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ABSTRACT
While there seems to be a general agreement that next years’
systems will include many processing cores, it is often over-
looked that these systems will also include an increasing
number of different cores (we already see dedicated units for
graphics or network processing). Orchestrating the diversity
of processing functionality is going to be a major challenge
in the upcoming years, be it to optimize for performance or
for minimal energy consumption.

We expect field-programmable gate arrays (FPGAs or “pro-
grammable hardware”) to soon play the role of yet another
processing unit, found in commodity computers. It is clear
that the new resource is going to be too precious to be ig-
nored by database systems, but it is unclear how FPGAs
could be integrated into a DBMS. With a focus on database
use, this tutorial introduces into the emerging technology,
demonstrates its potential, but also pinpoints some chal-
lenges that need to be addressed before FPGA-accelerated
database systems can go mainstream. Attendees will gain an
intuition of an FPGA development cycle, receive guidelines
for a “good” FPGA design, but also learn the limitations
that hardware-implemented database processing faces. Our
more high-level ambition is to spur a broader interest in da-
tabase processing on novel hardware technology.

Categories and Subject Descriptors
H.2 [Database Management]: Systems; C.5 [Computer
System Implementation]: VLSI Systems

General Terms
Design

Keywords
FPGA, hardware acceleration, data processing, VLSI

1. INTRODUCTION
The idea of using a domain-specific hardware co-processor

to accelerate database processing is not new. The idea of a
“database machine”[6] failed in the late 70s: with substantial
up-front costs (engineering efforts, money, and time), tailor-
made hardware components could no longer keep pace with
improvements that general-purpose CPUs saw at the time.
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Today, thirty years later, the bottlenecks have shifted.
General-purpose CPUs will no longer (significantly) bene-
fit from increasing clock speeds. At the same time, recent
technology advances have eliminated the up-front cost for
new chip designs almost entirely, making the idea of a data-
base co-processor worth a reconsideration.

In this tutorial, we look at FPGAs (field-programmable
gate arrays), a promising instance of such technology ad-
vances. Naively spoken, FPGA chips consist of a number
of logic gates whose wiring can be programmed by soft-
ware (more details below). The programmed chip can then
be used, e.g., as a hardware-accelerated implementation for
specific compute or control tasks.

FPGAs are already used successfully in image and signal
processing, where they excel with low latency and a high
degree of parallelism (hence, throughput). From formerly
highly specialized system designs, they are increasingly be-
coming part of commodity setups. We expect them to soon
play a similar role as dedicated network or graphics proces-
sors play today: as part of a heterogeneous multi-core sys-
tem, FPGAs will act as one particular processing unit, ready
to solve data- or compute-intensive sub-tasks in hardware.

1.1 FPGAs for Database Co-Processing
Our interest here is in the application of FPGAs for da-

tabase co-processing. The data-intensive nature of database
tasks makes them a particularly good fit for FPGA-based
processing. Streaming databases, e.g., may benefit from the
low latencies that FPGA implementations can provide even
under high load. More traditional systems can use their
existing set-oriented query formulations to exploit the high
degree of parallelism inherent to programmable hardware.

Unfortunately, the potential of FPGAs is still not very
widely known. One reason may be that the processing model
of FPGAs—and hence the way they are controlled by soft-
ware—is very different to the traditional von Neumann ar-
chitecture that computer scientists are used to deal with.

1.2 Purpose of this Tutorial
The main purpose of this tutorial is to give an introduc-

tion into FPGA-accelerated database processing. Attendees
receive an overview of the technology, some technical back-
ground, and—most importantly—serviceable guidelines to
judge the applicability of an FPGA-based solution to a given
problem, the quality of a solution, or learn how to get started
with an own solution.

We do not expect any particular background from tuto-
rial attendees (those with a weak remembrance of their early
digital circuit design classes may better appreciate some of
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Virtex-II Pro Virtex-5
XC2VP30 XC5VFX200T

Lookup Tables (LUTs) 27,392 122,880
Flip-Flops (registers) 27,392 122,880
Block RAM (kbit) 2,448 16,416
18-bit Multipliers 136 384
PowerPC Cores 2 2
maximum clock speed (MHz) ≈ 100 ≈ 550
release year 2002 2006

Table 1: Selected characteristics of Xilinx FPGAs.

the technical aspects we show, however). Parts of the tuto-
rial will also contain technical material, but attendees may
easily skip these parts and still follow the remainder of the
tutorial.

1.3 Tutorial Outline and Setup
Our tutorial is organized in four units whose contents we

sketch in Sections 2–5. Roughly speaking, we provide the
necessary background about the inner workings of an FPGA
in order to build one’s own FPGA circuits in Unit 1. In
Unit 2, we then show how FPGAs can be used to support
database tasks, which gives us the background to assess the
trade-offs in FPGA-assisted database processing in Unit 3.
In Unit 4, we see what work has been done in the field and
how we can benefit from that.

We do not expect attendees to bring experience in FPGA
development. Our tutorial includes live demonstrations of
an FPGA development cycle to give an intuition of what it
takes to build hardware circuits for database tasks.

2. FPGA BASICS
A basic understanding of the hardware internals is im-

portant to judge the trade-offs that occur when building an
FPGA circuit. In the first unit of this tutorial, we give a
very brief overview about the inner workings of the underly-
ing hardware and highlight some particular features which
are most relevant in a database context.

2.1 FPGA Building Blocks

IN1
IN2
IN3
IN4

OUT

The heart of every FPGA chip is a
number of lookup tables (LUTs), a pro-
grammable logic unit with k inputs and
a single output (where k is typically be-
tween four and six, see right). A LUT
can be programmed to implement any
Boolean function with k inputs (inter-
nally, the LUT uses a 2k-row lookup table that lists every
possible input combination and the desired output). From a
pool of lookup tables, in combination with a programmable
interconnect fabric, arbitrary logic circuits can be created in
hardware, based on a specification in software.

The logic part of an FPGA (lookup tables and intercon-
nect fabric) is paired with means to keep state during pro-
cessing. Most chips provide two different types of on-chip
memory: flip-flops (or registers) provide storage for a single
bit each and are wired directly into the logic part; memory
in larger quantities is provided by distributed block RAM (or
BRAM ), configurable RAM units spread across the chip.

Oftentimes, FPGA chips are equipped with additional
standard functionality, such as hardware multipliers or even
full-fledged CPU cores. In Unit 3 of the tutorial (Section 4),
we will use the built-in PowerPC core on Xilinx Virtex chips
to connect FPGA-accelerated functionality to traditional
CPU-style processing. In Table 1, we listed some charac-
teristics of two FPGA chips sold by Xilinx (a major FPGA
vendor).

2.2 Strengths and Limitations
All available resources can be programmed and used in

an extremely flexible manner. Later in this tutorial, we
are going to emphasize the inherent parallelism in FPGAs,
the possibility to operate circuits in an asynchronous mode
of execution, and the use of FPGAs as content-addressable
memories for highly efficient key-value lookups.

Limits to this flexibility are set by the availability of each
type of resources. The most apparent limitation is the num-
ber of lookup tables of a given FPGA chip, which can limit
the complexity of the logic circuit that can be programmed
to it. Other potential limits include memory requirements,
the availability of additional in-silicon functionality, or the
bandwidth of the interconnect fabric.

In comparison with general-purpose CPUs, FPGAs typi-
cally operate at significantly lower clock frequencies (around
100 MHz). This has very positive effects when it comes to
the consumption of electrical energy, where FPGAs excel
over CPUs by up to two orders of magnitude. On the flip
side, there is a risk of an inferior execution speed. Conse-
quent use of parallelism and asynchronous execution, how-
ever, typically more than compensates for the reduced clock
frequency.

2.3 Programming FPGAs
The specification of a user logic is described using a do-

main-specific programming language, a hardware description
language (HDL), the most popular ones being VHDL and
Verilog. Given the HDL description of a logic component,
software tools can synthesize the design into logic circuits
and load them onto an FPGA chip. As a development aid,
circuits can also be simulated in software with high accuracy
based on their HDL description.

Since HDL code essentially describes the behavior of a
hardware circuit, programming HDL is considerably differ-
ent than writing sequential code in a commodity program-
ming language. In the tutorial, we present VHDL exam-
ples that illustrate an FPGA development cycle and we give
helpful hints to avoid stepping into typical pitfalls.

3. USING FPGAS
A potential use of FPGAs in a database context is the

processing of data streams. The data flow in such a system
thereby directly translates into the physical wiring on the
hardware side.

3.1 Asynchronous Execution
To demonstrate the typical structure of a resulting hard-

ware execution plan, let us consider a stock trading scenario,
where we process a stream that contains stock trades. An
application is now interested in all trades for UBS stocks
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Figure 1: Algebraic representation of Query Q1 and
resulting hardware execution plan following a syn-
chronous execution model.
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Figure 2: Optimized (asynchronous) hardware exe-
cution plan for Query Q1.

that had a volume greater than 100,000:

SELECT Price, Volume

FROM Trades

WHERE Symbol = "UBSN" AND Volume > 100000 .
(Q1)

This user query can be translated into a pipelined hard-
ware circuit by compiling its algebraic representation (Fig-
ure 1(a)) into logic components operator-by-operator. The
hardware circuit resulting from a translation of Query Q1 is
illustrated in Figure 1(b). In this illustration, arrows indi-
cate wires in the FPGA interconnect fabric and correspond
to the data flow in the algebraic plan; square boxes represent
logic circuits that implement comparison or a Boolean ‘and’
operation; and flip-flop registers serve as buffers for inter-
mediate results and are represented as gray-shaded boxes.

The hardware plan in Figure 1(b) follows a strictly syn-
chronized execution mode. Every clock cycle, each opera-
tor retrieves data from its input registers, processes it, then
stores it in its output registers where the data is going to be
picked up in the following clock cycle. The timing diagram
of the circuit thus looks as follows:

clock0 1 2 3 4 5 6

=© <© ∧© σ π

Only a fraction of every clock cycle is used to perform actual
work (indicated by ). After that, each operator waits for
synchronization with the clock signal.

This is essentially what CPUs do, too. With dedicated
hardware we can do better. Figure 2 illustrates the result
of optimizing the plan in Figure 1(b) to operate in an asyn-
chronous execution mode. By eliminating intermediate flip-
flop registers, all sub-circuits may now operate without any
external clock constraints. In the corresponding timing dia-
gram,

clock
0 1 2

=©
<© ∧©

σ

,

it is easy to see how this leads to a reduction in execution
time from six clock cycles down to a single cycle. Observe
also how the optimization also enabled a parallel execution
mode for the two (independent) predicates on Symbol and
Volume.

This example demonstrates how significantly more work
can be packed into a single clock cycle in an FPGA-based
system, as opposed to general-purpose CPUs with fixed and
strictly synchronized instruction sets. In practice, this typ-
ically more than compensates for the lower speeds FPGAs
operate on.

3.2 Content-Addressable Memory
The main advantage of using FPGAs for data process-

ing is their intrinsic parallelism. Among others, this en-
ables us to escape from the von Neumann bottleneck (also
called the memory wall) that classical computing architec-
tures struggle with. In the common von Neumann model,
memory is physically separated from the processing CPU.
Data is acquired from memory by sending the location of
a piece of data, its address, to the RAM chip, then receiv-
ing the data back. In FPGAs, flip-flop registers and block
RAM are distributed across the chip and tightly wired to
the programmable logic. In addition, lookup tables can be
re-programmed at runtime and thus be used as additional
distributed memory. As such, the on-chip storage resources
of the FPGA can be accessed in a truly parallel fashion.

A particular use of this potential is the implementation
of content-addressable memory (CAM). Other than tradi-
tional memory, content-addressable memory can be accessed
by data values, rather than by explicit memory addresses.
Typically, CAMs are used to resolve a given data item to
the address it has been stored at. More generally, however,
the functionality can implement an arbitrary key-value store
with constant (typically single-cycle) lookup time.

A traditional application domain of content-addressable
memories is network processing, where they are used, e.g.,
to implement routing tables or pattern matching for network
firewalls. Network processing units therefore often ship with
built-in CAMs. Bandi et al. [2] have explored the use of
such devices for data stream processing and found content-
addressable memories to be a suitable tool to perform fre-
quent item detection on data streams. Other potential ap-
plications include all those that would typically depend on
hash tables, such as duplicate elimination, aggregation, or
joins.

4. FPGAS IN DATABASES SYSTEMS
To make a hardware-accelerated operator implementation

accessible to a database system, it has to be wired up to
conventional components and connected to, e.g., a general-
purpose CPU. To this end, commercially available FPGAs
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Figure 3: FPGA placements in data path: (a) be-
tween network interface and CPU; (b) between disk
and CPU; (c) FPGA as co-processor.

often come with additional components (hard cores) that
are implemented in silicon directly on the chip. Available
hard cores may include, for example, on-chip memory or
full-fledged CPU cores (cf. Table 1). Additional standard
functionality can be programmed onto the chip by means of
vendor-provided soft cores (such as additional CPUs, mem-
ory or NIC controllers). The FPGA chip itself usually comes
pre-mounted on a board with additional interfacing compo-
nents. Boards are available as standalone solutions, to be
plugged into PCI Express slots, or even packaged as modules
for HyperTransport CPU sockets.

Besides the physical integration of FPGA into a DBMS,
the placement of the additional processing unit in a system’s
data path has important implications, and FPGAs offer a
number of alternatives here.

Figure 3 illustrates three possible architectures. For laten-
cy-sensitive data stream processing operations, the FPGA
can be inserted between the network interface (NIC) and
the CPU as shown in Figure 3(a). By performing filtering
and aggregation on the FPGA, the work for the CPU can
be significantly reduced and, hence, the externally applicable
load increased. In a short example, we demonstrate how this
enables data processing at true network wire speed.

Application data filtering is, in principal, also possible us-
ing programmable network cards [21] that provide one or
more dedicated processors directly on the card. However,
unlike FPGAs, programmable network cards have been de-
signed only for a quite narrow set of applications.

A similar application pattern is shown in Figure 3(b).
Here, we assume a disk drive as the data source that is
accessed and pre-filtered using an FPGA. The prototypic
use case for such a setup are data warehouses, where table
dimensionalities and access patterns often render the use of
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Figure 4: Direct connection of a user logic core to
the 4-stage execution pipeline of an embedded soft
core CPU.

indexes infeasible and data essentially needs to be scanned.
Again, the FPGA can help in offloading work from the CPU.
The approach in Figure 3(b) was suggested in [7] and very
closely resembles the one taken by data warehouse appli-
ances such as the Netezza Performance Server (NPS) sys-
tem [5].

Figure 3(c) illustrates the FPGA as a co-processor to the
CPU. This approach allows the CPU to offload computation-
intensive tasks to the FPGA. The FPGA is usually con-
nected through a HyperTransport or PCIe bus. Communi-
cation between CPU and FPGA is realized through shared
memory and notifications via interrupts. A commercial ex-
ample that follows a similar approach is the MySQL Ana-
lytic Appliance offered by Kickfire [17]. The appliance con-
tains an FPGA mounted on a PCIe card. Next to the FPGA
chip, the card also contains a dedicated RAM chip with a
high-bandwidth link to the FPGA.

The architecture shown in Figure 3(c) can be easily inte-
grated in a traditional system. However, transferring data to
and from the FPGA to main memory (shared with CPUs)
can become very expensive. For large data transfers, the
FPGA can even aggravate the memory bottleneck of tradi-
tional systems. Now, accesses from both CPU and FPGA
have to arbitrated. In the tutorial, we outline a possible so-
lution for this problem. It based on an even closer coupling
of the custom logic with the CPU. Several embedded CPUs
such as the PowerPC 450 (available on Virtex-5 FPGAs) or
soft core CPUs [15, 18] allow direct coupling of custom logic
to the data path of the execution pipeline. This approach
literally extends functionality of the CPU itself. A simpli-
fied 4-stage execution pipeline of a soft core CPU is shown
in Figure 4. A customized hardware circuit (user logic) is di-
rectly hooked into this pipeline and can provide accelerated
implementations of performance-critical functionality. The
custom functions can be accessed from CPU programs either
through user-defined instructions or specific control instruc-
tions to interface between the CPU and the user core.

In summary, FPGAs provide a number of alternatives to
be hooked into a database system. In the tutorial, we discuss
the trade-offs that incur with such alternatives and provide
an intuition for the best integration approach to solve a given
database task.
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5. EXISTING RESEARCH
FPGAs per se have received only little attention in the

database community so far. In several ways, however, pro-
gramming FPGAs resembles the way how modern, vector-
oriented processors are used to accelerate database-typical
tasks. The parallelism offered by FPGAs is very similar to
the execution mode of SIMD architectures or graphics pro-
cessors (GPUs). Thus, many solutions proposed for such ar-
chitectures can straightforwardly be converted into circuits
for FPGAs.

In particular, this includes the work about database pro-
cessing in graphics processors. Govindaraju et al. [12] use
the parallelism in GPUs to perform standard database op-
erations. Bandi et al. [3] looked into GPU support for spa-
cial queries. By actually rendering geometric shapes into
the GPU memory, the GPU serves as a pre-processing filter
for spacial queries. In [11], Govindaraju et al. used similar
hardware to implement sorting efficiently. Their approach is
similar to a recent work by Chhugani et al. [4], who exploit
vectorized processing to implement sorting networks on a
commodity CPU.

The Cell Broadband Engine explicitly favors the use of
vector primitives by means of dedicated processing units
(synergistic processing units, SPUs) with SIMD support.
This has been used to accelerate various database tasks, such
as sorting [8], join processing [9], or stream processing [19].

The use of SIMD instructions of commodity CPUs has
been considered for database processing by Zhou et al. [20].
Recently, Johnson et al. [16] described how SIMD function-
ality can be used to evaluate multiple predicates within a
single CPU instruction.

On the other end, a lot of work has been done in the
hardware community, and a number of techniques have been
developed from which an FPGA-accelerated database engine
can directly benefit. Most importantly, this affects the field
of reconfigurable computing. FPGAs can arbitrarily be re-
programmed at runtime and a number of systems have been
built to perform this task intelligently and efficiently.

Here, we particularly want to point to the PipeRench pro-
ject [10], a system that has been designed to support work-
loads with a stream-like data flow (such as database work-
loads typically are). If necessary, PipeRench will swap in
and out parts of a hardware circuit if the available hardware
resources are not sufficient to solve a given task.

In projects like Kiwi [13] or Liquid Metal [14], work is cur-
rently underway to use FPGAs as accelerators for general-
purpose programming languages. There certainly is a signifi-
cant overlap with database processing here, though database
systems will likely be able to much more benefit from their
strictly set-oriented query formulations.

Hardware implementations for data mining problems have
also been proposed. For example, Baker et al. [1] present a
implementation of the Apriori algorithm on FPGAs based
on Systolic Arrays. Items are streamed through a linear
array of processing elements, each implemented as a circuit
on the FPGA. Initially, frequent 1-item sets are inserted at
the input of the array. The candidate generation, pruning
and the computation of the support are performed in the
units as the items stream through the array. At the output,
the support information is extracted and fed back into the
input. This process repeats until the final candidate set is
found. Each array element contains memory that stores the
candidates whose support is currently being processed.
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