
Under consideration for publication in Theory and Practice of Logic Programming 1

Optimizing Compilation of Constraint Handling

Rules in HAL∗

CHRISTIAN HOLZBAUR

Dept. of Medical Cybernetics and Art. Intelligence, University of Vienna, Austria

MARIA GARCIA DE LA BANDA

School of Computer Science & Software Engineering, Monash University, Australia

PETER J. STUCKEY, GREGORY J. DUCK

Department of Computer Science & Software Engineering, University of Melbourne, Australia

Abstract

In this paper we discuss the optimizing compilation of Constraint Handling Rules (CHRs).
CHRs are a multi-headed committed choice constraint language, commonly applied for
writing incremental constraint solvers. CHRs are usually implemented as a language ex-
tension that compiles to the underlying language. In this paper we show how we can use
different kinds of information in the compilation of CHRs in order to obtain access ef-
ficiency, and a better translation of the CHR rules into the underlying language, which
in this case is HAL. The kinds of information used include the types, modes, determin-
ism, functional dependencies and symmetries of the CHR constraints. We also show how
to analyze CHR programs to determine this information about functional dependencies,
symmetries and other kinds of information supporting optimizations.

1 Introduction

Constraint handling rules (Frühwirth, 1998) (CHRs) are a very flexible formal-

ism for writing incremental constraint solvers and other reactive systems. In effect,

the rules define transitions from one constraint set to an equivalent constraint set.

Transitions serve to simplify constraints and detect satisfiability and unsatisfiability.

CHRs have been used extensively (see e.g. (Holzbaur & Frühwirth, 2000)). Efficient

implementations have been available for many years in the languages SICStus Pro-

log and Eclipse Prolog, and implementations for other languages are appearing such

as Java (JCK, 2002) and HAL.

In this paper we discuss how to improve the compilation of CHRs by using

additional information derived either from declarations provided by the user or from

the analysis of the constraint handling rules themselves. The major improvements

we discuss over previous work on CHR compilation (Holzbaur & Frühwirth, 2000)

are:

∗ A preliminary version of this paper appeared under the title “Optimizing Compilation of Con-
straint Handling Rules” in ICLP 2001, Cyprus, November 2001 (Holzbaur et al., 2001).

2 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

• general index structures which are specialized for the particular joins required

in the CHR execution. Previous CHR compilation was restricted to two kinds

of indexes: simple lists of constraints for given Name/Arity and lists indexed

by the variables involved. For ground usage of CHRs this meant that only list

indexes are used.

• continuation optimization, where we use matching information from rules

earlier in the execution to avoid matching later rules.

• optimizations that take into account algebraic properties such as functional

dependencies, symmetries and the set semantics of the constraints.

We illustrate the advantages of the various optimizations experimentally on a num-

ber of small example programs in the HAL implementation of CHRs. We also discuss

how the extra information required by HAL in defining CHRs (that is, type, mode

and determinism information) is used to improve the execution.

In part some of the motivation of this work revolves around a difference between

CHRs in Prolog and in HAL. HAL is a typed language which does not (presently)

support attributed variables. Prolog implementations of CHRs rely on the use of

attributed variables to provide efficient indexing into the constraint store. Hence,

we are critically interested in determining efficient index structures for storing con-

straints in the HAL implementation of CHRs. An important benefit of using specific

index structures is that CHRs which are completely ground can still be efficiently

indexed. This is not exploited in the current Prolog implementations. As some CHR

solvers only use ground constraints this is an important issue.

The remainder of the paper is organized as follows. In the next section we give

preliminary definitions, including the operational semantics of constraint handling

rules. In Section 3 we go through the basic steps involved in compiling a set of con-

straint handling rules, and see how we can make use of properties such as functional

dependencies and symmetry and set semantics in improving this basic compilation.

In Section 4 we show how we can improve the the compilation of a set of CHRs

by discovering properties of constraints by reasoning about the form of the rules

defining them. In Section 5 we show how to infer the functional dependencies and

symmetry information, used in Section 3, from a set of CHRs. In Section 6 we give

our experimental results illustrating the advantages of the optimized compilation.

Finally, in Section 7 we conclude.

2 Constraint Handling Rules and HAL

Constraint Handling Rules manipulate a global multiset of primitive constraints,

using multiset rewrite rules which can take three forms

simplification [name@] c1, . . . , cn ⇐⇒ g | d1, . . . , dm

propagation [name@] c1, . . . , cn =⇒ g | d1, . . . , dm

simpagation [name@] c1, . . . , cl \ cl+1, . . . , cn ⇐⇒ g | d1, . . . , dm

where name is an optional rule name, c1, . . . , cn are CHR constraints, g is a conjunc-

tion of constraints from the underlying language, and d1, . . . , dm is a conjunction

Optimizing Compilation of Constraint Handling Rules in HAL 3

of CHR constraints and constraints of the underlying language. The guard part g

is optional. If omitted, it is equivalent to g ≡ true.

The simplification rule states that given a constraint multiset {c′1, . . . , c
′
n} and

substitution θ matching the multiset {c1, . . . , cn}, i.e. {c′1, . . . , c
′
n} = θ({c1, . . . , cn}),

where the execution of θ(g) succeeds, then we can replace {c′1, . . . , c
′
n} by multi-

set θ({d1, . . . , dm}). The propagation rule states that, for a matching constraint

multiset {c′1, . . . , c
′
n} where θ(g) succeeds, we should add θ({d1, . . . , dm}). The sim-

pagation rules states that, given a matching constraint multiset {c′1, . . . , c
′
n} where

θ(g) succeeds, we can replace {c′l+1, . . . , c
′
n} by θ({d1, . . . , dm}). A CHR program is

a sequence of CHRs.

More formally the logical interpretation of the rules is as follows. Let x̄ be the

variables occurring in {c1, . . . , cn}, and ȳ (resp. z̄) be the other variables occurring

in the guard g (resp. rhs d1, . . . , dm) of the rule. We assume no variables not in x̄

appear in both the guard and the rhs.1 The logical reading is

simplification ∀x̄(∃ȳ g) → (c1 ∧ · · · ∧ cn ↔ (∃z̄ d1 ∧ · · · ∧ dm))

propagation ∀x̄(∃ȳ g) → (c1 ∧ · · · ∧ cn → (∃z̄ d1 ∧ · · · ∧ dm))

simpagation ∀x̄(∃ȳ g) → (c1 ∧ · · · ∧ cn ↔ (∃z̄ c1 ∧ · · · ∧ cl ∧ d1 ∧ · · · ∧ dm))

The operational semantics of CHRs exhaustively apply rules to the global mul-

tiset of constraints, being careful not to apply propagation rules twice on the same

constraints (to avoid infinite propagation). For more details see e.g. (Abdennadher,

1997). Although CHRs have a logical reading (see e.g. (Frühwirth, 1998)), and pro-

grammers are encouraged to write confluent CHR programs, there are applications

where a predictable order of rule applications is important. Hence, the textual or-

der of rules in the program is used to resolve rule applicability conflicts in favor of

earlier rules.

The operational semantics is a transition system on a triple 〈s, h, t〉v of a set of

(numbered) CHR constraints s, a conjunction of Herbrand constraints h, and a set

of transitions applied, as well as a sequence of variables v. The logical reading of

〈s, h, t〉v is as ∃ȳ(s ∧ h) where y are the variables in the tuple not in v. Since the

variable component v never changes we omit it for much of the presentation.

The transitions are defined as follows: Given a rule numbered a and a tuple

〈s, h, t〉v

c1, . . . , cn =⇒a g | d1, . . . , dk, dk+1, . . . , dm

where d1, . . . , dk are CHR literals and dk+1, . . . , dm are Herbrand constraints, such

that there are numbered literals {c′i1 , . . . , c
′
in

} ⊆ s where |= h → ∃x̄c1 = ci1 ∧
· · · ∧ cn = cin

and there is no entry (i1, . . . , in, a) in t then the transition can be

performed to give new state 〈s∪{d1, . . . , dk}, h∧dk+1∧· · ·∧dm, t∪{(i1, . . . , in, a)}〉v
where the new literals in the first component are given new id numbers.

The rule for simplification is simpler. Given a tuple 〈s, h, t〉v and a rule

c1, . . . , cn ⇐⇒ g | d1, . . . , dk, dk+1, . . . , dm

1 This allows us to more easily define the logical reading, we can always place a CHR in this form,
by copying parts of the guard into the right hand side of the rule and renaming.

4 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

such that there are literals {c′i1 , . . . , c
′
in

} ⊆ s where |= h → ∃x̄c1 = ci1∧· · ·∧cn = cin

the resulting tuple is 〈s \ {c′i1 , . . . , c
′
in

} ∪ {d1, . . . , dk}, h ∧ dk+1 ∧ · · · ∧ dm, t〉v .

In this paper we focus on the implementation of CHRs in a programming lan-

guage, such as HAL (Demoen et al., 1999), which requires programmers to provide

type, mode and determinism information. A simple example of a HAL CHR pro-

gram to compute the greatest common divisor of two positive numbers a and b

(using the goal gcd(a), gcd(b)) is given below.

:- module gcd. (L1)
:- import int. (L2)
:- chr constraint gcd/1. (L3)
:- export pred gcd(int). (L4)
:- mode gcd(in) is det. (L5)
base @ gcd(0) <=> true. (L6)
pair @ gcd(N) \ gcd(M) <=> M >= N | gcd(M-N). (L7)

The first line (L1) states that the file defines the module gcd. Line (L2) imports the

standard library module int which provides (ground) arithmetic and comparison

predicates for the type int. Line (L3) declares the predicate gcd/1 to be imple-

mented by CHRs. Line (L4) exports the CHR constraint gcd/1 which has one

argument, an int. This is the type declaration for gcd/1. Line (L5) is an example

of a mode of usage declaration. The CHR constraint gcd/1’s first argument has

mode in meaning that it will be fixed (ground) when called. The second part of the

declaration “is det” is a determinism statement. It indicates that gcd/1 always

succeeds exactly once (for each separate call). For more details on types, modes

and determinism see (Demoen et al., 1999; Somogyi et al., 1996).

Lines (L6) and (L7) are the 2 CHRs defining the gcd/1 constraint. The first

rule is a simplification rule. It states that a constraint of the form gcd(0) should

be removed from the constraint store to ensure termination. The second rule is a

simpagation rule. It states that given two different gcd/1 constraints in the store,

such that one gcd(M) has a greater argument than the other gcd(N) we should

remove the larger (the one after the \), and add a new gcd/1 constraint with

argument M-N. Together these rules mimic Euclid’s algorithm.

The requirement of the HAL compiler to always have correct mode information

means that CHR constraints can only have declared modes that do not change

the instantiation state of their arguments,2 since the compiler will be unable to

statically determine when rules fire. Hence for example legitimate modes are in,

which means the argument is fixed at call time and return time, and oo, which

means that the argument is initialized at call time, but nothing further is known,

and similarly at return time. The same restriction applies to dynamically scheduled

goals in HAL (see (Demoen et al., 1999)).

2 They may actually change the instantiation state but this cannot be made visible to the mode
system.

Optimizing Compilation of Constraint Handling Rules in HAL 5

3 Optimizing the basic compilation of CHRs

Essentially, the execution of CHRs is as follows. Every time a new constraint (the

active constraint) is placed in the store, we search for a rule that can fire given

this new constraint, i.e., a rule for which there is now a set of constraints that

matches its left hand side. The first such rule (in the textual order they appear in

the program) is fired.

Given this scheme, the bulk of the execution time for a CHR

c1, . . . , cl[, \]cl+1, . . . , cn
⇐⇒
=⇒

g | d1, . . . , dm

is spent in determining partner constraints c′1, . . . , c
′
i−1, c

′
i+1, . . . , c

′
n for an active

constraint c′i to match the left hand side of the CHR. Hence, for each rule and

each occurrence of a constraint, we are interested in generating efficient code for

searching for partners that will cause the rule to fire. We will then link the code for

each instance of a constraint together to form the entire program for the constraint.

In this section, when applicable, we will show how different kinds of compile-time

information can be used to improve the resulting code in the HAL version of CHRs.

3.1 Join Ordering

The left hand side of a rule together with the guard defines a multi-way join with

selections (the guard) that could be processed in many possible ways, starting from

the active constraint. This problem has been extensively addressed in the database

literature. However, most of this work is not applicable since in the database context

they assume the existence of information on cardinality of relations (number of

stored constraints) and selectivity of various attributes. Since we are dealing with

a programming language we have no access to such information, nor reasonable

approximations. Another important difference is that, often, we are only looking

for the first possible join partner, rather than all. In the SICStus CHR version,

the calculation of partner constraints is performed in textual order and guards are

evaluated once all partners have been identified. In HAL we determine a best join

order and guard scheduling using, in particular, mode information.

Since we have no cardinality or selectivity information we will select a join or-

dering by using the number of unknown attributes in the join to estimate its cost.

Functional dependencies are used to improve this estimate, by eliminating unknown

attributes from consideration that are functionally defined by known attributes

Functional dependencies are represented as p(x̄) :: S x where S ∪ {x} ⊆
x̄ meaning that for constraint p fixing all the variables in S means there is at

most one solution to the variable x. The function fdclose(Fixed,FDs) closes a

set of fixed variables Fixed under the finite set of functional dependencies FDs.

fdclose(Fixed,FDs) is the least set F ⊇ Fixed such that for each (p(x̄) :: S x) ∈
FDs such that S ⊆ F then x ∈ F . Clearly the fixedpoint exists, since the operation

is monotonic.

We assume an initial set Fixed of known variables (which arises from the active

constraint), together with the set of (as yet unprocessed) partner constraints and

6 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

guards. The algorithm measure shown in Figure 1, takes as inputs the set Fixed,

the sequence Partners of partner constraints in a particular order, the set FDs

of functional dependencies and the set Guards of guards, and returns the triple

(Measure, Goal, Lookups).

Measure is an ordered pair representing the cost of the join for the particular

order given by the n partner constraints in Partners. It is made up of the weighted

sum (n−1)w1 +(n−2)w2 + · · ·+1wn−1 of the costs wi for each individual join with

a partner constraint. The weighting encourages the cheapest joins to be earliest.

The cost of a joining the ith partner constraint to pre-join expression (the join

of the active constraint plus the first (i − 1) partners), wi, is defined as the pair

(u, f): u is the number of arguments in the new partner which are unfixed before

the join; and f is the negative of the number of arguments which are fixed in the

pre-join expression. The motivation for this costing is based on the worst case size

of the join, assuming each argument ranges over a domain of the same size s. In

this case the number of join partners (tuples) in the partner constraint for each set

of values for the pre-join expression is su, and there are sm−f tuples in the pre-join

expression (where m is the total number of variables in the pre-join expression).

The total number of tuples after the ith partner is joined are the thus sm−f+u.

The numbers hence represent the exponents of the join size, a kind of “degrees of

freedom” measurement. The sum of the first components u gives the total size of

the join. The role of the second component is to prefer orderings which keep the

intermediate results smaller.

We also take into account the selectivity of the guards we can schedule directly

after the new partner. This is achieved via the selectivity(Guards) function which

returns the sum of the selectivities of the guards Guards. The selectivity of a

equational guard X = Y is 1 provided X and Y are both fixed, otherwise the

selectivity is 0. An equation with both X and Y fixed immediately eliminates one

degree of freedom (reduces the number of tuples by 1/s), hence the selectivity of 1.

When one variable is not fixed, the guard does not remove any answers. If both X

and Y are fixed then the selection For simplicity, the selectivity of other guards is

considered to be 0.5 (as motivation, the constraint X > Y where X and Y can be

considered to remove 0.5 degrees of freedom). The role of selectivity is to encourage

the early scheduling of guards which are likely to fail.

Goal gives the ordering of partner constraints and guards (with guards scheduled

as early as possible). Finally, Lookups gives the queries. Queries will be made from

partner constraints, where a variable name indicates a fixed value, and an under-

score () indicates an unfixed value. For example, query p(X, ,X,Y,) indicates a

search for p/5 constraints with a given value in the first, third, and fourth argument

positions, the values in the first and third position being the same.

The function schedule guards(F ,G) returns which guards in G can be scheduled

given the fixed set of variables F . Here we see the usefulness of mode information

which allows us to schedule guards as early as possible. For simplicity, we treat

mode information in the form of two functions: invars and outvars which return

the set of input and output arguments of a guard procedure. We also assume that

each guard has exactly one mode (it is straightforward to extend the approach to

Optimizing Compilation of Constraint Handling Rules in HAL 7

measure(Fixed,Partners,FDs,Guards)
Lookups := ∅; score := (0, 0); sum := (0, 0)
Goal := schedule guards(Fixed, Guards)
Guards := Guards \ Goal

while true

if Partners = ∅ return (score, Goal, Lookups)
let Partners ≡ p(x̄), Partners1
Partners := Partners1
FDp := {p(x̄) :: fd ∈ FDs}
Fixedp := fdclose(Fixed,FDp)
f̄ := x̄ ∩ Fixedp

Fixed := Fixed ∪ x̄

GsEarly := schedule guards(Fixed, Guards)
cost := (max(|x̄ \ f̄ | − selectivity(GsEarly),0),−|f̄ | − selectivity(GsEarly))
score := score + sum + cost; sum := sum + cost

Lookups := Lookups ∪ {p((xi ∈ f̄ ? xi :) | xi ∈ x̄)}
Goal := Goal, p(x̄), GsEarly;
Guards := Guards \ GsEarly

endwhile

return (score, Goal, Lookups)

schedule guards(F ,G)
S := ∅
repeat

G0 := G

foreach g ∈ G

if invars(g) ⊆ F

S := S, g

F := F ∪ outvars(g)
G := Gs \ {g}

until G0 = G

return S

Fig. 1. Algorithm for evaluating join ordering

multiple modes and more complex instantiations). The schedule guards keeps adding

guards to its output argument while they can be scheduled.

The function measure works as follows: beginning from an empty goal, we first

schedule all possible guards. We then schedule each of the partner constraints p(x̄)

in Partners in the order given, by determining the number of fixed (f̄) and unfixed

(x̄ \ f̄) variables in the partner, and the selectivity of any guards that can be

scheduled immediately afterwards. With this we the calculate cost pair for the join

which is added into the score. The Goal is updated to add the join p(x̄) followed

by the guards that can be scheduled after it. When all partner joins are calculated

the function returns.

Example 1
Consider the compilation of the rule:

p(X,Y), q(Y,Z,T,U), flag, r(X,X,U) \ s(W) ==> W = U + 1, linear(Z) | p(Z,W).

for active constraint p(X,Y) and Fixed = {X, Y }. The individual costs calculated

8 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

for each join in the left-to-right partner order illustrated in the rule are (2.5,−1.5),

(0, 0), (0,−2), (0,−1) giving a total cost of (10,−11) together with goal

q(Y,Z,T,U), W = U + 1, linear(Z), flag, r(X,X,U), s(W)

and lookups q(Y, , ,), flag, r(X,X,U), s(W). The best order has total cost

(4.5,−7.5) resulting in goal

flag, r(X,X,U), W = U + 1, s(W), q(Y,Z,T,U), linear(Z)

and lookups flag, r(X,X,), s(W), q(Y, , ,U).

For active constraint q(Y,Z,T,U), the best order has total cost (2,−8) resulting

in goal

W = U + 1, linear(Z), s(W), flag, p(X,Y), r(X,X,U)

and lookups s(W), flag, p(,Y), r(X,X,U). �

For rules with large-left-hand sides where examining all permutations is too ex-

pensive we can instead greedily search for a permutation of the partners that is

likely to be cost effective. The current HAL implementation uses this method. In

practice, both methods usually find the best ordering because the left-hand-sides

of CHRs are generally small.

3.2 Index Selection

Once join orderings have been selected, we must determine for each constraint a

set of lookups of constraints of that form in the store. We then select an index or

set of indexes for that constraint that will efficiently support the lookups required.

Finally, we choose a data structure to implement each index. Mode information is

crucial to the selection of index data structures. If the terms being indexed on are

not ground, then we cannot use tree indexes since variable bindings will change the

correct position of data.3

The current SICStus Prolog CHR implementation uses only two index mecha-

nisms: Constraints for a given Functor/Arity are grouped, and variables shared

between heads in a rule index the constraint store because matching constraints

must correspondingly share a (attributed) variable. In the HAL CHR version, we

put extra emphasis on indexes for ground data:

The first step in this process is lookup reduction. Given a set of lookups for con-

straint p/k we reduce the number of lookups by using information about properties

of p/k:

• lookup generalization: rather than build specialized indexes for lookups that

share variables we simply use more general indexes. Thus, we replace any

lookup p(v1, . . . , vk) where vi and vj are the same variable by a lookup

p(v1, . . . , vj−1, v
′
j , vj+1, . . . , vk) where v′j is a new variable. Of course, we must

add an extra guard vi = vj for rules where we use generalized lookups. For

example, the lookup r(X,X,U) can use the lookup for r(X,XX,U), followed by

the guard X = XX.

3 Currently HAL only supports CHRs with fixed arguments (although these might be variables
from another (non-Herbrand) solver).

Optimizing Compilation of Constraint Handling Rules in HAL 9

• functional dependency reduction: we can use functional dependencies to re-

duce the requirement for indexes. We can replace any lookup p(v1, . . . , vk)

where there is a functional dependency p(x1, . . . , xk) :: {xi1 , . . . , xim
} xj

and vi1 , . . . , vim
are fixed variables (i.e. not) by the lookup

p(v1, . . . , vj−1, , vj+1, . . . , vk). For example, consider the constraint

bounds(X,L,U)which stores the lower L and upper U bounds for a constrained

integer variable X. Given functional dependency bounds(X, L, U) :: X L,

the lookup bounds(X,L,) can be replaced by bounds(X, ,).

• symmetry reduction: if p/k is symmetric on arguments i and j we have two

symmetric lookups p(v1, . . . , vi, . . . , vj , . . . , vk) and p(v′1, . . . , v
′
i, . . . , v

′
j , . . . , v

′
k)

where vl = v′l for 1 ≤ l ≤ k, l 6= i, l 6= j and vi = v′j and vj = v′i then remove

one of the symmetric lookups. For example, if eq/2 is symmetric the lookup

eq(,Y) can use the index for eq(X,).

We discuss how we generate functional dependency and symmetry information

in Section 5. We can now choose the data structures for the indexes that support

the remaining lookups.

Normally, the index will return an iterator which iterates through the multi-

set of constraints that match the lookup. Conceptually, each index thus returns

a list iterator of constraints matching the lookup. We can use functional depen-

dencies to determine when this multiset can have at most one element. This is

the case for a lookup p(v1, . . . , vk) with fixed variables vi1 , . . . , vim
such that fd-

close({xi1 , . . . , xim
}, FDp) ⊇ {x1, . . . , xk} where FDp are the functional depen-

dencies for p/k, since in this case the functional dependencies ensure that for fixed

vi1 , . . . , vim
there can be at most one tuple in the constraint. For example, the

lookup bounds(X, ,) returns at most one constraint given the functional depen-

dencies: bounds(X, L, U) :: X L and bounds(X, L, U) :: X U .

Since, in general, we may need to store multiple copies of identical constraints

(CHR rules accept multisets rather than sets of constraints) each constraint needs

to be stored with a unique identifier, called the constraint number. Code for the

constraint will generate a new identifier for each new active constraint. Constraints

that cannot have multiple copies stored at once are said to have set semantics (see

section 4.4). In this case constraint numbers are not strictly necessary.

Each index for p(v1, . . . , vk), where say the fixed variables are vi1 , . . . , vim
, needs

to support the following operations:

:- pred p index init.

:- mode p index init is det.

:- pred p index insert(arg1, ..., argk, constraint num).

:- mode p index insert(in, ..., in, in) is det.

:- pred p index delete(arg1, ..., argk, constraint num).

:- mode p index delete(in, ..., in, in) is det.

:- pred p index init iterator(argi1, ..., argim, iterator).

:- mode p index init iterator(in, ..., in, out) is det.

10 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

for initializing a new index, inserting and deleting constraints from the index

and returning an iterator over the index for a given lookup. Note that the con-

straint number is an important extra argument for index manipulation. In HAL

indexes are stored in global variables, which are destructively updated for initial-

ization, deletions and insertions. The compiler generates code for the predicates

p insert constraint and p delete constraint which insert and delete the con-

straint p from each of the indexes in which it is involved.

The current implementation supports three kinds of index structures:

• A yesno global variable

• A balanced 234 tree

• An unsorted list (the default)

By far the simplest index structure is a yesno global variable, which can have

two states: a no state (meaning nothing is currently stored) or a yes(C) state,

where C is the only constraint currently in the store. The compiler will generate

a yesno index structure whenever it detects that it is not possible for multiple4

p/k constraints to exist in the store at once. This is the case whenever constraint

p/k has set semantics (no identical copies) and has the functional dependencies

p(x̄) :: ∅ xi for xi ∈ x̄ (all copies must identical). An example is the constraint

gcd/1 from the gcd example program in Section 2. Here the rule

gcd(N) \ gcd(M) <=> M >= N | gcd(M-N).

ensures one of the two gcd/2 constraints (one must be active) will be deleted.

Therefore only one can ever actually be in the store at once, hence a yesno index

structure may be used.

If constraint p/k has set semantics and functional dependencies of the form

p(x1, . . . , xi, xi+1, . . . , xk) :: {x1, . . . , xi} xj for all i < j ≤ k then the com-

piler will generate a balanced 234 tree index structure. In this case the constraint

p/k can be thought of as defining a function from the key (x1, . . . , xi) to a value

(xi+1, . . . , xk). For example, the constraint bounds(X,L,U) from the program in

Figure A 1 in Appendix A has the functional dependencies bounds(X, L, U) :: X

L and bounds(X, L, U) :: X U , hence the compiler builds a 234 tree index

structure with X as the key, and the tuple (L,U) as the value. In addition, if the

constraint p/k has set semantics, but has no functional dependency, then we can

still use a tree index by treating the entire constraint as the key. For example, the

constraint X != Y from the interval program in Appendix A has set semantics,

thus we can use a tree structure with (X,Y) as the key, and the empty set ∅ as the

value.

The big advantage of tree structures is O(log(n)) lookups whenever the key is

fixed, compared with O(n) lookups for unsorted lists. Even if the key is only partially

fixed there is still a potential for considerable benefit. Suppose that (X, Y) is the

key, then all keys of the form (X,) will group together in the tree index because

of HAL’s default ground term ordering. As a result, we can still do fast searches by

pruning large sections of the tree that are not of interest. The same is not true for

4 These constraints do not have to be identical.

Optimizing Compilation of Constraint Handling Rules in HAL 11

keys of the form (, Y) but we can sometimes use symmetric reduction to do the

faster (Y,) lookup instead.

Example 2

The CHR constraint !=/2 defined by rules

neqsym @ X != Y ==> Y != X.

neqlower @ X != Y, bounds(X,VX,VX), bounds(Y,VX,UY) ==> bounds(Y,VX+1,UY).

nequpper @ X != Y, bounds(X,VX,VX), bounds(Y,LY,VX) ==> bounds(Y,LY,VX-1).

has lookups !=(X,) and !=(,Y), and !=/(X,Y) and is known to be symmetric in

its two arguments. We can remove the lookup !=(,Y) in favor of the symmetric

!=(Y,), and then use a single balanced tree index for !=(X,Y) to store !=/2

constraints since this can also efficiently retrieve constraints of the form !=(X,).

�

The advantage of using a tree is lost whenever there is a lookup which is not a

prefix of the index. These lookups can be implemented using universal search over

the tree, but this is particularly bad, since we need to construct a tree iterator,

which is currently implemented as a tree to list conversion with high overhead. For

simplicity, we currently do not use tree indices when at least one lookup is not a

prefix of the key. Fortunately universal searches against the direction of the func-

tional dependency are relatively rare in practice, and in the future implementations

of universal searches might do away with the need for iterators altogether.

The third and final type of index structure is an unsorted list. The advantage

of a list index is fast O(1) insertions, but the disadvantages are slow O(n) lookups

and deletions. However, if a constraint p/k is never deleted, and is often involved

in universal searches, then a list is a logical choice for the index structure.

3.3 Code generation for individual occurrences of active constraints

Once we have determined the join order for each rule and each active constraint,

and the indexes available for each constraint, we are ready to generate code for

each occurrence of the active constraint. Two kinds of searches for partners arise:

A universal search iterates over all possible partners. This is required for propaga-

tion rules where the rule fires for each possible matching partner. An existential

search looks for only the first possible set of matching partners. This is sufficient

for simplification rules where the constraints found will be deleted.

We can split the constraints appearing on the left-hand-side of any kind of rule

into two sets: those that are deleted by the rule (Remove), and those that are not

(Keep). The partner search uses universal search behavior, up to and including the

first constraint in the join which appears in Remove. From then on the search is

existential. If the constraint has a functional dependency that ensures that there

can be only one matching solution, we can replace universal search by existential

search.

For each partner constraint we need to choose an available index for finding

the matching partners. Since we have no selectivity or cardinality information, we

simply choose the index with the largest intersection with the lookup.

12 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

bounds 4(X,L1,U1,CN1) :-

(bounds index exists iteration(X, ,L2,U2,CN2),

CN1 != CN2 ->

bounds remove constraint(X,L1,U1,CN1),

bounds remove constraint(X,L2,U2,CN2),

bounds(X,min(L1,L2),max(U1,U2)), %% RHS

bounds 4 succ cont(X,L1,U1,CN1)

;

bounds 4 fail cont(X,L1,U1,CN1) %% try next rule

).

Fig. 2. Existential search code for the fourth occurrence of a bounds/3 constraint

Example 3

Consider the compilation of the 1st occurrence of the bounds/3 constraint in the

rule (the fourth occurrence overall in the program in Figure A 1)

intersect @ bounds(X,L1,U1),bounds(X,L2,U2) <=>

bounds(X,max(L1,L2),min(U1,U2)).

Since the active constraint is in Remove the entire search is existential. The com-

pilation produces the code in Figure 2.

The predicate bounds index exists iteration iterates non-deterministically

through the bounds/3 constraints in the store using the index on the first argument.

In the last 4 arguments it returns the 3 arguments of bounds/3 as well as a unique

constraint number identifying the instance of the bounds/3 constraint.5 Note we

check that the matching bounds/3 constraint has a different constraint number

than the active constraint CN1 != CN2. The predicate bounds remove constraint

removes the bounds/3 from the store. If the matching succeeds, then afterwards we

call the success continuation bounds 4 succ cont (which will later be replaced by

true), otherwise we call the failure continuation bounds 4 fail cont.

The compilation for first occurrence of a bounds/3 constraint in the rule (the

second occurrence overall)

redundant @ bounds(X,L1,U1) \ bounds(X,L2,U2) <=> L1 >= L2, U1 <= U2 | true.

requires universal search for partners since it is not deleted if the rule succeeds. The

compilation produces the code shown in Figure 3.

The predicate bounds index init iterator, returns an iterator of bounds/3

constraints resulting from looking up the index. bounds iteration last and

bounds iteration next respectively succeed if the iterator is finished and return

values of the next bounds/3 (and its constraint number) as well as the new iter-

ator. After the rule has fired, the predicate bounds alive checks that the active

constraint has not been deleted as a consequence of executing the right-hand-side.

5 The iterator need only return the last 2 arguments of bounds/3 and the constraint number,
since the first argument must be known, but the compilation is more straightforward if it
always returns all arguments.

Optimizing Compilation of Constraint Handling Rules in HAL 13

bounds 2(X,L1,U1,CN1) :-

bounds index init iterator(X,I0),

bounds 2 forall iterate(X,L1,U1,CN1,I0),

bounds 2 cont(X,L1,U1,CN1).

bounds 2 forall iterate(X,L1,U1,CN1,I0) :-

bounds iteration last(I0),

bounds 3(X,L1,U1,CN1).

bounds 2 forall iterate(X,L1,U1,CN1,I0) :-

bounds iteration next(I0, ,L2,U2,CN2,I1),

(L1 >= L2, U1 <= U2, CN1 != CN2 -> %% Guard

bounds remove constraint(X,L2,U2,CN1), %% remove matched constraint

true %% RHS

;

true %% rule did not apply

),

(bounds alive(CN1) ->

bounds 2 forall iterate(X,L1,U1,CN1,I1)

;

true %% active has been deleted

).

Fig. 3. Universal search code for the second occurrence of a bounds/3 constraint

If the active constraint is still alive, then we continue looking for more match-

ings. Note that for universal search we (presently) do not separate fail and success

continuations. �

Example 4

Consider the compilation of the 3rd occurrence of a gcd/1 constraint in the program

in the introduction (the second occurrence in (L7)) which is to be removed. Since the

active constraint is in Remove the entire search is existential. The compilation pro-

duces the code gcd 3 shown in Figure 4. The predicate gcd index exists iteration

iterates non-deterministically through the gcd/1 constraints in the store using the

index (on no arguments). It returns the value of the gcd/1 argument as well as

its constraint number. Next, the guard is checked. Additionally, we check that the

two gcd/1 constraints are in fact different by comparing their constraint numbers

(CN1 != CN2). If a partner is found, the active constraint is removed from the store,

and the body is called. Afterwards, the success continuation for this occurrence is

called. If no partner is found the failure continuation is called.

The compilation for second occurrence of a gcd/1 constraint (the first occur-

rence in (L7)) requires universal search for partners. The compilation produces

the code gcd 2 shown in Figure 4. The predicate gcd index init iterator, re-

turns an iterator of gcd/1 constraints resulting from looking up the index. Calls

to gcd iteration last and gcd iteration next succeed if the iterator is finished

and return values of the last and next gcd/1 constraint (and its constraint number)

as well as the new iterator. �

14 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

gcd 3(M,CN1) :-

(gcd index exists iteration(N,CN2),

M >= N, CN1 != CN2 -> %% guard

gcd delete constraint(M,CN1),

gcd(M-N), %% RHS

gcd 3 succ cont(M,CN1)

; gcd 3 fail cont(M,CN1)).

gcd 2(N,CN1) :-

gcd index init iterator(I0),

gcd 2 forall iterate(N,CN1,I0),

gcd 2 cont(N,CN1).

gcd 2 forall iterate(N,CN1,I0) :-

gcd iteration last(I0),

gcd insert constraint(N,CN1).

gcd 2 forall iterate(N,CN1,I0) :-

gcd iteration next(I0,M,CN2,I1),

(M >= N, CN1 != CN2 -> %% guard

gcd delete constraint(M,CN2),

gcd(M-N) %% RHS

;

true %% rule did not apply

),

(gcd alive(CN1) ->

gcd 2 forall iterate(N,CN1,I1)

;

true

).

Fig. 4. Code for existential partner search and universal partner search.

3.4 Joining the code generated for each constraint occurrence

After generating the code for each individual occurrence, we must join it all together

in one piece of code. The occurrences are ordered by textual occurrence except for

simpagation rules where occurrences after the \ symbol are ordered earlier than

those before the symbol (since they will then be deleted, thus reducing the number

of constraints in the store). Let the order of occurrences be o1, . . . , om. The simplest

way to join the individual rule code for a constraint p/k is as follows: Code for p/k

creates a new constraint number and calls the first occurrence of code p o1/k + 1.

The fail continuation for p oj/k+1 is set to p oj+1/k+1. The success continuation

for p oj/k + 1 is also set to p oj+1/k + 1 unless the active constraint for this

occurrence is in Remove in which case the success continuation is true, since the

active constraint has been deleted.

Example 5
For the gcd program the order of the occurrences is 1, 3, 2. The fail continuations

simply reflect the order in which the occurrences are processed: gcd 1 continues

to gcd 3 which continues to gcd 2 which continues to true. Clearly, the success

continuation for occurrences 1 and 3 of gcd/1 are true since the active constraint

is deleted. The continuation of gcd 2 is true since it is last. The remaining code

for gcd/1 is given in Figure 5.6 �

4 Improving CHR compilation

In the previous section we have examined the basics steps for compiling CHRs tak-

ing advantage of type, mode, functional dependency and symmetries information.

In this section we examine other kinds of optimizations that can be performed by

analysis of the CHRs.

6 Note that later compiler passes remove the overhead of chain rules and empty rules.

Optimizing Compilation of Constraint Handling Rules in HAL 15

gcd(N) :-

new constraint number(CN1),

gcd insert constraint(N,CN1),

gcd 1(N,CN1).

gcd 1(N,CN1) :-

(N = 0 -> %% Guard

gcd delete constraint(N,CN1),

true, %% RHS

gcd 1 succ cont(N,CN1)

; gcd 1 fail cont(N,CN1)).

gcd 1 succ cont(,).

gcd 1 fail cont(N,CN1) :- gcd 3(N,CN1).

gcd 3 succ cont(,).

gcd 3 fail cont(N,CN1) :- gcd 2(N,CN1).

gcd 2 cont(,).

Fig. 5. Initial code, code for first occurrence and continuation code for gcd

4.1 Continuation optimization

We can improve the simple strategy for joining the code generated for each occur-

rence of a constraint by noticing correspondences between rule matchings for various

occurrences. Suppose we have two consecutive occurrences with active constraints,

partner constraints and guards given by the triples (p(x̄), c, g) and (p(ȳ), c′, g′) re-

spectively. Suppose we can prove that |= (x̄ = ȳ∧(∃̄ȳc′∧g′)) → ∃̄x̄c∧g (where ∃̄V F

indicates the existential quantification of F for all its variables not in set V). Then,

anytime the first occurrence fails to match the second occurrence will also fail to

match, since the store has not changed meanwhile. Hence, the fail continuation for

the first occurrence can skip over the second occurrence.

Example 6

Consider the following rules which manipulate bounds(X,L,U) constraints.

ne @ bounds(X,L,U) ==> U >= L.

red @ bounds(X,L1,U1) \ bounds(X,L2,U2) <=> L1 >= L2, U1 <= U2 | true.

int @ bounds(X,L1,U1), bounds(X,L2,U2) <=> bounds(X,max(L1,L2),min(U1,U2)).

For the 4th and 5th occurrences in rule int the implication

(X4 = X5 ∧ ∃L24, U24bounds(X4, L24, U24)) → ∃L15, U15bounds(X5, L15, U15)

(where we use subscripts to indicate which is the active occurrence) holds. Hence,

the 5th occurrence will never succeed if the 4th fails. Since if the 4th succeeds the

active constraint is deleted, the 5th occurrence can be omitted entirely. �

We can similarly improve success continuations. If we can prove for two consecu-

tive occurrences (p(x̄), c, g) and (p(ȳ), c′, g′) that |= ¬∃̄∅(x̄ = ȳ∧(∃̄x̄c∧g)∧(∃̄ȳc′∧g′))

then if the p(x̄) occurrence succeeds the p(ȳ) occurrence will not. Hence, the success

continuation of p(x̄) can skip the p(ȳ) occurrence. Again, we can use whatever form

of reasoning we please to prove the unsatisfiability. Clearly, this is only of interest

when the p(x̄) occurrence does not delete the active constraint.

Example 7

Consider the two occurrences of p/2 in the rules:

p(X,Y), q(Y,Y,X,T) ==> X >= Y | ...

r(A,B,C), p(C,D) ==> C < D | ...

16 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

The constraint X = C∧Y = D∧(∃T q(Y, Y, X, T)∧X ≥ Y)∧(∃A, B, C r(A, B, C)∧
C < D) is clearly unsatisfiable and the success continuation of the first occurrence

of p/2 can skip the second. �

Currently the HAL CHR compiler performs very simple fail continuation based

on basic implication reasoning about identical constraints and true. Furthermore,

because of some subtle complications arising from the implementation of universal

searches, the current HAL CHR compiler restricts continuation optimization to

existential searches. The difficulty stems from deciding if the head of the rule fires

or not, which is information that this optimization relies upon. For the existential

case there is no problem, since matching is already a mere semidet test. However

a universal search may succeed multiple times, so some additional mechanism for

recording the number of times a rule fires must be introduced. One possible solution

is thread a counter through the code for the universal search, and count the number

of times the search succeeds. If the counter is zero after the universal search code

exists, then proceed with the fail continuation, otherwise proceed with the success

continuation. This approach may be implemented in future versions of the compiler.

4.2 Late Storage

The first action in processing a new active constraint is to add it to the store, so

that when it fires, the store has already been updated. In practice, this is inefficient

since it may quite often be immediately removed. We can delay the addition of the

active constraint until just before executing a right-hand-side that does not delete

the active constraint, and can affect the store (i.e., may make use of the CHR

constraints in the store).

Example 8

Consider the compilation of gcd/1. The first and third occurrences delete the ac-

tive constraint. Thus, the new gcd/1 constraint need not be stored before they

are executed. It is only required to be stored just before the code for the second

occurrence. The call to gcd insert constraint can be moved to the beginning

of gcd 2, while the calls to gcd delete constraint in gcd 1 and gcd 3 can be

removed. This simplifies gcd/1 code considerably, as illustrated in Figure 6.

�

The current implementation infers this information by a simple pre-analysis. We

can consider a rule that does not delete the active constraint as rhs-affects-store

if its right-hand-side calls a CHR constraint, or a local predicate which calls CHR

constraints (directly or indirectly), or (to be safe) an external predicate which is

not a library predicate. In future compiler implementations, when CHR constraints

are allowed to have non-ground arguments, we must also ensure no left-hand-side

variables can ever be bound by the right-hand-side. This is because the CHR execu-

tion semantics dictate that whenever the instantiation state of a constraint changes,

we must immediately run that constraint again as the active. However since the

current implementation only supports ground CHR constraints, this issue is not yet

relevant.

Optimizing Compilation of Constraint Handling Rules in HAL 17

gcd(N) :-

new constraint number(CN1),

gcd 1(N,CN1).

gcd 1(N,CN1) :-

(N = 0 -> %% Guard

true, %% RHS

true %% success continuation

;

gcd 3(N,CN1) %% fail continuation

).

gcd 3(M,CN1) :-

(gcd index exists iteration(N,CN2),

M >= N, CN1 != CN2 -> %% guard

gcd delete constraint(M,CN1),

gcd(M-N), %% RHS

true %% success continuation

;

gcd 2(M,CN1) %% fail continuation

).

gcd 2(N,CN1) :-

gcd index init iterator(I0),

gcd 2 forall iterate(N,CN1,I0).

gcd 2 forall iterate(N,CN1,I0) :-

gcd iteration last(I0),

gcd insert constraint(N,CN1).

gcd 2 forall iterate(N,CN1,I0) :-

gcd iteration next(I0,M,CN2,I1),

(M >= N, CN1 != CN2 -> %% guard

gcd delete constraint(M,CN2),

gcd insert constraint(N,CN1), %% late insert

gcd(M-N) %% RHS

;

true %% rule did not apply

),

(gcd alive(CN1) ->

gcd 2 forall iterate(N,CN1,I1)

;

true

).

Fig. 6. Simplified code for gcd/2 with late storage

Good late storage analysis is very important because most of the other analysis

listed in this paper depends on it. Analysis for detecting set semantics, functional

dependencies, never stored constraints and symmetry all rely on late storage infor-

mation.

4.3 Never Stored

A rule of the form

c ⇐⇒ d1, . . . , dm

18 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

where c is a single constraint, always eliminates constraints of form c from the store.

In particular if c is the most general form of the constraint p(x1, . . . , xk),7 and p/k

does not need to be stored because of earlier occurrences of p/k in rhs-affects-store

rules, then we don’t need to store this constraint at all. The advantage of never-

stored information is that any rules involving p/k will only wake up when c is the

active constraint. The current implementation searches for instances of never-stored

rules and uses this information to avoid unnecessary joins, and to avoid building

redundant index structures.

Example 9

Consider a fixed/1 constraint which succeeds if its argument is a variable with

equal lower and upper bounds, defined by the rules:

bounds(X,V,V) \ fixed(X) <=> true.

fixed(X) <=> fail.

Both rules delete the active fixed/1 constraint. Thus, there will never be a fixed/1

constraint in the store and hence an active bounds/3 constraint will never match

the rule. Thus, the occurrence of bounds/3 in this rule will not be considered when

compiling bounds/3. �

4.4 Set semantics

Although CHRs use a multiset semantics, often the constraints defined by CHRs

have a set semantics. The current implementation detects two different forms of

set semantics. Either the program rules ensure duplicate copies of constraints are

always deleted or duplicate copies will not affect the behaviour of the program.

The distinction between the two forms affects how the compiler takes advantage of

this information, but in both cases set semantics allows us to choose more efficient

index structures.

A constraint p/k has set semantics if there is a rule which explicitly removes

duplicates of constraints. That is, if there exists a rule of the form

p(x1, . . . , xk) [, \] p(y1, . . . , yk) ⇐⇒ g | d1, . . . , dm

such that |= x1 = y1 ∧ · · ·xk = yk → ∃̄x̄∪ȳg which occurs before any rules require

p/k to be stored.

Example 10

The rule

bounds(X,L1,U1) \ bounds(X,L2,U2) <=> L1 >= L2, U2 >= U1 | true.

ensures that any new active bounds/3 constraint identical to one already in the

store will be deleted (it also deletes other redundant bounds information). Since

it occurs before any rules requiring bounds/3 to be stored the constraint has set

semantics. �

7 All arguments are pair-wise different variables.

Optimizing Compilation of Constraint Handling Rules in HAL 19

A constraint also has set semantics if all rules in which it appears behave the

same even if duplicates are present. This is a very common case since CHRs are used

to build constraint solvers which (by definition) should treat constraint multisets

as sets. Thus, a constraint p/k also has set semantics if

1. there are no rules which can match two identical copies of p/k

2. there are no rules that delete a constraint p/k without deleting all identical

copies. An exception is when the right-hand-side of such a rule always fails.

3. there are no rules with occurrences of p/k that can generate constraints (on

the right-hand-side) which do not have set semantics.

The current implementation uses a simple fixpoint analysis which can detect such

constraints starting from the assumption that all constraints have set semantics. In

each iteration a constraint which violates one of the rules above is deleted from the

candidate set of those with set semantics. The iterations proceed until a fixpoint is

reached.

For constraints p/k having this form we can safely add a rule of the form

p(x1, . . . , xk) \ p(x1, . . . , xk) ⇐⇒ true.

This will avoid redundant work when duplicate constraints are added. We can also

modify the index structures for this constraint to avoid the necessity of storing

duplicates.

Example 11

Consider a constraint eq/2 (for equality) defined by the CHR

eq(X,Y),bounds(X,LX,UX),bounds(Y,LY,UY) ==> bounds(Y,LX,UX),bounds(X,LY,UY).

Then, since bounds/3 has set semantics, eq/2 also has set semantics. If we add the

additional rule

eq(X,Y), X != Y <=> fail.

then eq/2 still has set semantics. Even though the additional rule might delete

one copy only of the constraint eq/2, it does not matter because the rule leads to

failure. �

Example 12

Adding the additional rule which deletes identical copies of constraints can improve

the termination of the program. Consider the following rules which define symmetry

for != constraints

neqset @ X != Y \ X != Y <=> true.

neqsym @ X != Y ==> Y != X.

If we delete the rule neqset then rule neqsym is an infinite loop for any new !=/2

active constraint. However if !=/2 implicitly has set semantics, then we will auto-

matically add the rule neqset, hence the program becomes terminating. �

20 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

5 Determining Functional Dependencies and Symmetries

In previous sections we have either explained how to determine the information used

for an optimization (as in the case of rules which are rhs-affects-store) or assumed it

was given by the user or inferred by the compiler in the usual way (as in type, mode

and determinism). The only two exceptions (functional dependencies and symme-

tries) were delayed in order not to clutter the explanation of CHR compilation. The

following two sections examine how to determine these two properties.

5.1 Functional Dependencies

Functional dependencies occur frequently in CHRs since we encode functions using

relations. Suppose p/k need not be stored before occurrences in a rule of the form

p(x1, . . . , xl, yl+1, . . . , yk)[, \]p(x1, . . . , xl, zl+1, . . . , zk) ⇐⇒ d1, . . . , dm (1)

where xi, 1 ≤ i ≤ l and yi, zi, l + 1 ≤ i ≤ k are distinct variables. This corresponds

to the functional dependencies p(x1, . . . , xk) :: (x1, . . . , xl) xi, l + 1 ≤ i ≤ k.

For example, the rule int of Example 6 illustrates the functional dependencies

bounds(X, L, U) :: X L and bounds(X, L, U) :: X U . In addition, rule

(1) deletes identical copies ensuring p/k has set semantics. Therefore there is at

most one constraint in the store of the form p(x1, . . . , xl, , . . . ,) at any time.

Likewise, any constraint p/k that has a rule which deletes identical copies of con-

straints can also be thought of as having the functional dependency p(x1, . . . , xk) ::

(x1, . . . , xk) ∅.
Another common way functional dependencies are expressed in CHRs is by rules

of the form

p(x1, . . . , xl, yl+1, . . . , yk), p(x1, . . . , xl, zl+1, . . . , zk) =⇒ yl+1 = zl+1, . . . yk = zk

This leads to the same functional dependency as before, however it does not lead

to set semantics behavior.

We can detect more functional dependencies if we consider multiple rules of the

same kind. For example, the rules

p(x1, . . . , xl, yl+1, . . . , yk)[, \]p(x1, . . . , xl, zl+1, . . . , zk) ⇐⇒ g1|d1, . . . , dm

p(x1, . . . , xl, y
′
l+1, . . . , y

′
k)[, \]p(x1, . . . , xl, z

′
l+1, . . . , z

′
k) ⇐⇒ g2|d

′
1, . . . , d

′
m′

also lead to functional dependencies if |= (ȳ = ȳ′ ∧ z̄ = z̄′ → (g1 ∨ g2) is provable.

However because of the difficulty in solving disjunctions, the current analysis is

limited to the case where g1 and g2 are primitive integer or real constraints (not

conjunctions of other constraints).

Example 13

The second rule for gcd/1 written twice illustrates the functional dependency

gcd(N) :: ∅ N since N = M ′ ∧ M = N ′ → (M ≥ N ∨ M ′ ≥ N ′) holds:

gcd(N) \ gcd(M) <=> M >= N | gcd(M - N).

gcd(N’) \ gcd(M’) <=> M’ >= N’ | gcd(M’ - N’).

Making use of this functional dependency for gcd/1 we can use a single global

Optimizing Compilation of Constraint Handling Rules in HAL 21

yesno integer value ($Gcd) to store the (at most one) gcd/1 constraint, we can

replace the forall iteration by exists iteration, and remove the constraint numbers

entirely. The resulting code (after unfolding) is

gcd(X) :-

(X = 0 -> true %% occ 1: guard -> rhs

; (yes(N) = $Gcd, X >= N %% occ 3: gcd index exists iteration, guard

gcd(X-N) %% occ 3: rhs

; (yes(M) = $Gcd, M >= X %% occ 2: gcd forall iterate, guard

$Gcd := yes(X), %% occ 2: gcd insert constraint

gcd(M-X) %% occ 2: rhs

; $Gcd := yes(X)))). %% late insert

�

5.2 Symmetry

Symmetry also occurs reasonably often in CHRs. There are multiple ways of de-

tecting symmetries. A rule of the form

p(x1, x2, . . . , xk) =⇒ p(x2, x1, . . . , xk)

that occurs before any rule that requires p/k to be inserted induces a symme-

try for constraint p(x1, . . . , xk) on x1 and x2, providing that no rule eliminates

p(x1, x2, . . . , xk) and not p(x2, x1, . . . , xk).

Example 14

Consider a !=/2 constraint defined by the rules:

neqset @ X != Y \ X != Y <=> true.

neqsym @ X != Y ==> Y != X.

neqlower @ X != Y, bounds(X,VX,VX), bounds(Y,VX,UY) ==> bounds(Y,VX+1,UY).

nequpper @ X != Y, bounds(X,VX,VX), bounds(Y,LY,VX) ==> bounds(Y,LY,VX-1).

the rule neqsym @ X != Y => Y != X illustrates the symmetry of !=/2 w.r.t. X

and Y , since in addition no rule deletes a (non-duplicate) !=/2 constraint. �

A constraint may be symmetric without a specific symmetry adding rule. The

general case is complicated and, for brevity, we simply give examples.

Example 15

The rule in Example 11 and its rewriting with {X 7→ Y, Y 7→ X} are logically

equivalent (they are variants illustrated by the reordering of the rule).

eq(X,Y),bounds(X,LX,UX),bounds(Y,LY,UY) ==> bounds(Y,LX,UX),bounds(X,LY,UY).

eq(Y,X),bounds(Y,LY,UY),bounds(X,LX,UX) ==> bounds(X,LY,UY),bounds(Y,LX,UX).

Hence, since this is the only rule for eq/2, the eq/2 constraint is symmetric. �

Example 16

The following rules remove redundant inequalities:

eq(X,Y) \ X <= Y <=> true.

eq(Y,X) \ X <= Y <=> true.

22 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

They are symmetric for eq(x,y) on x and y. �

If every rule containing constraint p/k is symmetric on x1 and x2 with another

rule then, the constraint is symmetric on x1 and x2. Hence eq(x,y) is symmetric in

x and y.

Note that we can take into account symmetries in other constraints when proving

symmetry of rules. Hence for example the additional rule

X != Y, eq(X,Y) ==> fail.

is symmetric for eq(x,y) on x and y because of the symmetry of !=/2.

Note that we can find more symmetry by starting from the assumption that every

constraint is symmetric on all arguments and iteratively disproving this.

6 Experimental Results

The initial version of the HAL CHR compiler (reported in (Holzbaur et al., 2001))

realized only some of the optimizations discussed herein, continuation optimization,

simplistic join ordering and simplistic late storage. The current version fully imple-

ments most of the analysis and optimizations discussed in this paper, including

• early guard scheduling and join ordering;

• the discovery of functional dependencies, set semantics and symmetries (only

the first case of symmetry is detected);

• late storage; and

• the building of specialized indexes which rely on this information.

Analysis is performed in an independent compilation phase, followed by an op-

timized code generation phase which builds the index structures amongst other

things. Further improvements in the analysis phase are possible, such as better dis-

covery of symmetries (implied from rules) and improved continuation optimization.

Further improvements are also possible in the optimized code generation phase, such

as generating multiple indexes for every lookup (currently, the compiler generates

one index per constraint).

The cost of the CHR analysis is small compared with the cost of other tasks

performed by the HAL compiler, such as type and mode analysis. The discovery

of functional dependencies, set semantics and symmetries is generally very cheap

since only a linear pass over the program is required. Late storage is slightly more

expensive since a call graph must be constructed. Join ordering is potentially ex-

pensive for rules with a large number of partners in the head, however the current

implementation uses a greedy algorithm which is generally much faster.

The currently implementation is a prototype designed to demonstrate how an

optimizing CHR compiler will eventually be realized. To test the analysis and op-

timizations implemented by the prototype we compare the performance on 3 small

programs:

• gcd as described in the paper, where the query (a,b) is gcd(a),gcd(b).

Optimizing Compilation of Constraint Handling Rules in HAL 23

Table 1. Summary of the information extracted by the analysis phase of CHR

compilation

Program Constraint FD Set Sym

gcd gcd(X) ∅ X yes —

interval bounds(X,L,U) {X} L, U yes —
interval eq(X,Y) — yes —
interval geq(X,Y) — yes —
interval X != Y — yes {X, Y }
interval plus(X,Y,Z) — yes —

dfa line(X,Y) — yes {X, Y }

• interval: a simple bounds propagation solver executing N-queens; where

the query (a, b) is for a queens with each constraint added b times (usually

1, just here to illustrate the possible benefits from set semantics). The full

code for the bounds propagation solver (module interval) can be found in

in Appendix A.

• dfa: a visual parser for deterministic finite automatas (DFAs) building the

DFA from individual graphics elements, e.g. circles, lines and text boxes. The

constraints are all ground, and the compilation involves a single (indexable)

lookup line(, Y), has a single symmetry line(X, Y) = line(Y, X) and no

constraints (except line/2) have set semantics. In this program the rules are

large multi-ways joins, e.g., the rule to detect an arrow from one state to

another is:

circle(C1,R1), circle(C2,R2) \

line(P1,P2), line(P2,P1), line(P3,P2), line(P2,P3),

line(P4,P2), line(P2,P4), text(P5,T) <=>

point on circle(P1,C1,R1), point on circle(P2,C2,R2),

midpoint(P1,P2,P12), near(P12,P5) | arrow(P1,P2,T).

Notice that the rule is careful to delete symmetric copies of the constraint

line/2. The query a finds a (constant) small DFA (of 10 elements) in a large

set of a redundant arrows (each consisting of three lines and a text box).

A summary of the results from the analysis phase are shown in Figure 1. For

the gcd program, the analysis infers8 the functional dependency ∅ X and set

semantics from the rule

gcd(N) \ gcd(M) <=> M >= N | gcd(M-N).

8 See example 13 in Section 5.1

24 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

Table 2. Execution times (ms) for various optimized versions of the gcd program

Benchmark Query Orig +yesno +det Hand

gcd (5000000,3) 1111 976 402 50
gcd (10000000,3) 2314 2032 803 93
gcd (50000000,3) 12412 11093 5095 475
gcd (100000000,3) 24891 22240 10270 961

The compiler uses this information to build a yesno index structure, since the

functional dependency combined with set semantics implies that only one gcd(X)

constraint can ever be in the store at one time.

The next program, interval, is the most fruitful in terms of information discov-

ered. The rules

bounds(X,L1,U1) \ bounds(X,L2,U2) <=> L1 >= L2, U2 >= U1 | true.

bounds(X,L1,U1), bounds(X,L2,U2) <=> bounds(X,max(L1,L2),min(U1,U2)).

leads to the the discovery of the set semantics of bounds/3 and the functional

dependencies bounds(X, L, U) : X L and bounds(X, L, U) : X U . Therefore

only one copy of the constraint bounds(X, ,) can ever be in the store at one time.

The resulting structure for bounds/3 is a balanced 234 tree with (X) as the key

and (L, U) as the value.

All of the other interval constraints at least have set semantics. Set semantics

are inferred for constraints that behave the same even if multiple copies are stored.

For example, the only rule involving the constraint eq/2 is

equals @ eq(X,Y), bounds(X,LX,UX), bounds(Y,LY,UY) ==>

bounds(Y,LX,UX), bounds(X,LY,UY).

Since bounds/3 has set semantics, then so has eq/2. The compiler uses this infor-

mation to eliminate active eq/2 constraints that already occur in the store. Thus

redundant work is avoided, and potentially the size of indexes is reduced. In addition

symmetry on the constraint !=/2 is detected because of the symmetric rule

neqsym @ X != Y ==> Y != X.

Because of the benefit with symmetric reduction, the compiler will choose a bal-

anced 234 tree index for !=/2 with (X, Y) as the key.

Finally the dfa program turns out to be the least interesting in terms of infor-

mation discovered. The only constraint with any useful attributes is line/2, which

is symmetric and has set semantics. Again the compiler generates a balanced 234

tree index (for the same reasons as !=/2 in the interval program). All other con-

straints use the default unsorted list index structure. However, because of the large

size of the heads of rules in the dfa program, the most important optimization is

join ordering and early guard scheduling.

The results gcd, interval and dfa are shown in Table 2, Table 3 and Table 4

respectively. All timings are the average over 20 runs on a 1200MHz AMD Athlon

Optimizing Compilation of Constraint Handling Rules in HAL 25

Table 3. Execution times (ms) for various optimized versions of the interval

program

Benchmark Query Orig +tree +det +sym +eq

interval (12,1) 389 138 126 67 68
interval (15,1) 1312 382 355 172 169
interval (20,1) 6077 1602 1535 693 677
interval (30,1) 73158 11728 12537 4943 4916
interval (12,2) 556 184 167 107 69
interval (15,2) 1824 532 471 283 167
interval (20,2) 8658 2148 1984 1135 669
interval (30,2) 110224 21950 18799 8522 5071

Table 4. Execution times (ms) for various optimized versions of the dfa program

Benchmark Query Prolog +join +treesym +det

dfa 20 4987 30 20 19
dfa 50 69070 164 87 86
dfa 100 532278 612 271 267
dfa 200 too long 2804 1525 1536
dfa 400 too long 13058 7401 7370

Processor with 1Gb of RAM running under Debian GNU Linux 3.0 with kernel

version 2.2.19, and are given in milliseconds. Any test taking more than 600000ms

(10 minutes) is marked as “too long”.

For gcd we first give times for the original output of the compiler Orig (uses a

list index). In the version +yesno the list storage of constraints is replaced by a

+yesno structure (using the functional dependency and set semantics). We can see

a modest improvement here by just avoiding some overhead. Note that in Orig the

list index for gcd/2 never grows more than one item in length anyway, so we do not

expect a significant improvement by replacing a singleton list with a yesno struc-

ture. In +det the determinism declarations of the compiled CHR code is altered

to take into account the functional dependency. This is a low level optimization in

which previously “nondeterministic” lookups can be declared semidet (can succeed

at most once). Without this optimization they are declared cc nondet which means

although they may succeed more than once we are interested only in the first solu-

tion. This produces faster executable code since deterministic (including semidet)

code can be compiled in a simpler way than nondeterministic code. Finally Hand

uses the hand optimized implementation of gcd/1 shown in Example 13. Here we see

a considerable improvement purely from removing all of the overhead generated by

26 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

the compiler (such as constraint numbers). We expect that future implementations

of the compiler will be able to remove most of this excess overhead.

The second experiment we show is interval in Table 3. The original code Orig

uses list indexes for all constraints, version +tree is where the list index on bounds/3

has been replaced by a 234 tree index (using the functional dependency), +det

where some cc nondet searches are correctly declared semidet, +sym where the

list index on !=/2 has been replaced by a 234 tree index (because we can take

advantage of symmetric reduction), and +eq where identical copies of set semantic

constraints are deleted. Here we can see a significant improvement when the list

index for bounds/3 is replaced by a 234 tree index. This is not surprising, since we

are replacing O(n) lookups (for lists) with O(log(n)) lookups (for trees). Next the

+det optimization provides a slight improvement in most cases. However for some

unknown reason the test (30, 1) actually becomes slightly worse. Next the +sym

lets us take advantage of symmetric reduction, which means we can choose a 234

tree index for the constraint !=/2. Again this provides a significant improvement.

Finally the +eq optimization deletes identical copies of constraints before they run

as the active constraint. The handling of set semantics is of considerable benefit

when duplicate constraints are actually added, and doesn’t add significant overhead

when there are no duplicate constraints, hence it seems worthwhile.

The final example is the dfa program in Table 4. The code Prolog has the de-

fault join ordering and guard scheduling used by existing Prolog implementations of

CHR compilers. Recall that this means guards are tested strictly after the join op-

eration, hence the dreadful performance on a program with large rules, such as the

dfa example. For the previous examples the default join ordering and the best join

ordering coincide. Enabling join ordering and early guard scheduling (+join) pro-

duces a massive improvement in running time (dfa 100 is nearly 2000 times better).

This highlights the importance of this optimization. Next +treesym turns on 234

tree indexes and symmetric lookup reduction for the line/2 constraint (without

the symmetry lookup reduction, the compiler will not choose to use a 234 index be-

cause of a lookup line(, Y)). Once again we get a significant improvement. Finally

in this case the +det optimization seems to produce a very slight improvement, if

at all.

Finally we remark that it is easy to optimize a very poor base implementation

of CHRs. The HAL base implementation is highly efficient. The execution times of

the Orig or Prolog columns are about an order of magnitude faster than CHRs in

SICStus Prolog. See (Holzbaur et al., 2001) for more detail.

7 Conclusion and Future Work

The core of compiling CHRs is a multi-way join compilation. But, unlike the usual

database case, we have no information on the cardinality of relations and index

selectivity. We show how to use type and mode information to compile efficient

joins, and automatically utilize appropriate indexes for supporting the joins. We

show how set semantics, functional dependencies and symmetries can improve this

compilation process. We further investigate how, by analyzing the CHRs themselves

we can find other opportunities for improving compilation, as well as determined

Optimizing Compilation of Constraint Handling Rules in HAL 27

functional dependencies, symmetries and other algebraic features of the CHR con-

straints. The prototype HAL CHR compiler which applies these techniques produces

highly efficient CHR executables.

Almost all of the optimizations considered in this paper are not specific to HAL,

the optimizations that are not immediately applicable in a CHR compiler for Prolog

are as follows. Mode information is not available for guards which means early guard

scheduling may not be as effective, still assuming all variables are invars is safe and

will account for most of the improvement. The determinism optimization +det in

the experiments is not applicable since determinism declarations are not supported

by Prolog systems.

There is substantial scope for further optimization of CHRs. These include: more

complicated lookups (for example range lookups on tree indexes), replacing propa-

gation rules by equivalent simplification rules, common subexpression elimination,

unfolding of CHRs, and determining invariant information for stored constraints.

We plan to continue improving the HAL CHR compiler to take advantage of these

possibilities.

References

Abdennadher, S. (1997). Operational semantics and confluence of constraint propagation
rules. Pages 252–266 of: Smolka, Gert (ed), Proceedings of the Third International

Conference on Principles and Practice of Constraint Programming.

Demoen, B., Garćıa de la Banda, M., Harvey, W., Marriott, K., & Stuckey, P.J. (1999). An
overview of HAL. Pages 174–188 of: Proceedings of the Fourth International Conference

on Principles and Practices of Constraint Programming.

Frühwirth, T. (1998). Theory and practice of constraint handling rules. Journal of Logic

Programming, 37(1–3), 95–138.

Holzbaur, C., & Frühwirth, T. (2000). Constraint handling rules, special issue. Journal

of Applied Artificial Intelligence, 14(4).

Holzbaur, C., Stuckey, P.J., Garćıa de la Banda, M., & Jeffery, D. (2001). Optimizing
compilation of constraint handling rules. Pages 74–89 of: Codognet, P. (ed), Logic Pro-

gramming: Proceedings of the 17th International Conference. LNCS. Springer-Verlag.

JCK. (2002). JCK: Java constraint kit. http://www.pms.informatik.uni-
muenchen.de/software/jack/index.html.

Somogyi, Z., Henderson, F., & Conway, T. (1996). The execution algorithm of Mercury: an
efficient purely declarative logic programming language. Journal of Logic Programming,
29, 17–64.

A Building a constraint solver in HAL using CHRs

The program in Figure A1 defines a simple bounds propagation solver for integers using
constraint handling rules. From a HAL perspective it is a solver module defining a solver
on the type cint. Line (L3) is the type definition for the new type cint which is a wrapped
integer. The integer is used as a variable number. The integer is wrapped so that we have
a new type that we can (re-)define equality for.The type is exported abstractly hence its
definition is not visible outside the module, thus restricting operations on cint to those
in this module.

Line (L4) is a re-instantiation declaration, which is required because we are going to

28 C. Holzbaur & M. Garćıa de la Banda & P.J. Stuckey & G.J. Duck

:- module interval. (L1)
:- import int. (L2)
:- export abstract typedef cint -> f(int). (L3)
:- reinst old cold = ground. (L4)
:- modedef cno -> (new -> cold). (L5)
:- modedef coo -> (cold -> cold). (L6)
:- VarNum glob var int = 0. (L7)

:- export pred init(cint). (L8)
:- mode init(cno) is det. (L9)
init(V) :- V = f($VarNum), $VarNum := $VarNum + 1,

(bounds(V,-10000,10000) -> true ; error("not det.")).

:- export only pred cint=cint. (L10)
:- mode coo=coo is semidet. (L11)
X = Y :- eq(X,Y).

:- export chrc bounds(cint,int,int). (L12)
:- mode bounds(coo,in,in) is semidet. (L13)
non empty@ bounds(X,L,U) ==> U >= L.

redundant@ bounds(X,L1,U1) \ bounds(X,L2,U2) <=>

L1 >= L2, U2 >= U1 | true.
intersect@bounds(X,L1,U1), bounds(X,L2,U2) <=>

bounds(X,max(L1,L2),min(U1,U2)).

:- chrc eq(cint,cint). (L14)
:- mode eq(in,in) is semidet. (L15)
equals @ eq(X,Y), bounds(X,LX,UX), bounds(Y,LY,UY) ==>

bounds(Y,LX,UX),bounds(X,LY,UY).

:- export chrc cint >= cint. (L16)
:- mode coo >= coo is semidet. (L17)
geq @ X >= Y, bounds(X,LX,UX), bounds(Y,LY,UY) ==>

bounds(Y,LX,UY), bounds(X,LX,UY).

:- export chrc cint != cint.

:- mode coo != coo is semidet.

neqset @ X != Y \ X != Y <=> true.

neqsym @ X != Y ==> Y != X.
neqlower@ X != Y,bounds(X,VX,VX),bounds(Y,VX,UY)==>bounds(Y,VX+1,UY).

nequpper@ X != Y,bounds(X,VX,VX),bounds(Y,LY,VX)==>bounds(Y,LY,VX-1).

:- export func cint + cint --> cint.
:- mode coo + coo --> oo is semidet.

X + Y --> Z :- plus(X,Y,Z).

:- chrc plus(cint,cint,cint).
:- mode plus(in,in,in) is semidet.

plus@ plus(X,Y,Z),bounds(X,LX,UX),bounds(Y,LY,UY),bounds(Z,LZ,UZ)==>

bounds(X,LZ-UY,UZ-LY),bounds(Y,LZ-UX,UZ-LX),bounds(Z,LX+LY,UX+UY).

Fig. A 1. A simple integer bounds propagation solver using CHRs

Optimizing Compilation of Constraint Handling Rules in HAL 29

treat cints in two ways. The reinst old declares a new instantiation cold (to be associ-
ated with the cint type) which is equivalent to “old” (i.e. a possibly non-ground term)
outside the module, and equivalent to ground inside the module. We require this because
outside the module we treat cints as bounds propagation solver variables, whereas in-
side the module they will be manipulated as wrapped integers (which are ground). Lines
(L5) − (L6) give two common modes of usage for cints.

Variable numbers (for new cints) are kept track of in a global integer counter VarNum.
This is declared in line (L7) with its type int, and initial value (0).

For any solver type we need to define two predicates init/1 which initializes a new
variable and =/2 for equating two solver variables. Line (L8) is the predicate declaration
for init/1 which is exported. Its mode is given in line (L9), the mode cno takes a new
object and returns a cold object (old outside this module, and ground inside this module).
Its definition in the next line simply returns the wrapped counter value, and increments
the counter. The predicate must always succeed exactly once hence its determinism is det,
but to pass determinism checking the call to bounds/3 is wrapped in an if-then-else (since
the compiler cannot determine that it will not fail).

The =/2 predicate is defined in line (L10) as export only, which makes it visible outside
the module, but not visible inside the module. This is to avoid confusion with the equality
on the internal view of cints which simply treats them as ground terms rather than integer
variables. Its mode definition in line (L11) takes two cold cints as input and returns the
same instantiation (the coo mode). It may fail, so the determinism is semidet. Note the
definition of =/2 is made in terms of the non-exported constraint eq/2.

Finally we arrive at our first constraint. Line (L12) defines an exported constraint
bounds/3 which relates a cint to two ints. The mode declaration on line (L13) declares
that the constraint must be invoked with an old cint and two ground integers. The CHR
non empty is a simple propagation rule. Note the advantages of a typed language, the >=

on the right hand side is integer comparison, not to be confused with the constraint >=

defined on line (L16). The CHR redundant removes redundant bounds constraints. The
CHR intersect replaces two bounds/3 constraints on the same variable by one. Note that
bounds/3 occurs in many of the rules in the program not just the two defined immediately
below its declaration.

When compiling the module interval we can determine the functional dependencies:
bounds(X, L, U) :: X L and bounds(X, L, U) :: X U , the symmetries eq(X, Y) ≡
eq(Y,X), neq(X, Y) ≡ neq(Y,X) and plus(X, Y, Z) ≡ plus(Y, X, Z) and that each of the
CHR constraints has a set semantics.

The lookups required for the program are (after reduction by functional dependencies):
bounds(X, ,), eq(X,), eq(, Y), neq(X, Y), neq(X,), neq(, Y), plus(X, ,), plus(, Y,)
and plus(, , Z). Symmetry eliminates the indexes eq(, Y), neq(, Y) and plus(, Y,).

