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Abstract

In this thesis, we study the skin surface as a new paradigm for the deformable surfaces.

The skin surface handles deformation and topology changes robustly, supported by the un-

derlying structure of Delaunay triangulations and alpha shapes. The surface serves as a

deformable manifold in various disciplines, such as computer graphics, molecular modeling,

and mechanical engineering.

We develop an algorithm and software for the construction and visualization of the skin

surface in 3D in various ways, namely, a parametric representation, static and dynamic

triangulations. The triangulation algorithm is guaranteed to terminate with a high quality

triangle mesh. In our investigation, geometric properties of the skin serve as the foundation

of our proofs and insights for the algorithms. The proofs can be extended to the meshing

of other low degree surfaces, such as NURBS. The surfaces created by the software bring

stability in finite element methods and visualization of molecular structures to scientists.
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Chapter 1

Introduction

Many geometric structures in scientific and engineering computations can be modeled as

steady state representations. However, many application areas, including molecular bi-

ology, engineering, and computer graphics, require computations on dynamic structures

[8, 50, 60, 67, 68, 70, 77, 83, 85, 88, 94]. The coordination of spatial movement is essential,

and changes of topology need to be handled robustly. Practitioners use various geometric

models to approach these problems. One of the modeling techniques of those structures uses

deformable surfaces that represent boundaries of structures, which move according to time

or, modification by optimization algorithms or users. We differentiate the study into three

levels of concepts. We refer the top level as to the deformable phenomena which are going

to be modeled. The middle level is the higher level model, or shape representations of the

phenomena. For each representation, it has a lower level representation or implementation.

There are many ways to represent a deformable surface in the middle level, and this thesis

investigates one specific representation, which is referred as the ’skin’. First, we give some

reviews of previous models.

1.1 Deformable Surface Modeling: A Brief Review

Deformable surfaces, have many kinds of shape representations [12]. Some current repre-

sentations of deformable surfaces are meshes, parametric surfaces [93], and implicit surfaces
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[17, 92]. Because of the diversity of needs, various application areas use different representa-

tions accordingly. This section reviews some major representations used in several disciplines

and the challenges involved.

Biomolecular Sciences. Biology and chemistry research study inter-molecular behaviors

by investigating properties about surfaces of molecules [15, 28, 29]. For example, in order

to analyze the ligand docking problem, researchers study the surface electric potentials and

geometric properties to interpret how molecules bind to each other. These analyses are facil-

itated by representing the surfaces with the van der Waals, molecular, and solvent accessible

surface models of molecules [66].

Modeling each atom with a ball of van der Waals radius, the van der Waals surface is

the boundary of the union of balls. The molecular and solvent accessible surface models use

a probe to define the surfaces. The probe is a sphere with an adjustable radius that rolls

over the van der Waals surface. The molecular surface [78] is the boundary of the volume

which the probe cannot penetrate. The solvent accessible model [67] is the trace of the probe

center when the probe is rolling on the van der Waals surface.

probe
movement

Solvent
Accessible Model Molecular

Model

Van der Waals
Model

Figure 1.1: Modeling molecules

The disadvantage of these models is the lack of smoothness of the surface. In the van der
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Waals and solvent accessible models, no tangent continuity is maintained at the intersections

of the balls. Even when the molecular surface is mostly smooth, it can still have sharp

spurs between atoms that are close to each other. Since sharp edges exist at intersections

among spheres, triangle meshes of the surface with a good quality cannot be guaranteed

[64, 65]. This leads to ill-conditioned numerical computations, for example, in finite element

applications.

Mechanical and Materials Engineering. Physical simulations with deformable surfaces

arise in many engineering research situations [8, 49, 81, 82, 84, 86], for example, the modeling

of the boundary between solid and liquid portions of metal during solidification [77]. Such

simulations are facilitated by representing the surface with a triangulation or mesh. This

process is called meshing. The simulation involves numerical computations which require

the triangles in the mesh to be well-shaped. This usually means the triangles need to avoid

having large and small angles. In order to achieve this requirement, refinement algorithms

are applied to maintain the mesh quality. However, it is a challenge to construct a correct

algorithm that terminates, gives desired triangle qualities, and preserves topology. Some

of the existing refinement algorithms fail for poorly conditioned surfaces [72]. One of the

difficulties is to prove that the algorithm terminates. Heuristics are added in some algorithms

in order to stop the infinite loops, but the results can be unsatisfying, with poor triangle

quality. Another challenge is preserving the surface topology during refinement. Undesirable

holes or extraneous components may be created in the mesh due to the inability of the

algorithm to cover all cases.

In addition to meshes, engineers adopt the raster model to represent shapes in designing

structures, which is referred to as the structural optimization [84]. Elements of grids or voxels

are used to represent structures in R
2 and R

3 respectively. The grid contains values ranging

from 0 (empty) to 1 (solid). During the optimization process, finite element application

compute the fraction of area, lengthen of the perimeter, and their derivatives within a circular
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window. With this local information the boundary of the shape is modified. Because of this

locality, this method is more efficient than shapes represented by level sets which are zero sets

of a function. The disadvantage of the representation is that it has no exact boundary. In

situations involving the exact location of the boundary, such as pressure load computation,

this problem can be acute if precise interpretation of the boundary geometry is an issue.

Other than the raster model, the notion of using level sets has been proposed before.

One difficulty of using the model is preserving the possibility of introducing solid material

to avoid regions during the optimization process. Santosa investigated level sets in inverse

problems involving obstacles [82]. The “bubble method” [49] and other method based on

topological derivatives [86] also work with direct surface representations. However, in these

methods, a topology change requires a discrete change in the surface representation, and

does not result from a variation of continuous design parameters.

Computer Graphics. Deforming objects occur often in the field of animation [50, 60,

70, 85], and parametric surfaces are popular in modeling these objects [93]. Animation

artists model creatures with surfaces, such as Non-Uniform Rational B-Splines (NURBS)

[76]. These parametric surfaces are widely supported by most graphics hardware, as well

as software libraries [95]. However, modeling is complicated with NURBS if the animation

involves topology changes, for example, poking a hole on an object surface. One solution to

reduce the complication is trimming curves. More complicated patches, such as a rectangular

surface with a hole, can be represented with these trimming curves. This reduces the number

of patches used. Disadvantages of clipping the trimming curves in the parametric domain

include expensive computations in solving high degree equations and numerical instability.

In addition, controlling the deformation of some simple patches of NURBS is a complicated

process [61, 89], and researchers are looking for more intuitive manipulation techniques to

enhance user interaction. [52, 58, 69, 74].

Other than parametric surfaces, another representation of shapes is the implicit surface
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[17]. Implicit surfaces, or level sets, can be defined by the zero-set of a function [12], e.g.

metaballs modeled by Gaussian basis functions [16]. Turk and O’Brien showed the use of

implicit surfaces for deformation by interpolating different shapes [92]. During morphing,

some of the intermediate shapes are not tangent continuous. This usually happens at the time

of topology changes when the curvatures and surface normals become undefined. Therefore,

it is imperative to know the exact time and location for topology changes in order to extract

the portion of the surface with undefined curvatures. Hart investigated such critical moments

using Morse theory [54, 55]. For general implicit surfaces, it is still a challenge to acquire

such information. Moreover, the manipulation of the implicits is often neither interactive

nor intuitive [91, 92] and parametrizing, as well as triangulating implicit surfaces for display

and computational purposes, remain challenges [12].

Summary. Deformable surfaces modeled by different shape representations are useful in

many fields, such as molecular modeling, engineering and computer graphics. Although

some representations have been introduced, each of them has some deficiencies. The sur-

faces of molecules lack smoothness. The quality of meshes always depends on the surface

properties, such as curvatures. However, not all refinement algorithms give high-quality and

faithful meshes. The raster model cannot give a exact boundary. Parametric surfaces favor

triangulating and parametrizing, but not morphing and ray tracing. Implicit surfaces get

the opposite pros and cons. By far, it seems that the search of a perfect surface is still in

progress.

1.2 A New Approach: The Skin

This thesis develops a new paradigm, namely, the Skin. The skin surface, defined by Edels-

brunner [37, 40], is an implicit surface that favors morphing and ray tracing, and at the

same time, is capable of being parametrized and triangulated. It has the following useful
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properties to tackle the difficulties mentioned in the previous section.

Surface Smoothness. The skin surface is a C1-continuous two dimensional manifold.

Although non-smooth points are created during the time of topology changes, such moments

are still predictable. Special treatment to deal with these degenerate portions is covered.

Capability of Deformation. The skin can deform freely with smooth transitions even

when topology changes occur [25]. Other surface deformations are often constrained by the

topology of the initial and final shapes; for example, two different shapes can morph into

each other only if they have the same genus.

Decomposable Into Quadratic Patches. The skin is decomposed into quadratic patches

and each patch is clipped within a mixed-cell. This quality favors ray-tracing by the partition

of space and the low degree of the surface.

Mesh Quality. The skin surface can be meshed with good quality triangles while growing.

Our algorithm guarantees a minimum angle of 21◦ and termination [24].

Although the skin is not a perfect surface, it supplements previous studies of shape

representations. See Figure 1.2.

1.3 Outline

The main goal of this thesis is to investigate and implement the skin surface. During the

construction of the software, many difficulties were encountered, and solving them led to the

discovery of more properties.

This thesis describes three versions of skin software. The first version constructs a NURBS

representation of the skin surface to give an interactive visualization [23]. This version relies

on the hardware triangulation of the parametric patches. The second one constructs a
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Surfaces

Spheres
Polygonal NURBS

NURBS Static Mesh Dynamic Mesh

modeled (or implemented) by

represented by

Figure 1.2: Models of deformable surfaces

triangular mesh using a static approach that generates a mesh and then applies a refinement

algorithm on the surface. This version serves as a testing platform of the refinement process

for the next version. The last version constructs a triangular mesh following a dynamic

approach which constructs a skin mesh through growing the spheres, as shown in Figure 1.3.

This version maintains the mesh quality as well as the correctness of the topology during

growing.

In this thesis, we first present geometric fundamentals such as Delaunay triangulations

and alpha shapes in Chapter 2. The definition of the analytical skin surface with sphere

algebra is introduced in Chapter 3. The first implementation is presented with parametric

surfaces in Chapter 4. The second method with piecewise-linear approximation of the skin

is presented afterwards with the proof of its topological correctness in Chapters 5 and 6.

The focus of this work is the final implementation, namely, the dynamic skin algorithm

in Chapter 7. Chapter 8 discusses the measurements of two-dimensional skins, namely,

the volume, area, and their derivatives. These measurements are applied in the topology

optimization of structural designs. The description of the skin software is in Chapter 9 and
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Figure 1.3: Growing a skin surface

the conclusion is in Chapter 10.
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Chapter 2

Geometric Fundamentals

In this chapter, geometric background is developed before defining the skin surface. The

concepts of simplicial complex [51, 75], Voronoi diagrams [7, 46], Delaunay triangulation and

alpha shape [44] are introduced [36]. Generally these definitions apply to any dimensions

but are illustrated in R
2, and R

3 in this work. General position is assumed and the specific

assumption is stated before use.

2.1 Weighted Points and Unions of Balls

Let bi = (zi, wi) denote a weighted point in R
d × R, where zi = (zi,1, zi,2, zi,3, ..., zi,d) ∈ R

d is

called the center and wi ∈ R is called the weight. Define B as a set of weighted points in R
d:

B = {bi | i = 1..n}.

We can view B as a collection of balls in R
d, with zi as the centers and ri =

√
wi as the radii.

(The notations wi and ri will be used interchangeably, exploiting the relationship wi = r2
i .)

Points without weights are often referred to as unweighted points. Unweighted points are a

special case of weighted points with all wi = 0.

We define the growth of these balls by increasing their radii, with a parameter α, where

α2 ∈ R. Growing means increasing the radius of each ball as ri(α) =
√

r2
i + α2, with α2
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continuously increasing in R. So the new set of growing balls is defined as

B(α) = {bi(α) | bi(α) = (zi, ri(α)2), bi ∈ B}.

Figure 2.1: Union of disks and its growth

The union of balls
⋃

B(α) = {x | x ∈ B(α)} is the underlying space of balls in B(α).

Figure 2.1 shows an example in R
2 and how it grows. If r2

i + α2 < 0, the radius ri(α) is

imaginary and bi(α) is empty. bi(α) will not contribute to
⋃

B(α) until α2 ≥ r2
i .

2.2 Simplicial Complexes

Define the affine hull and convex hull of a point set S ⊆ R
d as aff(S) and conv(S) respectively:

aff(S) = {x ∈ R
d | x =

∑

λizi, zi ∈ S,
∑

λi = 1},

conv(S) = {x ∈ R
d | x =

∑

λizi, zi ∈ S,
∑

λi = 1, λi ≥ 0}.

A set T ⊂ R
d is affinely independent if every point x ∈ T is not in aff(T −{x}). A necessary

condition for T to be affinely independent is that card(T ) ≤ d+1. A simplex τ = conv(T ) is

10



the convex hull of an affinely independent point set T . τ is called a k-simplex if its dimension

is k = dim(τ) = card(T ) − 1. In Figure 2.2, we show four kinds of simplices in R
3 as an

example. The four kinds of simplices, from left to right, are a 0-simplex or vertex, an 1-

simplex or edge, a 2-simplex or triangle, and a 3-simplex or tetrahedron. For any subset

S ⊆ T , σ = conv(S) is called a face of τ and τ is a coface of σ. To be consistent, we define the

empty set ∅ to be the (−1)-simplex and a face of every simplex. A finite set K of simplices

is a simplicial complex if:

i. if τ ∈ K and σ is a face of τ then σ ∈ K, and

ii. if τ, τ ′ ∈ K then σ = τ ∩ τ ′ is a face of both τ and τ ′.

Figure 2.2: Four kinds of simplices.

2.3 Weighted Voronoi Diagrams and Delaunay

Triangulations

Recall that B is a finite set of weighted points. Define the weighted squared distance of a

point x ∈ R
d from bi ∈ B as:

πi(x) = ‖x − zi‖2 − wi.

This is also called the power of x from bi. Let 〈x, y〉 be the dot product of two vectors x and

y. For any two weighted points bi, bj ∈ B, any point x at equal weighted distance from bi
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and bj satisfies the following equations:

πi(x) = πj(x)

‖x − zi‖2 − r2
i = ‖x − zj‖2 − r2

j

‖x‖2 − 2〈x, zi〉 + ‖zi‖2 − r2
i = ‖x‖2 − 2〈x, zj〉 + ‖zj‖2 − r2

j

2〈x, zi − zj〉 − ‖zi‖2 + ‖zj‖2 + r2
i − r2

j = 0.

The last equation shows that the set is a hyperplane, and the set of points x with πi(x) ≤

πj(x) is a linear halfspace of R
d. We define the Voronoi cell νi of bi ∈ B as the intersection

of these halfspaces:

νi = {x ∈ R
d | πi(x) ≤ πj(x),∀bj ∈ B}.

Figure 2.3: Union of spheres and its Voronoi diagram

Each Voronoi cell νi is a convex polyhedron in R
d formed by the intersection of finitely

many halfspaces. The set {νi | bi ∈ B} partitions R
d. Also note that there are situations

where νi = ∅. The corresponding weighted point bi is called redundant.
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The Voronoi cell of a set X ⊆ B is defined as

νX =
⋂

bi∈X

νi.

The geometric interpretation of νX is that it is the set of points in R
d for which the weighted

square distance is simultaneously minimized by the weighted points bi ∈ X. The cell νX can

be and usually is empty. The Voronoi complex of B is the set of all non-empty Voronoi cells

VB = {νX | νX 6= ∅, X ⊆ B}.

The Voronoi complexes are called the Voronoi diagrams of weighted points, and also called

power diagrams. Figure 2.3 shows an example of the decomposition in R
2.

For the following discussion, the first assumption for general position is there are no d+1

points in B such that they are all orthogonal to a common sphere. Two spheres bi and bj

are orthogonal to each other ‖zi − zj‖2 − r2
i − r2

j = 0. Define δX as the convex hull of the

centers of the spheres in X: δX = conv({zi | bi ∈ X}). The Delaunay triangulation of B is

DB = {δX | νX ∈ VB},

which is a simplicial complex in R
d if the points are in general position; see Figure 2.4.

Before continuing, we describe the scenario when the radii of the spheres in B grow with

α. If α2 is increased, the Delaunay triangulation does not change. Recall that the hyperplane

of common distance from two weighted points bi(α) and bj(α) is

2〈x, zi − zj〉 − ‖zi‖2 + ‖zj‖2 + ri(α)2 − rj(α)2 = 0.

Note that ri(α)2 − rj(α
2) = r2

i + α2 − r2
j − α2 = r2

i − r2
j . The parameter α thus cancels

in the equation, which implies that the hyperplane remains fixed when α changes. Hence,
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Figure 2.4: The Delaunay triangulation

the Voronoi diagram and Delaunay triangulation are the same for all values of α, i.e. DB =

DB(α), for all α2 ∈ R.

2.4 Alpha Shape

The alpha complex of B(α) is

K(α) = {δX ∈ DB |
⋃

B(α) ∩ νX 6= ∅}.

K(α) is a subcomplex of DB and the underlying space | K(α) | is called the alpha shape.
⋃

B(α) grows continuously as α2 increases from −∞ to ∞ (figure 2.5). For every simplex

δX ∈ DB, there is a corresponding α value such that the union of spheres ‘just touches’ νX .

We call this value of α the birth time ζX of δX :

⋃

B(ζX) ∩ νX 6= ∅, and
⋃

B(α) ∩ νX = ∅ for all α2 < ζ2
X

A filter is a sequence of simplices 〈σ1, σ2, ..., σm〉 such that Ki = {σj | 1 ≤ j ≤ i} is a

simplicial complex for all 0 ≤ i ≤ m. The sequence of prefixes Ki is called a filtration. With
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Figure 2.5: Alpha complex: When the spheres increase their radii, the alpha complex grows
in discrete steps.

the birth time, we define the filter of the alpha complex as follows. For any σi = δX and

σj = δY , i < j if:

1. ζ2
X < ζ2

Y , or

2. ζ2
X = ζ2

Y and dim(σi) < dim(σj).

Let m be the number of simplices in DB, The alpha filtration is

∅ = K0 ⊂ K1 ⊂ ... ⊂ Km = DB,

where Ki − Ki−1 = {σi}, for all 1 ≤ i ≤ m.

2.5 Orthospheres and the Size of a Simplex

Define πi,j = ‖zi − zj‖2−r2
i −r2

j . Two spheres bi and bj are orthogonal to each other, denoted

as bi⊥bj, if πi,j = 0. If both r2
i and r2

j are positive, the two orthogonal spheres intersect in

a circle and form right angles at the intersections. For each simplex δX ∈ DB, one or more

spheres are orthogonal to all elements in X. For example, if X = {bi}, there is an infinite
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Figure 2.6: Orthogonal circles in R
2: The dashed circles are orthogonal to the shaded circle.

number of orthogonal spheres as shown in figure 2.6. To define the set of orthospheres B⊥

of B, pick the orthosphere with the smallest squared radius for each δX . The center of the

smallest orthosphere of δX is

z⊥
X = aff(δX) ∩ aff(νX),

and the radius is

r⊥X =

√

‖z⊥
X − zi‖2 − r2

i , for all bi ∈ X.

Formally,

B⊥ = {b⊥X = (z⊥
X , r⊥X

2
) | δX ∈ DB}.

Figure 2.7 shows two orthospheres of two simplices.
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Figure 2.7: Example of two orthospheres in B⊥: One orthosphere of an edge with card(X) =
2 (dashed circle) and one for a triangle with card(X) = 3 (the dotted circle)

Size of a Simplex. As the set B can be grown to B(α), define the set B⊥(α) as the

growing of B⊥ according to α:

B⊥(α) = {b⊥X(α) = (z⊥
X , w⊥

X(α)) | δX ∈ DB},

where

w⊥
X(α) = r⊥X

2
(α) = ‖z⊥

X − zi‖2 − r2
i − α2 = r⊥X

2 − α2.

Define the size of a simplex δX at α as sX(α) =

√

−r⊥X
2
(α) =

√

α2 − r⊥X
2
. Note that just

sX = sX(0) will be used instead of sX(α) if α is not involved in the discussion.
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Chapter 3

Skin

The skin surface, defined by Edelsbrunner [37, 40], is introduced in this chapter. This is an

implicit surface [17] with similar flexibility of modeling as metaballs [16]. The skin surface

has a better control on the surface and is decomposable into quadratic algebraic surfaces

while metaballs are defined by exponential functions.

First the sphere algebra is defined with arithmetic operations including addition and

multiplication of spheres. These operations facilitate the definition of convex and affine

hulls of spheres. Then, we define the skin. It is hard to illustrate the skin surface without

mentioning the complementary part of it. For this reason, the set of orthogonal spheres and

complementarity is discussed. The goal is to give a clear picture of how skins in R
2 and R

3

look, although the skin can be generalized to any dimension.

3.1 Sphere Algebra

The arithmetic operations on spheres are addition, scalar multiplication, and shrinking. With

addition and scalar multiplication, the convex and affine hulls of a set of spheres can be

defined. Then, with the shrinking operation, the skin is defined.
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3.1.1 Sphere Arithmetic

Given two spheres, bi and bj, and a real number c, addition , scalar multiplication, and power

of spheres are defined as follows:

(zi, wi) + (zj, wj) = (zi + zj, wi + wj + 2〈zi, zj〉)

c · (zi, wi) = (c · zi, c · (wi − (1 − c)‖zi‖2))

(zi, wi)
c = (zi, c · wi).

The first two equations are the standard operations on vectors in R
d+1 under the paraboloid

lifting map (zi, wi) → (zi, ‖zi‖2 − wi).

Summation of Spheres Lemma. If b0 =
∑n

i=1 bi, then z0 =
∑n

i=1 zi and w0 =
∑n

i=1 wi +

2
∑

i6=l 〈zi, zl〉.

Proof. The case holds for n = 1. For n = 2, it holds also directly from the addition

operation defined previously. Assume it is true for n = k, and
∑n

i=1 bi =

(

∑n
i=1 zi,

∑n
i=1 wi+

2
∑

i6=l 〈zi, zl〉
)

. For n = k +1, the sphere b0 =
∑k+1

i=1 bi is equal to the sum of first n spheres

plus bk+1. By the addition operation, the center z0 is
∑n+1

i=1 zi. and the weight of b0 is

w0 = wk+1 +
k

∑

i=1

wi + 2
∑

i6=l

〈zi, zl〉 + 2〈zk+1,
k

∑

i=1

zi〉

=
k+1
∑

i=1

wi + 2
k+1
∑

i=1,l 6=i

〈zi, zl〉.
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3.1.2 Convex and Affine Hulls of Spheres

With the above operations, define the convex and affine hulls of a set of spheres, X =

{b1, b2, ..., bn} as follows:

aff(X) = {
∑

bi∈X

λibi |
∑

i

λi = 1}

conv(X) = {
∑

bi∈X

λibi |
∑

i

λi = 1,∀λi ≥ 0}.

A sphere bi in aff(X) or conv(X) is called an affine combination or convex combination of X

respectively. For any sphere bj ∈ aff(X) (or in conv(X)), its center and weight are

zj =
∑

i

λizi

wj =
∑

i

(λiwi + (λ2
i − λi)‖zi‖2) + 2

∑

i6=l

〈λizi, λlzl〉

=
∑

i

λiwi +

∥

∥

∥

∥

∑

i

λizi

∥

∥

∥

∥

2

−
∑

i

λi‖zi‖2.

Zero-set Lemma. For any set of spheres X = {b1, b2, ..., bn} and any λi with
∑n

i λi = 1,

the sphere b0 =
∑

i λibi ∈ aff(X) is the zero-set of
∑

λiπi(x).

Proof. Recall that for a weighted point bi = (zi, wi), the squared weighted distance

function is πi(x) = ‖x − zi‖2 − wi. The affine combination of the functions is

∑

i

λi(‖x − zi‖2 − wi) =
∑

i

λi(‖x‖2 − 2〈x, zi〉 + ‖zi‖2 − wi)

= ‖x‖2 − 2〈x,
∑

i

λizi〉 +
∑

i

λi(‖zi‖2 − wi)

=

∥

∥

∥

∥

x −
∑

i

λizi

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∑

i

λizi

∥

∥

∥

∥

2

+
∑

i

λi(‖zi‖2 − wi)

The zero set of
∑

i λiπi(x) is exactly the sphere
∑

λibi.
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Figure 3.1: Convex hull of 2 spheres: Two circles (left) and their convex hull (right).

An example in R
2 is shown in Figure 3.1. We simplify the illustration by using just two

circles, bi and bj. If bi intersects bj, the point(s) of intersection satisfies both πi(x) = 0 and

πj(x) = 0, which implies that t1πi(x) + t2πj(x) = 0 for any t1 + t2 = 1. This means all

spheres in aff({bi, bj}) pass through the intersection points.

3.1.3 Orthogonality and Coaxal Systems

For any two spheres, bi and bj, recall that bi⊥bj if πi,j = 0. If a sphere b0 is orthogonal to

all bi in X, then it is orthogonal to every sphere bk ∈ aff(X). To show this, we check π0,k.

π0,k = ‖z0 − zk‖2 − w0 − wk

=

∥

∥

∥

∥

z0 −
∑

i

λizi

∥

∥

∥

∥

2

− w0 −
∑

i

λiwi −
∥

∥

∥

∥

∑

i

λizi

∥

∥

∥

∥

2

+
∑

i

λi‖zi‖2

= ‖z0‖2 +

∥

∥

∥

∥

∑

i

λizi

∥

∥

∥

∥

2

− 2〈z0,
∑

i

λizi〉 − w0 −
∑

i

λiwi −
∥

∥

∥

∥

∑

i

λizi

∥

∥

∥

∥

2

+
∑

i

λi‖zi‖2

=
∑

i

λi(‖z0‖2 + ‖zi‖2 − 2〈z0, zi〉 − w0 − wi)

=
∑

i

λiπ0,i

= 0

21



π0,k = 0 implies that b0 is orthogonal to every bk in aff(X). Moreover, if two sets of spheres

X1 and X2 are such that every bi ∈ X1 is orthogonal to every bj ∈ X2, then every bl ∈ aff(X1)

is orthogonal to every bm ∈ aff(X2). Such a configuration is referred to as a coaxal system.

Figure 3.2 shows an example in R
2 with card(X1) = card(X2) = 2.

Figure 3.2: Coaxal system: Every solid circle is orthogonal to every dashed circle.

3.2 Skin Definition

Define the square root operation on a sphere bi as
√

bi = b
1

2

i = (zi, wi/2) and
√

B = {
√

bi |

bi ∈ B} for a set of spheres. The operation shrinks every bi in B by dividing its radius by
√

2.

We define the body of B as

body(B) =
⋃

√

conv(B),

where the operation of union of spheres is defined as

⋃

B =
⋃

b∈B

⋃

x∈b

{x}.
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Define ∂(P ) is the boundary of a set of point P . The skin surface as the envelope of the skin

body, which is:

skin(B) = ∂(
⋃ √

conv(B)).

Figure 3.3 gives an example of a simple case with card(B) = 2.

Figure 3.3: A simple skin: The convex hull of two spheres (left) and the shrunken
√

conv(B)
(right).

3.3 Skin Decomposition

The skin surface is the boundary of an infinite set of spheres. In this section, we give a finite

description of the skin’s shape. First the complementary property of the shrunken affine hull

of spheres is studied with less than or equal to four spheres. Then the mixed cell concept is

introduced. Finally, the shape of the skin surface can be described as a whole.
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3.3.1 Complementarity

Given two orthogonal balls bi and bj, the distance between their centers is

‖zi − zj‖2 = r2
i + r2

j

≥ r2
i + r2

j − (
√

2ri/2 −
√

2rj/2)2

=
(ri + rj)

2

2
.

This implies the sum of the shrunken radii is at most the distance between their centers.

Furthermore, ri = rj implies the distance between centers equals the sum of shrunken radii.

This means that after shrinking, the two orthogonal spheres will touch each other only if

they are of the same radius; otherwise, they are disjoint. See Figure 3.4.

Figure 3.4: Shrinking operation: After shrinking two orthogonal spheres, they will touch
each other only if they have the same radius

If X1 and X2 are orthogonal sets of spheres, then
√

aff(X1) and
√

aff(X2) have the same

envelopes. See Figure 3.5.

3.3.2 Envelopes

We first study skins of up to four weighted points in R
3. For card(X) = 1, 2 the shape of

the envelope of
√

conv(X) can be illustrated directly. The rest of the cases need the help of

the complementary part. Note that X is a subset of B with card(B) > 3.
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Figure 3.5: Envelope of a shrunken coaxal system.

card(X) = 1, 2. The case of 1 sphere is simple and the case of 2 spheres is discussed here.

If X just contains 1 sphere, conv({bi}) = bi and the shrunken envelope is a sphere.

The envelope of
√

aff(B) with card(B) = 2 is a hyperbola. We simplify the illustration

by putting B = {bi, bj} with zi = (ai, 0) and zj = (aj, 0) in R
2. So, with t1 + t2 = 1, the

affine hull is

aff(B) = {((t1ai + (1 − t1)aj, 0),
√

(t1ai + (1 − t1)aj)2 − t1a2
i − t2a2

j + t1wi + t2wj) | t1 ∈ R}.

To find the envelope of
√

aff({bi, bj}), we put it in one higher dimension along t1. Shrinking
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each of the radius by 1/
√

2 yields

f(t1, x1, x2) = (x1 − (t1ai + (1 − t1)aj))
2 + x2

2

− ((t1ai + (1 − t1)aj)
2 − t1a

2
i − t2a

2
j + t1wi + t2wj)/2

= (x1 − t1(ai − aj) − aj))
2 + x2

2

− ((t1(ai − aj) + aj)
2 − t1a

2
i − t2a

2
j + t1wi + t2wj)/2

∂f

∂t1
= −2(x1 − t1(ai − aj) − aj))(ai − aj)

−(2(t1(ai − aj) + aj)(ai − aj) − a2
i + a2

j + wi − wj)/2

where f(t1, x1, x2) = 0 is a circle at t1. The envelope of
√

aff(B) is the projection of the

silhouette of f−1(0) as viewed along the t1 direction. It is the set of points for ∂f
∂t1

= 0. We

simplify the computation by putting a constant c = (−a2
i + a2

j + wi − wj)/2(ai − aj) and

d = (t1a
2
i + (1 − t1)a

2
j − t1wi − (1 − t1)wj)/2:

0 =
∂f

∂t1

= −2(x1 − t1(ai − aj) − aj)) − (t1(ai − aj) + aj) − c

t1 = (2x1 + c − aj)/(ai − aj)

f(t1, x1, x2) = f((2x1 + c − aj)/(ai − aj), x1, x2)

= (x1 − 2x1 − c)2 + x2
2 − (2x1 + c)2/2 + d

= −x2
1 + x2

2 + c2/2 + d.

The terms of x1 is at most degree 1 in the term d because the terms of t1 in d and the terms

of x1 in t1 are both degree 1. Expanding the terms, the coefficients of the x2
1 is −1 and x2

2 is 1.

This shows the envelope, f(t1, x1, x2) = 0, is a hyperbola. For higher dimensions, more terms

of x2
3, x

2
4, ..., x

2
d are added but their coefficients will be still equal to 1 in f(t1, x1, x2, ..., xd).

Hence, the envelope of two spheres is a hyperboloid with x1 as the rotational axis in any
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dimension.

card(X) = 3, 4. When card(X) = 4, δX is a tetrahedron. There will be a sphere, bi,

which is orthogonal to all four spheres in X. Recall that the envelopes of the affine hulls of

two sets of spheres are the same. So the envelope of 4 spheres is the shrunken sphere
√

bi.

When card(X) = 3, δX is a triangle. There exists a smallest orthosphere b⊥X which is

orthogonal to all spheres in X. Also, there should be at least a tetrahedron δY which is a

coface of δX in the Delaunay triangulation. b⊥Y will also be orthogonal to all spheres in X.

So, skin(X) = skin({b′Y , b′X}) and which is a hyperboloid.

3.3.3 Mixed Cells and Centers

For each Delaunay simplex δX in DB, define the mixed cell as the Minkowski sum of δX with

its dual Voronoi cell νX , scaled by 1/2:

µX = (νX + δX)/2.

In R
3, the dimension of µX is always 3. All the mixed cells partition R

3. Figure 3.6 shows

examples of the four different types of mixed cells corresponding to different cardinalities of

X. Furthermore, define the center of each mixed cell as z⊥
X .

Figure 3.6: Voronoi mixed cells: From left to right: a typical Voronoi polyhedron, a Voronoi
polygon times a Delaunay edge, a Voronoi edge times a Delaunay triangle, a Delaunay
tetrahedron.
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3.3.4 Skin Surface

We can now describe the overall picture of the skin surface. The mixed cells partition R
3.

For each mixed cell µX , the surface of skin(X) is clipped within µX . Each patch is either

a clipped sphere or hyperboloid in R
3. All these patches are composed to form the skin

surface. See Figure 3.7.

3.4 Complementarity and Sandwiching Spheres

In closing, this section states a rather special and important property of skin surfaces :

complementarity.

3.4.1 Complementarity

Recall that for every B there is an orthogonal sphere set B⊥ = {b⊥X = (z⊥
X , (r⊥X)2) | δX ∈ DB}.

The mixed cells decomposed the skin into finitely many patches. Within a cell µX , only

spheres in
√

conv(X) defined by the Delaunay simplex δX and the Voronoi cell νX are

relevant. In other words, within µX the skin of B looks the same as the envelope of
√

aff(X),

and symmetrically, the skin of B⊥ looks the same as the envelope of
√

aff({b⊥Y | νY ⊆ νX}).

This is true for every mixed cell and together they cover the entire R
3. Thus, let Z be the

centers of B, the two skins are complementary to each other within conv(Z), i.e.

(body(B) ∪ body(B⊥)) ∩ conv(Z) = conv(Z)

(body(B) ∩ body(B⊥)) ∩ conv(Z) = skin(B) ∩ conv(Z)

= skin(B⊥) ∩ conv(Z).
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3.4.2 Sandwiching Spheres

Within each mixed cell, there are two sets of spheres of
√

conv(B) and
√

conv(B⊥). There

is a unique pair of spheres from each of the sets which touches the skin surface due to the

complementarity in section 3.3.1.

Sandwiching Property. For every point x on the skin of B, there are two unique spheres

Sx ∈
√

conv(B) and Tx ∈
√

conv(B⊥) that pass through x. These two spheres Sx and

Tx are externally tangent, and have equal radius. The skin surface stays outside both

spheres, and is thus tangent to them at x.

Sx and Tx are referred to as the sandwiching spheres at x because they squeeze the surface

flat in a neighborhood of x. The two spheres are equally large from the complementarity in

Section 3.3.1, which is important for further proofs on curvature properties.
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(a) card(X) = 1 (b) card(X) = 2

(c) card(X) = 3 (d) card(X) = 4

(e) The Skin Surface

Figure 3.7: The decomposition of the skin surface into four types of patches and the skin
surface.
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Chapter 4

Skin Surfaces in Bézier Form

The skin surface can be decomposed into patches of spheres and hyperboloids. For display

purposes, all patches can be represented in bi-quadratic Bézier form. This overcomes one

of the difficulties of implicit surfaces, namely, parametrizing and triangulating the implicits

[12]. The motivation for this representation is that Bézier surfaces can be easily translated

into NURBS patches [79, 93], which are supported by graphical systems like OpenGL [95].

Moreover, it is not necessary to fit the surface with general high degree B-Spline patches,

as in [35, 71] since we know the patches only consist of spherical and hyperbolic patches.

In this chapter, the Bézier representation of spheres, one sheet hyperboloids, and two sheet

hyperboloids are derived. The trimming curves that clip the patches are also computed

within their mixed cells.

First, definitions and basic properties of Bézier curves and surfaces are introduced. Then

the Bézier representation of spheres and hyperboloids, as well as the trimming curves are

derived. Without loss of generality, we can treat each of the spheres as if their centers are

the origin. The common tip of the asymptotic double cones of any hyperboloid is translated

to the origin. The rotational axis is also aligned with the x3-axis in R
3.
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4.1 Bézier Curves and Surfaces

Rational Bézier curves and surfaces are defined by control points and weights. Control points

in R
3 govern the general shape of the curve or surface. Also any Bézier curve or surface is

always inside the convex hull of its control points. The weights control the contribution of

each control point to the curve (or surface). The curve will be closer to a control point if its

weight is large, as shown in Figure 4.1.

(1)

(1)

(1)

(1)

(1)

(1)

(2)

(2)

Figure 4.1: Bézier curve: An example of a Bézier curve with 4 control points (left). The
curve is attracted to the control points when the weights increase (right).

The Bézier basis of order n , also called Bernstein basis, is the set of polynomials

Bn,i(t) =

(

n

i

)

ti(1 − t)n−i

with t ∈ [0, 1] and i = 0, 1, ..., n. These form a basis for the vector space of degree-n

polynomials.

Rational Bézier Curve. A degree-n rational Bézier curve in R
3 is defined in terms of

n + 1 control points, ci ∈ R
3, and weights, wi ∈ R, with i = 0..n. The curve is denoted

Q = {Q(t) | t ∈ [0, 1]}. Q(t) is defined as follows:

Q(t) =

∑n
i=0 ciwiBn,i(t)

∑n
i=0 wiBn,i(t)

.

Rational Bézier Surface. A degree n × n rational Bézier surface is defined by a matrix

of control points, ci,j, and weights, wi,j , with 0 ≤ i, j ≤ n. The surface is denoted by
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Q = {Q(u, v) | u, v ∈ [0, 1]}. Q(u, v) is defined as follows:

Q(u, v) =

∑n
i=0

∑n
j=0 ci,jwi,jBn,i(u)Bm,j(v)

∑n
i=0

∑n
j=0 wi,jBn,i(u)Bn,j(v)

.

Power Basis. There are other representation of curve. One of them is known as the power

basis. Any curve Q(t) can be represented in the form:

n
∑

i=0

pit
i,

for some control points pi. For example, the parabola y = x2 in R
2 can be represented as

Q(t) =
∑2

i=0 pit
i with p0 = (0, 0), p1 = (1, 0) and p2 = (0, 1).

Given a curve in power basis as Q(t) =
∑3

i=0 pit
i, we can compute its Bézier coefficients

with a simple matrix transformation [76]:



















c0

c1

c2

c3



















=



















1 0 0 0

1 1
3

0 0

1 2
3

1
3

0

1 1 1 1





































p0

p1

p2

p3



















.

4.2 Sphere Patches in Bézier Form

Spheres and hyperboloids are degree-2 surfaces and can be represented as bi-quadratic Bézier

patches. In this section, the Bézier form of the sphere is first derived by using stereographic

projection. The projection helps in parametrizing the sphere surface. Then the clipping of

Bézier patch by planes through the trimming curve is derived. A unit sphere is used with

equation x2
1 + x2

2 + x2
3 = 1.
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4.2.1 Stereographic Projection

First, the line through the north pole (0, 0, 1) of the unit sphere and a point (u, v,−1) on

the plane x3 = −1 is defined by the equation













x1

x2

x3













= t













0

0

1













+ (1 − t)













u

v

0













.

For each pair u, v, the line intersects the sphere at a unique point other than the north pole.

The point of intersection is:

x1 =
4u

u2 + v2 + 4
,

x2 =
4v

u2 + v2 + 4
,

x3 =
u2 + v2 − 4

u2 + v2 + 4
.

This stereographic projection gives us a parameterization of the sphere in u and v. Consider

the portion of the sphere with u, v ∈ [−2, 2]. This part of the surface is a sphere patch

bounded by four arcs , as shown in Figure 4.2. This patch covers the lower half of the

sphere. The other half of the sphere can be completed by reflecting the patch through the

x1x2-plane.

Normalize the parameters u, v and translate the domain from u, v ∈ [−2, 2] to u′, v′ ∈

[0, 1]. By putting u′ = u+2
4

and v′ = v+2
4

, the new parametrization of the point (x1, x2, x3)

on the sphere is:

x1 =
4u′ − 2

4u′2 − 4u′ + 4v′2 − 4v′ + 3
,

x2 =
4v′ − 2

4u′2 − 4u′ + 4v′2 − 4v′ + 3
,

x3 =
4u′2 − 4u′ + 4v′2 − 4v′ + 1

4u′2 − 4u′ + 4v′2 − 4v′ + 3
.
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Figure 4.2: The sphere patch in Bézier form

By equating this with the Bézier form,

(x1, x2, x3) = Q(u′, v′),

we solve for the nine control points and weights as follows:

(−2
3
, 2

3
, 1

3
, 1), (0, 2,−1, 1

3
), (2

3
, 2

3
, 1

3
, 1),

(−2, 0,−1, 1
3
), (0, 0, 3,−1

3
), (2, 0,−1, 1

3
),

(−2
3
,−2

3
, 1

3
, 1), (0,−2,−1, 1

3
), (2

3
,−2

3
, 1

3
, 1).

Here, the fourth coordinates are the weights.

4.2.2 Trimming Curves

Each Bézier patch is clipped within a mixed cell, which is the intersection of finitely many

linear half-spaces. We write each half-space in the form

x1a1 + x2a2 + x3a3 ≥ d,
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with a1, a2, a3, d ∈ R. Substituting Q(u, v) into the above equation, and assuming a3 > d,

we have

4ua1 + 4va2 + (u2 + v2 − 4)a3 ≥ d(u2 + v2 + 4)

4ua1 + 4va2 + (u2 + v2)(a3 − d) ≥ 4(d + a3)
(

u +
2a1

a3 − d

)2

+

(

u +
2a2

a3 − d

)2

≥ 4
a2

1 + a2
2 + a2

3 − d2

(a3 − d)2
.

Normalizing to [0, 1], the new inequality in u′ and v′ is:

(

v′ +
a2 − a3 + d

2(a3 − d)

)2

+

(

u′ +
a1 − a3 + d

2(a3 − d)

)2

≥ a2
1 + a2

2 + a2
3 − d2

4(a3 − d)2
.

This shows that the trimming curve in the (u′, v′)-domain is a circle. If a3 < d, the previous

inequality changes sign. If a3 = d, ua1 + va2 ≥ 2a3 which boundary is the following line in

the (u′, v′) domain:

2u′a1 + 2v′a2 = a1 + a2 + a3.

4.3 Hyperboloids of Two Sheets

Similar to the sphere case, we first describe the parametrization of a hyperboloid in the

(u′, v′)-domain. Then we compute the control points and weights of the Bézier surface.

Finally, we give the trimming curve formulas. Hyperboloids, unlike spheres, are not bounded.

To avoid difficulties with unbounded patches, two halfspaces x3 ≤ h1 and x3 ≥ −h2 are used

to clip the hyperboloid within the mixed cell.
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4.3.1 Parametrization by Rational Projection

The hyperboloid with equation

−(x2
1 + x2

2) + x2
3 = 1,

is rotationally symmetric about the x3-axis and its closest approach to the origin is 1. We

develop a rational polynomial parametrization by projecting one model of the hyperbolic

plane to another, namely, from the Poincaré model to the Klein model of hyperbolic space,

and then to the hyperboloid model [19].

Figure 4.3: From Poincaré model (left) to Klein model (right)

Poincaré to Klein Disk. The Poincaré model of the hyperbolic plane is the unit disk with

geodesics that are circular arcs meeting the bounding circle in two right angles. The Klein

model is also the unit disk but its geodesics are straight line segments that start and end on

the bounding circle, see Figure 4.3. The two models agree at infinity, which is represented

by the boundary circle. The map H : B
2 → B

2 that changes the Poincaré model into the

Klein model is

(a, b) =
2(u, v)

u2 + v2 + 1
.
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This transformation maps a point with norm d =
√

u2 + v2 to one with Euclidean norm
√

u2 + v2 = 2d
d2+1

. The image of the disk is itself, H(B2) = B
2.

x

x
3

1

1

Figure 4.4: Klein disk to hyperboloid

From Klein Disk to Hyperboloid. The Klein model relates to the hyperboloid model

of the hyperbolic plane via projection from a point. The hyperboloid model consists of the

southern sheet of the canonical hyperboloid. The Klein model is the unit disk in the plane

x3 = −1, and the projection is from the origin, see Figure 4.4. The map G : B
2 → R

3 from

the Klein model to the hyperboloid model is defined by (x1, x2, x3) = G(a, b) where:

x1 =
a√

1 − a2 − b2

x2 =
b√

1 − a2 − b2

x3 = − 1√
1 − a2 − b2

Rational Parametric Forms. The hyperboloid surface is the composition of these two

maps:

x1 =
2u

u2 + v2 − 1
,

x2 =
2v

u2 + v2 − 1
,

x3 =
u2 + v2 + 1

u2 + v2 − 1
.
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The domain of u, v is [−∞,∞]. If u2 + v2 − 1 < 0, Q(u, v) maps to the lower sheet of the

hyperboloid and its complementary region can be obtained by mirroring the lower sheet.

Height Bound. There are two kinds of halfspaces in the mixed cell that clip the hy-

perboloid. The clipping planes of the first type are parallel to the x1x2-plane and cut the

hyperboloid horizontally. Two of them serve as upper and lower bounds:

x3 ≤ h1 and x3 ≥ −h2.

First pick the lower sheet of the hyperboloid, which satisfies u2 + v2 − 1 < 0. Substituting

the value of x3 into the lower bounding plane gives

u2 + v2 + 1

u2 + v2 − 1
≥ −h2

(u2 + v2) − h2 − 1

h2 + 1
≤ 0.

which is a circle in the (u, v) domain. Let l =
√

h2−1
h2+1

, and now u, v ∈ [−l, l]. The next step

is to normalize (u, v) to (u′, v′) ∈ [0, 1]2 as follows:

u′ =
u + l

2l
,

v′ =
v + l

2l
.

The parametric representation is now:

x1 =
2(2lu′ − l)

4l2u′2 − 4l2u′ + 4l2v′2 − 4l2v′ + 2l2 − 1
,

x2 =
2(2lv′ − l)

4l2u′2 − 4l2u′ + 4l2v′2 − 4l2v′ + 2l2 − 1
,

x3 =
4l2u′2 − 4l2u′ + 4l2v′2 − 4l2v′ + 2l2 + 1

4l2u′2 − 4l2u′ + 4l2v′2 − 4l2v′ + 2l2 − 1
.
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By equating the these formulas with Q(u, v), we compute the nine control points:

c0,0 =

(

− 2l

2l2 − 1
,− 2l

2l2 − 1
,
2l2 + 1

2l2 − 1

)

,

c0,1 = (2l, 0,−1),

c0,2 =

(

− 2l

2l2 − 1
,

2l

2l2 − 1
,
2l2 + 1

2l2 − 1

)

,

c1,0 = (0, 2l,−1)

c1,1 =

(

0, 0,
2l2 − 1

2l2 + 1

)

,

c1,2 = (0,−2l,−1),

c2,0 =

(

2l

2l2 − 1
,− 2l

2l2 − 1
,
2l2 + 1

2l2 − 1

)

,

c2,1 = (−2l, 0,−1),

c2,2 =

(

2l

2l2 − 1
,

2l

2l2 − 1
,
2l2 + 1

2l2 − 1

)

.

The weights are

w1,0 = w0,1 = w2,1 = w1,2 = −1,

w0,0 = w2,0 = w0,2 = w2,2 = 2l2 − 1, and

w1,1 = −2l2 − 1.

4.3.2 Trimming Curves

Additional trimming curves are formed by intersecting the halfspaces of the form x1a1 +

x2a2 ≥ d. Keeping the condition u2 + v2 − 1 < 0 gives

d(u2 + v2 − 1) − 2a1u − 2a2v ≥ 0

(u − a1

d
)2 + (v − a2

d
)2 ≥ 1 +

a2
1 + a2

2

d2
.
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Once again, algebraically it shows these trimming curves are circles in both (u, v) and (u′, v′)

domains.

4.4 Hyperboloids of One Sheet

First align the axis of rotation of the hyperboloid with x3-axis. Then clip the hyperboloid

in half with the halfspace x1 ≤ 0. The reason is the parametrization here would extended to

infinity if the the entire hyperboloid is used.

4.4.1 Stack of Two-dimensional Projections

1

3x

x

2x

Figure 4.5: The line (1, u, u)

For a one-sheet hyperboloid of the form

x2
1 + x2

2 − x2
3 = 1,
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there is a line l(u) on the hyperboloid such that

l(u) = (1, u, u).

As shown in Figure 4.5, the points on this line are rotated to complete the hyperboloid by

multiplying the rotational matrix

R(v) =













− cos θ − sin θ 0

sin θ − cos θ 0

0 0 1













=













v2−1
v2+1

− 2v
v2+1

0

2v
v2+1

v2−1
v2+1

0

0 0 1













,

where v = tan θ
2
. So the hyperboloid is the set of points {l(u)T R(v) | u, v ∈ R}. The

parametrization of each point is:

x1 =
v2 − 2uv − 1

v2 + 1
,

x2 =
2v + u(v2 − 1)

v2 + 1
,

x3 = u.

However, there is a missing line of the hyperboloid when v = ±∞. By cutting the hyperboloid

at x1 = 0, the portion of the surface that surrounds the missing line is eliminated. The

hyperboloid is completed by reflecting the clipped portion with x1 = 0. The portion of the

hyperboloid clipped by x1 ≤ 0 has the following implicit equation in the (u, v)-domain:

v2 − 2uv − 1 ≤ 0.

Before this curve in Bézier form is represented, the limit of the curve must be known. Again

bound the hyperboloid with two horizontal planes at the top and the bottom. Let the plane

be x3 = h and x3 = −h and consider the portion of the hyperboloid between them. This
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implies the following bounds for the parameter used to implicitly represent the curve on the

hyperboloid:

|u| ≤ h.

To simplify the notation, consider the portion of the curve v2−2uv−1 = 0 where u is within

[−h, h]. The corresponding bounds for v are:

|v| ≤ h +
√

h2 + 1.

Let bv = h +
√

h2 + 1, so that −bv ≤ v ≤ bv. Map (u, v) ∈ [−h, h] × [−bv, bv] to (u′, v′) ∈

[0, 1] × [0, 1] by putting

u′ =
u + h

2h
,

v′ =
v + bv

2bv

.

The new parametrization of the surface is

x1 =
b2
v(2v

′ − 1)2 − 2hbv(2u
′ − 1)(2v′ − 1) − 1

b2
v(2v

′ − 1)2 + 1
,

x2 =
2bv(2v

′ − 1) + 2h(2u′ − 1)(b2
v(2v

′ − 1)2 − 1)

b2
v(2v

′ − 1)2 + 1
,

x3 = h(2u′ − 1).
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Again, equating with the Bézier form, the control points are

c0,0 =

(−b2
v + 2bvh + 1

b2
v + 1

,−hb2
v − h + 2bv

b2
v + 1

,−h

)

,

c0,1 =

(

b2
v + 1

b2
v − 1

,
−h(b2

v + 1)

b2
v − 1

,−h

)

,

c0,2 =

(

2bvh + b2
v − 1

b2
v + 1

,
hb2

v − h − 2bv

b2
v + 1

,−h

)

,

c1,0 =

(

b2
v − 1

b2
v + 1

,
−2bv

b2
v + 1

, 0

)

,

c1,1 =

(

b2
v + 1

b2
v − 1

, 0, 0

)

,

c1,2 =

(

b2
v − 1

b2
v + 1

,
2bv

b2
v + 1

, 0

)

,

c2,0 =

(

2bvh + b2
v − 1

b2
v + 1

,
hb2

v − h − 2bv

b2
v + 1

, h

)

,

c2,1 =

(

b2
v + 1

b2
v − 1

,
h(b2

v + 1)

b2
v − 1

, h

)

,

c2,2 =

(

b2
v − 2bvh − 1

b2
v + 1

,
hb2

v − h + 2bv

b2
v + 1

, h

)

,

and their weights are

w2,1 = w0,1 = w1,1 = −b2
v + 1,

w0,2 = w1,2 = w0,0 = w2,2 = w2,0 = w1,0 = b2
v + 1.

4.4.2 Trimming Curves

We first discuss the trimming curves formed by the halfspace x1 ≤ 0, then by general

halfspaces.

Recall that the surface is bounded by x1 ≤ 0 to eliminate the missing line. The bounding

curve in the (u, v) domain is v2 − 2uv − 1 = 0, which is a hyperbola. The curve is a degree-

2 Bézier curve with three control points. By substituting the Bézier curve Q(t) into the
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implicit form, we compute the control points and weights of this curve in the uv-domain:

c0 = (h +
√

h2 + 1,−h, 1),

c1 = (
1√

h2 + 1
, 0,

√
h2 + 1),

c2 = (−h +
√

h2 + 1, h, 1), .

The (u′, v′)-domain, they are

c0 = (1, 0, 1),

c1 = (
h
√

h2 + 1 + h2 + 2

2h
√

h2 + 1 + 2h2 + 2
,
1

2
,
√

h2 + 1),

c2 = (

√
h2 + 1

h +
√

h2 + 1
, 1, 1).

General clipping halfspaces are specified by inequalities of the form a1x1 + a2x2 ≥ d. Sub-

stituting Q(u, v) into the inequality yields

a1(v
2 − 2uv − 1) + a2(2v + u(v2 − 1)) − d(v2 + 1) ≥ 0.

The bounding curve is obtained by changing the inequality to equality. Solving for u, we

obtain the equation

u =
d(v2 + 1) − 2a2v − a1(v

2 − 1)

a2(v2 − 1) − 2va1
.

Setting v = t, the rational representations of u and v in t, with u = f(t)
r(t)

and v = t = g(t)
r(t)

, are

f(t) = d(t2 + 1) − 2a2t − a1(t
2 − 1),

g(t) = t(a2(t
2 − 1) − 2ta1),

r(t) = a2(t
2 − 1) − 2ta1.
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These equations are in the power basis. They can be transformed into the Bézier basis as

described at the beginning of this chapter.

4.5 Conclusion

We compute the Bézier representation of the patches in the skin surfaces. The implemen-

tation is on Silicon Graphics workstation with the OpenGL library. We did not further

improve this implementation mainly because of the hardware. First, the implementation is

not efficient because the patches are retriangulated for every frame. Secondly, there are gaps

between patches because of the non-conformal triangulations of neighboring patches along

the edges they share. This motivates us to search for a better approximation of the skin

surface.
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Chapter 5

Skin Triangulation

We give the description of the skin surface triangulation in this chapter. The general idea is

that if enough points are sampled on the skin surface according to the curvature, the surface

can be approximated by a restricted Delaunay triangulation, which has the same topology

[90]. This is referred to as the surface reconstruction problem.

Several works have been done on reconstructing surfaces. Hoppe gives an algorithm for

reconstructing surfaces represented by the zero set of a signed distance function [57]. Curless

and Levoy also give an algorithm to reconstruct the laser-range data with estimations of error

and surface normals [30]. The alpha shape software presented by Edelsbrunner reconstructs

surfaces from uniform sampling [39, 44]. However, these algorithms do not analyze on the

relationship between the original surface and the reconstructed triangulation. Amenta, Bern,

and Dey construct algorithms based on the restricted Delaunay triangulation with a dense

sampling of points [6, 4, 5]. They proved that the triangulation is homeomorphic to the

surface if the points on the surface are sampled proportionally to the local feature size,

which is the distance to the medial axis.

The proof of the homeomorphism of the skin triangulation is similar to the previous

works of Amenta, Bern and Dey. We use the local length scale instead of the local feature

size.

First, we introduce the restricted Delaunay triangulation in this chapter. Then, we

discuss some properties of the curvatures and normals on the skin surface. Finally, we give
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a proof of homeomorphism of the triangulation.

5.1 Restricted Delaunay Triangulation

Given a surface F in R
3, consider a finite set of points, V ⊂ F . For each a ∈ V , the

corresponding Voronoi cell νa intersects F . F is partitioned into regions similar to the

Voronoi diagram in R
2. Finally construct a restricted Delaunay triangulation on the surface

as if in R
2, as shown in Figure 5.1. Formally, the restricted Delaunay triangulation is the

Figure 5.1: Restricted Delaunay triangulation of a surface: Starting with a surface (left),
we sample a set of points on the surface and intersect the surface with the Voronoi cells
of the points (middle). Finally we construct the triangulation according to the Voronoi
configuration.

nerve of the collection of restricted polygons νa ∩ F :

DV =

{

conv(U) | U ⊆ V, F ∩
⋂

a∈U

νa 6= ∅
}

.

If V is not properly sampled, the final triangulation may not have the same topology with

F . Figure 5.2 shows an example of under-sampling, resulting in an incorrect triangulation.

Over-sampling will improve the triangulation, but decrease the performance. In chapter 6,

we describe the condition for sampling as well as the details of points placement. In this

chapter, we describe the triangulations of skins, F = skin(B), of weighted point sets.
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Figure 5.2: Restricted Delaunay triangulation of two circles in R
2: When a Voronoi edge

intersects the surface, there is an edge. A well sampled restricted Delaunay triangulation
keeps the right topology (left). Wrong topology will result if the sampling is not done
correctly(right).

5.2 Curvature and Normals of Skin Surface

This section proves that the maximum curvature is continuous and satisfies a Lipschitz

condition. Use this to control local density in the triangulation. This section also proves a

one-sided Lipschitz condition for the normal direction.

5.2.1 Maximum Curvature

Given a surface F , a point x on F and tangent vector tx, the normal curvature of F is that

of a geodesic passing through x in the direction tx. The maximum curvature is the function

κ : F → R that maps x ∈ F to the maximum normal curvature at x. Define the slope of the

asymptopic double cone to be a1/a2 for a hyperboloid in the form of a1x
2
1 − a2(x

2
2 +x2

3 + ...+

x2
n) = R2. For a hyperboloid of revolution with the slope of 1, the minimum curvature is

measured within planes containing the symmetry axis (along meridians), and the maximum

curvature is measured in planes normal to the axis (along latitudes). Explicit expressions

for κ are easy to compute. If the sphere and hyperboloids are in the form of:

x2
1 + x2

2 + x2
3 = R2, and

x2
1 + x2

2 − x2
3 = R2,
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the maximum curvatures are, respectively,

κ = 1/R, and

κ = 1/
√

R2 + 2x2
3 = (x2

1 + x2
2 + x2

3)
−1.

This implies that the maximum curvature at x is one over the distance of x from the origin.

Iso-curvature Lemma. Every point x ∈ R
3 belongs to exactly one hyperboloid of the form

x2
1 +x2

2 −x2
3 = R2, and the maximum curvature of that hyperboloid at x is κ = 1/‖x‖.

5.2.2 Curvature Continuity

To prove that κ varies continuously over the skin surface, consider two infinite families of

spheres that define the skin as their common envelope. For a finite set of spheres B, let

S =
√

conv(B) and T =
√

conv(B⊥). The skin of B is F = ∂(∪S) = ∂(∪T ). The family

of S defines F from inside, and T defines the surface from outside. For any point x ∈ F ,

there are unique spheres Sx ∈ S and Tx ∈ T that pass through x. We make essential use

of the Sandwich Property stating that Sx and Tx have the same size in section 3.4.2. It is

convenient to define %(x) = 1/κ(x) as the radius of maximal curvature, and for reasons that

will become clear later we refer to %(x) : F → R as the local length scale.

Curvature Sandwich Lemma. For every point x ∈ F , the local length scale %(x) is the

common radius of Sx and Tx.

Proof. If x belongs to a sphere patch, then that patch either lies on Sx or on Tx and %(x)

is obviously the radius. Now suppose x belongs to a hyperboloid patch. The hyperboloid

is obtained by revolving a hyperbola around one of its two symmetry axes. As indicated

in Figure 5.3, the hyperbola is the common envelope of two families of circles, one centered

along each of the two symmetry axes. By the Sandwich Property, Sx and Tx have equal
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radii. Because x is halfway between the centers of Sx and Tx, that radius is equal to the

distance of x from the origin. By the Iso-curvature Lemma, this distance is ‖x‖ = %(x).

S

T

x

x

a

b

x

Figure 5.3: The circles Sx and Tx sandwich the hyperbola: Depending on whether we
revolve the hyperbola around the vertical or the horizontal axis, we get a one-sheeted or a
two-sheeted hyperboloid.

The sandwiching spheres, and their common radius, vary continuously with the point

x ∈ F . As stated in the Sandwich Property, each point on the surface is sandwiched by a

unique pair of sphere with the same size. Since this is true also for the points at the boundary

of the mixed-cell, the Curvature Sandwich Lemma thus implies that the maximum curvature

varies continuously over the skin surface (except at centers, where it blows up). In fact, at

every point x the local length scale %(x) equals the distance from x to the center z⊥
X of the

mixed cell µX that contains x.

5.2.3 Curvature Variation

We now strengthen the result that κ(x) is continuous by showing that it varies rather slowly.

In fact, we can extend its reciprocal %(x) to a function defined on all of R
3 and show that

%(x) has Lipschitz constant 1. As we have seen, within any mixed cell µX , % is simply the

distance to the center z = z⊥
X . By the definition of the mixed complex, this is a continuous
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function in R
3. Within µX , the triangle inequality gives the Lipschitz bound,

|%(x) − %(y)| = |‖x − z‖ − ‖y − z‖| ≤ ‖x − y‖.

By applying this to the pieces of the line segment from x to y contained in different mixed

cells, we obtained the following result.

Curvature Variation Lemma. For all points x, y in space, |%(x) − %(y)| ≤ ‖x − y‖.

Note that the extension of % to a function R
3 → R describes the length scale of all surfaces

in the family defined by the growth model of deformation.

5.2.4 Normal Variation

The tangent or C1-continuity of the skin surface follows from the Sandwich Property. We

strengthen this result by proving a one-sided Lipschitz condition for the normal vectors.

Specifically, we prove an upper bound that relates the angle between two normal vectors at

points x, y to the Euclidean distance between them and to their length scales. The outward

unit normal vector at x ∈ F is denoted nx, and the angle between two normals is ∠nxny =

arccos 〈nx,ny〉. In proving the upper bound, we consider again the one-parameter family of

skin surfaces generated by increasing squared radii with time. For points x = (x1, x2, x3)

on a sphere in standard form the unit normals are nx = ±x/‖x‖, and for points x on a

hyperboloid in standard form they are nx = ±(x1, x2,−x3)/‖x‖. In both cases, the normals

are the same along a line passing through the origin, and they vary their directions as the

point is rotated about the origin. The formulas imply that the normals of points x and y in

two adjacent mixed cells are the same if x and y are mirror images of each other across the

separating plane. This property is illustrated in Figure 5.4.

Normal Variation Lemma. Let x and y be points on F with distance ‖x − y‖ < %(x).

The angle ∠nxny between the surface normals at x and y is at most arcsin(‖x − y‖/%(x)).
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x

y’

p1

y

Figure 5.4: Normal variation: The normal of a point y can be found by reflecting by the
intersection point pi.

Proof. Consider first the case where x and y belong the same mixed cell, and translate the

coordinates so that the center is at the origin. Given x and the distance ‖x − y‖ between

the two points, the angle subtended at the origin is a maximum if ‖x‖2 = ‖x − y‖2 + ‖y‖2.

Hence:

∠nxny ≤ arcsin
‖x − y‖

%(x)
,

as claimed.

Consider second case where x and y lie in different mixed cells. The directed line segment

from x to y passes through i ≥ 1 planes h1, h2, ..., hi separating adjacent mixed cells. Let

pj = xy ∩ hj be the intersection points ordered from x to y. Construct a polygonal path

that starts at x whose length is ‖x − y‖. It is obtained from xy by reflecting the portion

after pj across the plane hj , for j = i, i − 1, ..., 1 in this order. The endpoint y′ of the path

is contained inside the sphere with radius ‖x − y‖ around x, which implies that the angle

between x and y′ subtended at the origin is φ < arcsin(‖x − y‖/%(x)). Since ny is normal

to the sphere or hyperboloid defined for the mixed cell of x that passes through y ′, φ is also

the angle between nx and ny. The claim follows.

The proof of the Normal Variation Lemma does not require that x and y belong to the

same skin surface. The claimed inequality holds more generally far any points x, y ∈ R
3 with
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normals defined by the one-parameter family of skin surfaces. Suppose the distance between

x and y is ‖x − y‖ < ε%(x). Then the Normal Variation Lemma implies

∠nxny < arcsin ε,

which is the form used most often in this work.

5.3 Triangulation

A finite set V ⊂ F is an ε-sampling if for every point x ∈ F there is a vertex a ∈ V

whose distance from x is ‖x − a‖ < ε%(x). The goal of this section is to prove that the

restricted Delaunay triangulation defined by an ε-sampling is homeomorphic to the skin

surface, provided the following condition holds:

0 ≤ ε ≤ ε0 (I)

where ε0 = 0.279... is a root of

f(ε) = 2 cos
(

arcsin
2ε

1 − ε
+ arcsin ε

)

− 2ε

1 − ε
.

Note that f(ε) is defined for −1 ≤ ε ≤ 1
3
, and that it is non-negative for 0 ≤ ε ≤ ε0.

The goal of this section is to prove that, for ε < 0.279..., the restricted Delaunay triangu-

lation, DV is a triangulation of F = skin(B). Following the standard topology terminology,

this means the underlying space of DV is homeomorphic to F . As shown by Edelsbrunner

and Shah [47], it suffices to prove that every non-empty common intersection of restricted

Voronoi polygons is a closed topological ball of the appropriate dimension, namely 3 minus

the number of polygons. If this is the case, DV has the closed ball property.

Formulate this property in terms of the (unrestricted) Voronoi polyhedra. Here general
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position is assumed the intersection of k + 1 = 2, 3, 4 Voronoi polyhedra is a polygon, edge

and vertex respectively. Depending on the case, the intersection with the skin surface is:

• case k = 0: a closed disk,

• case k = 1: empty or a closed interval,

• case k = 2: empty or a single point,

• case k = 3: empty.

The case k = 0 corresponds to a single Voronoi polyhedron, which has non-empty intersec-

tion with F because its generating point lies on F . We establish four technical lemmas in

preparation of proving that DV has the closed ball property.

5.3.1 Distance Claims

If two surface points lie in the same Voronoi polyhedron, then they cannot be far from each

other, and if they lie on a line that is almost normal to the surface, then they cannot be close

to each other. We quantify the first claim under the assumption that V is an ε-sampling.

Short Distance Claim. If points x and y on F belong to a common Voronoi polyhedron

defined by a vertex in an ε-sampling V ⊆ F , then ‖x − y‖ < (2ε/(1 − ε))%(x).

Proof. Let a be the generating point of the common Voronoi polyhedron. By the ε-

sampling assumption, ‖x − a‖ < ε%(a) and ‖y − a‖ < ε%(y). Using triangle inequality,

‖x − y‖ < ε(%(x) + %(y)). The Curvature Variation Lemma now implies

%(x) ≥ %(x) − ‖x − y‖

> (1 − ε)%(y) − ε%(x),
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and hence (1 + ε)%(x) > (1 − ε)%(y). The distance between x and y is therefore:

‖x − y‖ < ε

(

1 +
1 + ε

1 − ε

)

%(x)

=
2ε

1 − ε
%(x),

as claimed.

The bound on the distance is better if one of the points generates the Voronoi polyhedron.

Assuming x = a, we have ‖a − y‖ < ε%(y) ≤ ε%(a) + ε‖a − y‖, which implies

‖a − y‖ <
ε

1 − ε
%(a).

This version of the Short Distance Claim is needed in the proof of the Voronoi Polyhedron

Lemma below.

Next quantify the second claim, which is independent of V .

y
Skin surface

ξ

x

ρ(x)

Figure 5.5: Long distance claim: y is out of the sphere touching x with radius %(x). The
length of xy must be larger than 2%(x) cos ξ.

Long Distance Claim. Suppose a line meets F in two points x and y and forms an angle

smaller than ξ with the surface normal at x. Then ‖x − y‖ > 2%(x) cos ξ.
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Proof. By the Sandwich Property, there are two spheres of radius %(x) that both pass

through x and locally sandwich the surface, see Figure 5.5. The line meets the two spheres at

x and at points at distance larger than 2 cos ξ%(x) on both side. The skin surface contains no

points inside either sandwiching sphere, which implies the claimed lower bound for ‖x − y‖.

Playing the Short and Long Distance Claims against each other, we reach contradictions

proving various claims.

5.3.2 Normal Lemmas

If the vertices of a short edge or a triangle with small circumcircle lie on the skin surface,

then the edge or triangle lies almost flat. We quantify both claims. For an edge ab let

tab = (b−a)/‖b − a‖ be the unit vector of edge ab. The first result is an immediate corollary

to the Long Distance Claim:

Edge Normal Lemma. The angle between and edge ab and the surface normal at its

vertex a is ∠tabna > π/2 − arcsin(‖a − b‖/2%(a)).

A common use of the Edge Normal Lemma is when ab belongs to the restricted Delaunay

triangulation of an ε-sampling. Then %(a) > (1−ε)%(x), where x is a point in the intersection

of the dual Voronoi polygon with the skin surface. Hence ‖a − b‖ < 2ε%(x) < 2ε%(a)/(1−ε).

The angle between ab and the surface normal at a is then:

∠tabna >
π

2
− arcsin

ε

1 − ε
.

Next consider the triangle normal lemma. Assume the angle at a inside the triangle abc is

no smaller than the angles at b and c. Let Rabc be the radius of the circumcircle and let nabc

be the outward unit normal vector of abc.
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Triangle Normal Lemma. If a is a vertex of the triangle abc with greatest angle, then

the angle between the normal of abc and the surface normal at a is ∠nabcna <

arcsin(2Rabc/%(a)).

A

c

a

b

z ρ(  )a

Figure 5.6: Triangle normal lemma: The dashed sandwiching spheres meet the solid sphere
around a in two parallel dotted circles. Vertices b and c are placed to maximize the angle
between the triangle normal and the surface normal at a.

Proof. Consider the two spheres of radius %(a) that locally sandwich the surface at a, as

shown in Figure 5.6. The face angle at a is at least π/3 and the length of the edges ab and

ac is at most 2Rabc each. To compute a bound on the angle between na and nabc, assume

‖a − c‖ ≤ ‖a − b‖ and consider the sphere with radius ‖a − b‖ around a. It intersects the

sandwiching spheres in two parallel circles. Let 2X be the distance between these two circles

and not that X/‖a − b‖ = ‖a − b‖/2%(a) by dropping perpendicular from z to the midpoint

of ab and using similar triangles. Hence 2X = ‖a − b‖2/%(a). Since the angle at a is greater

than or equal to the ones at b and c, bc is the longest edge of abc. The angle between the

edge bc and the planes of the intersection circles is therefore less than

arcsin
‖a − b‖2

‖b − c‖%(a)
≤ arcsin

2Rabc

%(a)
.

This is an upper bound for the angle between the two normal vectors at a.
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Suppose that abc belongs to the restricted Delaunay triangulation of an ε-sampling. Then

%(a) > (1− ε)%(s), where x is a point of the intersection between the dual Voronoi edge and

the skin surface. Hence Rabc < ε%(x) < (ε/(1− ε))%(a). The angle between the two normals

at a is then

∠nabcna < arcsin
2ε

1 − ε

5.4 Closed Ball Property

It is now ready to prove the closed ball property for the restricted Delaunay triangulation,

assuming V is an ε-sampling of F where ε < 0.269.... Assume general position and consider

the three cases in turn: first Voronoi edges, then Voronoi polygons, and finally Voronoi

polyhedra.

5.4.1 Voronoi Edge

Voronoi Edge Lemma. A Voronoi edge of V intersects the skin surface in at most one

point.

Proof. Assume there is a Voronoi edge that intersect F in at least two points, x and y.

Let abc be the dual triangle in the restricted Delaunay triangulation. The Triangle Normal

Lemma gives an upper bound for the angle between the normal of abc and the surface normal

at a. The Normal Variation Lemma gives an upper bound for the angle between the surface

at a and x. Together they imply an upper bound for the angle xi between nabc and nx:

ξ ≤ ∠nabcna + ∠nanx

≤ arcsin
2ε

1 − ε
+ arcsin ε.
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The angle ξ is also the angle between the Voronoi edge and nx. The Long Distance Claim

implies ‖x − y‖ > 2%(x) cos ξ, which because ε < ε0 contradicts the upper bound ‖x − y‖ <

(2ε/(1 − ε))%(x) implies by the Short Distance Claim.

5.4.2 Voronoi Polygon

Voronoi Polygon Lemma. The intersection of a Voronoi polygon of V with the skin sur-

face is either empty or a closed topological interval.

y
y

x

y

L
LL

x
x

Figure 5.7: Voronoi polygon lemma: A Voronoi polygon intersecting the skin in a circle to
the left and two intervals to the right.

Proof. Assume there is a Voronoi polygon whose intersection with the skin surface contains

a topological circle or two topological intervals, as shown in Figure 5.7.

Let ab be the dual edge in the restricted Delaunay triangulation, and let x be an arbitrary

point of the intersection. If x lies on a circle, then let L be the line in the plane of the polygon

that intersects the circle in a right angle at x. ∠Lnx ≤ ∠L′nx for any line L′ in the same

plane and passing through x. Choose L′ to minimize the angle with na. The Edge Normal

Lemma implies an upper bound for the angle between L′ and the surface normal at a. The

Normal Variation Lemma implies an upper bound on the angle between the surface normals
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at a and x. Together these inequalities imply

∠Lnx ≤ arcsin
ε

1 − ε
+ arcsin ε.

This angle is less than the upper bound for xi in the proof of the Voronoi Edge Lemma,

which implies a contradiction between the two distance claims.

In the case of two intervals let L be a line connecting x to the closest point y on the other

interval. If y lies in the interior, then L intersects the interval in a right angle at y. In this

case we get a contradiction with the same argument as above only with x and y interchanged.

Otherwise, y is an endpoint of the interval and lies on a Voronoi edge. The angle between

L and ny is less than that between the Voronoi edge and ny. Thus a contradiction occurs

with the same argument as used in the proof of the Voronoi Edge Lemma.

5.4.3 Voronoi Polyhedron

Voronoi Polyhedron Lemma. The intersection of a Voronoi polyhedra of V with the skin

surface is a closed topological disk.

Proof. Assume there is a Voronoi polyhedron whose intersection with the skin surface con-

tains a closed 2-manifold (without boundary), a 2-manifold with boundary other than a

circle, or two circles. In the first case let L be a line that intersects the 2-manifold in two

points, x and y, and forms a right angle at x. A contradiction occurs between the two

distance claims as before.

For the rest of the proof, let a be the generating vertex of the Voronoi polyhedron and

assume the intersection between this polyhedron and the skin surface is a 2-manifold with

boundary, F ′. This 2-manifold with boundary can be different from a disk either because

it is non-orientable, it contains a handle, or it has at least two boundary circles. The

non-orientability of F ′ contradicts the orientability of F . If F ′ has a handle but only one
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boundary circle, then homology theory gives us a pair of simple closed curves in F ′ that

intersect each other transversely exactly once. Along either one of these curves, there is a

point such that the line normal to F ′ that passes through that point meets the other curve,

and hence F ′ again. This gives a contradiction to the two distance claims. A more elaborate

argument is needed for the case where there are two or more boundary circles. Then either

F ′ is connected, and in the simplest case is an annulus, or it is disconnected, and in the

simplest case consist of two disks.

By the remark after Short Distance Claim, the distance between a and a point y ∈ F ′

is ‖a − y‖ < (ε/(1 − ε))%(a). Let L be the normal line at a and note that it contains the

line segment of length 2%(a) that connects the centers of the two spheres sandwiching the

surface at a. This line segment is contained in the Voronoi polyhedron, which implies that

the polyhedron is fairly tall and slim. Consider a plane that contains L and intersects at least

two boundary circles of F ′. Such a plane exists for else a plane can be found through L that

intersects no boundary circle at all. However, then L meets F ′ in at least two points, and

again a contradiction occurs to the two distance lemmas. The plane that meets two boundary

circles intersects the Voronoi polyhedron in a convex polygon and F ′ in at least two connected

curves. One of the curves contains a. The second curve may be assumed to lie on one side of

L. Let L′ be the line passing through its two endpoints, which both lie on the boundary of

the convex polygon. The line L′ intersects the sphere with radius %(a)ε/(1−ε) around a and

it does not intersect the line segment connecting the centers of the two sandwiching spheres.

The angle between L′ and the surface normal at a is therefore ∠naL
′ ≤ arcsin(ε/(1−ε)). By

the intermediate value theorem there is a point y on the second curve whose curve normal

n′
y is also normal to L′. Hence ∠nan

′
y ≥ π/2 − arcsin(ε/(1 − ε)). Since the surface normal

at y is also normal to the tangent line parallel to L′, its angle with na is at least this

large. From the Normal Variation Lemma, yield ∠nany < arcsin(ε/(1 − ε)). Putting both

inequalities together, π/2 < 2 arcsin(ε/(1 − ε)). This is equivalent to ε >
√

2 − 1 = 0.414...

and contradicts Condition (I). This completes the proof of the Voronoi Polyhedron Lemma
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for the final case where F ′ has at least two boundary circles.

5.5 Summary

The three Voronoi lemmas establish that for any ε < 0.297..., the restricted Voronoi diagram

of an ε-sampling V has the closed ball property. The result of [47] implies that the underlying

space of the restricted Delaunay triangulation is homeomorphic to the skin surface.

General Homeomorphism Theorem. The restricted Delaunay triangulation of an ε-

sampling triangulates the skin surface, for ε < 0.279....

For the purpose of changing the topology of the skin surface we rely on point distribu-

tions that locally violate the ε-sampling condition. We give a separate proof of the closed

ball property in Section 7 and thus obtain a Special Homeomorphism Theorem for such

distributions.
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Chapter 6

Static Skin Triangulation Algorithm

We concluded that the restricted Delaunay triangulation with ε-sampling of a skin surface is

homeomorphic to the analytical skin in the previous chapter. Here, we discuss the implemen-

tation of skin mesh construction, including analysis of the algorithm. For skin construction,

we discuss construction of the restricted Delaunay triangulation and the refinement. Refine-

ment improves the mesh quality by reducing the minimum angle of the triangles on the sur-

face. These algorithms have been proved to give guaranteed-quality mesh [8, 13, 20, 27, 32].

Most of the works prove that their algorithms give a good quality mesh and terminate, if

the surface is smooth or some bounds exist on the variation of the surface normals. For the

skin case, we know the surface normal and curvature properties of the surface, and we prove

our algorithm is correct and terminates based on these properties.

First, we provide a description of the curvature adaptation of the algorithm. Then we

discuss sampling a subset of points, V ⊂ F = skin(B), according to curvature. After

constructing the restricted Delaunay triangulation, a refinement algorithm is applied to

ensure the triangle quality. At the end of this chapter, we analyze the algorithm to ensure

correctness.
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6.1 Curvature Adaptation

The goal of our algorithm is to triangulate with edges and triangles of size roughly propor-

tional to the local length scale, %(x) = 1/κ(x). Define the size of an edge ab as half of its

length, (Rab = ‖a − b‖/2) and the size of a triangle abc as the radius Rabc of the circumcircle.

The length scale at the vertices of an edge or triangle are roughly but usually not exactly

the same. We worry about the edges getting too short, so we compare their sizes with the

maximum length scale at any of their vertices. For triangles, we worry about them growing

too large, so we compare their sizes with the minimum length scale of their vertices. We

define

%ab = max{%(a), %(b)}, and

%abc = min{%(a), %(b), %(c)}.

Our algorithm is formulated using two positive constants, C and Q. C controls how closely

the triangulation approximates the skin surface, and Q controls the quality of the triangles.

The following two inequalities are maintained as invariants, which we refer to as the Lower

Size Bound and the Upper Size Bound, respectively:

Rab >
C

Q
· %ab for every edge ab ∈ D. [L]

Rabc < CQ · %abc for every triangle abc ∈ D. [U]

It is not necessary to check for long edges and small triangles explicitly. This is because an

edge of size Rab ≥ CQ%ab belongs to two triangles that both violate [U]. Symmetrically, a

triangle of size Rabc ≤ (C/Q)%abc has three edges that violate [L]. Appropriate values of C,

Q will be determined in the analysis of the algorithm but we already anticipate C = 0.08,

Q = 1.65 as a feasible assignment in section 6.5.1.
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Minimum Angle Lemma. A triangle that satisfies Conditions [L] and [U] has minimum

angle larger than arcsin(1/Q2).

Proof. Let abc be a triangle, with bc its shortest edge and R its circumradius. %abc/%bc ≤ 1

by definition of length scale. Using Conditions [L] and [U], we have

R

‖b − c‖ ≤ CQ%abc

2(C/Q)%bc

≤ Q2

2
.

The minimum angle is ∠bac, and ‖b − c‖ = 2R sin ∠bac. Hence ∠bac = arcsin(‖b − c‖/2R) ≥

arcsin(1/Q2), as claimed.

The Minimum Angle Lemma suggests choosing Q as small as possible, contingent upon

satisfying all constraints needed to prove the algorithm correct. For Q = 1.65 from section

6.5.1, the minimum angle is larger than 21.54...◦, and the maximum angle is smaller than

180◦ − 2 · 21.54◦ = 136.90...◦.

6.2 Generating a Sample

Within each mixed cell, there is either a sphere or hyperboloid patch. We sample points

on the patch within each mixed cell for the restricted Delaunay triangulation. In order to

have a distribution according to the curvature, we first estimate the number of sample points

needed in each patch. Then we generate random points on the surface with a probability

distribution proportional to the curvature.

We estimate the number of points on a patch by multiplying the weighted area by a

constant c, which is the number of points per unit-weighted area. We define the weighted

area of a patch to be the integral of the curvature κ(x) over the area. So if A is the patch,

the weighted area is WA =
∫

κ(x)dA. For example, the weighted area of a unit sphere is

simply its surface area 4π because κ(x) = 1 for all x on the sphere.

Now we discuss how to compute weighted area on a hyperboloid. Parametrize a hyperbola
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by the Klein model K(p) = (k1, k2) = ( p√
1−p2

, 1√
1−p2

). A hyperboloid is formed by rotating

points with height x3 = k1 and radius
√

x2
1 + x2

2 = k2 around the x3 axis, or swapping k1

and k2 depending on whether it is a 1-sheeted or 2-sheeted hyperboloid respectively. Also,

since the hyperboloid is infinite, a bound pmax is needed in the parametric domain.

Differentiating K yields

∂K(p)

∂p
=

(

1

(1 − p2)
√

1 − p2
,

p

(1 − p2)
√

1 − p2

)

.

The length scale of a point on the hyperboloid is the distance to the center, so

%(K(p))2 = ‖K(p)‖2 =
1 + p2

1 − p2
.

Define the derivative of length scale to be

ds2 =

(∥

∥

∥

∥

∂K(p)

∂p

∥

∥

∥

∥

dp

)2

=
1 + p2

(1 − p2)3
dp2.

For 2-sheeted hyperboloid, we rotate a point with radius k1 around x3-axis, which gives the

weighted area as:

WA(pmax) =

∫ pmax

0

2πk1

%2(p)
ds

= 2π

∫ pmax

0

p

(1 − p2)
√

1 + p2
dp

=

√
2π

2

(

arctanh
1 + p

√

2(1 + p2)
− arctanh

−1 + p
√

2(1 + p2)

)







pmax

0

.

For 1-sheeted hyperboloid, we have the radius of revolution of each point as k2 which gives
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the weighted area:

WA(pmax) = 2π

∫ pmax

0

1

(1 − p2)
√

1 + p2
dp

=

√
2π

2

(

arctanh
1 + p

√

2(1 + p2)
+ arctanh

−1 + p
√

2(1 + p2)

)







pmax

0

Next we determine the constant c which is number of point per unit weighted distance. We

compute c using only the sphere since the resulting constant will be consistent for both

spheres and hyperboloids. The minimum length of an edge of the triangle on the unit sphere

is 2C/Q. Each point occupies a disk with approximate radius C/Q and thus approximate

area πC2/Q2. Hence, we choose c = Q2

4C2 .

Another way of creating the initial triangulation is meshing independently within each

mixed cell, which does not require three-dimensional Delaunay triangulation. Since the

patches can be parametrized, we can create a mesh for each patches and then connect the

neighboring ones. However, the main difficulty is the configuration of patches, or in another

word, the connectivity of clipped patches. Clipping spherical or hyperbolic patches within

their mixed cells may result in very complicated or degenerated patches. Previous work

has been done in a similar way without the knowledge of connectivity of the patches and

suffers the problem of lacking of robustness [22]. The connectivity is computed by clipping

the triangulation with the mixed cells numerically, i.e., if a certain face of the mixed cell

cuts the mesh, the patch is connected with another patch in the other mixed cell and their

meshes are going to be merged. The main fault is that the clipping planes of the mixed cells

may miss the triangulation but actually they intersect the real surface. The combinatorial

information of the connectivity of clipped patches is essential to ensure the integrity of the

composed surface and left as an open problem.
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6.3 Surface Construction

With a sampled point set, we construct the restricted Delaunay triangulation. First we

compute the Delaunay triangulation of the point set. Then, we keep those triangles which

are either:

• On the convex hull and the attached tetrahedrons have their centers in the skin body,

or

• Not on the convex hull but one of the attached tetrahedrons has its center in the skin

body and the other has its center outside the body.

We call it the in-body test which picks the triangles that belongs to the restricted Delaunay

triangulation since their Voronoi edges intersecting the skin surface. The next step is to

further refine the triangulation in order to satisfy Conditions [L] and [U].

6.4 Refinement Operations

Random points sampled on the skin surface usually do not result in a high-quality trian-

gulation. In order to satisfy conditions [L] and [U], three refinement operations are used

to improve the quality. These operations are edge flipping, edge contraction, and point in-

sertion. The edge contraction operation ensures condition [L] and point insertion ensures

condition [U]. Then edge flipping maintains the restricted Delaunay triangulation.

First, the three operations are described. After each operation, the local neighborhoods

are modified and may lead to other operations. The algorithm pushes ‘suspicious’ edges and

triangles onto three stacks:

- Flip Stack (FS) for edges

- Contraction Stack (CS) for edges

- Insertion Stack (IS) for triangles
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The elements in the stacks are popped, checked, and refined if necessary. The algorithm

will terminate when all the stacks are cleared. The order of popping does not affect the

correctness of the algorithm since there is no infinite loop (proved in section 6.5.2). For

efficiency, we pop the flip stack first, then the contraction stack, and finally the insertion

stack. The reason for this order is that the point insertion do not cause edge contraction, so

we do not need to check the contraction stack again. The flip stack is popped first because

the flipping operation improve the condition of the triangles, namely, reducing triangle sizes

and increasing edge lengths. After each operation, new ‘suspects’ are created and pushed

onto the corresponding stacks.

6.4.1 Edge Flipping

b

c

b

c

d
flip(ab)

a
a

d

Figure 6.1: Non-flippable edge: One more triangle abd (duplicated) is created after flipping
the edge ab

Flip Check. Before flipping an edge, we check to see that the edge is ‘flippable’ as well

as belonging to the restricted Delaunay triangulation. An edge is not flippable if the flip

could create a second copy of an already existing triangle; see Figure 6.1. This problem will

occur if either a or b is degree 3. After this combinatorial test, we check whether this edge

belongs to the restricted Delaunay triangulation as described below. If not, we flip the edge

to restore the local Delaunay-hood.

To test whether an edge ab belongs to the restricted Delaunay triangulation with neigh-

boring triangle abc and abd, compute the orthocenter of the tetrahedron abcd. If the center
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c

d
a

c

d
a

b b

Figure 6.2: Edge flipping

lies within the skin body, the edge is locally Delaunay because the Voronoi edges of the

neighboring triangles intersect the surface. However, the test is expensive. First, it involves

computing the orthocenter of the 4 vertices. Secondly, we check whether this center is within

the skin body. This involves solving matrices and algebraic equations. We improve the prac-

tical efficiency of this test by approximation. For the two configurations of triangles (before

flipping and after flipping), we choose the one with the larger minimum angle among the

triangles. We flip the edge if the minimum angle of the two triangles is increased after flip-

ping. Since locally the triangulation is very close to a plane, this test is an approximation

of the flip check. We do not have a prove for the equivalence of this approximation with

the in-body check in Section 6.3, Because of the neighborhood of an edge of the mesh is

close to a plane due to ε-sampling, the second method can approximate the in-body test and

experimental results shows that the speed is improved.

Post-operation. After flipping the edge, new triangles are formed. Local Delaunay-hood

may not be preserved. Let triangle abc and dba be two adjacent triangles and edge ab is

flipped. After the operation, we push the following:

• ac, cb, ad and bd to FS

• adc and dbc to IS

• cd to CS
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6.4.2 Edge Contraction

An edge contraction occurs if an edge ab is too short (violating condition [L]). However, an

edge ab is not contractable if it has the link conflict [34]. If no conflict exist, contract the

edge by edge contraction through point deletion, since contracting an edge by snapping one

vertex to another may cause folded triangles.

Link Conflict Check. To preserve the topology, the link conflict check is essential [34].

An edge ab can be contracted only if link(a)
⋂

link(b) = link(ab).

a

b
a

b
a

d

e

Figure 6.3: Edge contraction: (left) before contraction ab is too short and b is going to be
deleted ; (middle) flip with inD() test until b has degree 3;(right) b is deleted .

Edge Contraction by Point Deletion. Contract the edge ab by deleting the point b

together with all edges and triangles in the star. The process is similar to deleting a point

in a Delaunay triangulation in 2D [33]. The star of b is a polygon. For each vertex p on this

polygon let p− and p+ be its predecessor and successor in an ordering around the polygon.

The algorithm converts the star of b by creating one triangle p−pp+ at a time by flipping.

For every edge bp, check the points p, p− and p+ with the following inD() test. The edge bp

will be flipped if inD() returns true.

Function inD(). Any three points p, p− and p+ define a circumcircle with center c. The

function inD() return true if:
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1 The projection of b on the plane of the circle is inside the circle, and

2 All other vertices on the polygon, except p, p−, and p+, are all outside of the circle.

Condition 2 maintains the Delaunay property of the triangulation after deletion of the point

b. Condition 1 checks if the angle of a corner of the polygon exceeds π, for example, the

edges da and ae in figure 6.3. We say they are concave edges. Flipping the edge pb can cause

a folded triangle even if condition 1 is satisfied.

Post-operation. In the flipping stage, edges and triangles are pushed to the stacks as in

the normal flipping operations. After the degree of b reaches 3, delete the three adjacent

triangles and fill the hole with a new triangle. Only this new final triangle is pushed onto

IS.

6.4.3 Point Insertion

If a triangle abc is too big, it violates condition [U]. An additional point is added to destroy

this triangle. However, before adding a point, we check to see if the edges of abc can be

flipped. If none of the edges can be flipped, we try to add a point. We perform these

operations in this order because adding a new point may not destroy abc if the triangle has

a large angle and its circumcenter is far away. However, in this case, the triangle cannot be

part of the restricted Delaunay triangulation, so flipping an edge removes it.

To add a new point, let L be the line of points at equal distance from a, b and c. Starting

from triangle abc, walk on the triangulation until the triangle that intersects L is found.

The walk is a direct path to the line since for each step we head for the triangle closer to

the line L. After locating the triangle, intersect with the skin patch by solving the root of a

quadratic equation and insert the intersection point x.

After inserting the point, the local region of triangles may not keep the restricted De-

launay property anymore. We repair this by flipping all the edges in the link of x until all
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edges in link(x) satisfy the flip check.

Post-operation. The triangles in the star of x are pushed onto IS. This is sufficient because

no short edges are created by point insertion and the flipping establishes the restricted

Delaunay property of the new triangulation.

6.5 Analysis

We now analyze the algorithm and prove its correctness. First we prove that the algorithm

terminates. Next we prove that the result is the restricted Delaunay triangulation of an

ε-sampling, which implies that the triangulation is homeomorphic to the skin.

6.5.1 Conditions

We first prove that point insertions do not generate edges that violate the Lower Size Bound

[L]. That proof requires that Q is not too large. We then prove that the restricted Voronoi

vertex dual to a triangle can be found near the circumcenter of that triangle. That proof

requires that the vertices of the triangulation form an ε-sampling. Finally, we prove that the

vertices indeed form an ε-sampling, with ε satisfying Condition (I), i.e. ε < ε0 = 0.279....

The closed ball property established in Section 5 then implies that the triangulation produced

is homeomorphic to the skin surface. That proof relies on the quality of the approximation,

which is guaranteed by the algorithm provided CQ is not too large. For ease of reference we

collect the conditions before deriving them.

Q2 − 4CQ − 2 > 0, (II)

δ2/(1 + δ)2 − δ4/4 > C2Q2, (III)
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where δ = ε−2C(ε+1)/(Q+2C). We get (II) and (III) as sufficient conditions for the proofs

of the No-Short-Edge Lemma and the Sampling Lemma below. Condition (II) is equivalent

to Q > 2C +
√

4C2 + 2. Assuming ε = ε0 = 0.279..., we can satisfy Conditions (II) and

(III) by setting C = 0.08 and Q = 1.65. In this case δ = 0.166.... Small improvements are

possible.

6.5.2 Refinement Termination

An edge contraction may cause other edge contractions, but this cannot go on forever because

we eventually violate the Upper Size Bound. Similarly, a vertex insertion may cause other

vertex insertions, but this cannot go on forever because we eventually violate the Lower Size

Bound. It is possible that an edge contraction causes vertex insertions, but a vertex insertion

cannot cause edge contractions. This is because a vertex insertion cannot create edges of size

below the allowed threshold. This prevents infinite loops in spite of the algorithm’s partially

conflicting efforts to avoid short edges and large triangles simultaneously. Let abc be the

triangle that causes the addition of the dual restricted Voronoi vertex x ∈ F .

No-Short-Edge Lemma. Every edge xy created during the addition of x has size larger

than (C/Q)%xy.

Proof. We have Rabc ≥ CQ%abc. The sphere with center x that passes through a, b, c has

radius X ≥ Rabc and it contains no vertex other than x inside. Every new edge xy has

therefore length ‖x − y‖ ≥ X ≥ CQ%abc. Assume without loss of generality that %abc = %(a).

We use the Curvature Variation Lemma to derive upper bounds for the length scales at x

and y:

%(x) ≤ %(a) + X ≤
(

1

CQ
+ 1

)

‖x − y‖,

%(y) ≤ %(x) + ‖x − y‖ ≤
(

1

CQ
+ 2

)

‖x − y‖.
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Hence

Rxy =
‖x − y‖

2
≥ max{%(x), %(y)}

4 + 2/CQ
.

Condition (II) implies C/Q < CQ/(4CQ+2), and therefore Rxy > (C/Q)%xy, as claimed.

6.5.3 Close Dual Vertices

Consider the point addition triggered by the triangle abc violating the Upper Size Bound.

As before, we denote the line of points at equal distance from a, b, c by L, the circumcenter

of abc by z, and the point of L ∩ F closest to z by x. We prove an upper bound on the

distance between x and z assuming an ε-sampling of F .

Circumcenter Lemma. The distance between x and z is ‖x − z‖ < (ε2/2)%abc.

a
x

z

Figure 6.4: Circumcenter lemma: Dashed sphere of radius %(x) passing through a, b, c, x and
bold circle with center z passing through a, b, c.

Proof. Assume %abc = %(a) ≤ %(b), %(c). We have ‖x − a‖ ≤ ε%(x) by assumption of ε-

sampling and therefore %abc/(1 + ε) ≤ %(x) by the Curvature Variation Lemma. We get

an upper bound on the distance between x and z by assuming %(x) is as small as possible

and a,b,c lie on the sandwiching sphere with radius %(x) = %abc/(1 + ε) passing through x.

This configuration is sketched in Figure 6.4. Note that ‖x − z‖/‖x − a‖/2%(x) by equality

of angles formed by orthogonal sides. Therefore,

‖x − z‖ =
‖x − a‖2

2%(x)
≤ ε2

2
%(x),
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as claimed.

The relevance of the Circumcenter Lemma to the curvature adaptation algorithm should

be obvious. When the triangle abc violates Condition (III), we need first to find its dual

vertex in the restricted Voronoi diagram and then add this vertex to V . This vertex is the

point x, and the Circumcenter Lemma gives a bound on how far from z we have to search

before we are guaranteed to find x. As shown in the proof of the Voronoi Edge Lemma, each

additional point y ∈ L ∩ F is too far from z to possibly belong to the Voronoi edge dual to

abc.
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Chapter 7

Dynamic Skin Algorithm

The algorithm for constructing the skin triangulation dynamically is described in this chap-

ter. Assuming we have a skin triangulation D0 at time t0, we grow the skin gradually to

another triangulation D1 at t0. We call D0 and D1 the states of the mesh. During the

growth, triangles are distorted and violate the Conditions [L] and [U]. These are the invalid

triangles and refinements are applied. Once the triangle is refined and valid, we compute

a time step ∆t when the next refinement is needed. The triangle gets a certificate and is

guaranteed to be valid before the period of ∆t is passed. We call ∆t the time step. We call

this framework the Kinetic Data Structures (KDS) [2, 3, 9, 56, 59]. The Ph.D thesis of Basch

is a good resource of KDS [9], and he states that KDS are simply made of two components:

a proof of correctness of the attributes (Conditions [L] and [U] in this case), and a priority

queue called the event queue.

The events in the event loop are topology changes and refinement operations. The event

loop starts with a correct triangulation (which may be empty). The algorithm processes the

events according to their time. For each event of topology changes, we know when it happens

by the alpha value of the corresponding simplex. At that instant, the curvature will rise to

infinity, so our previous triangulation contains infinitely small triangles because of Condition

[L]. Special treatment is needed in the region that is close to the position of topological

changes. In these special regions, local portions of the triangulation are not maintained

anymore within short time intervals as described in the previous chapter. The Upper Size
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Bound and Lower Size Bound are maintained at the times when the special sampling begins

and finishes. This special treatment is described in Section 7.4. For refinement operations,

the oracle of ∆t computation involves solving equations of high degrees. The difficulties

come from the non-linear paths of the points with the changes of its local length scale.

Alternatively, we estimate a time to check an edge or triangle is valid, which is described in

Section 7.5.

In this chapter, we first prove that the density is maintained during growing. Secondly

we describe how to update the vertices on the skin triangulation followed by the overall

scheduling algorithm. The refinement operations are described in the previous chapter, and

we give the details of special sampling of the topology event in this chapter. At the end of this

chapter, we give a method to estimate ∆t for the checking of both edges and triangles. We

prove the edge estimation is correct but not for the triangles. An alternative experimental

strategy is used to attack this problem.

7.1 Maintaining Density

We now show that the algorithm for curvature adaptation maintains the ε-sampling property

of the vertex set. Recall that this means that for every point x ∈ F there is a vertex

a ∈ V whose distance from x is ‖a − x‖ < ε%(x). The constant ε is to be chosen less than

ε0 = 0.297....

It is interesting to see that the two Size Bounds by themselves are too weak to imply

ε-sampling. We can put four points near each other on a sphere in such a way that all four

triangles and six edges satisfy [L] and [U]. Nevertheless, the boundary of the tetrahedron

is miserably inadequate approximation of the sphere surface. We argue that the algorithm

cannot get to this problematic state, because of the way it would temporarily have to violate

the two Size Bounds. In other words, we use continuity in time to prove the claim on

sampling. In stating the result, we assume the skin surface deforms continuously with
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time. The details of the motions are discussed in the next chapter. For now we disallow

metamorphoses, which simply means the topology changes while the skin grows. Let t0 < t1

be two points in time so the topological type is constant within [t0, t1]. We write F (t) for

the skin surface at time t and V0, V1 for the vertex sets at time t0 and t1 respectively.

Sampling Lemma. If V0 is an ε-sampling of F (t0), then V1 is an ε-sampling of F (t1).

Proof. Assume the opposite and let t ∈ [t0, t1] be the first moment in time when the

skin surface is not ε-sampled. Then there is a point x ∈ F (t) such that no vertex lies inside

the sphere with center x and radius X = ε%(x). By minimality of t, the sphere increase

the sphere while keeping its center on the surface. Vertex a remains on the sphere and we

permit no vertices inside the sphere. Let y ∈ F (t) be the center when we reach the other

two vertices, b and c. The radius of the new sphere is Y ≥ X because the radius can only

increase from x to y. Using the Curvature Variation Lemma, we get %abc ≤ %(x)(1 + ε) and

therefore (ε/(1 + ε) ≤ ε%(x) ≤ Y . Assume without loss of generality that %abc = %(a), and

let z be the circumcenter of abc. The Upper Size Bound implies ‖z − a‖ = Rabc < CQ%(a).

Using the Circumcenter Lemma, we get an upper bound on the square distance between y

and a,

Y 2 = ‖y − z‖2 + ‖z − a‖2

<
ε4

4
%2

abc + C2Q2%2
abc.

This implies

ε2

(1 + ε)2
<

ε4

4
+ C2Q2,

which contradicts Condition (III).

For example for C = 0.08, Q = 1.65 the Sampling Lemma holds for all ε in an interval

with endpoints 0.15... and 0.98....
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7.2 Vertex Movement

The intuition for moving vertices is taken from Morse theory, which considers structures

that arise in sweeping out a smooth manifold [73]. The skin surface is a cross section at

each moment during the sweep, and the manifold is the stack of cross sections in the time

direction. In other words, the manifold is the graph of M : R
3 → R that maps a point x to

the time t at which x belongs to the surface F (t). Hence F (t) = M−1(t). A metamorphosis

of F corresponds to a critical point of M . Any two cross sections F (t0) and F (t1), where

the interval [t0, t1] is free of critical points, are diffeomorphic, and an explicit diffeomorphism

φ : F (t0) → F (t1) can be constructed from the vector field grad(M(x)).

Figure 7.1: Dotted integral lines of a solid growing circle and a solid growing hyperbola

The step from time t0 to time t1 thus amounts to moving each vertex a ∈ Di along its

integral curve to a′ = φ(a) ∈ Dj. In the growth model the integral lines are pieces of straight

lines in spherical patches and hyperbolas in hyperbolic patches, as illustrated in Figure

7.1. To see this, note that (2x1,−2x3) are the normal vectors of the family of hyperbolas

x2
1 − x2

3 = ±R2, and that (2x3, 2x1) are the normal vectors of the family 2x1x3 = ±R2

obtained by rotating the first family through an angle of π/4. The three-dimensional picture

is obtained by revolving the hyperbolas in Figure 7.1 about the x3-axis. The first family of

hyperbolas turns into the one-parameter family of hyperboloids. The second family turns

into a two-parameter family of hyperbolas each orthogonal to each of these hyperboloids.
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7.2.1 Parametrization

It is convenient to parametrize the integral curves by time so that points can be moved by

evaluation. Each integral curve is decomposed by the mixed complex into segments of lines

and hyperbolas. We first consider the case of a line segment inside a mixed cell constructed

from a Delaunay vertex and its dual Voronoi polyhedron. After translating the center of the

cell to the origin, the mixed cell is swept out by a sphere in standard form x2
1 + x2

2 + x2
3 = s,

for s ≥ 0. We thus get integral rays that start at the origin and go to infinity, and we clip

each such ray to the mixed cell. If the origin lies inside the mixed cell, then it is the source

of an entire sphere of integral lines. We parametrize that sphere by longitude and latitude,

θ ∈ [0, 2π] and φ ∈ [−π, π]. For each pair of angles we have a half-line γθ,φ : R → R
3 defined

by

γθ,φ(s) =













cos θ cos φ
√

s

sin θ cos φ
√

s

sin φ
√

s













.

The case of a mixed cell constructed from a Delaunay tetrahedron and its dual Voronoi

vertex is symmetric, with integral lines ending rather than starting at the origin. If the

origin lies inside the mixed cell, then it is the sink of an entire sphere of integral lines.

We next consider the case of a mixed cell constructed from a Delaunay edge and its dual

Voronoi polygon. We assume the hyperboloid sweeping out the mixed cell is in standard

form x2
1 + x2

2 − x2
3 = s, for s ∈ R. The integral lines are hyperbolas with the x3-axis as one

asymptote and a line through the origin in the x1x2-plane as the other. We parameterize

the family with the longitudinal angle, θ ∈ [0, 2π], and the minimum distance to the origin,
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R ≥ 0. For each pair of parameters we get a hyperbola γθ,R : R → R
3 defined by

γθ,R(s) =

















± cos θ
√

u

± sin θ
√

u

±
R2

2
√

u

















,

with u = (s +
√

s2 + r2)/2. To check the correctness of the parametrization note that the

points γθ,R(s) satisfy the equation of the hyperboloid and the equations of the orthogonal

hyperbola. The case of a mixed cell constructed from Delaunay triangle and its dual Voronoi

edge is symmetric, with integral curves oriented in the opposite direction. In either case we

obtain a parametrization in time by setting s = R2 + t.

Note that in all four cases of integral lines, the speed of the parametrization depends only

on the distance to the center of the mixed cell: ‖δγ/δs‖ = 1/(2‖γ(s)‖). This is consistent

with the length of the gradient of M(x) = ±x2
1 ± x2

2 ± x2
3 being independent of the choice of

signs: ‖grad M(x)‖ = 2‖x‖.

7.2.2 Crossing Mixed Cells

We described the movement of vertices within specific mixed cells. The vertices within the

mixed cells will hit the boundaries and move across to other mixed cells. For vertices on the

sphere patches, it is trivial to intersect the vertex trajectories, which are straight lines, with

the boundary planes of the mixed cells. Whenever a vertex hit a boundary plane, the vertex

move to the other mixed cell which is divided by this plane.

For the case of hyperboloid, we can find the intersection of the trajectory and the bound-

ary plane in the same way. However, this will involve solving the equation of the trajectory.

We avoid this by first finding the plane which the trajectory lies on. Then we find the

intersection of the trajectory plane with the boundary planes of the mixed cells which are

parallel to the rotational axis. The vertex will hit the boundary plane which has its inter-
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section closest to the rotational axis.

Currently, we use brute force to search the boundary plane which is hit by a moving point.

If | B |= n, the worst computational time for searching can be O(n) for each movement.

This can be improved by point-location algorithm within a mixed cell to improve the running

time.

7.3 Event Scheduling

Vertices move continuously along their integral lines, but updating their positions continu-

ously is computationally infeasible. The common escape from this dilemma is the time-slicing

method, which takes discrete time steps and advances all vertices from time t0 to time t1

without intermediate stop. There are drawbacks to time-slicing related to the difficulty of

choosing the right step size. We follow an alternative approach and take different time steps

at different locations. This is done by prioritizing the four types of operations that occur

at discrete moments in time, which are edge flips, edge contractions, vertex insertions, and

metamorphoses. Edge flipping, edge contractions and vertex insertions are discussed in pre-

vious chapters and the time for checking of these operations in Section 7.5. We will introduce

the detail of topology changes in the metamorphoses section.

In the KDS paradigm, we should store the trajectory of the points. However, we store

the coordinates of each point in this work to represent the trajectory. Coordinate updates

are done lazily, moving a vertex when and only when it is used by one of the other four

operations. This result in a time-warped surface with different pieces reflecting the state at

different times. To bring the entire surface to the present time, we simply update all the

vertex coordinates, and by assumed correctness of the prioritization this requires no other

changes in the triangulation.

We use a priority queue to schedule the operations in time. We denote this queue by

q. Starting with nothing in space, we first throw all the metamorphoses operations into q
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and we extract the operation according to time in q. Then for any triangle in the current

triangulation, we estimate a time when a checks for refinement is required. We also push

this operation onto q. So the algorithm of constructing the dynamic skin is the processing

of q until it is empty or the desired time t is reached.

7.4 Topology Adaptation

The way the skin surface is connected can change during deformation. This section studies

when, where, and how these changes happen in the growth model. It also describes how

we locally modify the general sampling strategy to avoid the computational impossibility of

sampling infinitely many points accumulating at the location of infinite curvature.

7.4.1 Growth Model

We recall that the growth model of deformation is defined by changing the square radius of

each sphere (zi, ri) from wi = r2
i at time 0 to wi + t at time t ∈ R. Computationally, this is

the simplest kind of deformation of the skins because it keeps the mixed complex invariant.

Each mixed cell contains a (possibly empty) sphere or hyperboloid patch of the skin surface.

After normalization, the equation of each sphere or hyperboloid at time t is

x2
1 + x2

2 ± x2
3 = ±R2 +

t

2
.

A metamorphosis happens when the right-hand side vanishes at time t = ∓2R2, and it

happens at the center, but only if the center lies in the interior of its mixed cell. If the center

lies outside, the portion of the sphere or hyperboloid that passes through the center is not

part of and thus does not affect the skin surface.

Using local considerations, we can reduce the list of metamorphoses to the four given in

table 7.1. Cases k = 0, 3 correspond to an appearing or disappearing sphere. Cases k = 1, 2
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k type of change and inverse
1 creating/annihilating a component
2 adding/removing a handle
3 closing/opening a tunnel
4 filling/starting a void

Table 7.1: The four types of generic topological changes that happened during
growth/shrinking.

correspond to switching a hyperboloid from two sheets to one, or vice versa. In each case we

can interpret the center as a critical point of the map M : R
3 → R whose level sets M−1(t)

are the skin surfaces at time t. Cases k = 0, 3 correspond to minima and maxima, and Cases

k = 1, 2 to two types of saddle points. The gradient of M vanishes at all these points and

also at centers that lie on the boundary of their mixed cells. The latter centers correspond

to degenerate critical points in the sense that an arbitrarily small perturbation of B suffices

to turn them into regular points [45].

7.4.2 Hot Spots

Common to every metamorphosis is a local drop in length scale, which reaches zero at the

moment and point of the metamorphosis. We analyze the situation in some detail. Let H

be a positive real number. The hot portion of the skin surface F is the set of points with

length scale H or smaller,

FH = {x ∈ F | %(x) ≤ H}.

By the Iso-curvature Lemma, we have %(x) ≤ H only if x is sufficiently close to the center

of a sphere or hyperboloid. Let zX be such a center. We call the ball

βX = {y ∈ R
3 | ‖y − zX‖ ≤ H}
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the hot ball of X. We pick H to be at most half of the shortest distance between all the

centers to their nearest boundaries of the mixed cells and denote the balls as R
3
H to be the

hot portion of space.

Hot Spot Lemma. FH = F ∩ R
3
H

The Hot Spot Lemma follows directly from the Iso-curvature Lemma and does not need a

separate proof. In words, a point x ∈ F belongs to the hot portion of the skin surface if and

only if it belongs to the hot portion of space. In the growth model the hot portion of space

is constant, while the hot portion of the skin changes as the surface moves through that

portion of space. The radius of the hot ball in any mixed cell is half of the distance from the

center to the nearest mixed cell boundary. This guarantees pairwise disjointness. We refer

to mixed cells with distance zero as degenerate cases. Our algorithm does not handle these

cases because we are not sure if there is topology changes. For example, four coplanar points

lies on a circle have two triangles with centered on one of the diagonals of the convex hull.

Topology occurs at the centers with no different from the case of a non-degenerate triangle.

Possible solution may be clustering simplices in DB into complexes, for example, merge the

two triangles into a quadrilateral with one center by more complicated data structure other

than simplicial complex.

However in reality, there are cases which are very close to degenerate cases, e.g. a regular

pentagon. Because of numerical imperfection, a pentagon cannot be represented perfectly by

floating points. This causes mixed cell with very small distance between center and its cell

boundary. In cases like this, our algorithm works but with poor performance. The reason is

because there are huge numbers of operations near the centers. Improving the computational

time for these cases is also an open problem.

87



7.4.3 Time for Change

The hot portion is more difficult to triangulate than the rest of the skin surface. One reason

is metamorphosis; another is accumulation of vertices in a small region. The sphere case is

relatively harmless, because the area decreases at the same rate as the density requirement

increases. Indeed, a constant number of vertices suffices to shrink a sphere to an arbitrarily

small size. The case of a hyperboloid that approaches its limiting double-cone is more

problematic, because the number of vertices near the center grows beyond any bound. To

circumvent the computational impossibility of sampling infinitely many points, we change

the sampling strategy inside the hot balls. We give up on ε-sampling to get a sparse sampling,

but we preserve the closed ball property. The triangulation algorithm remains oblivious to

the changed sampling density and maintains a restricted Delaunay triangulation.

hH

2R 0

12R H
2R 0

12R

hot spheres

Figure 7.2: Topology change: Head on view of start, middle, end configuration generated by
special sampling strategy taking a 2-sheeted to a 1-sheeted hyperboloid.

Consider a two-sheeted hyperboloid and translate time such that the metamorphosis

happens at time t = 0. The hyperboloid enters its hot ball at time −2H2, turns into a double-

cone at time 0, and leaves the hot ball as a one-sheeted hyperboloid at time 2H2. The special

sampling strategy that allows us to go through this motion depends on a parameter 0 < h <

1. Special sampling begins at time t0 = −2H2h2 when the two-sheeted hyperboloid enters

the ball of radius Hh, and it ends at time t1 = 2H2h2 when the one-sheeted hyperboloid

leaves that ball, as shown in Figure 7.2. At time t0, the hyperboloid intersects the boundary
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of the hot ball in two hot circles. The shape adaptation algorithm moves these circles along

their integral lines, which implies that they grow from radius R0 = H
√

(1 − h2)/2 at time

t0 to radius R1 = H
√

(1 + h2)/2 at time t1. Simultaneously, the distance between the two

circles decreases from 2R1 to 2R0. We define the hot sphere to pass through the two hot

circles. At time t0 and t1, it is the boundary of the hot ball which radius is

√

R0R1 =
H(1 − h4)

1

4√
2

.

In the open time interval between t0 and t1, it is cocentric and smaller than that boundary.

General sampling applies outside the hot sphere and special sampling applies on and inside

that sphere.

7.4.4 Special Cap Construction

At time t0, we kick off special sampling by creating the double-cap as the start configuration

of the metamorphosis representing the intruding portion of the two-sheeted hyperboloid, as

shown in the left drawing of Figure 7.2. Consider one sheet of the hyperboloid and let a be

its intersection point with the symmetry axis. Let b0, b1, ..., bl−1 be the vertices of a regular

l-gon along the hot circle in this sheet. We mirror these points across the symmetry plane

of the hyperboloid and get points a′, b′0, b
′
1, ... on the other sheet.

First we add the tip of the pyramid a and the base points bi to the triangulation. During

the point insertion, flipping is applied also as in the normal insertion operations. The only

difference is that these insertions may produce short edges. The second step is to delete

any point within the hot sphere using edge contraction. Finally, we check if more edge

contraction is needed.

After the edge contractions, every point connected to the tip is either the base of the

pyramid or a point outside the hot sphere. We flip any edge with one endpoint outside the

hot sphere. The cap is formed at this point. However, because of the final flipping, there
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may be triangles near the base of the cap that are too large. One more final operation is to

refine the triangles involved. This may cause special flipping, which will be discussed in a

Section 7.4.6.

Section 7.4.7 will derive sufficient conditions for h and l that guarantee the above algo-

rithm successfully constructs the double-cap as the start configuration of the metamorphosis.

By this we mean that

(1) a,a′ are the only vertices inside and bi, b
′
i are the only vertices on the hot sphere,

(2) the link of a in D is the regular l-gon of vertices bi, and symmetrically the link of a′ is

the l-gon of vertices b′i.

Assuming C = 0.08 and Q = 1.65, we will see that h = 0.98 and l = 5 are feasible values

for the two constants. For ease of reference we say the vertices and edges in the links of a,

a′ are hot and the vertices, edges, and triangles in the stars of a, and a′ are very hot.

7.4.5 Special Waist Construction

The end configuration of the metamorphosis is identical to the start configuration of the

inverse metamorphosis. As shown in the right drawing of Figure 7.2, it consists of two rings

of triangles forming a spool representing the intruding portion of the one-sheeted hyperboloid.

Let u0, u1, ..., um−1 be the vertices of a regular m-gon along the waist where the hyperboloid

intersects its symmetry plane. Similarly, let w0, w1, ..., wm−1 be the vertices of another regular

m-gon along one of the two hot circles, rotated by π/m relative to the m-gon along the waist.

Finally, let w′
0, w

′
1, ..., w

′
m−1 be the vertices of the mirror m-gon on the other hot circle.

We start by adding each ui to the triangulation, and then each wi and w′
i. Then we

delete all other vertices within the hot sphere by edge contraction. After the contractions

we will have ui connected to wi, w′
i, another uj, or a point out of the hot ball. We flip any

edge leaving the hot ball. we flip this edge. This will again create some oversized triangles.

Finally, we refine these triangles, which involves special flipping.
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Section 7.4.7 derives sufficient conditions for h and m that guarantee the above algorithm

successfully constructs the spool as the start configuration of the inverse metamorphosis.

Assuming C = 0.08 and Q = 1.65, we will see that h = 0.98 and m = 40 are feasible values

for the two constants. For ease of reference we again say that the vertices and edges along

the two hot circles are hot and that the vertices, edges, and triangles between the two hot

circles are very hot.

In the forward direction we switch from the double-cap to the spool at time 0, and in

the backward direction we do it the other way round. The 1 to 2 transformation is easier

because we just need to meld the m-gon of the waist into a single vertex and then split

that vertex into two. In the forward direction we first meld a and a′ into a single vertex

and then expand that vertex into a regular polygon (interleaving angularly between the bi).

The expansion creates two new rings of triangles between the new polygon and the polygons

representing the two hot circles. This is done following the angular order of the vertices

around the symmetry axis.

7.4.6 Special Sampling

The main difference between special and general sampling is that the former gives up on the

Lower Size Bound [L] for hot edges and on the Upper Size Bound [U] for very hot triangles.

The length of hot edges is bounded from above because the Upper Size Bound applies to

the incident triangles outside the hot sphere. A more detailed analysis of edge and triangle

sizes including a proof of the closed ball property (in spite of special sampling) is given in

Section 7.4.7.

The goal of special sampling is to maintain the double-cap and the spool during the first

and the second halves of the time interval. It acts primarily by modifying general sampling

for points on and inside the hot sphere. As a general rule, an edge is contracted by removing

an endpoint that is not hot. Cases where both endpoints are hot occur only at the end of the

metamorphosis (or its inverse) and will be discussed separately. There are two ways in which
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general sampling can intrude into the hot sphere: by adding a point inside that sphere and

by flipping a hot edge. In both cases we prevent the intrusion by bisecting the endangered

hot edge bc, as illustrated in Figure 7.3. Specifically, we add the midpoint q of the shorter

hot circle arc that connects b with c. The addition of q may create edges that violate the

Lower Size Bound. Of these we contract the ones that are not hot, always making sure we

remove the endpoint that is not hot. As discussed above, we choose H small enough so

that hot spheres cannot get too close to each other and every non-hot edge has at least one

non-hot vertex. Infinite loops cannot occur because each iteration leaves an addition hot

vertex behind. The hot circle gets denser and intrusions into the hot sphere get progressively

more difficult.

a

b

d

q c

p

Figure 7.3: Special flipping: The hot edge bc is bisected either because the dual restricted
Voronoi vertex of bcd lies inside the hot sphere or edge flipping attempts to change bc to da.

Special sampling maintains the special configuration, but it does not guarantee the two

Size Bounds. They must therefore be enforced by clean-up operation algorithmically at

the end of the metamorphosis. The clean-up operation is correct if we maintain the closed

ball property, which is initially guaranteed by special sampling. While maintaining that

property might be difficult in general, we can use the insights gained from the proofs of the

two Persistence Lemmas in Section 7.4.7 and add points only on the two hot circles.
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7.4.7 Analysis

This section analyzes the point configurations generated by fipling. Recall that Hh < H

is the length scale threshold that triggers the start and end of special sampling. In the

forward direction we start with a two-sheeted hyperboloid that enters the ball with radius

Hh around the center, and we end with a one-sheeted hyperboloid that exits the same ball.

In the backwards direction the events are the same in reverse order.

Sizes at Transition. Refer to the double-cap shown in Figure 7.2. The l+1 points on one

sheet form a regular l-sided cap. The l vertices of the base lie on the hot circle with radius

R0 = H
√

(1 − h2)/2, which lies in a plane at distance R1 = H
√

(1 + h2)/2 from the center.

Note that R2
0 + R2

1 = H2. Define b = bi and c = bi+1, with indices modulo l. Independent of

the index i, the lengths of the edges of abc are

‖ab‖ = 2Rab =
√

2R1(R1 − Hh),

‖bc‖ = 2Rbc = 2R0 sin
π

l
.

Any isosceles triangle with sides of length E and height L has circumradius E2/2L. The

height of abc is La,bc =
√

4R2
ab − R2

ab. The circumradius is therefore 4R2
ab/2La,bc, which is

Rabc =
R1(R1 − Hh)

√

2R1(R1 − Hh) − R2
0 sin2(π/l)

.

Next refer to the spool shown in Figure 7.2. The 3m points form three parallel regular

m-gons. The distance between two contiguous planes is R0, and the circumradii of the three

m-gons are R1, Hh, R1. Define u = ui, v = ui+1, w = wi, x = wi+1, with indices modulo m.
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Independent of the index i, the lengths of the edges uv and wx are

‖uv‖ = 2Ruv = 2Hh sin
π

m
,

‖wx‖ = 2Rwx = 2R1 sin
π

m
.

To compute Rvw, Ruvw, and Rvwx, we consider the projection of the middle and outer m-gons

onto a plane parallel to the two m-gons, as shown in Figure 7.4. The distance between the

projections of w and (u + v)/2 is R1 − Hh cos(π/m), and that between the projections of v

and (w + x)/2 is R1 cos(π/m)−Hh. We get the heights Lw,uv and Lv,wx of the two triangles

by taking the distances to three dimensions, which means squaring, adding R2
0, and taking

square roots. The length of an edge connecting the middle m-gon with one of the two outer

m-gons is the root of R2
uv + L2

w,uv, which is

2Rvw =
√

2R1(R1 − Hh cos(π/m)).

We compute the circumradii of the two isosceles triangles again from their edges and heights.

u

P

x

w

h

v

Figure 7.4: Top view of a waist: Portion of the spool in Figure 7.2 projected onto a plane
parallel to the 2k-gons.
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In particular, the circumradius of uvw is 4R2/2Lw,uv, and that of vwx is 4R2
vw/2Lv,wx. Hence,

Ruvw =
R1(R1 − Hh cos(π/m))

√

H2 − 2R1Hh cos(π/m) + H2h2 cos2(π/m)
,

Ruvw =
R1(R1 − Hh cos(π/m))

√

R2
1 − 2R1Hh cos(π/m) + R2

1h
2 cos2(π/m)

.

Smooth Transition. We derive necessary and sufficient conditions for h, l, and m that

guarantee a smooth transition from the general to the special sampling strategy. By this

we mean that the configurations at the start of a metamorphosis is an ε-sampling and

satisfies both Size Bounds. At the end of the metamorphosis, the Size Bounds are enforced

by eliminating offending edges and triangles through edge contraction and vertex insertion.

The result is a triangulation whose vertex set is an ε-sampling of the surface; see also the

remark immediately following the proof of the Sampling Lemma.

The length scale at vertices a,u,v is Hh, and that at b,c,w, and x is H. The Lower

and Upper Size Bounds are therefore equivalent to Rab, Rbc, Ruv/h, Rwx, Rvw > (C/Q)H

and Rabc, Ruvw, Rvwx < CQHh respectively. The inequalities for Rvw, Ruv, and Ruvw are

redundant because Rab < Rvw, Rwx < Ruv/h, and Ruvw < Rvwx for all h < 1. In addition to

requiring that the triangles abc, uvw, and vwx satisfy the Upper Size Bound, it is convenient

to require that their radii are less than the locally allowed minimum edge length. This extra

requirement implies that after adding points on and inside the hot sphere, all old points

inside or on the hot sphere are too close to at least one new point and thus are deleted. It

follows that all remaining old vertices lie outside the hot sphere. We thus have the following

two conditions:

Rab, Rbc, Rwx > HC/Q, (IV)

Rabc, Rvwx < min{Q, 2/Q}CHh. (V)

Conditions (I)-(V), summarized in Table 7.2, are satisfied for ε = 0.279, C = 0.08,
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Q = 1.65, h = 0.98, l = 5 and m = 40. We summarize the results assuming this assignment

of constants.

(I) 0 ≤ ε ≤ ε0 = 0.297...
(II) Q2 − 4CQ − 2 > 0
(III) δ2/(1 + δ)2 − δ4/4 > C2Q2

(IV) Rab, Rbc, Rwx > HC/Q
(V) Rabc, Rvwx < min{Q, 2/Q}CHh

Table 7.2: Conditions (I)-(V).

Transition Lemma. The triangulation at the start of a metamorphosis satisfies the two

Size Bounds and its vertex set is an ε-sampling of the skin portion within a mixed cell.

As mentioned earlier, the same does not automatically hold for the end configurations

of metamorphoses, but it can be enforced algorithmically by refinement. The purpose of

bounding the size of triangles in Condition (V) by (2/Q)Ch is to guarantee that the algo-

rithm given in Section 7.4 constructs the special configurations without having to search for

remaining old vertices inside the hot sphere. To prove this algorithm correct, we also need

to show that these configurations are part of the restricted Delaunay triangulation, which

follows from the Persistence Lemmas proved below.

Persistence of Triangulation. We show that the special configuration exist as subcom-

plexes of the restricted Delaunay triangulation during the entire time interval of a meta-

morphosis. Consider the simplices in the Delaunay complex spanned by hot vertices and

their dual Voronoi polyhedra. Figure 7.5 sketches both for the double-cap before and the

spool after the transition. During the first half of the time interval, the hot vertices span

two pyramids, each the reflection of the other across the symmetry plane of the hyperboloid.

The points are in degenerate position, which implies that the Delaunay complex ∆1 of the

hot points contains polyhedra that are more complicated than tetrahedral. Specifically, ∆1

consists of the two-pyramids joined by an edge connecting their apices and a ring of prisms
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Figure 7.5: Solid Delaunay complex and dotted Voronoi polyhedra of hot ball configuration
before and after the double cone.

and quadrangles around that edge. As usual, D denote the restricted Delaunay triangulation

of the entire vertex set V .

Persistence Lemma A. At any time in [−2H2h2, 0], the intersection of ∆1 and D consists

of two rings of triangles forming the double-cap and of their edges and vertices.

Proof. We first show that the edges, polygons, and polyhedra in ∆1 that do not belong

to the double-cap also do not belong to D. The edges connecting the two caps have dual

Voronoi polygons which lie in the symmetry plane separating the two sheets and therefore

cannot intersect the hyperboloid. To see that they do not intersect any other part of F , we

consider the sandwiching spheres defined for points of F inside the hot sphere. The Voronoi

polygons are contained in the union of balls bounded by these spheres, else they would imply

an empty sphere that intersects the hyperboloid in a patch outside the hot sphere that is

large enough to contradict the ε-sampling property. Detailed computations of a lower bound
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for the size of such an implied patch are omitted. Since D is a complex, it also does not

contain the Delaunay polygons and polyhedra incident to the excluded edges. The base

polygons of the two pyramids in ∆1 have their dual Voronoi edges on the symmetry line of

the hyperboloid. For the same reason as above, these edges are contained in the union of

balls bounded by the sandwiching spheres of points of F inside the hot sphere.

We second show that the triangles abc of the double-cap belong to D. At time t0 =

−2H2h2 this is true because these triangles have circumspheres that are small enough that

every point of F inside these spheres would belong to edges that violate the Lower Size

Bound. At any time t0 < t < 0 this is true because any violation is prevented by the

algorithm before it occurs.

During the second half of the time interval, the hot vertices from three convex polygons

in three parallel planes. The middle polygon is a regular m-gon in the symmetry plane

of the hyperboloid, and the other two are reflections of each other across that plane and

are inscribed in the two hot circles. The Delaunay complex ∆2 of the hot points is again

degenerate, consisting of the above mentioned three polygons, which form the top and bottom

facets of two drum-like polyhedra. The two drums are surrounded by a ring of four-sided

pyramids alternating with tetrahedra.

Persistence Lemma B. At any time in (0, 2H2h2), the intersection of ∆2 and D consists

of two rings of triangles forming the spool and their edges and vertices.

Proof. The edges, polygons, and polyhedra in ∆2 that do not belong to the spool have

their dual Voronoi polygons, edges and vertices either in the symmetry plane or the symme-

try axis of the hyperboloid. For the reason mentioned in the proof of the Persistence Lemma

A, these polygons, edges, and vertices are contained in the union of balls bounded by sand-

wiching spheres of points of F inside the hot sphere. The corresponding edges, polygons,

and polyhedra of ∆2 thus do not belong to D.
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The reminder of the proof establishes that the triangle uvw and vwx belong to D. Im-

mediately after time t = 0 this is true because the triangles in the double-cap belonged to

D immediately before that time t = 0. At any time 0 < t < t1 this is true because any

violation is prevented by the algorithm before it occurs.

The two Persistence Lemmas also hold for the reverse metamorphosis, which changes a

one-sheeted into a two-sheeted hyperboloid. To see this, run time backwards and exchange

the arguments that establish that the two special configurations are subcomplexes of D when

they are first created. These arguments are contained in the respective last paragraphs of

the two proofs.

Summary. The two Persistence Lemmas establish that the closed ball property of the

restricted Voronoi diagram is maintained even inside the hot spheres that guide the algorithm

through the various metamorphoses.

Special Homeomorphism Theorem. The restricted Delaunay triangulation of the points

chosen by special sampling triangulates the skin surface inside each hot sphere.

Together with the General Homeomorphism Theorem this implies that we have a trian-

gulation of the skin surface at all times.

7.5 Scheduling

When the skin is growing, the triangles can get distorted. From time to time, checking on

each triangle is necessary. We have already discussed how to check and refine the mesh when

it is needed. The remaining problem is how to determine when to check. In this section, we

will introduce relaxed scheduling as a method to avoid the computationally expensive root

computation. We complete a prove for edge contraction scheduling, but the checking time

in point insertion scheduling is estimated by experiments.
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7.5.1 Method

The key technical insight about the dynamic skin triangulation algorithm is that we can

find constants C, h, l, and m and interval [Q0, Q1] such that Conditions (I) through (V) are

satisfied for all Q ∈ [Q0, Q1]. Instead of fixing Q and contracting an edge uv when its size-

scale ratio reaches C/Q, we suggest to contract uv at some time while its size-scale ratio is

in the interval ( C
Q1

, C
Q0

]. After the ratio enters this interval at the upper end it may leave

again at the upper end or the edge may get contracted, but the ratio is not allowed to leave

the interval at the lower end, since that would violate the Lower Size Bound for Q = Q1.

The two possible scenarios are illustrated in Figure 7.6.

C
Q

C
Q

time

ratio

0

1

contraction

Figure 7.6: The curve shows the development of the size-scale ratio of an edge in time. The
edge is contracted before the ratio reaches the lower bound.

Vertex insertions are treated symmetrically, that is, a triangle is removed by adding its

dual point on F at some moment when the size-scale ratio at the triangle is in the interval

[CQ0, CQ1). The ratio can enter and leave the interval at the lower end but not the upper

end. The two possible scenarios are illustrated in Figure 7.7.

We call ( C
Q1

, C
Q0

) and [CQ0, CQ1) the lower and upper size buffers. The quality of the

triangulation is guaranteed because all edges satisfy the Size Bounds for Q = Q1. The

correctness of the algorithm is guaranteed because edge contractions and vertex insertions
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time

ratio

CQ

CQ

insertion

1

0

Figure 7.7: The curve shows the development of the size-scale ratio of a triangle in time.
The triangle is removed before its ratio can rise above the upper bound.

are executed only if the Size Bounds for Q = Q0 are violated.

7.5.2 Early Warnings

We say an edge matures at the time its ratio reaches C
Q1

, and similarly a triangle matures

at time its ratio reaches CQ1. The relaxed scheduling method depends on an early warning

algorithm that reports an edge or triangle before it matures. The algorithm may err and

produce false alarms, but it must not miss a maturation. False alarms cost time but do not

cause any harm. Suppose an edge uv is reported at time t0. It is contracted if its ratio lies

inside the lower size buffer, and it is not contracted if it lies outside that buffer, which can

only be because Ruv

%uv
> C

Q0

. Note that in the second case, the ratio has to cross the entire

lower size buffer before it can reach the lower end, C
Q1

. The early warning algorithm is based

on this observation and issues the next warning before the ratio had enough time to cross

that buffer. Triangles are treated similarly.
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7.5.3 Analysis

In this section we derive lower bounds on the amount of time it takes for an edge to change

its size by more than some threshold value. From these upper bounds we will derive upper

bounds on the time it takes an edge to pass through the entire size buffer.

norm

time

Figure 7.8: Graph of the dependence between time and norm. At any moment, the speed is
minus the slope of the tangent line.

Traveling Point. We recall that the speed of a point u ∈ F is 1
2‖x‖ , assuming the patch

that contains it is in standard form. The distance traveled by u in a small time interval is

maximized if we move u straight towards the origin, which for example happens if u lies on

a shrinking sphere. The amount of time it takes u to reach the origin is ‖u‖2. If we start

the motion at time −‖u‖2 we reach the origin at time 0 and get a dependence between time

and distance from the origin as −t = ‖u‖2, whose graph is shown in Figure 7.8.

The distance from the origin is therefore f(t) = ‖u‖ =
√
−t and the speed is −df

dt
(t) =

1
2
√
−t

= 1
2‖u‖ , as required. To move from point u to point x = (1 − θ)u thus takes time

‖u‖2 − ‖x‖2 = (2θ − θ2)‖u‖2.

By the Curvature Variation Lemma, the difference in length scale between two points u and

x is at most their distance: ‖%(u) − %(x)‖ ≤ ‖u − x‖. If that distance is θ‖u‖ = θ%(u) then
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%(x) ≤ (1 + θ)%(u). In other words, by traveling a distance θ%(u) from u we can grow the

length scale by at most a factor of 1 + θ.

Shrinking Edge. Suppose uv is an edge that satisfies the Lower Size Bound for Q = Q0

at time t0, that is, Ruv > C
Q0

%uv. The edge cannot shrink faster than if both endpoints lie on

the same shrinking sphere. After traveling a distance θ%(a) = θ%(b) to points x and y, the

fraction of the length is

‖x − y‖
‖u − v‖ =

Rxy

Ruv
≥ 1 − θ. (7.1)

We get a lower bound on the size of xy in terms of its scale from the Lower Size Bound for

uv and inequality 7.1:

Rxy ≥ (1 − θ)Ruv

> (1 − θ)
C

Q0
%uv

= (1 − θ)
C

Q0
max{%(u), %(v)}

≥ 1 − θ

1 + θ

C

Q0
max{%(x), %(y)}

=
1 − θ

1 + θ

C

Q0
%xy.

If we set 1−θ
1+θ

= Q0

Q1

we get Rxy > C
Q1

%xy, or in words, the edge xy is guaranteed to satisfy

the Lower Size Bound for Q = Q1. In other words, if we let the points travel a distance θ

times the length scale, with θ = Q1−Q0

Q1+Q0
, then the edge still satisfies the relaxed version of the

Lower Size Bound. The corresponding time interval in which we can be sure that the edge

uv does not become unacceptably short is

∆t =
Q1 − Q0

Q1 + Q0

(

2 − Q1 − Q0

Q1 + Q0

)

· %2
uv.
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For example, for Q0 = 1.65 and Q1 = 2.3, we get θ = 0.165 and ∆t = 0.302 · %2
uv.

Point Insertion. The case of triangles is more complicated and no theoretical result for

∆t is proved yet. The quality of a triangle is determined by triangle center. Solving the

trajectory of the center is relatively more complicated then the edge contraction predication.

In the other hand, we can estimate ∆t for point insertion experimentally. Using different

values of ∆t, we observe that for a triangle abc, ∆t = 0.15 · %2
abc works for the above early

warning theory. This means, if we use this value, we expect that no triangle will have size

larger than CQ%abc at any time.

7.6 Conclusion

We develop the dynamic skin triangulation in this chapter. The algorithm maintains a

quality mesh during growth of the skin surface. We would like to generalize our algorithm

to more general models of deformations, where the skin can deform not only by the growth

model but weighted points in B can both move and change their radius arbitrarily. We

may not be able to determine the integral lines explicitly as in Section 7.2, but moving

vertices along integral lines is convenient but not necessary for the algorithm fortunately.

An approximation of that movement may suffice. For small time steps, the triangulation

changes only a small amount and may be maintained with the methods described in this

chapter. This is still an open problem and it will be interesting to see the deformation of

the mixed cells and the patches in them. The solution may involve techniques related to the

alpha shape morphing [25, 26, 40] and kinetic geometric data structures such as the works

of Basch [9].
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Chapter 8

Measurements of Skin Curves

8.1 Introduction

In the field of mechanical engineering, the shape and topology of a structure determine its

strength and cost. The goal of structural optimization is to distribute material to minimize

a cost function under one or more constraints [10]. During the optimization, the boundary

of a structure is modified and new components or holes are also introduced. The problem

with topology changes is called generalized or variable-topology shape optimization [81]. We

assist the optimization problem by providing deformable shapes with exact and smooth

boundaries. In this chapter, we will concentrate on two-dimensional designs.

A structure is represented by grids in present practice [53, 81], as illustrated in Figure 8.1.

Each grid element is assigned an area fraction-like design parameter ranging from 0, signifying

a void element, to 1, signifying a solid element. Finite element analysis is performed on these

grids to optimize a structure in structural optimization, for example, computing a lightest

and strongest floor support inside an airplane. The finite element analysis modifies the shape

locally according to the measurements of the portion within a small disk. As shown in Figure

8.1, a structure (upper) is optimized into a better one with a shorter perimeter (lower) by

finite element analysis [53]. We will not go into the details of analysis, and we refer the

reader to the works of Bendsøe, Haber, and Jog [10, 53]. Rather, we study the deformable

shape representation that give the geometric and differential information for the analysis.
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Figure 8.1: Cross sections of two beam designs represented by grids [53].

The grid representation does not work well when the exact location of the boundary is an

issue, such as in the case of optimizing a structure under a load or pressures because the

boundary of the structure is too fuzzy. A deformable shape with exact boundary is needed

to solve this kind of problems.

In order to provide a shape representation with an exact boundary and deformation,

we propose representing the structure by using union of disks and bodies bounded by skin

curves [26]. General level sets have difficulties such as introducing topology changes into

the shapes. Variation in topology usually requires additional representation of shapes [53].

The skin and union of disks, on the other hand, provide the following information for the

algorithm of finite element analysis and enable the process to deform and change topology

without complications. Given a window, which is a disk in R
2, with center x, we compute:

• The measurements, namely, area, perimeter, and their derivative of the shapes within

the window, and
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• The nearest point p on the boundary of the shapes to x, the distance ‖xp‖, and the

tangent line passing through p.

In this chapter, we will focus on how to compute the area, the perimeter, as well as their

derivatives of the entire union of disks or skin curve in R
2. Note that these qualities are also

useful in molecular computations [78, 87]. The computation of these qualities clipped by a

window and the nearest point p are not done yet in this work.

We assume the centers of the skin and union of disks move independently. We denote the

velocity of the center zi by z′
i and the rate of changes of the radius ri by r′i = (2ri)

−1dr2
i /dt =

(r2
i )

′/2ri. The finite element analysis gives B ′ = {b′i = (z′
i, r

′
i)} for the current configuration

of B, and we can compute the area A and the perimeter P of the shapes of
⋃

B and the

skin of B as well as their derivatives, A′ and P ′ as a feedback to the analysis. The variable

used in our analysis are listed at the end of this chapter.

8.2 Union of Disks

H
z
i

z
j

ij

Figure 8.2: Distance from a center to a Voronoi edge.

To calculate the area, perimeter, and their derivatives of a union of disks, we will break

down the problem locally. Each disk bi ∈ B is clipped within its Voronoi cell. We can locally
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compute the measures within each cell, the intersection of finitely many half-planes. We first

study the behavior of the case of two disks, then we generalize to arbitrary unions of disks.

x

y

ζ

ρ
λ

φ

Figure 8.3: Perimeter and area of a clipped disk : For a disk in standard form, x2 + y2 = ρ2,
we integrate its length and area from −ρ to ζ.

We denote the distance from zi to the bisector between bi and bj as Hij, as in Figure 8.2.

8.2.1 Area and Perimeter of Two Disks

We first give area and perimeter formulas for a clipped disk:

{(x, y) ∈ R
2 | x2 + y2 ≤ ρ2, and y ≤ ζ}.

The perimeter P and area A are

P = 2ρ(π − φ), (8.1)

A = ρ2(π − φ) + λζ, (8.2)

where φ = arccos ζ
ρ

and λ =
√

ρ2 − ζ2 as in Figure 8.3.

Given two disks bi = (zi, r
2
i ) and bj = (zj, r

2
j ), the center cij of the smallest disk orthogonal
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to both is

cij = γzi + (1 − γ)zj,

where γ = 1
2
− r2

i −r2

j

2l2ij
and lij = ‖zi − zj‖ [42]. The distance between the disk center zi and

the bisector between bi and bj is

Hij = ‖zi − cij‖

= (1 − γ)‖zi − zj‖

= (1 − γ)lij

=
lij
2

+
r2
i − r2

j

2lij
. (8.3)

We put ρ = ri and ζ = Hij in Equations (8.1) and (8.2) and get the perimeter Pij and area

Aij of the union of disks as follows:

Pij = 2ri

(

π − arccos
Hij

ri

)

,

Aij = r2
i

(

π − arccos
Hij

ri

)

+ Hij

√

r2
i − H2

ij.

8.2.2 Area and Perimeter of Union of Disks

Before we give the equations of the measurements, we first define some geometric entities.

Define bj
i = {x ∈ R

2 | πj(x) ≤ πi(x) ≤ 0}, which is the portion of bi on bj’s side of the

bisector. Define also Aj
i = area(bj

i ) and Ajk
i = area(bj

i ∩ bk
i ). Similarly, let P j

i and P jk
i be the

perimeters of the arcs of bj
i and bj

i ∩ bk
i respectively. The perimeter and area of the union of
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disks is

PB = 2π
∑

i

(

ri −
(

∑

j

P j
i −

∑

j,k

P jk
i

))

,

AB = π
∑

i

(

r2
i −

(

∑

j

Aj
i −

∑

j,k

Ajk
i

))

.

These inclusion-exclusion formulas were proved by Edelsbrunner [38].

8.2.3 Notations and Decomposition of Derivatives Computation

Given B = {(zi, r
2
i )} and B′ = {(z′

i, (r
2
i )

′)}, our goal is to compute the derivatives of perime-

ter and area due to the disks’ movements. The change of each radius affects the size of a

disk inside its Voronoi cell as well as its edge. Note that each edge of the cell moves in the

direction parallel to the corresponding Delaunay edge when only the radius changes. The

other cause of change is the disk center movement z ′
i, which can be decomposed into two

components, one parallel to the Delaunay edge zizj and one perpendicular. The parallel

component is

z̄′
ij =

z′
i

‖z′
i‖

〈

z′
i,

(zj − zi)

lij

〉

.

The normal component is then z′
i − z̄′

ij. The parallel component z̄′
ij causes a slope-preserving

motion of the bisector of bi and bj. The other component causes a distance-preserving motion

that rotates the edge of the cell around the other center zj.

For derivative computation of the slope-preserving motion, we decompose the calculation

into several components, in two classes:

1. Voronoi cell boundary motion: ∂Hij/∂zi, ∂Hij/∂zj, ∂Hij/∂rj and ∂Hij/∂ri.

2. Area and perimeter changes due to boundary motion and radius changes: ∂Aij/∂Hij,

∂Pij/∂Hij, ∂Aij/∂ri and ∂Pij/∂ri.
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For slope-preserving motion, we can compute ∂Hij/∂lijl
′
ij instead of ∂Hij/∂ziz

′
i+∂Hij/∂zjz

′
j,

where

l′ij = (−〈z′
i, zj − zi〉 − 〈z′

j, zi − zj〉)/lij

= 〈z′
i − z′

j, zi − zj〉/lij.

In the following two subsections, we will discuss slope and distance preserving motions.

8.2.4 Slope-preserving Motion

Motion of Boundaries. We compute the derivative of Hij directly by differentiating it

with respect to ri and lij using Equation (8.3):

H ′
ij =

∂Hij

∂lij
l′ij +

∂Hij

∂ri
r′i +

∂Hij

∂rj
r′j, (8.4)

where

∂Hij

∂lij
=

1

2
− r2

i − r2
j

2l2ij
,

∂Hij

∂ri

=
ri

lij
, and

∂Hij

∂rj

= − rj

lij
.

Hence, we have

H ′
ij =

(

1

2
− r2

i − r2
j

2l2ij

)

l′ij +
rir

′
i

lij
− rjr

′
j

lij

Derivatives of Disks. We first give the generic derivatives of area and perimeter of a disk

clipped by a half-plane as in Figure 8.3. The perimeter and area are expressed in Equations

(8.1) and (8.2), and λ =
√

ρ2 − ζ2. The derivatives of the area and the perimeter with
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respect to ζ and ρ are

∂P

∂ρ
= 2

(

π − φ − ζ

λ

)

, (8.5)

∂P

∂ζ
=

2ρ

λ
, (8.6)

∂A

∂ρ
= L, (8.7)

∂A

∂ζ
= 2λ. (8.8)

We did not consider φ as an independent variable because φ = arccos ζ
ρ

. Then by putting

ρ = ri, ζ = Hij, φ = θij = arccosHij/ri and λ = dij , we get

∂Pij

∂ri

= 2

(

π − θij −
Hij

dij

)

, (8.9)

∂Pij

∂Hij

=
2ri

dij

, (8.10)

∂Aij

∂ri

= Pij, (8.11)

∂Aij

∂Hij

= 2dij, (8.12)

where dij =
√

r2
i − H2

ij.

8.2.5 Distance-preserving Motion

The components z̄′
ij and z̄′

ji change the cell wall distances Hij and Hji in the slope-preserving

motion. The other components cause rotational motions and change only the perimeter.

Suppose we keep bj fixed and move bi only. Let t1 = ‖z̄′
ij‖ and t2 be the perpendicular

component of z′
ij in the counter-clockwise direction about zj. Define t2 = ‖z′

i − z̄′
ij‖ if zi

moves in the counter-clockwise direction and t2 = −‖z′
i − z̄′

ij‖ if zi moves in the clockwise

direction, as in Figure 8.4. Denote the two endpoints of the arc of bj as x+
ij and x−

ij, so that

x+
ij is the endpoint on the right side of the Delaunay edge in the direction from zi to zj and
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Figure 8.4: Rotational motion: The rotational component of the movement of a vertex
contributes to changes in the arc length.

x−
ij is the other endpoint on the left. Note that x+

ij = x−
ji and x−

ij = x+
ji. The perimeter

of bj decreases at x+
ij and increases at x−

ij during counter-clockwise motion. In a two-disk

configuration the effect can be ignored; the perimeter changes at the two endpoints cancel

each other as in Figure 8.5. However, this motion will affect the length Pji if one of the two

endpoints is covered by a third disk. The rate of perimeter change at each point is t2rj/lij.

Define γ+
ij to be 1 if x+

ij exists and 0 otherwise. With the same notation for γ−
ij , the rate of

change of the perimeter due to this rotational motion is (−γ+
ij + γ−

ij )t2rj/lij.

t
2

z
z

decreasing

increasing

j

i

P

Pj

j

Figure 8.5: Distance-preserving motion does not contribute to length changes in a two-disk
configuration.

On the other hand, consider the upwards motion caused by t2 at zi as a relative motion

of going down at zj. This affects the perimeter of bi and the rate of change is t2ri/lij. This
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effect causes a change of (γ+
ij − γ−

ij )t2ri/lij in the perimeter of bi. The overall rate of change

in the perimeter in this rotational motion due to z ′
i is, thus

Sign(z′
i × (zj − zi)) · (γ+

ij − γ−
ij )

‖z′
i − z̄ij‖(ri − rj)

lij
,

where z′
i × (zj − zi) is the cross product of vectors z ′

i and zj − zi in R
3, and we consider the

‘out-of-paper’ direction to be positive and the ‘into-paper’ direction to be negative.

8.2.6 Assembly of Equations

Put the equation together now. For perimeter Pij, the derivative P ′
ij of a clipped disk is:

P ′
ij =

∂Pij

∂ri

r′i +
∂Pij

∂Hij

H ′
ij [applying Equations (8.9) and (8.10)]

= 2

(

π − θij −
Hij

dij

)

r′i +
2ri

dij

H ′
ij [applying Equations (8.3) and (8.4)]

= 2

(

π − θij −
1

dij

(

lij
2

+
r2
i − r2

j

2lij

))

r′i +
2rj

dij

((

1

2
− r2

i − r2
j

2l2ij

)

l′ij +
ri

lij
r′i −

rj

lij
r′j

)

.

The sum of derivatives of two neighboring clipped disks is:

P ′
ij + P ′

ji =

[

r′i r′j l′ij

]



























2(π − θij) +
1

dij

((ri − rj)
2

lij
− lij

)

2(π − θij) +
1

dij

((ri − rj)
2

lij
− lij

)

ri + rj

dij

(

1 −
(ri − rj)

2

l2ij

)

.



























.

By letting

Θij =
1

dij

(

lij −
(ri − rj)

2

lij

)

,
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we simplify the sum of derivatives to

P ′
ij + P ′

ji =

[

r′i r′j l′ij

]

















2(π − θij) − Θij

2(π − θij) − Θij

ri + rj

lij
· Θij

















.

Perimeter Derivative of Union of Disks Theorem. The perimeter derivative of the union

of disks,
⋃

B, is

P ′
B =

∑

bi∈B

2πriβi +
∑

i6=j

[

Θij(ri + rj)

(

l′ij
lij

− 1

)

γ+
ij + γ−

ij

2

+Sign(z′
i × (zj − zi)) · (γ+

ij − γ−
ij )

‖z′
i − z̄ij‖(ri − rj)

lij
,

]

with

βi = 1 −
∑

j P j
i − ∑

j,k P jk
i

2πri

,

z̄′
ij = 〈z′

i, (zj − zi)/lij〉
z′

i

‖z′
i‖

, and

Θij =
1

dij

(

lij −
(ri − rj)

2

lij

)

,

where βi is the fraction of perimeter inside the Voronoi cell of bi.

The area derivative, A′
ij, of one clipped disk in a two disks configuration is

A′
ij =

∂Aij

∂Hij

H ′
ij +

∂Aij

∂ri

r′i [applying Equations (8.12) and (8.11)]

= 2dijH
′
ij + Pijr

′
i.
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Since H ′
ij + H ′

ji = l′ij and dij = dji, the sum of derivatives of A′
ij and A′

ji is:

A′
ij + A′

ji =

[

r′i r′j l′ij

]













Pij

Pji

2dij













iπβ2ri

ξ ij

iz

z j

2dij

Figure 8.6: For a multi-disk configuration, the area derivatives are 2πrir
′
iβi and 2dijl

′
ijξij due

to the changes of ri and lij respectively.

In a two disk configuration, the area derivative of a clipped disk is the perimeter Pij

times the radius change r′i. For a multi-disk configuration, we reuse βi ∈ [0, 1] defined in the

perimeter derivative theorem; area derivative due to radius change is 2πrir
′
iβi. Secondly, the

area derivative due to change of lij is equal to the chord length between bi and bj, which is

2dij in the two-disk case. For a multi-disk configuration, define ξij ∈ [0, 1] to be the fraction

of chord length within the Voronoi cell. The rate of change of area due to change of lij is

then l′ij times the length of the chord between bi and bj, which is 2dijξij . See Figure 8.6.

Area Derivative of Union of Disks Theorem. The area derivative of the union of disk,
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⋃

B, is

A′
B =

∑

bi∈B

2πrir
′
iβi +

∑

i6=j

2dijl
′
ijξij .

The formula actually states that if there are decreases in the radii or distances between disk

centers, the area decreases also. This related to the proof of Kneser-Poulsen conjecture with

continuous movement of disk centers [14].

8.3 2D Skin

In this subsection we will derive the formulas of area, perimeter, as well as their derivatives,

for a two-dimensional skin body. We will first introduce how to partition the space in

order to break down the problem. Then we will study the center of a triangle. With these

information, we will give the area and perimeter of a planar skin body. Then we will derive

the derivatives of area and perimeter. After discussing the size and boundary changes, we

will derive the formulas for the derivatives.

For convenience, we define µi = µ{bi}, µij = µ{bi,bj}, and µijk = µ{bi,bj ,bk} as mixed cells

mentioned in Chapter 3. Also, we define ci, cij , and cijk to be the centers of the simplices

zi, zizj, and zizjzk respectively.

8.3.1 Partition of Space

To compute the perimeter and area of skin(B), as well as their derivatives, we partition the

plane into mixed cells. Each mixed cell contains either a circle or a hyperbola; see Figure

8.7.

Each mixed cell is the intersection of a collection of half-planes. When the disks move,

the mixed cells change shape also because the motion of the half-planes as in Figure 8.8. All

the half-planes are bounded by a line with some distances from the centers. These distances
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Figure 8.7: The skin is decomposed into circular and hyperbolic arcs.

can be negative and will be defined as in Figure 8.7. Specifically, hij is negative if vertex bi

is hidden by edge δij in the Delaunay triangulation. Similarly, wijk is negative if triangle δijk

hides edge δij .

0-mixed Cell. Any Delaunay vertex bi determines 0-mixed cell µi in the partition. The

cell is formed by shrinking the Voronoi polygon of bi by a factor of 2. For every Delaunay edge

zizj, a corresponding half-plane clips
√

bi. We define the distance from zi to the boundary

of this half-plane to be hij. Note that hij = Hij/2, where Hij is defined in Section 8.2.
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Figure 8.8: Motion of boundaries in the 1-mixed cell.
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Figure 8.9: Boundaries relationship of the hyperbola.

1-mixed Cell. A Delaunay edge zizj forms a rectangular cell µij with two kinds of bound-

aries. If we align the Delaunay edge with the y-axis, the horizontal boundaries separate µij

from µi and µj with a distance of hij and hji respectively. The vertical boundaries separate

µij from µjim and µijk if triangle zjzizm and zizjzk exist in the Delaunay triangulation. We

define the distance between cij to these two boundaries as wjim and wijk respectively. We

assume wij∗ = ∞ if there is no triangle attached.
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2-mixed Cell. The mixed cell of a Delaunay triangle zizjzk is formed by shrinking the

Delaunay triangle by a factor of one half. A circular void is clipped inside with its center at

cijk. The distances from cijk to the boundaries of the neighboring 1-mixed cells, µij, µjk and

µki, are wijk, wjki and wkij respectively. Formulas of the wijk will be given in Section 8.3.2.

8.3.2 Centers of Triangles

(a ,0) (b ,0)

(p , p )
y

xijk2w
c  =(c ,c )ijk 21

1 2

1
1

z z

z

i

k

j

Figure 8.10: Computing the center of a triangle: Aligning the edge zizj at x-axis and the
center of the edge at origin. cijk = (c1, c2) = (0, 2wijk) will be the center of the triangle.

We define wijk to be half of the perpendicular distance of the orthocenter cijk of triangle

zizjzk to the edge zizj as in Figure 8.9. To compute wijk, we align the edge zizj to the x-axis

such that the center cij of that edge is at the origin. Hence, cijk lies on the y-axis, and the

only missing value is the y-coordinate of cijk. The configuration is shown in Figure 8.10.

We let cijk = (c1, c2), zi = (a1, 0), zj = (b1, 0) and zk = (p1, p2) as in Figure 8.10. By

Section V.18.2 of [42], putting a0 = 1
2
(r2

i − a2
1), b0 = 1

2
(r2

j − b2
1), and p0 = 1

2
(r2

k − p2
1 − p2

2), we
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obtain the followings:

c1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−a0 0 1

−b0 0 1

−p0 p2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 0 1

b1 0 1

p1 p2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and c2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 −a0 1

b1 −b0 1

p1 −p0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 0 1

b1 0 1

p1 p2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Simplifying these equations, we obtain:

c1 =
b0 − a0

a1 − b1

= 0 ⇒ a0 = b0 if a1 6= b1,

c2 =
a1(−b0 + p0) + a0(b1 − p1) − b1p0 + p1b0

p2(b1 − a1)

= −p0

p2

+
−a1b0 + a0b1

p2(b1 − a1)

= −p0

p2
+

−a1a0 + a0b1

p2(b1 − a1)
since a1 6= b1

=
a0 − p0

p2

.

Hence,

wijk =
c2

2
=

a0 − p0

2p2

. (8.13)

8.3.3 Area and Perimeter of 2D Skin

We now discuss the measurements of different kinds of mixed cells.

0-mixed Cell. A disk
√

bi with radius ri/
√

2 is clipped inside the 0-mixed cell. For every

edge zizj we define
√

bi
j

= {x ∈
√

bi | 〈x − zi, zj − zi〉 > 〈cij − zi, zj − zi〉/2}.
√

bi
j

is the

portion of
√

bi on the µij side of the mixed cell wall that divides µi and µij . Define
√

Pi
j
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and
√

Pi
jk

to be the perimeters of
√

bi
j

and
√

bi
j ∩

√
bi

k
. Similarly, define

√
Ai

j
and

√
Ai

jk

to be the areas. The perimeter and area of
√

bi clipped in µi is

Pi =
√

2πri −
∑

j

√

Pi

j
+

∑

j,k

√

Pi

jk
,

Ai =
πr2

i

2
−

∑

j

√

Ai

j
+

∑

j,k

√

Ai

jk
.

1-mixed Cell. Before we compute the perimeter and area of the hyperbola pieces in the

1-mixed cell, we first introduce the computation of the length of a general curve in an implicit

form and the elliptic integral. Any curve can be represented in an implicit form x = f(y).

The length of such curve whose y value within the range of [y1, y2] is equal to:

∫ y2

y1

√

1 +

(

dx

dy

)2

dy.

The elliptic integral of the second kind, E(u, v), is defined as:

E(u, v) =

∫ u

0

√

1 − v2t2

1 − t2
dt.

The elliptic integral is not solvable analytically [18], but fast numerical solvers are available.

To measure the hyperbola, we align the edge zizj to the y-axis and the center of the

hyperbola to the origin, such that zi is above zj. Let the equation of the aligned hyperbola

be x2 − y2 + R2
ij = 0. The goal is to compute the measurements within the rectangle of

[−wijk1
, wijk2

]× [−hji, hij ]. We assume the origin is within the rectangle. The hyperbola can

be divided into four quadrants by the x and y-axis.

We first derive the formulas for the upper right quadrant, see Figure 8.11. Define $ij =
√

h2
ij − R2

ij to be the x value of the hyperbola endpoint when y = hij. We have four different

configurations of the upper right quadrant with respect to different values of Rij, wijk and

hij, see Figure 8.12.
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Figure 8.11: The first quadrant of a hyperbola.

ijk
R   <0,2

ij ϖ   < wijkijk
R   <0,2

ij ϖ   > wijk ijkijkwϖ   <ij
2R   >0,

ijk

h

y wijk

hij

x

y wijk

hij

x

y w

ij

x

ijk

x

y wijk

hij

R   >0,2
ij ϖ   > wijk

Figure 8.12: Four different possible configurations of the first quadrant.

We will derive the formulas for the first case of the upper right quadrant. We express x

in terms of y and differentiate x with respect to y :

x =
√

y2 − R2
ij,

dx

dy
=

y
√

y2 − R2
ij

=
y

x
.

The length of a hyperbola piece from the tip, (0, Rij), to the point touching the mixed
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Figure 8.13: The length and area of a hyperbola: For a hyperbola in standard form, x2 −
y2 + R2

ij = 0, we integrate its length and area from y = Rij to y = hij .

cell boundary, ($ij, hij), is:

P =

∫ hij

Rij

√

1 + (
dx

dy
)2dy

=

∫ hij

Rij

√

2y2 − R2
ij

y2 − R2
ij

dy [substituting t =
y

Rij

]

= Rij

∫ hij/Rij

1

√

1 − 2t2

1 − t2
dt

= Rij

(
∫ hij/Rij

0

√

1 − 2t2

1 − t2
dt −

∫ 1

0

√

1 − 2t2

1 − t2
dt

)

= Rij(E(hij/Rij,
√

2) − E(1,
√

2)).

Here, E is the elliptic integral of the second kind. Since
√

1−2t2

1−t2
is imaginary when t ∈

[
√

0.5, 1], E(1,
√

2) has an imaginary part. However, it is canceled out if hij ≥ Rij, which is

the normal case. Hence, we have

P = Real(Rij(E(hij/Rij,
√

2) − E(1,
√

2))). (8.14)
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The area, A, from the tip Rij to height hij is:

A =

∫ hij

Rij

√

y2 − R2
ijdy

=
1

2

[

y
√

y2 − R2
ij − R2

ij ln(y +
√

y2 − R2
ij)

]hij

Rij

=
1

2

(

hij

√

h2
ij − R2

ij − R2
ij ln(hij +

√

h2
ij − R2

ij) + R2
ij ln Rij

)

=
1

2

(

hij$ij − R2
ij ln

hij + $ij

Rij

)

. (8.15)

We skip the derivation of other 3 cases. They can be computed by addition and subtraction

of the measurements. The results of the four cases for the perimeter in the first quadrant is

given here as:

Pijk =















f1(Rij, min(hij,
√

w2
ijk + R2

ij)) if R2
ij > 0

f1(
√
−1Rij, min($ijk, wijk)) if R2

ij < 0

(8.16)

and area:

Aijk =































































f2(Rij, hij) if R2
ij > 0, $ijk < wijk

f2(Rij,
√

w2
ijk + R2

ij)

+(hij −
√

w2
ijk + R2

ij)wijk if R2
ij > 0, $ijk > wijk

−f2(
√
−1Rij, min(wijk, $ijk))

+hij min(wijk, $ijk) if R2
ij < 0.

, (8.17)

where:

f1(ρ, ζ) = Real(ρ(E(ζ/ρ,
√

2) − E(1,
√

2)), and, (8.18)

f2(ρ, ζ) =
1

2

(

ζ
√

ζ2 − ρ2 − ρ2 ln
ζ +

√

ζ2 − ρ2

ρ

)

. (8.19)
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We name the perimeter in a quadrant, Pijk, to be the one on the zi and zk sides in µij . For

example, if we align the Delaunay edge zizj to the y-axis with zi above zj, such that zk is on

the right and zm is on the left, the perimeters of four quadrants in a clockwise order will be

named as Pijk, Pjik, Pjim and Pijm starting from the upper right one. The same index rule

is applied on the area Aijk. For the four pieces of hyperbola inside µij , we sum up the four

quadrants for perimeter and area with sign correction:

P = Sign(hij) × Sign(wijk) × Pijk + Sign(hji) × Sign(wjik) × Pjik +

Sign(hji) × Sign(wjim) × Pjim + Sign(hij) × Sign(wijm) × Pijm,

A = Sign(hij) × Sign(wijk) × Aijk + Sign(hji) × Sign(wjik) × Ajik +

Sign(hji) × Sign(wjim) × Ajim + Sign(hij) × Sign(wijm) × Aijm,

Figure 8.14: The eight cases of a disk intersecting a triangle.

2-mixed Cell. For a triangle, the area of the skin body inside is equal to the area of the

triangle subtracting the area of the clipped disk in the triangle. All possible combinations

of intersection are shown in Figure 8.14.

We denote the disk
√

bijk to be the disk in the triangle with radius Rijk > 0 and center

cijk. The distance from cijk to ci is
√

4w2
ijk + 4h2

ij. 2R2
ijk is the squared radius of a disk with
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center cijk that is orthogonal to bi. With this relationship, we have:

2R2
ijk + r2

i = 4w2
ijk + 4h2

ij

Rijk =

√

4w2
ijk + 4h2

ij − r2
i

2
. (8.20)

We define
√

bijk
ij

= {x ∈
√

bijk | 〈x − cijk, cij − cijk〉 > ‖cij − cijk‖2/2}. Define
√

Pijk
ij

and
√

Pijk
k

to be the perimeter of
√

bijk
ij

and
√

bijk
ki ∩

√

bijk
jk

. Moreover,
√

Aijk
ij

and
√

Aijk
k

as the areas. The perimeter and area of the skin body in a 2-mixed cell is:

P = 2πRijk −
∑

i,j

√

Pijk
ij

+
∑

k

√

Pijk
k
,

A = Area(µijk) − πR2
ijk +

∑

i,j

√

Aijk
ij −

∑

k

√

Aijk
k
.

8.3.4 Derivatives of Area and Length

Similar to the case of union of disks, we decompose the computation of the derivatives into

parts. The skin model is relatively more complicated. The approach to derive the formulas

is decomposed into 3 parts:

1. Changes of R∗:
∂R∗

∂ri
and ∂R∗

∂zi
.

2. Boundary motion: The motion, (z′
i, r

′
i), leads to shape change of the mixed cell,

∂hij

∂zi
,

∂hij

∂ri
,

∂wijk

∂zi
and

∂wijk

∂ri
.

3. Change of area and length due to boundary motion and R∗:
∂L

∂hij
, ∂A

∂hij
,

∂L
∂wijk

, ∂A
∂wijk

. ∂L
∂R∗

and ∂A
∂R∗

.

8.3.5 Simplex Size Changes

There are three types of simplices in 2D Delaunay triangulation which form three types of

mixed cells.
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0-mixed Cell. The radius of the disk, Ri, within the mixed cell is ri/
√

2 as stated in

Section 8.3.3. Hence, R′
i = r′i/

√
2.

1-mixed Cell. For the 1-mixed cell, we recall that sX is the size of the simplex δX with

X = {bi, bj}. In order to fit in the previous area computation of hyperbola, we define

2R2
ij = −s2

X . The reason is first Rij is equal to 1/
√

2 of sX in magnitude. Also, when s2
X is

positive, we want R2
ij to be negative to meet the computation of measurements in Section

8.3.3. The disk with center cij , and radius
√

−s2
X , is orthogonal to bi. The distance between

the two centers, cij and ci = zi, is 2hij. The orthogonality implies −s2
X + r2

i = (2hij)
2 and

hence:

2R2
ij = 4h2

ij − r2
i ,

Rij =

√

4h2
ij − r2

i

2
. (8.21)

The partial derivatives of Rij with respect to hij and ri:

∂Rij

∂hij
= 2hij

√

2

4h2
ij − r2

i

=
2hij

Rij
,

∂Rij

∂hij

= −ri

2

√

2

4h2
ij − r2

i

= − ri

2Rij

.

The derivative of Rij is:

R′
ij =

∂Rij

∂hij
h′

ij +
∂Rij

∂ri
r′i

=
1

Rij

(

2hijh
′
ij −

ri

2
r′i

)

. (8.22)
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2-mixed Cell. From Equation (8.20), the partial derivatives of Rijk are:

∂Rijk

∂wijk

=
2wijk

Rijk

,

∂Rijk

∂hij

=
2hij

Rijk

, and

∂Rijk

∂ri

= − ri

2Rijk

.

Hence, the derivative of Rijk is:

R′
ijk =

1

Rijk

(

2wijkw
′
ijk − 2hijh

′
ij +

rir
′
i

2

)

. (8.23)

8.3.6 Boundary Motions

We can express the boundary distances of mixed cells in terms of hij and wijk. The derivative

of hij is equal to (Hij)
′/2 and H ′

ij is computed in Equation (8.4), so:

h′
ij =

1

2

((

1

2
− r2

i − r2
j

2l2ij

)

l′ij +
ri

lij
r′i −

rj

lij
r′j

)

. (8.24)

For the derivative of wijk, we follow Equation (8.13). Recall that wijk = a0−p0

2p2

in Section

(a ,0)
1

y

xijk2w
c=(c ,c )

2

z :

1

iz :

z :k (p , p )
21

(b ,0)
1

a’2
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2p’
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b’1

1

2

j
z :

z :

(a ,0)
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y

xijk2w
c=(c ,c )

21
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(b ,0)
1
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1

1

p’ −((p −a )a’ +(b −p )b’ )/l2 2 2 ij1 1

Figure 8.15: General movement of vertices in a triangle (left), and rearrangement of the
movement to fix an edge on x-axis (right).
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8.3.2 with p0 = (r2
p − p2

1 − p2
2)/2 and a0 = (r2

i − a2
1)/2. The partial derivatives are:

∂wijk

∂p1

=
p1

2p2

,

∂wijk

∂p2

=
1

2
− a0 − p0

2p2
2

,

∂wijk

∂rp
= − rp

2p2
,

∂wijk

∂ri
=

ri

2p2
,

∂wijk

∂a1
= − a1

2p2
.

However, we assumed that the two vertices zi and zj are on the x-axis as in Figure 8.10. In

general cases, the vertices will move vertically to leave the x-axis also. Let a′
2 and b′2 be their

vertical velocity as shown in Figure 8.15 (left). To take this movement into account, we can

still fix the edge on the x-axis but we subtract the motion a′
2 and b′2 from p′2 as in Figure

8.15 (right). The final vertical motion of zk will be p′2− ((p1−a1)a
′
2 +(b1−p1)b

′
2)/lij. Hence,

the final w′
ijk is :

w′
ijk =

p1

2p2

p′1 +

(

1

2
− a0 − p0

2p2
2

)(

p′2 −
(p1 − a1)a

′
2 + (b1 − p1)b

′
2

lij

)

− rp

2p2

r′p −
a1

2p2

a′
1 +

ri

2p2

r′i −
b1

2p2

b′1 +
rj

2p2

r′j. (8.25)
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8.3.7 Derivatives from Boundary Motions of Hyperbola

Before we derive the derivatives with respect to hij, wijk and ri, we first compute the deriva-

tives of f1 and f2 defined in Equations (8.18) and (8.19). First, f ′
1 is:

f ′
1(ρ, ζ) =

∂f1

∂ρ
ρ′ +

∂f1

∂ζ
ζ ′

=
1

ρ

(

f1(ρ, ζ) − ζ
√

ρ2 − 2ζ2

√

ρ2 − ζ2

)

ρ′ +

√

ρ2 − 2ζ2

√

ρ2 − ζ2
ζ ′

=
f1(ρ, ζ)

ρ
ρ′ +

√

2ζ2 − ρ2

ζ2 − ρ2

(

ζ ′ − ζρ′

ρ

)

. (8.26)

Note that for any point, (
√

ζ2 − ρ2, ζ), on the hyperbola x2 − y2 + ρ = 0,
√

2ζ2 − ρ2 is the

distance between the upper endpoint and the origin. Secondly, the derivative of f2 is:

f ′
2(ρ, ζ) =

∂f2

∂ρ
ρ′ +

∂f2

∂ζ
ζ ′

= ρ ln
ρ

ζ +
√

ζ2 − ρ2
ρ′ +

√

ζ2 − ρ2ζ ′. (8.27)

Differentiate the measurements in the first quadrant in Equations (8.16) and (8.17), we get:

P ′
ijk =















































f ′
1(Rij, hij) if R2

ij > 0, hij <
√

w2
ijk + R2

ij

f ′
1(Rij,

√

w2
ijk + R2

ij) if R2
ij > 0, hij >

√

w2
ijk + R2

ij

f ′
1(
√
−1Rij, $ijk) if R2

ij < 0, wijk > $ijk

f ′
1(
√
−1Rij, wijk)) if R2

ij < 0, wijk < $ijk

,
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with $ijk =
√

h2
ij − R2

ij. We derive each of the formulas into:

f ′
1(Rij, hij) =

f1(Rij, hij)

Rij

R′
ij +

√

2h2
ij − R2

ij

h2
ij − R2

ij

(

h′
ij −

hijR
′
ij

Rij

)

,

f ′
1(Rij,

√

w2
ijk + R2

ij) =
f1(Rij,

√

w2
ijk + R2

ij)

Rij

R′
ij +

√

2w2
ijk + R2

ij

w2
ijk + R2

ij

(

w′
ijk −

wijkR
′
ij

Rij

)

,

f ′
1(
√
−1Rij, wijk) =

f1(
√
−1Rij, wijk)

Rij
R′

ij +

√

2w2
ijk + R2

ij

w2
ijk + R2

ij

(

w′
ijk −

wijkR
′
ij

Rij

)

,

f ′
1(
√
−1Rij, $ijk) =

f1(
√
−1Rij, $ijk)

Rij
R′

ij +

√

2h2
ij − R2

ij

h2
ij − R2

ij

(

h′
ij −

hijR
′
ij

Rij

)

.

For area derivatives, we have:

A′
ijk =















































f ′
2(Rij, hij) if R2

ij > 0, $ijk < wijk

f ′
2(Rij,

√

w2
ijk + R2

ij) + ((hij −
√

w2
ijk + R2

ij)wijk)
′ if R2

ij > 0, $ijk > wijk

−f ′
2(
√
−1Rij, $ijk) + (hij$ijk)

′ if R2
ij < 0, $ijk < wijk

−f ′
2(
√
−1Rij, wijk) + (hijwijk)

′ if R2
ij < 0, $ijk > wijk

,

with the first case equals to:

f ′
2(Rij, hij) = Rij

(

ln
Rij

hij +
√

h2
ij − R2

ij

)

R′
ij +

√

h2
ij − R2

ijh
′
ij.
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The second case is equal to:

f ′
2(Rij,

√

w2
ijk + R2

ij) + ((hij −
√

w2
ijk + R2

ij)wijk)
′

= Rij ln
Rij

wijk +
√

w2
ijk + R2

ij

R′
ij + wijk(

√

w2
ijk + R2

ij)
′

+(hij −
√

w2
ijk + R2

ij)w
′
ijk + (hij −

√

w2
ijk + R2

ij)
′wijk

= Rij ln
Rij

wijk +
√

w2
ijk + R2

ij

R′
ij + (hij −

√

w2
ijk + R2

ij)w
′
ijk + wijkh

′
ij.

The third case is:

−f ′
2(
√
−1Rij, $ijk) + (hij$ijk)

′

= Rij

(

ln

√
−1Rij

$ijk + hij

)

R′
ij − hij$

′
ijk + hij$

′
ijk + $ijkh

′
ij

= Rij

(

ln

√
−1Rij

$ijk + hij

)

R′
ij + $ijkh

′
ij.

Finally, the fourth case is:

−f ′
2(
√
−1Rij, wijk) + (hijwijk)

′

= Rij

(

ln

√
−1Rij

wijk +
√

w2
ijk + R2

ij

)

R′
ij −

√

w2
ijk + R2

ijw
′
ijk + (wijkhij)

′

= Rij

(

ln

√
−1Rij

wijk −
√

w2
ijk + R2

ij

)

R′
ij + (hij −

√

w2
ijk + R2

ij)w
′
ijk + wijkh

′
ij.

8.3.8 Assembly of Equations of Area Derivative of Skin

Recall the definitions of
√

Pi
j

and
√

Pi
jk

in Section 8.3.3. We define βi as the fraction of

perimeter in µi as:

βi = 1 − (
∑

j

√

Pi

j −
∑

j,k

√

Pi

jk
)/(

√
2πri).
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Also we define ξij to be the fraction of chord length of
√

bi on µi ∩ µij . With the direction

from zi to zj, we define γ+
ij to be 1 when the endpoint of the arc of

√
bi exists on the right,

and 0 if it does not. Similarly, let γ−
ij represents the other for the left point. The distance-

preserving components are Sign(z ′
i × zizj) · ‖z′

i − z̄′
ij‖ at zi and Sign(z′

j × zjzi) · ‖z′
j − z̄′

ji‖ at

zj in a counter-clockwise fashion. The rate of change in perimeter due to this effect is:

−(Sign(z′
i × zizj) · ‖z′

i − z̄′
ij‖ + Sign(z′

j × zjzi) · ‖z′
j − z̄′

ji‖) · (γ+
ij − γ−

ij )lij ·
√

2

ri

.

For the distance-preserving motion, we put ρ = ri/
√

2 and ζ = hij into Equations (8.5) and

(8.6) and get:

P ′ =
√

2

(

π − arccos

√
2hij

ri

− hij
√

r2
i /2 − h2

ij

)

r′i +

√
2ri

√

r2
i /2 − h2

ij

h′
ij

=
√

2

(

π − arccos

√
2hij

ri

)

+

√

2

r2
i /2 − h2

ij

(rih
′
ij − hijr

′
i.

The perimeter derivative of the clipped disk,
√

bi in µi is:

P ′
i = βir

′
i +

∑

j

(

γ+
ij + γ−

ij

2

(

√
2(rih

′
ij − hijr

′
i)

√

r2
i /2 − h2

ij

)

−(Sign(z′
i × zizj) · ‖z′

i − z̄′
ij‖ + Sign(z′

j × zjzi) · ‖z′
j − z̄′

ji‖) · (γ+
ij − γ−

ij )lij ·
√

2

ri

)

.

For area, we have derivative of
√

bi in µi as:

A′
i =

√
2πriβir

′
i +

∑

j

2
√

r2
i /2 − h2

ijξh
′
ij
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1-mixed Cell. The perimeter and area derivatives of hyperbola in µij is:

P ′ = Sign(hij) × Sign(wijk) × P ′
ijk + Sign(hji) × Sign(wjik) × P ′

jik +

Sign(hji) × Sign(wjim) × P ′
jim + Sign(hij) × Sign(wijm) × P ′

ijm,

A′ = Sign(hij) × Sign(wijk) × A′
ijk + Sign(hji) × Sign(wjik) × A′

jik +

Sign(hji) × Sign(wjim) × A′
jim + Sign(hij) × Sign(wijm) × A′

ijm,

2-mixed Cell. Let
√

bijk to be the disk in µijk with center cijk and radius Rijk. We define

βijk as:

βijk = 1 −
∑

i,j

√

Pijk
ij − ∑

k

√

Pijk
k

2πRijk

,

which is the fraction of perimeter of
√

bijk in µijk. We also define xijk and xjik to be the

z

z

j

ijkw x

z i

k

cijk

ijk

jikx

Figure 8.16: The naming of points in µijk.

points of intersection of
√

bijk with aff(zizj), such that xijk is closer to zi and as xjik closer

to zj. Define γijk to be 1 if xijk exist inside µijk and 0 otherwise, and same to γjik, as in

Figure 8.16.

If we consider only the slope-preserving motions of µijk, each edge zizj contributes a rate
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of change in perimeter of
√

bijk as follows:

P ′ = 2

(

π − arccos
wijk

Rijk

)

R′
ijk +

2(Rijkw
′
ijk − wijkR

′
ijk)

√

R2
ijk − w2

ijk

.

according to Equations (8.5) thru (8.6). Hence, the derivative of perimeter in µijk is:

P ′ = βijkR
′
ijk +

∑

ij

(

2(Rijkw
′
ijk − wijkR

′
ijk)

√

R2
ijk − w2

ijk

· γijk + γjik

2
+

Rijk(Sign(〈z̄′
ji, zjzi〉)‖z̄′

ji‖ + h′
ji − Sign(〈z̄′

ij, zizj〉)‖z̄′
ij‖ − h′

ij)(γijk − γjik)

wijk

)

.

Let ξijk = length(xijkxjik ∩ zizj)/length(xijkxjik). The area derivative is:

A′ = area(µijk)
′ − βijkRijkR

′
ijk −

∑

i,j

2
√

R2
ijk − w2

ijkξijkw
′
ijk,

where area(µijk)’ is (lijw
′
ijk + ljkw

′
jki + lkiw

′
kij)/4. the boundary change

8.3.9 Theorems

Skin Perimeter Theorem. The length of the skin curve of B is the sum of perimeter of

the three types of mixed cells. The perimeter in all 0-mixed cell is:

∑

i

(√
2πri −

∑

j

√

Pi

j
+

∑

j,k

√

Pi

jk
)

.

The perimeter in all 1-mixed cell is:

∑

ij

(

Sign(hij) × Sign(wijk) × Pijk + Sign(hji) × Sign(wjik) × Pjik +

Sign(hji) × Sign(wjim) × Pjim + Sign(hij) × Sign(wijm) × Pijm

)

,
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which

Pijk =















f1(Rij, min(hij,
√

w2
ijk + R2

ij)) if R2
ij > 0

f1(
√
−1Rij, min($ijk, wijk)) if R2

ij < 0

where $ijk =
√

h2
ij − R2

ij and f1(ρ, ζ) = Real(ρ(E(ζ/ρ,
√

2) − E(1,
√

2)).

The perimeter in all 2-mixed cell is:

∑

ijk

(

2πRijk −
∑

i,j

√

Pijk
ij

+
∑

k

√

Pijk
k
)

.

Skin Area Theorem. The area of the skin body of B is the sum of area of the three types

of mixed cells. The area in all 0-mixed cell is:

∑

i

(

πr2
i

2
−

∑

j

√

Ai

j
+

∑

j,k

√

Ai

jk
)

.

The area in all 1-mixed cell is:

∑

ij

(

Sign(hij) × Sign(wijk) × Aijk + Sign(hji) × Sign(wjik) × Ajik +

Sign(hji) × Sign(wjim) × Ajim + Sign(hij) × Sign(wijm) × Aijm

)

,

with

Aijk =































f2(Rij, hij) if R2
ij > 0, $ijk < wijk

f2(Rij,
√

w2
ijk + R2

ij) + (hij −
√

w2
ijk + R2

ij)wijk if R2
ij > 0, $ijk > wijk

−f2(
√
−1Rij, min(wijk, $ijk)) + hij min(wijk, $ijk) if R2

ij < 0;

,
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where:

f2(ρ, ζ) =
1

2

(

ζ
√

ζ2 − ρ2 − ρ2 ln
ζ +

√

ζ2 − ρ2

ρ

)

.

The area in all 2-mixed cell is:

∑

ijk

(

Area(µijk) − πR2
ijk +

∑

i,j

√

Aijk
ij −

∑

k

√

Aijk
k
)

.

Skin Perimeter Derivative Theorem. The perimeter derivative of the skin body of B

is the sum of perimeter derivative of the three types of mixed cells. The perimeter

derivative in all 0-mixed cell is:

∑

i

[

βir
′
i +

∑

j

(

γ+
ij + γ−

ij

2

(

√
2(rih

′
ij − hijr

′
i)

√

r2
i /2 − h2

ij

)

−(Sign(z′
i × zizj) · ‖z′

i − z̄′
ij‖ + Sign(z′

j × zjzi) · ‖z′
j − z̄′

ji‖) · (γ+
ij − γ−

ij )lij ·
√

2

ri

)]

.

The perimeter derivative in all 1-mixed cell is:

∑

ij

(

Sign(hij) × Sign(wijk) × P ′
ijk + Sign(hji) × Sign(wjik) × P ′

jik +

Sign(hji) × Sign(wjim) × P ′
jim + Sign(hij) × Sign(wijm) × P ′

ijm

)

.

with

P ′
ijk =



















































f1(Rij ,hij)

Rij
R′

ij +

√

2h2

ij
−R2

ij

h2

ij−R2

ij

(

h′
ij −

hijR′

ij

Rij

)

if Rij > 0, ηijk < 0

f1(Rij ,
√

w2

ijk
+R2

ij)

Rij
R′

ij +

√

2w2

ijk
+R2

ij

w2

ijk
+R2

ij

(

w′
ijk −

wijkR′

ij

Rij

)

if Rij > 0, ηijk > 0

f1(
√
−1Rij ,wijk)

Rij
R′

ij +

√

2w2

ijk
+R2

ij

w2

ijk
+R2

ij

(

w′
ijk −

wijkR′

ij

Rij

)

if Rij < 0, wijk < $ijk

f1(
√
−1Rij ,$ijk)

Rij
R′

ij +

√

2h2

ij
−R2

ij

h2

ij−R2

ij

(

h′
ij −

hijR′

ij

Rij

)

if Rij < 0, wijk > $ijk
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with ηijk = hij −
√

w2
ijk + R2

ij. The perimeter derivative in all 2-mixed cell is:

∑

ijk

[

βijkR
′
ijk +

∑

ij

(

2(Rijkw
′
ijk − wijkR

′
ijk)

√

R2
ijk − w2

ijk

· γijk + γjik

2
+

Rijk(Sign(〈z̄′
ji, zjzi〉)‖z̄′

ji‖ + h′
ji − Sign(〈z̄′

ij , zizj〉)‖z̄′
ij‖ − h′

ij)(γijk − γjik)

wijk

)]

.

Skin Area Derivative Theorem. The area derivative of the skin body of B is the sum

of area derivative of the three types of mixed cells. The area derivative in all 0-mixed

cell is:

∑

i

(√
2πriβir

′
i +

∑

j

2
√

r2
i /2 − h2

ijξh
′
ij

)

.

The area derivative in all 1-mixed cell is:

∑

ij

(

Sign(hij) × Sign(wijk) × A′
ijk + Sign(hji) × Sign(wjik) × A′

jik +

Sign(hji) × Sign(wjim) × A′
jim + Sign(hij) × Sign(wijm) × A′

ijm

)

,

which

A′
ijk =



















































Rij

(

ln
Rij

hij+
√

h2

ij−R2

ij

)

R′
ij +

√

h2
ij − R2

ijh
′
ij if R2

ij > 0, $ijk < wijk

Rij ln
Rij

wijk+
√

w2

ijk
+R2

ij

R′
ij + ηijkw

′
ijk + wijkh

′
ij if R2

ij > 0, $ijk > wijk

Rij

(

ln
√
−1Rij

$ijk+hij

)

R′
ij + $ijkh

′
ij if R2

ij < 0, $ijk < wijk

Rij

(

ln
√
−1Rij

wijk−
√

w2

ijk
+R2

ij

)

R′
ij + ηijkw

′
ijk + wijkh

′
ij if R2

ij < 0, $ijk > wijk

.
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with ηijk = hij −
√

w2
ijk + R2

ij. The area derivative of all 2-mixed cell is:

∑

ijk

(

lijw
′
ijk + ljkw

′
jki + lkiw

′
kij

4
− βijkRijkR

′
ijk −

∑

i,j

2
√

R2
ijk − w2

ijkξijkw
′
ijk

)

.

8.4 Conclusion

In this chapter, we investigate the measurements of the union of disks and skin in order to

provide deformable shapes with discrete boundaries in the structural optimization process.

We compute the formulas of the area, the perimeter, and their derivatives of these shapes.

It would also be interesting to analyze the second derivatives, which could be useful in

accelerating the global design cycle of topology optimization.

The optimization process needs knowledge of these measurements within a window, which

is a disk in the two dimensional case. Although we did not complete this window computa-

tion, the calculation of a portion of the shapes remains the same with the formulas given in

this chapter, if the entire mixed cell of that portion is contained in the window. The new

consideration is the mixed cells that intersect the boundary of the window, and this involves

clipping of the shapes. We also did not solve the second part of the problem, namely, given a

point x, find the closest point p on the shapes and compute the their distances and tangent

lines on p. This can be done by first locating the Voronoi cell which x lies by point location

algorithms [31] and then search p by traversing the neighboring Voronoi cells or mixed cells.

Another direction of this research is the computation of measurements in the three di-

mensional case, namely, the surface area, volume, and their derivatives of the unions of ball

and skin body in R
3. The study in two dimensions gives a blueprint of the computations

in three dimensions but we expect that the cases in R
3 are more complicated. For spherical

patches, the inclusion-exclusion formula is still applicable for the measurements, but not for

hyperbolic patches in the skin case. The clipping of a hyperboloid with a cylinder and the

computation of its measurements may be difficult, not to mention the window computation.
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8.5 Table of Variables

Variable names Description

ρ The radius of a general disk

ζ The distance between a clipping half-plane to the center of a disk

λ Half the chord length, which is
√

ρ2 − ζ2

φ arccos(ζ/ρ)

ri The radius of a disk bi

zi The center of a disk bi

lij The length of zizj, also equals to Hij + Hji

l′ij, z
′
i, r

′
i The rate of change of lij,zi and ri

Hij lij/2 + (r2
i − r2

j )/2lij

dij Half the chord length of clipped disk bi, which is
√

r2
i − H2

ij

βi The fraction of exposed circle

γij Indicator of corners in the disk union

ξij The fraction of chord of bi ∩ µij

c∗ Centers of simplices

z̄′
ij The vector component of z′

i in the zizj direction

hij Hij/2

wijk ‖cij − cijk‖/2, negative if δijk hides δij

E Elliptic integral of second kind

Ri The radius of
√

bi = ri

√
2

Rij x2 − y2 + R2
ij = 0 is the hyperbola for the 1-mixed cell

Rijk The radius of disk in µijk

γ+
ijk, γ−

ijk The indicators of corners in skin curve
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Chapter 9

Results and Future Applications

One of the major works in this thesis is the construction of the skin software, which is

implemented on the PC platform, with C++ as the language and OpenGL as the graphics

library [21]. In this chapter, we first show some of the software compatibilities, namely,

the static and dynamic skin triangulations. Then we demonstrate some skin surfaces and

describe potential applications.

9.1 Software

We present two versions of the skin software, namely the static and dynamic versions, and

some comparisons between the two implementations.

9.1.1 Static Skin and Refinement

Figure 9.2 shows the backbone (or the stick model) of a molecule from the Protein Data Bank

[1]. Disregarding the hydrogen atoms, we generate the skin surface of the molecule with van

der Waals radii. Figure 9.3 (left) shows the mesh of the restricted Delaunay triangulation of

a random point set, which is generated according to a probability density proportional to the

local curvature of the surface. We can see the bad triangles with large and small angles. After

refinement is applied, the triangle qualities are improved as in Figure 9.3 (right). We proved

that the minimum angle is larger than 21◦, but experimental results show the minimum
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Figure 9.1: The skin software.

angle can go up to 23◦, and sometimes even 26◦. The overall time for computing the surface

is 1 minute and 50 seconds on a Pentium III 400MHz machine and the program is complied

by Microsoft Visual C++ under release setting. The minimum angle of the triangles on the

surface is 23.91◦. More performance of the static skin computation is given in Table 9.1.

Although the mesh quality is good, the computing time is long for molecules with more than

2000 atoms.

model name computing no. of no. of vertices no. of
time defining spheres on surface triangles

Simple (Figure 9.7) 00:00:10 4 2376 4748
Simple protein (Figure 9.2) 00:01:44 34 13623 27242
Gramicidin A (Figure 9.5) 02:05:12 319 167832 335740
cdk2 molecule (Figure 9.4) 13:03:34 2370 591179 1182006

Table 9.1: Performance of static skin algorithm.

We proved that the refinement will terminate with parameters C = 0.08 and Q = 1.65.

Recall that C controls the density of triangles, and Q controls the quality. Since the minimum
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Figure 9.2: The backbone of a molecule.

angle is arcsin 1
Q2 , we can see that the quality of triangles improves as the parameter Q

decreases. However, the minimum angle cannot be guaranteed by the theoretical proof when

Q continues to decrease. Table 9.2 shows some experimental results that occur beyond

the theoretical minimum angle of arcsin (1/Q2) in which the minimum angle cannot be

guaranteed anymore.

C 0.08 0.08 0.08
Q 1.65 1.5 1.45

min. angle 26.37◦ 27.36◦ 28.14◦

arcsin (1/Q2) 21.55◦ 26.39◦ 28.40◦

Table 9.2: The relationship between Q and the minimum angle.

For the density of triangles, Figure 9.6 shows the effect of changing C. As C decreases,

the density of triangles increases and the mesh approximates the analytical surface better.

The trade-off is that more triangles are used, so the surface consumes more memory and

degrades the performance.

9.1.2 Dynamic Triangulation

Figure 9.7 shows an example of the dynamic triangulation. The skin in the demonstration is

defined by four spheres. The algorithm first creates four spheres as in Figure 9.7 (a). When
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Figure 9.3: Two skin surfaces of the above molecule.

two of the spheres get closer, the tips of the two hyperboloid enter the hot sphere and start

the special sampling. Figure 9.7(b) shows the special caps created inside the hot sphere

with m = 5 vertices as the bases. The white dots indicate the points involved in the special

sampling. When the two tips touch each other, the topology changes and a double cone is

formed as in Figure 9.7(c). Then a waist is formed as in Figure 9.7(d) and the points leave

the hot sphere. Hence, the special sampling ends for this topology change.

Figure 9.7(e) shows another kind of change where a tunnel is filled. A special waist is

formed when the tunnel is small enough to touch the hot sphere as in Figure 9.7(f). It will

then be filled later. Figure 9.7(g) shows such a filled tunnel and that the inside and outside

surfaces are separated from each other. A void is created inside the body. After this void

vanishes, the skin is completed as in Figure 9.7(h).

The time for computing the skin surface in Figure 9.3 (right) by dynamic skin algorithm

is about 30 minutes. It is slower than the static skin algorithm because more time is spent on

scheduling in the priority queue. On the other hand, the time for the static skin algorithm

is proportional to the weighted surface area and to the weighted volume in the dynamic

case. Here, the weighted surface area and volume are the integral of the curvature over
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Figure 9.4: cdk2 molecule.

Front view Side view

Figure 9.5: Two views of Gramicidin A.

the surface and volume respectively. However, for the weighted volume, the curvature is

undefined at the positions of topology change. More specifically, the dynamic algorithm

takes time proportional to the weighted volume outside the hot spheres. For objects with

higher weighted volume to surface area ratio, the dynamic skin has better performance. In

Figure 9.8, the four skin surfaces have different ratios and their computing time is shown in

Table 9.3.
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Figure 9.6: Two different values of parameter, (left) C = 0.08 and (right) C = 0.04.

α Static Skin Dynamic Skin
0.55 00:30s 01:13
0.52 00:39s 00:50
0.51 00:45s 00:42

0.5001 01:43 00:31

Table 9.3: Time comparison for static and dynamic skin algorithms.

9.2 Future Applications of Skin Surface

We now illustrate some more skin surfaces we created with our software and describe two

closely related applications: molecular modeling and computer graphics.

9.2.1 Molecular Modeling

Chemists and biologists study how compounds react [66]. After a scientist knows which

compounds can react with each other, the binding and separation of the molecules are

investigated [63]. This can be facilitated by modeling and visualizing of the molecules [11].

Researchers also study how these molecules deform, for example, the protein folding problem

[48]. Geometric information of molecules need a deformable model to approximate the

actual behavior. The actual behavior of the molecules can be model through the geometric
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information of its deformable model. The skin surface has the intuition of formation by

spheres as well as the deformable property. By the complementarity property of the skin

surface we can compute the void, pocket or tunnel of a molecule [41]; see Figure 9.9. This

computation is useful in the ligand docking problem [43] [62].

9.2.2 Computer Animation

Figure 9.10 shows how skin surfaces can model some geometric objects represented by a set

of spheres [6]. Objects in a scene do not need every detail when they are being viewed from

far away. By choosing different α values we can have different levels of detail. This property

may help represent objects in multiple resolutions [80].

Moreover, the skin is a deformable surface that can handle topology changes. Figure

9.11 shows a sequence of morphing between two shapes. Each instance of the skin surface

is generated independently. In the future, we can investigate how to deform one instance

to another directly. This property can help in computer animation problems as well as the

study of molecular motion. It is possible to approximate the electron distributions with the

skin surface while a molecule is deforming during a chemical reaction to calculate electric

potentials on the surface.
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(a)

(h)

(b)

(c) (d)

(e) (f)

(g)

Figure 9.7: Transitions of the dynamic skin triangulation.
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α=0.55 α=0.52

α=0.5001α=0.51

Figure 9.8: Four skin surfaces with different weighted surface area and volume.

Top view Front view

Figure 9.9: Two views of Gramicidin A with its tunnel.
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Figure 9.10: A human head modeled by skin surface with two different α values.
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Figure 9.11: A sequence of morphing from a question mark to a human figure.
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Chapter 10

Conclusion

In this thesis, we study the skin surface as a new paradigm for the deformable surfaces. The

skin surface is an implicit surface that can deform, and at the same time, process the ability

to be decomposed, parametrized and triangulated. The deformation ability gives the skin

freedom to model deformable structures such as molecules. We also construct two pieces of

skin software that give a NURBS representation and (static and dynamic) piecewise-linear

approximation of the skin surface. This work also contributes to the following areas:

1. Computational geometry

2. Implicit/parametric surfaces

3. Meshing

4. Structural optimization

The skin surface captures the advantages of both implicit and explicit (parametric) sur-

faces. The implicits, or level-sets, are computationally expensive in surface meshing. Also,

computing a parametrization on the surface, expecially on implicits, cannot be effective

without topology information. Parametric surfaces often model objects with a large number

of high degree patches in order to maintain curvature and surface normal continuity. In

addition, the degree and number of patches are often the limiting factors of most algorithms,

such as ray-tracing. The skin overcomes these disadvantages with the integration of low-

degree patches in space partitions, parametrization, and meshing algorithms as introduced

in this thesis.
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The skin has a high degree of freedom to model objects and it is computationally efficient

with partitions of space. However, it is a smooth surface with inability to model objects with

sharp edges or corners. This problem is not serious in R
2 but becomes acute in R

3. This is

a critical drawback to modeling general objects and trade-off for smoothness.

Further investigation is expected in several aspects. First, we investigate the preservations

of the mesh integrity during growing, but not for general movements. General movements are

much harder than the growth model because deformation of the mixed complex is involved

and there will be more types of topology changes other than creations of simplices. Secondly,

all meshing and parametrizing algorithms are derived on the skin surface with shrinking an

infinite collection of spheres by a factor of one half. The maximum curvature continuity

will be destroyed by factors other than 1/2 and the proof of homeomorphism needs to be

fixed by using a local feature size other than the maximum curvature. New triangulation

algorithms need to be investigated. Third, the skin can be applied to more fields. We model

some molecules with the skin, but numerical computations are yet to be carried out. The

measurements of skin are useful information in the topology optimization. We investigate

the two-dimensional cases. Three dimensional skin surfaces and bodies are more complicated

but definitely computable. The volume, surface area and their derivatives of the skin body

are useful in three dimensional structural designs. Other than scientific and engineering

disciplines, it would be interesting to see the skin surfaces in fine arts such as sculpting.
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[44] Edelsbrunner, H., and Mücke, E. Three-dimensional Alpha Shapes. ACM Trans.

Graphics 13 (1994), 43–72.
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