and not nec-
essarily B ∧D.

use a modern SAT solver design [Een and Srensson, 2003]
with conflict-driven search, no-good learning, back-jumping,
etc.

The CHR component of the SMCHR system maintains a
global Store of constraints (as shown in Example 3). When-
ever the SAT solvers sets a literal l ∈ {b,¬b} for proposi-
tional variable b ∈ vars(B), a chrPropagate() routine is in-
voked, which is defined as follows:

function chrPropagate(l,Clauses) =
if D ≡ (b↔ c(x̄) ∧ ..)

Store := Store ∪ {(l ≡ b? c(x̄) : ¬c(x̄)}
let ChrClauses = chrMatch(Rules,Store)
Clauses := Clauses ∪ ChrClauses

return Clauses

If l (via b) corresponds to a constraint c(x̄), then the Store is
updated to include c(x̄) if l ≡ b or ¬c(x̄) if l ≡ ¬b. Next the
chrMatch routine attempts to match (and apply) a CHR rule.
We shall use the notation ĉ(x̄) to represent a constraint literal
c(x̄) or ¬c(x̄). The chrMatch routine searches for a (renamed
apart) rule (H1 \H2 ⇐⇒ B) ∈ Rules and sets of constraints
C1, C2, E ⊆ Store such that E is (a minimal set of) equal-
ity constraints, and for C1] C2 = {ĉ1(x̄1), .., ĉn(x̄n)} and
H1]H2 = {ĉ1(ȳ1), .., ĉn(ȳn)} there exists a matching sub-
stitution θ such thatE → θ.ĉi(ȳi) = ĉi(x̄i) for each i ∈ 1..n.
If such a matching θ is found, then

1. Delete: We delete C2 by setting Store := Store − C2

2. Create: We create the body constraints as follows: For
the rule body B = {ĉn+1(z̄1), .., ĉm(z̄m)} we check
for a corresponding conjunct (bi ↔ θ.ci(z̄i)) in D for
some bi. If no such conjunct exists, then we create a new
propositional variable b and setD := (b↔ θ.ci(z̄i))∧D

3. Generate: Finally we generate clauses that explain the
rule application as follows: First we define a function
literals() that maps a set of constraints Cs to the set of
corresponding set of literals as follows:

literals(Cs) ={bi|ci(x̄) ∈ Cs} ∪ {¬bi|¬ci(x̄) ∈ Cs}

where bi ↔ ci(x̄) is the corresponding conjunct of D.
Next we define the set of equality literals LE , head lit-
erals LH , and body literals LB as follows:

LE = literals(E) LH = literals(C1] C2)
LB = literals(θ.B)

Finally we generate the following set of clauses:

ChrClauses={¬LE ∪ ¬LH ∪ {l}|l ∈ LB ∧ ¬true(l)}

where ¬{l1, .., ln} is shorthand for {¬l1, ..,¬ln} and
true(l) indicates that literal l has been set to true .

The generated clauses ChrClauses are added to the clause
database of the SAT solver. Note that each generated clause
is either a unit clause (if l is unset) or the empty clause (if l
is set to false). A unit clause will cause l to be set to true
(via unitPropagate()), which in turn causes chrPropagate()
to be reinvoked and the corresponding body constraint to be
inserted into the Store . This may cause further rule applica-
tion and clause generation. An empty clause will immediately
cause failure and backtracking.

b1

b2

b3

b4

b5

¬b1

¬b2

¬b3

¬b4

¬b5

(A)

¬b1 ∨ ¬b2 ∨ b3 (B)

(C)

¬b1 ∨ ¬b2 ∨ ¬b5 ∨ b4 (D)

(E)

Figure 1: SMCHR execution tree.

Example 6 (SMCHR Execution). Consider the solver from
Example 3 and following goal G:

leq(A,B) ∧ leq(B,C) ∧ (¬leq(A,C) ∨ (A 6= B ∧A = C))

First we normalize G into a propositional formula in CNF
and reify CHR constraints as follows[

b1 ∧ b2 ∧ (¬b3 ∨ ¬b4) ∧ (¬b3 ∨ b5)
]
∧

b1 ↔ leq(A,B) ∧ b2 ↔ leq(B,C) ∧ b3 ↔ leq(A,C) ∧
b4 ↔ (A = B) ∧ b5 ↔ (A = C)

One possible (simplified) execution tree forG is shown in Fig-
ure 1. Here we select literals in order b1, .., b5. Conflict (fail-
ure) states are represented by a cross. The states of interest
are:
(A) The start state (no literal set).
(B) After setting b1 and b2, the constraints leq(A,B) and

leq(B,C) appear in the store. Rule (3) from Example 3
is applied, which generates the clause (¬b1 ∨¬b2 ∨ b3).

(C) This branch fails thanks to the clause generated at (B).
(D) After setting b1, b2, and b5, the constraints leq(A,B),

leq(B,C), and A = C appear in the store. Rule (2)
from Example 3 is applied, which generates the clause
(¬b1 ∨ ¬b2 ∨ ¬b5 ∨ b4).

(E) The generated clause from (D) is empty and immediately
causes failure.

Since all branches lead to failure, the answer for G is
UNSAT, i.e. G is unsatisfiable.

Our method is related to lazy clause generation [Ohri-
menko et al., 2009] for finite domain solvers, but general-
ized to any arbitrary CHR solver. Some SMT solvers, such as
Z3 [De Moura and Bjørner, 2008], also support clause gener-
ation. For example, see T -Propagate from [Bjørner, 2011].

5 Experiments
Since the original publication in [Duck, 2012], the SMCHR
system has been actively developed. We experimentally com-
pare four systems: SMCHR is the latest version (alpha re-
lease) of the SMCHR system, Native is a built-in (i.e. non-
CHR) bounds propagation solver, SMCHR* is the original
prototype implementation from [Duck, 2012], and CHR* is

SMCHR Native SMCHR* CHR*
Bench. Solver time (ms)

cycle(50) lt 9 – 285 238
cycle(100) ′′ 33 – 8003 3515
cycle(50) leq 20 – 501 242
cycle(100) ′′ 105 – 12113 3382
queens(16) bounds 861 114 7072 65951
queens(20) ′′ 1141 110 82200 t.o.
subsets(15, 99) ′′ 111 46 57 4301
subsets(20, 99) ′′ 105 36 102 79115
money ′′ 380 3 – –
sudoku ′′ 1057 30 – –
zebra ′′ 10 3 – –
queens(16) domain 478 – – –
queens(20) ′′ 1272 – – –
sudoku ′′ 210 – – –
steiner(7) set 591 – – –

Table 1: Experimental results.

the K.U.Leuven CHR system [Schrijvers and Demoen, 2004]
running on SWI Prolog [Wielemaker et al., 2012] version
5.8.2. All timings (in milliseconds) are on Intel i5-2500K
CPU clocked at 4Ghz and averaged over 10 runs. The re-
sults are shown in Figure 1. Here (t.o.) indicates a timeout of
10 minutes, and a dash (–) indicates a benchmark not imple-
mented or not applicable.

The cycle(n), queens(n), and subsets(n, v) bench-
marks are from [Duck, 2012]. The remaining benchmarks
are: money is the send+more=money crypto-arithmetic puz-
zle, sudoku is a Sudoku instance, zebra is the zebra puz-
zle, and steiner(n) computes Steiner triples. The CHR
solvers are: leq, lt are the solvers from Examples 3 and 5
respectively, bounds is a bounds propagation solver (see Ex-
ample 1), domain is a domain propagation solver, and set is
a set solver. These solvers are distributed with the SMCHR
system.

The no-good learning and search space pruning of SMCHR
(both versions) give SMCHR a clear advantage over Prolog
CHR for benchmarks that use search. The latest version of
SMCHR is a clear improvement over the original implemen-
tation. This is mainly because of several new optimizations,
such as better search heuristics and hash-table based indexing
for the constraint store. Finally, the native implementation of
a bounds propagation solver is faster than the SMCHR imple-
mentation. This is in line with expectations: a solver imple-
mented in CHR is generally slower than a native implementa-
tion, as CHR is generally a trade-off between implementation
effort vs. solver speed. Nevertheless, the results suggest that
there is room for further optimization.

6 Conclusions
In this paper we presented Satisfiability Modulo Constraint
Handling Rules: the natural merger of SMT with CHR. Our
experimental results show that SMCHR is faster than CHR,
especially for problems that benefit from no-good learning.
Furthermore, the latest version of SMCHR is a significant im-
provement over the original prototype.

Development of SMCHR is ongoing. Future work includes
further optimization, applications, and extensions of the SM-
CHR system.

References
[Bjørner, 2011] N. Bjørner. Engineering theories with Z3. In

Proceedings of the First international conference on Cer-
tified Programs and Proofs. Springer-Verlag, 2011.

[Davis et al., 1962] M. Davis, G. Logemann, and D. Love-
land. A machine program for theorem-proving. Commu-
nications of the ACM, 5(7):394–397, July 1962.

[De Moura and Bjørner, 2008] L. De Moura and N. Bjørner.
Z3: an efficient SMT solver. In International conference
on Tools and Algorithms for the Construction and Analy-
sis of Systems, pages 337–340, Berlin, Heidelberg, 2008.
Springer-Verlag.

[Duck et al., 2004] G. Duck, P. Stuckey, M. Banda, and
C. Holzbaur. The refined operational semantics of con-
straint handling rules. In International Conference on
Logic Programming, pages 90–104. Springer, 2004.

[Duck, 2012] G. Duck. SMCHR: Satisfiability modulo con-
straint handling rules. Theory and Practice of Logic Pro-
gramming, 12(4-5):601–618, 2012. Proceedings of the
28th international conference on Logic Programming.

[Een and Srensson, 2003] N. Een and N. Srensson. An ex-
tensible SAT-solver. In Proceedings of the Sixth Interna-
tional Conference on Theory and Applications of Satisfia-
bility Testing. Springer Verlag, 2003.

[Frühwirth, 1998] T. Frühwirth. Theory and practice of con-
straint handling rules. Special Issue on Constraint Logic
Programming, Journal of Logic Programming, 37, Octo-
ber 1998.

[Moura and Bjørner, 2011] L. Moura and N. Bjørner. Satis-
fiability modulo theories: introduction and applications.
Communcations of the ACM, 54(9):69–77, September
2011.

[Ohrimenko et al., 2009] O. Ohrimenko, P. Stuckey, and
M. Codish. Propagation via lazy clause generation. Con-
straints, 14:357–391, 2009.

[Schrijvers and Demoen, 2004] T. Schrijvers and B. De-
moen. The K.U.Leuven CHR system: implementation and
application. In First Workshop on Constraint Handling
Rules: Selected Contributions, pages 1–5, 2004.

[Sneyers et al., 2010] J. Sneyers, P. Weert, T. Schrijvers, and
L. Koninck. As time goes by: Constraint handling rules –
a survey of CHR research between 1998 and 2007. Theory
and Practice of Logic Programming, 10:1–47, 2010.

[Wielemaker et al., 2012] J. Wielemaker, T. Schrijvers,
M. Triska, and T. Lager. SWI-Prolog. Theory and
Practice of Logic Programming, 12(1-2):67–96, 2012.

