
Main-Memory Hash Joins on Multi-Core CPUs:
Tuning to the Underlying Hardware

Cagri Balkesen #1, Jens Teubner #2, Gustavo Alonso #3, M. Tamer Özsu ∗4

Systems Group, Department of Computer Science, ETH Zurich, Switzerland
1, 2, 3 {name.surname}@inf.ethz.ch
∗ University of Waterloo, Canada
4 tamer.ozsu@uwaterloo.ca

Abstract—The architectural changes introduced with multi-
core CPUs have triggered a redesign of main-memory join
algorithms. In the last few years, two diverging views have
appeared. One approach advocates careful tailoring of the
algorithm to the architectural parameters (cache sizes, TLB, and
memory bandwidth). The other approach argues that modern
hardware is good enough at hiding cache and TLB miss latencies
and, consequently, the careful tailoring can be omitted without
sacrificing performance.

In this paper we demonstrate through experimental analysis
of different algorithms and architectures that hardware still
matters. Join algorithms that are hardware conscious perform
better than hardware-oblivious approaches. The analysis and
comparisons in the paper show that many of the claims regarding
the behavior of join algorithms that have appeared in literature
are due to selection effects (relative table sizes, tuple sizes,
the underlying architecture, using sorted data, etc.) and are
not supported by experiments run under different parameters
settings. Through the analysis, we shed light on how modern
hardware affects the implementation of data operators and
provide the fastest implementation of radix join to date, reaching
close to 200 million tuples per second.

I. INTRODUCTION

Modern processors provide parallelism at various levels:
instruction parallelism via super scalar execution; data-level
parallelism by extended support for single instruction over
multiple data (SIMD; i.e., SSE, 128-bits; AVX, 256-bits); and
thread-level parallelism through multiple cores and simulta-
neous multi-threading (SMT). Such changes are triggering a
profound redesign of main-memory join algorithms. However,
the landscape that has emerged so far is rather inconclusive.

One line of argument maintains that main-memory parallel
joins should be hardware-conscious: the best performance can
only be achieved by fine tuning the algorithm to the underlying
architecture [1]. These results also show that SIMD is still not
good enough to tip the decision on join algorithm towards
sort-merge join instead of the more commonly used hash join.
In the future, however, as SIMD becomes wider, sort-merge
join is likely to perform better.

Another line of argument suggests that join algorithms
can be made efficient while remaining hardware-oblivious
[2]. That is, there is no need for tuning—particularly of the
partition phase of a join where data is carefully arranged to
fit into the corresponding caches—because modern hardware

hides the performance loss inherent in multi-layer memory
hierarchy. In addition, so the argument goes, fine tuning of
the algorithms to specific hardware makes them less portable
and less robust to, e.g., data skew.

A third line of thought claims that sort-merge join is already
better than hash join and can be efficiently implemented
without using SIMD [3]. These results contradict the claims of
both Blanas et al. [2] because they are based on careful tuning
to the hardware (in this case to its non-uniform memory access
characteristics) as well as the claims of Kim et al. [1] regarding
the behavior of sort-merge vs. hashing when using SIMD.

For reasons of space, in this paper we focus on the question
of whether it is important to tune the main-memory hash join
to the underlying hardware as claimed explicitly by [1] and
implicitly by [3]. We also focus on radix join algorithms and
leave the comparison with sort-merge joins for future work.

Answering the question of whether hardware still matters is
a complex task because of the intricacies of modern hardware
and the many possibilities available when implementing and
tuning main-memory joins. To make matters worse, there are
many parameters that affect the behavior of join operators:
relative table sizes, use of SIMD, page sizes, TLB sizes,
structure of the tables and organization, hardware architecture,
tuning of the implementation, etc. Existing studies share very
few points in common in terms of the space explored, making
it difficult to compare their claims. As shown in the paper,
many of these claims are specific to the choice of certain
parameters and architectures and cannot be generalized.

The first contribution of the paper is algorithmic. We
analyze the algorithms proposed in the literature and propose
several important optimizations leading to new algorithms that
are more efficient and robust to parameter changes. In doing
so, we provide important insights on the effects of multi-core
hardware on algorithm design.

The second contribution is to put existing claims into con-
text, showing what choice of parameters or hardware features
cause the observed behaviors. These results shed light on
what parameters play a role in multi-core systems, thereby
establishing the basis for the choices a query optimizer for
multi-core will need to make. The third and final contribution
is to settle the issue of whether tuning to the underlying
hardware plays a role. The answer is a definitive yes, as it

sc
an

R

h

b1
b2

...

bk

hash table

... sc
an

S

h...

1© build 2© probe

Fig. 1. Hash join.

R

h

...
h

b1

b2

...

bk

shared
hash table

S

h

...

h

1© build 2© probe

Fig. 2. No partitioning join.

is only on a narrow combination of parameters and certain
architectures where hardware-oblivious approaches have an
advantage.

II. BACKGROUND: IN-MEMORY HASH JOINS

Existing algorithms can be classified into two camps.
Hardware-oblivious hash join variants, represented here by
no partitioning join (Section II-B), do not depend on any
hardware-specific parameters. Rather, they consider qualitative
characteristics of modern hardware and are expected to achieve
good performance on any technologically similar hardware.
Hardware-conscious implementations, such as (parallel) radix
join (Sections II-C and II-D), aim to maximally exploit a given
piece of hardware by tuning algorithm parameters (e.g., hash
table sizes) to its particular features. The goal of our work is to
compare two alternatives. One is to assume hardware has now
become good enough at hiding its own limitations—through
automatic hardware prefetching or out-of-order execution—to
make hardware-oblivious algorithms competitive. The other
is to assume that explicit parameter tuning1 yields enough
performance advantages to warrant the effort required.

A. Canonical Hash Join Algorithm

The basis behind any modern hash join implementation is
the canonical hash join algorithm [5], [6], which operates in
two phases as shown in Figure 1. In the first build phase, the
smaller of the two input relations, R, is scanned to populate a
hash table with all R tuples. The probe phase then scans the
second input relation, S, and probes the hash table for each S
tuple to find matching R tuples.

Both input relations are scanned once and, with an assumed
constant-time cost for hash table accesses, the expected com-
plexity for the canonical hash join algorithm is O(|R|+ |S|).

B. No Partitioning Join

To benefit from modern parallel hardware, Blanas et al. [2]
proposed a variant of the canonical algorithm that they termed
no partitioning join, essentially a direct parallel version of
the canonical hash join. It does not depend on any hardware-
specific parameters and—unlike alternatives that we will dis-
cuss shortly—does not physically partition data. The argument

1usually by means of automated tools, such as Calibrator [4]

sc
an

R

h1

h2r4

...r3

...r2

h2r1 ...

one hash table
per partition

...

...

h2 s4

... s3

... s2

h2 s1

h1 sc
an

S

1© part. 1© part.2© build 3© probe

Fig. 3. Partitioned hash join (following Shatdal et al. [7]).

is that the partitioning phase requires multiple passes over
the data and can be omitted by relying on modern processor
features such as simultaneous multi-threading (SMT) to hide
cache latencies.

Both input relations are divided into equi-sized portions that
are assigned to a number of worker threads. As shown in
Figure 2, in the build phase, all worker threads populate a
shared hash table that all worker threads can access.

After synchronization via a barrier, all worker threads enter
the probe phase and concurrently find matching join partners
for their assigned S portions.

An important characteristic of no partitioning is that the
hash table is shared among all participating threads. This
means that concurrent insertions into the hash table must be
synchronized. To this end, each bucket is protected via a latch
that a thread must obtain before it can insert a tuple. The
potential latch contention is expected to remain low, because
the number of hash buckets is typically large (in the millions).
The probe phase accesses the hash table in read-only mode.
Thus, no latches have to be acquired in that second phase.

On a system with p cores, the expected complexity of this
parallel version of hash join is O(1/p(|R|+ |S|)).

C. Radix Join

Hardware-conscious, main-memory hash join implementa-
tions build upon the findings of Shatdal et al. [7] and Manegold
et al. [4], [8]. While the principle of hashing—direct positional
access based on a key’s hash value—is appealing, the resulting
random access to memory can lead to cache misses. Thus,
the main focus is on tuning main-memory access by using
caches more efficiently, which has been shown to impact query
performance [9]. Shatdal et al. [7] identify that when the hash
table is larger than the cache size, almost every access to the
hash table results in a cache miss. Consequently, partitioning
the hash table into cache-sized chunks reduces cache misses
and improves performance. Manegold et al. [4] refined this
idea by considering as well the effects of translation look-
aside buffers (TLBs) during the partitioning phase. This led
to multi-pass partitioning, now a standard component of the
radix join algorithm.

Partitioned Hash Join. The partitioning idea is illustrated
in Figure 3. In the first phase of the algorithm the two

sc
an

R

h1,1

h1,2

h1,2

h2r4

...r3

...r2

h2r1 ...

one hash table
per partition

...

...

h2 s4

... s3

... s2

h2 s1

h1,2

h1,2

sc
an

S

h1,1

1© partition 1© partition2© build 3© probe

pass 2pass 1 pass 2 pass 1

Fig. 4. Radix join (as proposed by Manegold et al. [4]).

input relations R and S are divided into partitions ri and s j,
respectively. During the build phase, a separate hash table is
created for each ri partition (assuming R is the smaller input
relation). Each of these hash tables now fits into the CPU
cache. During the final probe phase, s j partitions are scanned
and the respective hash table is probed for matching tuples.

During the partitioning phase, input tuples are divided up
using hash partitioning (via hash function h1 in Figure 3) on
their key values (thus, ri on s j =∅ for i 6= j) and another hash
function h2 is used to populate the hash tables.

While avoiding cache misses during the build and probe
phases, partitioning the input data may cause a different
type of cache problem. The partitions will typically reside
on different memory pages with a separate entry for virtual
memory mapping required for each partition. This mapping is
cached by TLBs in modern processors. As Manegold et al. [4]
point out, the partitioning phase may cause TLB misses if the
number of created partitions is too large.

Essentially, the number of available TLB entries defines an
upper bound on the number of partitions that can be created
or accessed efficiently at the same time.

Radix Partitioning. Excessive TLB misses can be avoided by
partitioning the input data in multiple passes. In each pass j,
all partitions produced by the preceding pass j−1 are refined,
such that the partitioning fan-out never exceeds the hardware
limit given by the number of TLB entries. In practice, each
pass looks at a different set of bits from the hash function h1,
which is why this is called radix partitioning. For typical in-
memory data sizes, two or three passes are sufficient to create
cache-sized partitions, without suffering from TLB capacity
limitations.

Radix Join. The complete radix join is illustrated in Figure 4.
1© Both inputs are partitioned using two-pass radix partition-

ing (two TLB entries would be sufficient to support this toy
example). 2© Hash tables are then built over each ri partition
of input table R. 3© Finally, all si partitions are scanned and
the respective ri partitions probed for join matches.

In radix join, multiple passes have to be done over both
input relations. Since the maximum “fanout” per pass is fixed
by hardware parameters, log |R| passes are necessary, where R

again is the smaller input relation. Thus, we expect a runtime
complexity of O((|R|+ |S|) log |R|) for radix join.

Hardware Parameters. Radix join needs to be tuned to a
particular piece of hardware essentially via two parameters:
(i) the maximum fanout per radix pass is primarily limited by
the number of TLB entries of the hardware; (ii) the resulting
partition size should roughly be the size of the system’s
CPU cache. Both parameters can be obtained in a rather
straightforward way, e.g., with help of benchmark tools, such
as Calibrator [4]. As we shall see later, radix join is not overly
sensitive to a potential mis-configuration of either parameter.

D. Parallel Radix Join

Radix join can be parallelized by subdividing both input
relations into sub-relations that are assigned to individual
threads [1]. During the first pass, all threads create a shared set
of partitions. As before, the number of partitions in this set
is limited by hardware parameters and typically small (few
tens of partitions). They are accessed by potentially many
execution threads, creating a contention problem (the low-
contention assumption of Section II-B no longer applies).

To avoid this contention, for each thread a dedicated range
is reserved within each output partition. To this end, both input
relations are scanned twice. The first scan computes a set of
histograms over the input data, so the exact output size is
known for each thread and each partition. Next, a contiguous
memory space is allocated for the output and, by computing a
prefix-sum over the histogram, each thread pre-computes the
exclusive location where it writes its output. Finally, all threads
perform their partitioning without any need to synchronize.

After the first partitioning pass, there is typically enough
independent work in the system (cf. Figure 4) that workers can
perform work on their own. Load distribution among worker
threads is typically implemented via task queueing (cf. [1]).

III. EXPERIMENTAL SETUP

In this section we describe the experimental setup used for
the evaluation of the algorithms.

A. Workload

For the comparison, we use machine and workload configu-
rations that mimic scenarios where in-memory join processing
is most relevant. In particular, all systems where the compo-
nent truly matters assume a column-oriented storage model.
We thus deliberately choose very narrow 〈key,payload〉 tuple
configurations, where key and payload are four or eight bytes
wide. As a side effect, narrow tuples better pronounce the
effects that we are interested in, since they put more pressure
on the system’s caching system.2

We adopted the particular configuration of our workloads
from existing work, which also eases the comparison of our
results with those published in the past.

As illustrated in Table I, we adopted workloads from Blanas
et al. [2] and Kim et al. [1] and refer to them as A and B here,

2The effect of tuple widths was studied, e.g., by Manegold et al. [10].

TABLE I
WORKLOAD CHARACTERISTICS

A (from [2]) B (from [1])

size of key / payload 8 / 8 bytes 4 / 4 bytes
size of R 16 ·220 tuples 128 ·106 tuples
size of S 256 ·220 tuples 128 ·106 tuples
total size R 256 MiB 977 MiB
total size S 4096 MiB 977 MiB

TABLE II
HARDWARE PLATFORMS USED IN OUR EVALUATION

Intel Intel AMD Sun
Nehalem Sandy Bridge Bulldozer Niagara 2

CPU
Xeon Xeon Opteron UltraSPARC
L5520 E5-2680 6276 T2

2.26 GHz 2.7 GHz 2.3 GHz 1.2 GHz
Cores/Threads 4/8 8/16 16/16 8/64
Cache sizes 32 KiB 32 KiB 16 KiB 8 KiB

(L1/L2/L3) 256 KiB 256 KiB 2 MiB 4 MiB
8 MiB 20 MiB 16 MiB -

TLB (L1/L2) 64/512 64/512 32/1024 128/-

Memory 24 GiB DDR3 32 GiB DDR3 32 GiB DDR3 16 GiB
1066 MHz 1600 MHz 1333 MHz FBDIMM

VM Page size 4 KiB 4 KiB 4 KiB 8 KiB

respectively. All attributes are integers, and the keys of R and
S follow a foreign key relationship. That is, every tuple in S
is guaranteed to find exactly one join partner in R. Most of
our experiments (unless noted otherwise) assume a uniform
distribution of key values from R in S.

B. Hardware Platforms

We evaluated the algorithms on four different multi-core
machines. Three are recent multi-core platforms, ranging from
the older Intel Nehalem architecture to the newer Sandy Bridge
architecture and including a recent AMD Bulldozer system
(cf. Table II). Sun UltraSPARC T2 dates back to 2007 and
provides eight thread contexts per core where eight threads
share the L1 cache with a line size of 16 bytes. The two Intel
machines support SMT with two thread contexts per core. Sun
UltraSPARC T2 comes with two levels of cache, where cores
share the L2 cache with line size of 64 bytes. On the Intel
machines, cores use a shared L3 cache and a cache line size
of 64 bytes. The AMD machine has a different architecture
than the others where two cores are packaged as single module
and share some resources such as instruction fetch, decode,
floating point unit and L2 cache. Accordingly, the effective
L2 cache available per core is reduced to half, i.e., 1 MiB.

The Intel and AMD systems run Ubuntu Linux (kernel
version 2.6.32) and Sun UltraSPARC T2 runs a Debian (kernel
version 3.2.0-3-sparc64-smp). For the results we report here,
we used gcc 4.4.3 on Ubuntu and gcc 4.6.3 on Debian and
the -O3 and -mtune=niagara2 -mcpu=ultrasparc
command line options to compile our code. Additional exper-
iments using Intel’s icc compiler did not show any notable
differences, qualitatively or quantitatively. For the performance
counter profiles that we report, we instrumented our code with
the Intel Performance Counter Monitor [11].

TABLE III
EFFECT OF SORTED INPUT ON THE BUILD PHASE (CODE BY [2] VS. OUR

OWN CODE; PERFORMANCE COUNTERS IN MILLIONS; WORKLOAD A)

Cycles L3 miss Instr. TLB load miss

Code of [2], sorted input 322 2 2215 1
Code of [2], unsorted input 1415 45.3 2263 52.7
Our code, unsorted input 966 25 572 56

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

number of threads

cy
cl

es
pe

r
ou

tp
ut

tu
pl

e

no partitioning (code of [2])
no partitioning (our code)
build cost in and

Fig. 5. Cycles per output tuple for hardware-oblivious no partitioning strategy
(Workload A; Intel Xeon L5520, 2.26 GHz).

IV. HARDWARE-OBLIVIOUS JOINS

In this section we first study and optimize the no partition-
ing strategy. To make our results comparable, we use similar
hardware to that in earlier work, namely a Nehalem L5520
system (cf. Table II).

A. Build Cost

The overall cost of hardware-oblivious no partitioning join
is given by

cost = cput · |R|︸ ︷︷ ︸
build cost

+ cget · |S|︸ ︷︷ ︸
probe cost

,

where cput and cget denote the (constant) cost of adding or
reading an entry to/from the hash table (respectively). Writing
to the hash table is generally more expensive, since it involves
the acquisition of a bucket latch, hence, cput & cget.

No partitioning was proposed and evaluated by Blanas et
al. in [2]. Surprisingly, in their experiments—based on what
we call Workload A in our work—the build phase accounts
for only 2 % of the overall execution time. In this workload,
|R|= 1/16 · |S|, so we would expect the build phase to take at
least ≈ 6% of the overall cost.

The code used to obtain these results is publicly avail-
able [12]. Analysis of this code reveals that their results are
based on experiments where R is pre-sorted. As a result,
as data items are hashed using a modulo hash function,
they map to consecutive hash buckets, leading to strictly
sequential memory accesses. The sorted input also removes
any contention for the bucket latch.

Re-running the experiments with randomly permuted input
(i.e., the general case) results in build costs of about 6 %,

01 0 8 0 8 16 32 48
l head free next tuple 1 tuple 2

latch
array

pointer
array buckets (as linked list)

Fig. 6. Original hash table implementation.

0 8 24 40 48
hdr tuple 1 tuple 2 next

Fig. 7. Our hash table implementation.

consistent with our assumption stated above. To confirm that
our assessment is correct, we collected cache profile data.
Table III illustrates how sorted input essentially eliminates
all TLB and L3 cache misses. Otherwise, we could basically
reproduce other performance results (cf. Figure 5, dark bars).

B. Cache Efficiency

The cache profile information in Table III also indicates
hash table build-up incurs a very high number of cache and
TLB misses. Processing 16 million tuples results in 45.3/52.7
million L3/TLB misses, or about three misses per input tuple.

The reason for this inefficiency becomes clear as we look at
the code of [2]. The hash table in this code is implemented as
illustrated in Figure 6. That is, the hash table itself is an array
of head pointers, each of which points to the head of a linked
bucket chain. Each bucket is implemented as a 48-byte record.
A free pointer points to the next available tuple space inside
the current bucket. A next pointer leads to the next overflow
bucket, and each bucket can hold two 16-byte input tuples.

Since the hash table is shared among worker threads, latches
are necessary for synchronization. As illustrated above, they
are implemented as a separate latch array position-aligned
with the head pointer array.

In this table, a new entry can be inserted in three steps
(ignoring overflow situations due to hash collisions): (1) the
latch must be obtained in the latch array; (2) the head pointer
must be read from the hash table; (3) the head pointer must
be dereferenced to find the hash bucket where the tuple can
be inserted. In practice, each of these three steps likely results
in a cache miss.

Optimized Hash Table Implementation. To improve the cache
efficiency of no partitioning, in our re-implementation we
directly combined locks and hash buckets to neighboring mem-
ory locations. More specifically, in our code we implemented
the main hash table as a contiguous array of buckets, as shown
in Figure 7. The hash function directly indexes into this array
representation. For overflow buckets, we allocate additional
bucket space outside the main hash table. Most importantly,
the 1-byte synchronization latch is part of the 8-byte header
that also contains a counter indicating the number of tuples

1 2 3 4 5 6 7 8
number of threads

2

4

6

8

sp
ee

du
p

no partitioning, code of [2]
no partitioning, our code

Fig. 8. Speedup of no partitioning algorithm on SMT hardware. First four
threads are “native” threads; threads 5–8 are “hyper threads” (Xeon L5520).

currently in the bucket. In line with the original study [2],
for Workload A, we configured our hash table to two 16-
byte tuples per bucket, and an 8-byte next pointer chains hash
buckets in the case of overflows.

The effect of this modified hash table representation is
significant. As listed in Table III, it cuts by half the number of
cache misses in the build phase (and also in the probe phase,
though not shown in Table III) and speeds up join processing
by a fair margin.

In terms of absolute join performance, our re-written code
is roughly three times faster than the code of Blanas et al. [2],
as shown in Figure 5. Yet, our code remains strictly hardware-
oblivious: no hardware-specific parameters are needed to tune
the code.

C. The Role of SMT Threads
Blanas et al. [2] argue that no partitioning draws its true

benefit from its good interplay with simultaneous multi-
threading (SMT) hardware. Simply speaking, SMT provides
the illusion of an extra CPU by running two threads on
the same CPU and cleverly switching between them at the
hardware level. This gives the hardware the flexibility to
perform useful work even when one of the threads is stalled,
e.g., because of a cache miss.

To study the interaction between no partitioning and SMT,
we repeated the original SMT experiment [2] on comparable
hardware. Our Nehalem system contains four cores with two
hardware contexts each. As in the original study, we start
by assigning threads to different physical cores. Once the
physical cores are exhausted, we assign threads to the available
hardware context in a round-robin fashion.

Figure 8 illustrates the performance of no partitioning
relative to the performance of a single-threaded execution
of the same algorithm (“speedup”). Our experiment indeed
confirms the scalability with SMT threads on the un-optimized
code of [2]. However, once we run the same experiment with
our optimized code (with significantly better absolute perfor-
mance, cf. Figure 5), SMT does not help the no partitioning
strategy at all or only brings negligible improvement when
using all thread contexts.

As the result shows, SMT can only remedy cache miss
latencies if the respective code contains enough cache misses

12 13 14 15 16 17 9 10 11 12 13 14
0
5

10
15
20
25
30
35

number of radix bits (log2(number of partitions))

cy
cl

es
pe

r
ou

tp
ut

tu
pl

e join cost

Nehalem
partitioning cost

AMD

Fig. 9. Cost vs. radix bits (Workload B; Nehalem: 2-passes; AMD: 1-pass).

and enough additional work for the second thread while the
first one is waiting. For code with less redundancy, SMT brings
only negligible benefit. These results raise questions about a
key hypothesis behind the hardware-oblivious no partitioning
strategy.

V. HARDWARE-CONSCIOUS JOINS

We perform a similar analysis for the parallel radix join.
Blanas et al. [2] also provide an implementation for this
hardware-conscious join execution strategy.

A. Configuration Parameters

The key configuration parameter of radix join is the number
of radix bits for the partitioning phase (2 # radix bits partitions are
created during that phase). Figure 9 illustrates the effect that
this parameter has on the runtime of radix join.

The figure confirms the expected behavior that partitioning
cost increases with the partition count, whereas the join phase
becomes faster as partitions become smaller. Configurations
with 14 and 11 radix bits are the best trade-offs between these
opposing effects for the Nehalem and AMD architectures,
respectively. But even more interestingly, the figure shows
that radix join is fairly robust against a parameter mis-
configuration: within a range of configurations, the perfor-
mance of radix join degrades only marginally.

B. Hash Tables and Cache Efficiency

Following the partitioning of the input tables, hash tables
are very small and always fully cache resident. Thus, our
assessment about cache misses for hash table accesses in the
previous section no longer holds for the hardware-conscious
join execution strategy.

Various implementations have been proposed for radix join.
Manegold et al. [4] use a rather classical bucket chaining
mechanism, where individual tuples are chained to form a
bucket. Following good design principles for efficient in-
memory algorithms, all pointers are implemented as array
position indexes (as opposed to actual memory pointers).

Kim et al. [1] build their hash table analogously to the
parallel partitioning stage. The input relation is first scanned
to obtain a histogram over hash values. Then, a prefix sum
is used to help re-order relation R (to obtain R′), such that

c
b
c
a
a
b
a

R

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

hist.
c 2
b 2
a 3
Hist

prefix
sum c 5

b 3
a 0
Psum

build

c
c
b
b
a
a
a
R′ 0

3

5

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

re-ordered R

used as hash table

Fig. 10. Relation re-ordering and histogram-based hash table design.

12 13 14 15 16
0

2

4

6

8

10

12

14

16

number of radix bits (log2(number of partitions))
cy

cl
es

pe
r

ou
tp

ut
tu

pl
e

bucket chaining as in [4]
histogram mechan. of [1]
[1] without SIMD

Fig. 11. Cost of join phase in radix join for three different hash table
implementation techniques (Workload B; Intel Xeon L5520, 2.26 GHz; Using
8 threads and 2 pass partitioning).

tuples with the same hash value appear contiguously in R′.
The prefix sum table and the re-ordered relation now together
serve as a hash table as shown in Figure 10.

The advantage of this strategy is that contiguous tuples
can now be compared using SIMD instructions. In addition,
software prefetching mechanisms can be applied to bring
potential matches to the L1 cache before comparisons.

Evaluation. We evaluated the impact of different hash table
implementation strategies on the join phase of radix join.
Figure 11 shows the join phase cost in cycles per output tuple
for three different strategies.

As can be seen, the Manegold et al. implementation [4]
still has an edge over the more recent one by Kim et al. [1],
in spite of the potential for SIMD optimization in the latter
implementation. The graph also confirms that the join cost
generally decreases as the input data is partitioned in a more
fine-granular way. In practice, there is a sweet spot, because
the partitioning cost (which has to be invested before joining)
increases with the number of partitions (cf. Figure 9).

Since the Manegold et al. approach comes out best in this
comparison, we will use it for all following experiments. We
note that the choice we are making here does not depend on
hardware parameters (this is a hardware-oblivious optimiza-
tion). As we shall see in a moment, the impact of our choice
is limited, however, since the cost of partitioning adds to either
of those implementation techniques.

TABLE IV
CPU PERFORMANCE COUNTER PROFILES FOR DIFFERENT RADIX JOIN

IMPLEMENTATIONS (IN MILLIONS); WORKLOAD A

code from [2] our code

Part. Build Probe Part. Build Probe

Cycles 9398 499 7204 5614 171 542
Instructions 33520 2000 30811 17506 249 5650
L2 misses 24 16 453 13 0.3 2
L3 misses 5 5 40 7 0.2 1
TLB load misses 9 0.3 2 13 0.1 1
TLB store misses 325 0 0 170 0 0

1 2 3 4 5 6 7 8

50

100

150

200

250

300

number of threads

cy
cl

es
pe

r
ou

tp
ut

tu
pl

e

radix join (code of [2])
radix join (our code)
partitioning cost in and

Fig. 12. Overall join execution cost (cycles per output tuple) for hardware-
conscious radix join strategy (Workload A; Intel Xeon L5520, 2.26 GHz).

C. Overall Execution Time

The overall cost of join execution consists of the cost for
data partitioning and the cost for computing the individual
joins over partitions. To evaluate the overall cost of join
execution (and to prepare for a comparison with the hardware-
oblivious no partitioning algorithm), we measured our own,
carefully tuned implementation, as well as those reported in
earlier work.

We had two implementations of radix join available. For
the code of Blanas et al. [12], we found one pass and
2,048 partitions to be the optimal parameter configuration
(which matches the configuration in their experiments [2]).
Partitioning in that code turns out to be rather expensive. We
attribute this to a coding style that leads to many function calls
and pointer dereferences in critical code paths. Partitioning
is much more efficient in our own code. This leads to a
situation where two-pass partitioning with 16,384 partitions
becomes most efficient. Table IV illustrates how the different
implementations lead to significant differences in the executed
instruction count. Our code performs two partitioning passes
with 40 % fewer instructions than Blanas et al.’s code [2] that
needs to perform only one pass.

The resulting overall execution times are reported (as cycles
per output tuples) in Figure 12. This chart confirms that
partitioning is rather expensive in the code of Blanas et al. Ulti-
mately, this results in a situation where the resulting partition

1 2 3 4 5 6 7 8
number of threads

2

4

6

sp
ee

du
p

radix join, code of [2]
radix join, our code

Fig. 13. Speedup of radix algorithm on SMT hardware. First four threads are
“native” threads; threads 5–8 are “hyper threads” (Workload A; Xeon L5520).

count is sub-optimal for the subsequent join phase, causing
their join code to be also expensive. With optimized code,
partitioning becomes the dominant cost, which is consistent
with the findings of Kim et al. [1] that showed comparable
cost at similar parameter settings. Overall, our code is about
three times faster than the code of Blanas et al. for all shown
configurations.

Performance Counters. We also instrumented the available
radix join implementations to monitor CPU performance coun-
ters. Table IV lists cache and TLB miss counts for the three
tasks in radix join.

The table shows a significant difference in the number of
cache and TLB misses between the implementation of Blanas
et al. and ours. The idea behind radix join is that all partitions
should be sufficiently small to fully fit into caches, so one
should expect a very low number of misses, which is true for
our implementation, but not for the one of Blanas et al.

The reason for the difference is an unfortunate execution or-
der of hash building and probing in the latter code. Their code
performs radix join strictly in three phases. After partitioning
(first phase), hash tables are created for all partitions (second
phase). Only then, in the third algorithm phase, are those hash
tables probed to find join partners. Effectively, created hash
tables will long be evicted from CPU caches, before their
content is actually needed for probing. Our code avoids these
unnecessary memory round-trips by running build and probe
for each partition together.

D. Speedup from SMT Threads

Figure 13 shows that neither of the two radix join imple-
mentations that we evaluated can significantly benefit from
SMT threads. Up to the number of physical cores, both
implementations scale linearly, and in the SMT threads region
both suffer from the sharing of hardware resources (i.e.,
caches, TLBs) between threads. These results are also in line
with the results of Blanas et al. [2]. As pointed out before,
cache-efficient algorithms cannot benefit from SMT threads
to the same extent since there are not many cache misses
to be hidden by the hardware. The results are also useful in
validating our code against that of Kim et al. [1]. With our
optimized implementation, we achieve a speedup of 4.6, very
close to the 4.4 factor reported by Kim et al. on a similar Intel
Nehalem processor (at comparable absolute performance).

VI. HARDWARE-CONSCIOUS OR NOT?
In this section we compare the algorithms above under a

wide range of parameters and hardware platforms.

A. Effect of Workloads

The results of extended experiments over all workloads and
hardware platforms are summarized in Figure 14. Figure 14(a)
shows the performance of our own implementation using
Workload A on several hardware platforms (this workload is
the one used by Blanas et al. [2]).

While Blanas et al. [2] reported only a marginal perfor-
mance difference between no partitioning and radix join on
x86 architectures, in our results the hardware-conscious radix
join is appreciably faster when both implementations are
equally optimized. Only on the Sun Niagara the situation looks
different. We look into this architecture in the next sub-section.

The results in Figure 14(a) may still be seen as a good ar-
gument for the hardware-oblivious approach. An approximate
25 % performance advantage, e.g., on the two Intel platforms
might not justify the effort needed for parameter tuning in
radix join.

Running the same experiments with our second workload,
Workload B (Figure 14(b)), however, radically changes the
picture. Radix join is approximately 3.5 times faster than no
partitioning on Intel machines and 2.5 times faster on AMD
and Sun machines. That is, no partitioning only has compara-
ble performance to radix join when the relative relation sizes
are very different. This is because in such a situation, the
cost of the build phase is minimized. As soon as table sizes
grow and become similar, the overhead of not being hardware-
conscious becomes clearly visible (see the differences in the
build phases for no partitioning).

B. Scalability

To study the scalability of our two join variants, we re-ran
our experiments with a varying number of threads, up to the
maximum number of hardware contexts available on each of
our architectures. Figure 15 illustrates the results.

Besides the SMT issues that we already discussed in Sec-
tions IV-C and V-D, all platforms and both join implemen-
tations show good scalability. Thanks to this scalability, our
radix join implementation reaches a throughput of 196 million
tuples per second. As far as we are aware, this is the highest
throughput reached for in-memory hash joins so far.

On the AMD machine, no partitioning shows a clear bump
around 8–10 threads. This is an artifact of the particular AMD
architecture. Though the Opteron is marketed as a 16-core
processor, the chip internally consists of two interconnected
CPU dies [13]. It is likely that such an architecture requires a
tailored design for the algorithms to perform well, removing an
argument in favor of hardware-conscious algorithms as, even if
it is parameter-free, some multi-core architectures may require
specialized designs anyway. NUMA would create significant
problems for the shared hash table used in no partitioning
(let alone future designs where memory may not be coherent
across the machine).

TABLE V
LATCH COST PER BUILD TUPLE IN DIFFERENT MACHINES

Nehalem Sandy Bridge Bulldozer Niagara 2

Used instruction xchgb xchgb xchgb ldstub

Reported instruction
latency in [14], [15] ∼20 cycles ∼25 cycles ∼50 cycles 3 cycles
Measured impact
per build tuple 7-9 cycles 6-9 cycles 30-34 cycles 1-1.5 cycles

C. Sun UltraSPARC T2 “Niagara”

On the Sun UltraSPARC T2, a totally different architecture
than the x86 platforms, we see a similar result with Work-
load B. Hardware-conscious radix join achieves a throughput
of 50 million tuples per second (cf. Figure 15(d)), whereas no
partitioning achieves only 22 million tuples per second.

However, when looking to Workload A, no partitioning be-
comes faster than radix join on the Niagara 2 (shown in Figure
14(a)). One could attribute this effect to the highly effective on
chip multi-threading functionality of the Niagara 2. However,
there is more than that. First, the virtual memory page size
on UltraSPARC T2 is 8 KiB and the TLB is fully associative,
which are significant differences from other architectures.

Second, the Niagara 2 architecture turns out to have ex-
tremely efficient thread synchronization mechanisms. To il-
lustrate that, we deliberately disabled the latch code in the no
partitioning join. We found out that the ldstub instruction
which is used to implement the latch on UltraSPARC T2 is
very efficient compared to other architectures as shown in
Table V. These special characteristics of Sun UltraSPARC T2
also show the importance of architecture-sensitive decisions in
algorithm implementations.

D. TLB and Virtual Memory Page Sizes

In-memory hash joins are known to be sensitive to the vir-
tual memory subsystem of the underlying system, in particular
to the caching of address translations via translation look-aside
buffers (TLBs). The virtual memory setup of modern systems
is, to a small extent, configurable. By changing a system’s
page size, every address mapping (potentially cached in the
TLB) covers a different amount of main memory, and with a
large page size, fewer TLB entries might be needed for the
operations on a given memory region.

Intel Nehalem hardware can essentially be operated in either
of two modes with the support of the OS [16]: (i) with a page
size of 4 KiB (the default), the level 1 data TLB can hold up to
64 memory mappings; (ii) alternatively, when the page size is
set to 2 MiB, only 32 mappings can be cached in TLB1. Here
we study the effect of these two options on join performance.

No Partitioning Joins. During the hash table build and probe
phases, the hardware-oblivious no partitioning join algorithm
randomly accesses an element in the hash table that is created
for the smaller join relation R. For our workload configuration
A, this hash table is 384 MiB in size (tuples plus latches and
bucket structure). Consequently, the chance to hit a memory
page that is cached in TLB1 is 64/98304 (= 1/1536) or 32/192

0

10

20

30

40
cy

cl
es

pe
r

ou
tp

ut
tu

pl
e

n-part rdx n-part rdx n-part rdx n-part rdx
Nehalem Sandy Bridge AMD Niagara T2

partition build probe

(a) Workload A (256 MiBon 4096 MiB)

0

20

40

60

80

cy
cl

es
pe

r
ou

tp
ut

tu
pl

e

n-part rdx n-part rdx n-part rdx n-part rdx
Nehalem Sandy Bridge AMD Niagara T2

partition build probe

(b) Workload B (977 MiBon 977 MiB)

Fig. 14. Cycles per output tuple for hardware-oblivious no partitioning and hardware-conscious radix join algorithm, for different hardware architectures and
workloads. Experiments based on our own, optimized code. Using 8 threads on Nehalem, 16 threads on Sandy Bridge and AMD, and 64 threads on Niagara.

1 2 3 4 5 6 7 8

number of threads

0

20

40

60

80

100

th
ro

ug
hp

ut
[m

ill
io

n
tu

pl
es

/s
ec

]

radix n-part

(a) Intel Nehalem Xeon L5520

2 4 6 8 10 12 14 16

number of threads

0

40

80

120

160

200

th
ro

ug
hp

ut
[m

ill
io

n
tu

pl
es

/s
ec

]

radix n-part

(b) Intel Sandy Bridge E5-2680

2 4 6 8 10 12 14 16

number of threads

0

20

40

60

80

100

th
ro

ug
hp

ut
[m

ill
io

n
tu

pl
es

/s
ec

]

radix n-part

(c) AMD Bulldozer Opteron

10 20 30 40 50 60

number of threads

0

10

20

30

40

50

th
ro

ug
hp

ut
[m

ill
io

n
tu

pl
es

/s
ec

]

radix n-part

(d) Sun UltraSPARC T2

Fig. 15. Throughput comparison of algorithms on different machines using Workload B. Computed as input-size/execution-time where input-size = |R|= |S|.

TABLE VI
PERFORMANCE OF NO PARTITIONING JOIN WHEN USING LARGE PAGES

No Partitioning Join (Workload A) 4 KiB pages 2 MiB huge pages

Build cycles per build tuple 57.92 49.74
Probe cycles per output tuple 26.10 22.88
Overall cycles per output tuple 29.72 25.99

(= 1/6), depending on whether the system is configured for a
4 KiB or 2 MiB page size (respectively). The latter configu-
ration might significantly reduce the number of TLB misses
and thus improve execution performance. Additionaly, modern
processors contain paging-structure caches, which become far
more effective with a smaller number of total pages.

As listed in Table VI, we could indeed observe a perfor-
mance improvement for no partitioning with larger pages.
The dominating cost of no partitioning are actual data cache
misses, however, which are unaffected by the page size con-
figuration. This is why the performance improvement remains
limited to about 15 % in our configuration.

Radix Join. Our hardware-conscious algorithm, radix join, is
more sensitive to TLB behavior. In fact, the TLB size is often
considered the limiting factor that determines the maximum
number of partitions that can be created per partitioning pass.
Since the 64-entry TLB1 of our system is assisted by a 512-
entry shared TLB2, our Nehalem system actually achieved best
join performance with two 128-way passes (cf. Section V-A).

TABLE VII
PERFORMANCE OF RADIX JOIN WHEN USING LARGE PAGES

Radix Join 4 KiB pages 2 MiB huge pages 2 MiB huge pages
(Workload A) (2 pass / 14 bits) (2 pass / 14 bits) (1 pass / 12 bits)

Partitioning cycles 19.73 21.71 15.54
per input tuple
Join cycles 2.77 2.75 3.64
per output tuple
Overall cycles 23.74 25.81 20.15
per output tuple

Changing the system page size now may have opposing
effects. On the one hand side, a 2 MiB page size reduces the
number of available TLB entries (only 32 TLB1 entries). But
on the other hand side, the in-memory page table structure
of the system’s virtual memory setup becomes smaller; fewer
page tables have to be traversed for every TLB miss. In effect,
the cost of a single TLB miss gets reduced.

Table VII illustrates what these opposing effects mean to the
join performance of our Nehalem system. For the workload
we used, changing the system page size to 2 MiB shifted
the optimal radix join configuration to a single-pass 12-bit
partitioning phase (with a throughput improvement of ≈ 15 %).

Large Pages or Not? The above measurements indicate a
performance advantage of systems that use a large page size
configuration. But we note that this is a two-edged sword.
Large pages generally increase the memory footprint of pro-
cesses in the system, which in productive systems might be

0

2

4

6

8

tim
e

[b
ill

io
n

cy
cl

es
]

1 2 3 4 5 6 7 8
thread id

1©
2©

3©

4©
5©

(a) Simple task queueing

0

2

4

6

8

tim
e

[b
ill

io
n

cy
cl

es
]

1 2 3 4 5 6 7 8
thread id

1©
2©

3©

4©
5©

(b) Task decomposition for large partition/join tasks

Fig. 16. Barrier synchronization cost in radix join (Workload A; foreign key distribution in S skewed with Zipf parameter z = 1.5; tasks that make progress
are indicated using shades of gray; wait time for barrier synchronization indicated as). Simple task queueing leaves many tasks under-utilized (leading to
significant wait times in (a)). Fine-granular task decomposition in (b) (similar to of [1]) improves load distribution and increases join throughput by 25 %.

more problematic than in our micro-benchmarks.
In our benchmarks, both join strategies equally benefit

from large pages, leaving the “hardware-conscious or not?”
question unchanged. As already mentioned above, the small
benefit from large pages might also disappear as input data
sizes are scaled up in future systems.

Large pages may have a more significant effect on the per-
formance of no partitioning—but only if their use is combined
with hardware-conscious optimizations such as explicit data
prefetching. We refer the reader to our technical report [17]
for details.

E. Barrier Synchronization and Load Balancing

In the two join variants that we consider in this work,
parallel execution threads synchronize in two ways: (i) write
accesses to the shared hash table in no partitioning are
protected by latches; (ii) both join variants operate in multiple
phases which are separated by barriers. While barrier synchro-
nization allows threads to perform a lot of work independently,
there is a risk for wasted idle time when work is distributed
unevenly over threads, so threads have to wait for each other.

Barrier synchronization is not a problem for the no parti-
tioning join execution strategy since, by construction, tuples
are distributed evenly across threads and per-tuple cost is
basically independent of the tuple values.

Radix join, by contrast, is more vulnerable to penalties due
to barrier synchronization whenever tasks are not scheduled
properly over available worker threads (we discussed a related
issue, the cache locality problem of the radix join implementa-
tion of [2], already in Section V-C). In total, radix join consists
of five processing stages (assuming a two-pass partitioning
scenario): 1© compute local histogram for R; 2© compute local
histogram for S; 3© partitioning pass 1; 4© partitioning pass
2; 5© join phase (partition-wise build and probe). And while
threads are guaranteed to receive an equal share of input data
in the first three stages, partition sizes produced by stage 4©
depend on the distribution of values in R and S.

To study the potential load imbalance, we modified our
data generator to produce a heavily skewed input data set.
Foreign keys in S no longer reference keys in R with a uniform
likeliness, but according to a Zipf distribution law with Zipf

factor z = 1.5. Figure 16(a) illustrates, for each of the eight
threads in our system (x axis), the type of work it is doing as
time progresses (along the y axis).

As can be seen in the figure, all threads perform useful work
near the beginning of each execution stage (indicated through
different gray shades). But some finish their stage earlier than
others, meaning that they have to wait until their last peer
finishes the stage (threads 7 and 4 in the figure). The resulting
idle times, indicated as , waste CPU resources without any
real thread progress.

Fine-Granular Task Decomposition. The barrier synchroniza-
tion problem in Figure 16(a) is a result of the task queueing
mechanism that we adopted from [2] to distribute load. This
mechanism is insufficient to adapt to skewed input data.

To combat the problem, we modified our radix join im-
plementation to perform task decomposition, similar to the
strategy proposed by Kim et al. [1]. In a nutshell, whenever a
partition after stage 3© significantly exceeds its expected size
(as it would result from a uniform distribution), we break up
the partition into smaller chunks that are handled by all threads
in concert. This avoids such partitions that can “hog” one of
the execution threads and affect overall throughput.

Figure 16(b) illustrates the effect on the execution progress.
The modification successfully avoids load imbalances and
speeds up join execution by about 25 %. Though the improved
scheduling mechanism applies mainly to the radix join algo-
rithm, we note that its realization is actually parameter-free
(and not in itself a hardware-conscious optimization).

F. Skewed Data

In this section, we study the effects of skew following the
same methodology of Blanas et al. [2]. More specifically, we
populate the foreign key column (table S) of our data sets
such that the probability of referencing individual key values
(of R) follows a Zipf distribution law (we varied the Zipf factor
between z = 0 and z = 1.75).

Figure 17 illustrates how no partitioning and radix join react
to skew. The graphs confirm that skew helps the performance
of the hardware-oblivious no partitioning join, which was
observed already by Blanas et al. [2] and claimed “a big
advancement over state-of-the-art” methods. Ultimately, no

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75
Zipf factor z

0

2

4

6

8

10
ex

ec
.t

im
e

[b
ill

io
n

cy
cl

es
] no partitioning (our code)

radix join (our code)

(a) Workload A (256 MiBon 4096 MiB)

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75
Zipf factor z

0

2

4

6

8

10

ex
ec

.t
im

e
[b

ill
io

n
cy

cl
es

]

no partitioning (our code)
radix join (our code)

(b) Workload B (977 MiBon 977 MiB)

Fig. 17. Join performance when foreign key references follow a Zipfian data distribution (Intel Xeon L5520, 2.26 GHz).

partitioning surpasses radix join in join throughput when using
Workload A.

The observation does not come as a surprise, however, and
only happens for data that is heavily skewed. For instance, in
the “low skew” case of [2] (z = 1.05), the most frequent value
in S occurs with a probability of 8.4 %; the chance to hit one
of the 600 most frequent join keys (out of 16 million) already
exceeds 50 %. For the “high skew” case of [2] (z= 1.25), more
than 22 % of all S tuples carry the same value and the chance
to hit one of the top-600 values is more than 83 %. Effectively,
even a small L1 cache is sufficient to hold the small hot set
of R that is relevant during the probe phase.

Our results indicate that the benchmark configuration of [2]
(very high skew, suitable relation sizes) hits a sweet spot of
the no partitioning algorithm. This can be seen also in Fig-
ure 17(b), where the same experiment with Workload B does
not help no partitioning as much as the previous configuration.

Performance improvement with increasing skew can be seen
as an advantage of no partitioning. The effect also means,
however, that the runtime characteristics of the algorithm
becomes dependent on the input data distribution and thus
difficult to predict (e.g., by a cost-based query optimizer).
Radix join, by contrast, offers predictable performance over
a wide range of skew, a characteristic that is desirable in the
context of robust query processing, an important and active
criterion especially for productive query processors [18].

G. Effect of Relation Size Ratio

The experiments above show that relative sizes of the tables
to join play a big role in the behavior of the algorithms. In
the following set of experiments, we explore the effect of
varying relation cardinalities on join performance. For these
experiments, we use the Intel Xeon L5520 and fixed the
number of threads at 8. We varied the size of the primary
key build relation R in the non-equal data set from 1 · 220 to
256 ·220 tuples. The size of the foreign key relation S is fixed
at 256 · 220. However, as we changed the size of R, we have
also adjusted the distribution of values in S accordingly.

Figure 18 shows the cycles per output tuple for each phase
as well as the entire run for different R sizes in a log-log plot.

The results confirm the observation made so far and pro-
vide a clearer answer to the controversy between hardware-
conscious and hardware-oblivious algorithms. No partitioning
does very well when the build relation is very small compared
to the large relation. Performance goes down as the size of R
increases because of the cost of the build phase (Figure 18(a)).
Radix join is much more robust to different table sizes and
offers almost constant performance across all sizes of R. More
importantly, the contribution of the partitioning phase is the
same across the entire range, indicating that the partitioning
phase does its job regardless of table sizes.

In other words, no partitioning join is better that radix join
only under skew and when the sizes of the tables being joined
significantly differs. In all other cases, radix join is better
(and significantly better in fact) in addition to also being more
robust to different parameters like skew or relative table sizes.

VII. RELATED WORK

After Manegold et al. [8] and Ailamaki et al. [9] both
demonstrated the importance of memory and caching effects
on modern computing hardware, soon new algorithm variants
emerged to run classical database problems efficiently on
modern hardware.

One of the design techniques to achieve this goal is the
use of partitioning, which we discussed extensively also in
this work. Besides a use for in-memory joins, partitioning
is relevant also, e.g., to perform aggregation, as investigated
recently by Ye et al. [19]. And while the aggregation problem
differs from join computation in many ways, the observations
made by Ye et al. about different hardware architectures are
very consistent with ours.

While here we mainly looked at local caching and memory
latency effects, we earlier demonstrated how the topology of
modern NUMA systems may add additional complexity to the
join problem [20]. Handshake join is an evaluation strategy
on top of existing join algorithms to make those algorithms
topology-aware.

With a similar motivation, Albutiu et al. [3] proposed to use
sort-merge algorithms to compute joins, leading to a hardware-
friendly sequential memory access pattern. It remains unclear,

1 2 4 8 16 32 64 128 256

build relation size (220 tuples in log2 scale)

0.25

1

4

16

64

256
cy

cl
es

pe
r

ou
tp

ut
tu

pl
e Overall

Probe
Build

(a) No partitioning join

1 2 4 8 16 32 64 128 256

build relation size (220 tuples in log2 scale)

0.25

1

4

16

64

256

cy
cl

es
pe

r
ou

tp
ut

tu
pl

e Overall
Partitioning

(b) Radix join

Fig. 18. Cycles per output tuple with varying build relation cardinalities in Workload A (Intel Xeon L5520, 2.26 GHz, Radix join was run with the best
configuration in each experiment where radix bits varied from 13 to 15).

however, whether the switch to a parallel merge-join is enough
to adequately account for the topology of modern NUMA
systems.

Similar in spirit to the no partitioning join is the recent
GPU-based join implementation proposed by Kaldewey et al.
[21]. Like in no partitioning, the idea is to leverage hardware
SMT mechanisms to hide memory access latencies. In GPUs,
this idea is pushed to an extreme, with many threads/warps
sharing one physical GPU core.

VIII. CONCLUSION

The results in this paper resolve the contradictions among
existing results conclusively: hardware-oblivious algorithms
only work well under a narrow parameter window (when the
table sizes significantly differ) and on one particular hardware
platform. Moreover, with the novel ideas introduced in the pa-
per, hardware-conscious algorithms can be made significantly
faster than what has been published so far and more robust
to a wider set of parameters. These algorithms can also be
easily tuned to the underlying hardware, as shown in the paper,
significantly reducing the argument that they are more difficult
to port than their hardware-oblivious counterparts.

Finally, all the code used to obtain results in this paper is
available at http://www.systems.ethz.ch/projects/paralleljoins.

ACKNOWLEDGEMENTS

This work was supported by the Swiss National Science
Foundation (Ambizione grant; project Avalanche) and by the
Enterprise Computing Center (ECC) of ETH Zurich. We thank
the Computing Systems Laboratory of the NTUA for the
access to the Niagara machine. We thank the authors of [2]
for making their code and results available.

REFERENCES

[1] C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D. Nguyen, A. D. Blas,
V. W. Lee, N. Satish, and P. Dubey, “Sort vs. hash revisited: Fast join
implementation on modern multi-core CPUs,” PVLDB, vol. 2, no. 2, pp.
1378–1389, 2009.

[2] S. Blanas, Y. Li, and J. M. Patel, “Design and evaluation of main mem-
ory hash join algorithms for multi-core CPUs,” in SIGMOD Conference,
2011, pp. 37–48.

[3] M.-C. Albutiu, A. Kemper, and T. Neumann, “Massively parallel sort-
merge joins in main memory multi-core database systems,” PVLDB,
vol. 5, no. 10, pp. 1064–1075, 2012.

[4] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing main-
memory join on modern hardware,” IEEE Trans. Knowl. Data Eng.,
vol. 14, no. 4, pp. 709–730, 2002.

[5] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems,
3rd edition. Springer, 2012.

[6] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, “Application of hash
to data base machine and its architecture,” New Generation Comput.,
vol. 1, no. 1, pp. 63–74, 1983.

[7] A. Shatdal, C. Kant, and J. F. Naughton, “Cache conscious algorithms
for relational query processing,” in VLDB, 1994, pp. 510–521.

[8] P. A. Boncz, S. Manegold, and M. L. Kersten, “Database architecture
optimized for the new bottleneck: Memory access,” in VLDB, 1999, pp.
54–65.

[9] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on a
modern processor: Where does time go?” in VLDB, 1999, pp. 266–277.

[10] S. Manegold, P. Boncz, N. Nes, and M. Kersten, “Cache-conscious radix-
decluster projections,” in VLDB, Toronto, ON, Canada, Sep. 2004, pp.
684–695.

[11] “Intel performance counter monitor,” http://software.intel.com/en-us/
articles/intel-performance-counter-monitor/, online, accessed April
2012.

[12] S. Blanas and J. M. Patel, “Source code of main-memory hash join
algorithms for multi-core CPUs,” http://pages.cs.wisc.edu/∼sblanas/files/
multijoin.tar.bz2, online, accessed April 2012.

[13] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes,
“Cache hierarchy and memory subsystem of the AMD Opteron proces-
sor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, Mar. 2010.

[14] A. Fog, “Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs,” http:
//www.agner.org/optimize/instruction tables.pdf, online, accessed July
2012.

[15] Sun, “UltraSPARC T2TM supplement to the UltraSPARC archi-
tecture 2007,” http://sosc-dr.sun.com/processors/UltraSPARC-T2/docs/
UST2-UASuppl-HP-ext.pdf, online, accessed July 2012.

[16] Intel, “Intel 64 and IA-32 architectures optimization
reference manual,” http://www.intel.com/content/dam/doc/manual/
64-ia-32-architectures-optimization-manual.pdf, online, accessed July
2012.

[17] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu, “Main-memory
hash joins on multi-core CPUs: Tuning to the underlying hardware,”
ETH Zurich, Systems Group, Tech. Rep., Nov. 2012.

[18] G. Graefe, “Robust query processing,” in ICDE, 2011, p. 1361.
[19] Y. Ye, K. A. Ross, and N. Vesdapunt, “Scalable aggregation on multi-

core processors,” in DaMoN, 2011, pp. 1–9.
[20] J. Teubner and R. Müller, “How soccer players would do stream joins,”

in SIGMOD Conference, 2011, pp. 625–636.
[21] T. Kaldewey, G. M. Lohman, R. Müller, and P. B. Volk, “GPU join

processing revisited,” in DaMoN, 2012, pp. 55–62.

