
Understanding the Impact of Multi-Core Architecture in Cluster Computing: A
Case Study with Intel Dual-Core System

�

Lei Chai Qi Gao Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University�

chail, gaoq, panda � @cse.ohio-state.edu

Abstract

Multi-core processor is a growing industry trend as sin-
gle core processors rapidly reach the physical limits of pos-
sible complexity and speed. In the new Top500 supercom-
puter list, more than 20% processors belong to multi-core
processor family. However, without an in-depth study on
application behaviors and trends on multi-core cluster, we
might not be able to understand the characteristics of multi-
core cluster in a comprehensive manner and hence not be
able to get optimal performance. In this paper, we take
on the challenges and design a set of experiments to study
the impact of multi-core architecture on cluster comput-
ing. We choose to use one of the most advanced multi-core
servers, Intel Bensley system with Woodcrest processors, as
our evaluation platform, and use popular benchmarks in-
cluding HPL, NAMD, and NAS as the applications to study.
From our message distribution experiments, we find that on
an average about 50% messages are transferred through
intra-node communication, which is much higher than intu-
ition. This trend indicates that optimizing intra-node com-
munication is as important as optimizing inter-node com-
munication in a multi-core cluster. We also observe that
cache and memory contention may be a potential bottle-
neck in multi-core cluster, and communication middleware
and applications should be multi-core aware to alleviate
this problem. We demonstrate that multi-core aware algo-
rithm, e.g. data tiling, improves benchmark execution time
by up to 70%. We also compare the scalability of multi-
core cluster with that of single-core cluster and find that the
scalability of multi-core cluster is promising.

�
This research is supported in part by DOE’s Grants#DE-FC02-

06ER25749 and #DE-FC02-06ER25755; NSF’s Grants #CNS-0403342
and #CNS-0509452; grants from Intel, Mellanox, Cisco systems, Linux
Networx and Sun Microsystems; and equipment donations from Intel,
Mellanox, AMD, Apple, Appro, Dell, Microway, PathScale, IBM, Silver-
Storm and Sun Microsystems.

1. Introduction

The pace people pursuing computing power has never
slowed down. Moore’s Law has been proven to be true over
the passage of time - the performance of microchips has
been increasing at an exponential rate, doubling every two
years. “In 1978, a commercial flight between New York and
Paris cost around $900 and took seven hours. If the princi-
ples of Moore’s Law had been applied to the airline indus-
try the way they have to the semiconductor industry since
1978, that flight would now cost about a penny and take
less than one second.” (a statement from Intel) However,
it becomes more difficult to speedup processors nowadays
by increasing frequency. One major barrier is the overheat
problem, which high-frequency CPU must deal with care-
fully. The other issue is power consumption. These con-
cerns make it less cost-to-performance effective to increase
processor clock rate. Therefore, computer architects have
designed multi-core processor, which means to place two
or more processing cores on the same chip [9]. Multi-core
processors speedup application performance by dividing the
workload to different cores. It is also referred to as Chip
Multiprocessor (CMP).

On the other hand, cluster has been one of the most pop-
ular models in parallel computing for decades. The emer-
gence of multi-core architecture will bring clusters into a
multi-core era. As a matter of fact, multi-core processors
have already been widely deployed in parallel computing.
In the new Top500 supercomputer list published in Novem-
ber 2006, more than 20% processors are multi-core proces-
sors from Intel and AMD [6]. In order to get optimal perfor-
mance, it is crucial to have in-depth understanding on appli-
cation behaviors and trends on multi-core cluster. It is also
very important to identify potential bottleneck in multi-core
cluster through evaluation, and explore possible solutions.
However, since multi-core is a relatively new technology,
few research has been done in the literature.

In this paper, we take on the challenges and design a

set of experiments to study the impact of multi-core archi-
tecture on cluster computing. The purpose is to give both
application and communication middleware developers in-
sights on how to improve overall performance on multi-core
clusters. We aim to answer the following questions:

� What are the application communication characteris-
tics in multi-core cluster?� What are the potential bottlenecks in multi-core cluster
and how to possibly avoid them?� Can multi-core cluster scale well?

We choose to use one of the most advanced servers, Intel
Bensley system [3] with dual-core Woodcrest processor,
as a case study platform. The benchmarks used include
HPL, NAMD, and NAS parallel benchmarks. From our
message distribution experiments, we find that on an av-
erage about 50% of messages are transferred through intra-
node communication, which is much higher than intuition.
This trend indicates that optimizing intra-node communi-
cation is as important as optimizing inter-node communi-
cation in a multi-core cluster. An interesting observation
from our bottleneck identification experiments is that cache
and memory contention may be a potential bottleneck in
multi-core cluster, and communication middleware and ap-
plications should be written in a multi-core aware manner
to alleviate this problem. We demonstrate that data tiling,
a data locality optimization technique improves benchmark
execution time by up to 70%. We also compare the scalabil-
ity of multi-core cluster with that of single-core cluster and
find that the scalability of multi-core cluster is promising.

The rest of the paper is organized as follows: In Section 2
we introduce the background knowledge of multi-core ar-
chitecture. In Section 3 we describe the methodology of
our evaluation. Setup of the evaluation system is described
in Section 4 and the evaluation results and analysis are pre-
sented in Section 5. Related work is discussed in Section 6.
And finally we conclude and point out future work direc-
tions in Section 7.

2. Multi-core Cluster
Multi-core means to integrate two or more complete

computational cores within a single chip [9]. The moti-
vation of the development of multi-core processors is the
fact that scaling up processor speed results in dramatic
rise in power consumption and heat generation. In addi-
tion, it becomes more difficult to increase processor speed
nowadays that even a little increase in performance will be
costly. Realizing these factors, computer architects have
proposed multi-core processors that speed up application
performance by dividing the workload among multiple pro-
cessing cores instead of using one “super fast” single pro-
cessor. Multi-core processor is also referred to as Chip Mul-
tiprocessor (CMP). Since a processing core can be viewed

Memory Memory
Memory

Core

L2
Cache

Core

L2
Cache

L2
Cache

Core

L2
Cache

Core Core

L2 Cache

Core Core

L2 Cache

Core

Intra-CMP Inter-CMP

Dual Core Chip Dual Core Chip Dual Core Chip Dual Core Chip

Intra-CMP Inter-CMP

NUMA-based Design Bus-based Design

Network

Inter-Node

Figure 1. Illustration of Multi-Core Cluster

as an independent processor, in this paper we use processor
and core interchangeably.

Most processor venders have multi-core products, e.g.
Intel Quad- and Dual-Core Xeon, AMD Quad- and Dual-
Core Opteron, Sun Microsystems UltraSPARC T1 (8
cores), IBM Cell, etc. There are various alternatives in de-
signing cache hierarchy organization and memory access
model. Figure 1 illustrates two typical multi-core system
designs. The left box shows a NUMA [1] based dual-core
system in which each core has its own L2 cache. Two cores
on the same chip share the memory controller and local
memory. Processors can also access remote memory, al-
though local memory access is much faster. The right box
shows a bus based dual-core system, in which two cores on
the same chip share the same L2 cache and memory con-
troller, and all the cores access the main memory through a
shared bus.

Due to its greater computing power and cost-to-
performance effectiveness, multi-core processor has been
deployed in cluster computing. In a multi-core cluster, there
are three levels of communication as shown in Figure 1. The
communication between two processors on the same chip is
referred to as intra-CMP communication in this paper. The
communication across chips but within a node is referred
to as inter-CMP communication. And the communication
between two processors on different nodes is referred to as
inter-node communication.

Multi-core cluster imposes new challenges in software
design, both on middleware level and application level.
How to design multi-core aware parallel programs and com-
munication middleware to get optimal performance is a hot
topic.

3. Design of Experiments for Evaluating Multi-
core Clusters

In this section we describe the evaluation methodology
and explain the design and rational of each experiment.

3.1. Programming Model and Benchmarks

We choose to use MPI [4] as the programming model
because it is the de facto standard used in cluster com-
puting. The MPI library used is MVAPICH2 [5], which
is a high performance MPI-2 implementation over Infini-
Band [2]. In MVAPICH2, intra-node communication, in-
cluding both intra-CMP and inter-CMP, is achieved by user
level memory copy.

We evaluate both microbenchmarks and application level
benchmarks to get a comprehensive understanding on the
system. Microbenchmarks include latency and bandwidth
tests. And application level benchmarks include HPL from
HPCC benchmark suite [16], NAMD [21] apoa1 data set,
and NAS parallel benchmarks [12].

3.2. Design of Experiments

We have designed to carry out four sets of experiments
for our study: latency and bandwidth, message distribution,
potential bottleneck identification, and scalability tests. We
describe them in detail below.

� Latency and Bandwidth: These are standard ping-pong
latency and bandwidth tests to characterize the three
levels of communication in multi-core cluster: intra-
CMP, inter-CMP, and inter-node communication.

� Message Distribution: We define message distribution
as a two dimensional metric. One dimension is with
respect to the communication channel, i.e. the per-
centage of traffic going through intra-CMP, inter-CMP,
and inter-node respectively. The other dimension is in
terms of message size. This experiment is very im-
portant because understanding message distribution fa-
cilitates communication middleware developers, e.g.
MPI implementors, to optimize critical communica-
tion channels and message size range for applications.
The message distribution is measured in terms of both
number of messages and data volume.

� Potential Bottleneck Identification: In this experiment,
we run application level benchmarks on different con-
figurations, e.g. four processes on the same node, four
processes on two different nodes, and four processes
on four different nodes. We want to discover the poten-
tial bottlenecks in multi-core cluster if any, and explore
approaches to alleviate or eliminate the bottlenecks.
This will give insights to application writers how to

optimize algorithms and/or data distribution for multi-
core cluster. We also design an example to demon-
strate the effect of multi-core aware algorithm.

� Scalability Tests: This set of experiments is carried out
to study the scalability of multi-core cluster.

3.3. Processor Affinity
In all our experiments, we use sched affinity system call

to ensure the binding of process with processor. The effect
of processor affinity is two-fold. First, it eases our analysis,
because we know exactly the mapping of processes with
processors. And second, it makes application performance
more stable, because process migration requires cache in-
validation and may degrade performance.

4. Evaluation Platforms
Our evaluation system consists of 4 Intel Bensley sys-

tems connected by InfiniBand. Each node is equipped with
two sets of dual-core 2.6GHz Woodcrest processor, i.e. 4
processors per node. Two processors on the same chip share
a 4MB L2 cache. The overall architecture is similar to that
shown in the right box in Figure 1. However, Bensley sys-
tem has added more dedicated memory bandwidth per pro-
cessor by doubling up on memory buses, with one bus ded-
icated to each of Bensley’s two CPU chips. The InfiniBand
HCA is Mellanox MT25208 DDR and the operating system
is Linux 2.6.

To compare scalability, we also used a single-core In-
tel cluster connected by InfiniBand. Each node is equipped
with dual Intel Xeon 3.6GHz processor and each processor
has a 2MB L2 cache.

5. Evaluation Results
In this section we present the experimental results and

analyze them in depth. We use the format pxq to represent
a configuration. Here p is the number of nodes, and q is the
number of processors per node.

5.1. Latency and Bandwidth
Figure 2 shows the basic latency and bandwidth of the

three levels of communication in a multi-core cluster. The
numbers are taken at the MPI level. The small message
latency is 0.42us, 0.89us, and 2.83us for intra-CMP, inter-
CMP, and inter-node communication respectively. The cor-
responding peak bandwidth is 6684MB/s, 1258MB/s, and
1532MB/s.

From Figure 2 we can see that intra-CMP performance is
far better than inter-CMP and inter-node performance, es-
pecially for small and medium messages. This is because
in Intel Bensley system two cores on the same chip share

the same L2 cache. Therefore, the communication just in-
volves two cache operations if the communication buffers
are in the cache. From the figure we can also see that for
large messages, inter-CMP performance is not as good as
inter-node performance, although memory performance is
supposed to be better than network performance. This is
because the intra-node communication is achieved through
a shared buffer, where two memory copies are involved. On
the other hand, the inter-node communication uses the Re-
mote Direct Memory Access (RDMA) operation provided
by InfiniBand and rendezvous protocol [20], which forms a
zero-copy and high performance scheme. This also explains
why for large messages (when the buffers are out of cache)
intra-CMP and inter-node perform comparably.

This set of results indicate that to optimize MPI intra-
node communication performance, one way is to have bet-
ter L2 cache utilization to keep communication buffers in
the L2 cache as much as possible, and the other way is to
reduce the number of memory copies. We have proposed
a preliminary enhanced MPI intra-node communication de-
sign in our previous work [10].

5.2. Message Distribution

As mentioned in Section 3.2, this set of experiments is
designed to get more insights with respect to the usage pat-
tern of the communication channels, as well as the mes-
sage size distribution. Figures 3 and 4 show the profiling
results for NAMD and HPL respectively. The results for
NAS benchmarks are listed in Table 1. The experiments are
carried out on a 4x4 configuration and the numbers are the
average of all the processes.

Figures 3 and 4 are interpreted as the following. Suppose
there are n messages transferred during the application run,
in which m messages are in the range � a � b � . Also suppose
in these m messages, m1 are transferred through intra-CMP,
m2 through inter-CMP, and m3 through inter-node. Then:

� Bar Intra-CMP(a, b] = m1/m� Bar Inter-CMP(a, b] = m2/m� Bar Inter-node(a, b] = m3/m� Point Overall(a, b] = m/n

From Figure 3 we have observed that most of the mes-
sages in NAMD are of size 4KB to 64KB. Messages in this
range take more than 90% of the total number of messages
and byte volume. Optimizing medium message communi-
cation is important to NAMD performance. In the 4KB to
64KB message range, about 10% messages are transferred
through intra-CMP, 30% are transferred through inter-CMP,
and 60% are transferred through inter-node. This is inter-
esting and kind of surprising. Intuitively, in a cluster envi-
ronment intra-node communication is much less than inter-
node communication, because a process has much more

inter-node peers than intra-node peers. E.g. in our testbed,
a process has 1 intra-CMP peer, 2 inter-CMP peers, and 15
inter-node peers. If a process has the same chance to com-
municate with every other process, then theoretically:

� Intra-CMP = 6.7%� Inter-CMP = 13.3%� Inter-node = 80%

If we call this distribution even distribution, then we see
that intra-node communication in NAMD is well above that
in even distribution, for almost all the message sizes. Op-
timizing intra-node communication is as important as opti-
mizing inter-node communication to NAMD.

From Figure 4 we observe that most messages are small
messages in HPL, from 256 bytes to 4KB. However, with
respect to data volume messages larger than 256KB take
more percentage. We also find that almost all the mes-
sages are transferred through intra-node in our experiment.
However, this is a special case. In HPL, a process only
talks to processes on the same row or column with itself.
In our 4x4 configuration, a process and its row or column
peers are always mapped to the same node, therefore, al-
most all the communication take place within a node. We
have also conducted the same experiment on a 16x4 con-
figuration for HPL. The results show that 15% messages
are transferred through intra-CMP, 42% through inter-CMP,
and 43% through inter-node. Although the trend is not as
extreme as in the 4x4 case, we can still see that intra-node
communication in HPL is well above that in even distribu-
tion.

Table 1 presents the total message distribution in NAS
benchmarks, in terms of communication channel. Again,
we see that the amount of intra-node (intra-CMP and inter-
CMP) communication is much larger than that in even dis-
tribution for most benchmarks. On an average, about 50%
messages going through intra-node communication. This
trend is not random. It is because most applications have
certain communication patterns, e.g. row or column based
communication, ring based communication, etc. which in-
crease the intra-node communication chance. Therefore,
even in a large multi-core cluster, optimizing intra-node
communication is critical to the overall application perfor-
mance.

5.3. Potential Cache and Memory Contention
In this experiment, we run all the benchmarks on 1x4,

2x2, and 4x1 configurations respectively, to examine the
potential bottleneck in the system. As mentioned in the be-
ginning of Section 5, we use the format pxq to represent a
configuration, in which p is the number of nodes, and q is
the number of processors per node. The results are shown
in Figure 5. The execution time is normalized to that on 4x1
configuration.

(a) Small Message Latency (b) Large Message Latency (c) Bandwidth

Figure 2. Latency and Bandwidth in Multi-core Cluster

(a) Number of Messages (b) Data Volume

Figure 3. Message Distribution of NAMD

(a) Number of Messages (b) Data Volume

Figure 4. Message Distribution of HPL

Table 1. Message Distribution in NAS Bench-
marks Class B

metric bench. intra-cmp inter-cmp inter-node
number IS 13% 18% 69%

of FT 9% 16% 75%
messages CG 45% 45% 10%

MG 32% 32% 36%
BT 1% 33% 66%
SP 1% 33% 66%
LU 1% 50% 49%

data IS 7% 13% 80%
volume FT 7% 13% 80%

CG 36% 37% 27%
MG 25% 25% 50%
BT 0 33% 67%
SP 0 33% 67%
LU 0 50% 50%

Figure 5. 4-Process Application Performance
on Different Configurations

Figure 6. 2-Process Application Performance
on Different Configurations

Figure 7. Effect of Data Tiling

One of the observations from Figure 5 is that 1x4 config-
uration does not perform as well as 2x2 and 4x1 configura-
tions for many applications, e.g. IS, FT, CG, SP, and HPL.
This is because in 1x4 configuration all the cores are acti-
vated for execution. As mentioned in Section 4, two cores
on the same chip share the L2 cache and memory controller,
thus cache and memory contention is a potential bottleneck.
Memory contention is not a problem for processors on dif-
ferent chips, because Intel Bensley system has dedicated
bus for each chip for higher memory bandwidth. This is
why 2x2 and 4x1 configurations perform comparably.

The same trend can be observed from Figure 6. In
this experiment, we run 2 processes on 2 processors from
the same chip, 2 processors across chips, and 2 processors
across nodes respectively. We see that inter-CMP and inter-
node performance are comparable and higher than intra-
CMP. The only special case is IS, whose inter-CMP perfor-
mance is noticeably lower than inter-node. This is because
IS uses many large messages and inter-node performs better
than inter-CMP for large messages as shown in Figure 2.

This set of experiments indicates that to fully take advan-
tage of multi-core architecture, both communication mid-
dleware and applications should be multi-core aware to re-
duce cache and memory contention. Communication mid-
dleware should avoid cache pollution as much as possi-
ble, e.g. increase communication buffer reuse [10], use
cache bypass memory copy [8], or eliminate intermediate
buffer [17]. Applications should be optimized to increase
data locality. E.g. Data tiling [18] is a common technique
to reduce unnecessary memory traffic. If a large data buffer
is to be processed multiple times, then instead of going
through the whole buffer multiple times, we can divide the
buffer into smaller chunks and process the buffer in a chunk
granularity so that the data chunks stay in the cache for mul-
tiple operations. We show a small example in the next sec-
tion to demonstrate how data tiling can potentially improve
application performance on multi-core system.

5.4. Benefits of Data Tiling
To study the benefits of data tiling on multi-core clus-

ter, we design a microbenchmark, which does computation
and communication in a ring-based manner. Each process
has a piece of data (64MB) to be processed for a number
of iterations. During execution, each process computes on
its own data, sends them to its right neighbor and receives
data from its left neighbor, and then starts another iteration
of computation. In the original scheme, the data processed
in the original chunk size (64MB) while in the data tiling
scheme, the data are divided in to smaller chunks in the size
of 256KB, which can easily fit in L2 cache.

Figure 7 shows the benefits of data-tiling, from which we
observe that the execution time reduced significantly. This
is because in the tiling case, since the intra-node commu-
nication is using CPU-based memory copy, the data are ac-
tually preloaded into L2 cache during the communication.
In addition, we observe that in the cases where 2 processes
running on 2 cores on the same chip, since most communi-
cation happens in L2 cache in data tiling case, the improve-
ment is most significant, around 70% percent. The improve-
ment in the case where 4 processes running on 4 cores on
the same node, 8 processes running on 2 nodes, and 16 pro-
cesses running on 4 nodes is 60%, 50%, and 50% respec-
tively. The improvements are not as large as that in the 2
process case because the communication of inter-CMP and
inter-node is not as efficient as the intra-CMP for 256KB
message size.

5.5. Scalability
Scalability is always an important angle to look at when

evaluating clusters. Although our testbed only contains 4
nodes, we want to do an initial study on multi-core clus-
ter scalability. We also compare the scalability of multi-
core cluster with that of single-core cluster. The results are
shown in Figure 8. It is to be noted that the performance is
normalized to that on 2 processes, so 8 is the ideal speedup
for the 16 process case.

It can be seen from Figure 8(a) that some applications
show almost ideal speedup on multi-core cluster, e.g. LU
and MG. Compared with single-core cluster scalability, we
find that for applications that show cache or memory con-
tention in Figure 5, such as IS, FT, and CG, the scalability
on single-core cluster is better than that on multi-core clus-
ter. For other applications such as MG, LU and NAMD,
multi-core cluster shows the same scalability as single-core
cluster. As an initial study we find that multi-core cluster is
promising in scalability.

6. Related Work
There have been studies on multi-core systems. Koop, et

al in [19] have evaluated the memory subsystem of Bensley

platform using microbenchmarks. In this work we not only
evaluate microbenchmark performance, but more focus on
application level benchmark profiling, evaluation, and anal-
ysis. Alam, et al have done a scientific workloads charac-
terization on AMD Opteron based multi-core systems [14].
Our work distinguishes from theirs in the sense that our
evaluation has been done in a cluster environment while
they focus on a single multi-core node. Besides, the eval-
uation methodology is also different. Realizing the impor-
tance and popularity of multi-core architecture, researchers
start to propose techniques for application optimization on
multi-core systems. Some of the techniques are discussed
in [11], [15], and [22]. Discussions of OpenMP on multi-
core processors can be found in [13].

Different approaches have been proposed to optimize
MPI intra-node communication. A kernel assisted mem-
ory map approach has been designed in [17]. Optimizations
on user space memory copy scheme have been discussed in
[8] and [10]. Buntinas, et al have evaluated and compared
different intra-node communication approaches in [7].

7. Conclusions and Future Work
In this paper we have done a comprehensive perfor-

mance evaluation, profiling, and analysis on multi-core
cluster, using both microbenchmarks and application level
benchmarks. We have several interesting observations from
the experimental results that give insights to both applica-
tion and communication middleware developers. From mi-
crobenchmark results, we see that there are three levels of
communication in a multi-core cluster with different perfor-
mances: intra-CMP, inter-CMP, and inter-node communica-
tion. Intra-CMP has the best performance because data can
be shared through L2 cache. Large message performance of
inter-CMP is not as good as inter-node because of memory
copy cost. With respect to applications, the first observation
is that counter-intuitively, much more intra-node commu-
nication takes place in applications than that in even dis-
tribution, which indicates that optimizing intra-node com-
munication is as important as optimizing inter-node com-
munication in a multi-core cluster. Another observation is
that when all the cores are activated for execution, cache
and memory contention may prevent the multi-core system
from achieving best performance, because two cores on the
same chip share the same L2 cache and memory controller.
This indicates that communication middleware and applica-
tions should be written in a multi-core aware manner to get
optimal performance. We have demonstrated an example on
application optimization technique which improves bench-
mark performance by up to 70%. Compared with single-
core cluster, multi-core cluster does not scale well for ap-
plications that show cache/memory contention. However,
for other applications multi-core cluster has the same scala-
bility as single-core cluster.

(a) MG, LU, and NAMD (b) IS, FT, CG, and HPL

Figure 8. Application Scalability

In the future we would like to continue our study on
Intel quad-core systems and other multi-core architectures,
such as quad- and dual-core opteron and Sun UltraSPARC
T1 (Niagara) systems. We will do in-depth study on large
multi-core clusters with large scale applications. We will
also explore novel approaches to further optimize MPI
intra-node communication by reducing cache pollution.

References

[1] http://lse.sourceforge.net/numa/faq/.
[2] InfiniBand Trade Association. http://www.infinibandta.com.
[3] Intel Unleashes New Server Processors That De-

liver World-Class Performance And Power Efficiency.
http://www.intel.com/pressroom/archive/releases/20060626
comp.htm?cid=rss-83642-c1-132087.

[4] MPI: A Message-Passing Interface Standard.
http://www.mpi-forum.org/docs/mpi-11-html/mpi-
report.html.

[5] MPI over InfiniBand Project. http://nowlab.cse.ohio-
state.edu/projects/mpi-iba/.

[6] Top 500 SuperComputer Sites. http://www.top500.org/.
[7] Darius Buntinas, Guillaume Mercier, and William Gropp.

Data Transfers Between Processes in an SMP System: Per-
formance Study and Application to MPI. In International
Conference on Parallel Processing, 2006.

[8] Darius Buntinas, Guillaume Mercier, and William Gropp.
The design and evaluation of Nemesis, a scalable low-
latency message-passing communication subsystem. In In-
ternational Symposium on Cluster Computing and the Grid,
2006.

[9] Thomas W. Burger. Intel Multi-Core Proces-
sors: Quick Reference Guide. http://cache-
www.intel.com/cd/00/00/23/19/231912 231912.pdf.

[10] L. Chai, A. Hartono, and D. K. Panda. Designing High Per-
formance and Scalable MPI Intra-node Communication Sup-
port for Clusters. In The IEEE International Conference on
Cluster Computing, 2006.

[11] Max Domeika and Lerie Kane. Optimiza-
tion Techniques for Intel Multi-Core Proces-
sors. http://www3.intel.com/cd/ids/developer/asmo-
na/eng/261221.htm?page=1.

[12] D. H. Bailey et al. The NAS parallel benchmarks. volume 5,
pages 63–73, Fall 1991.

[13] Matthew Curtis-Maury et al. An Evaluation of OpenMP on
Current and Emerging Multithreaded/Multicore Processors.
In IWOMP, 2005.

[14] Sadaf R. Alam et al. Characterization of Scientific Work-
loads on Systems with Multi-Core Processors. In Interna-
tional Symposium on Workload Characterization, 2006.

[15] Kittur Ganesh. Optimization Techniques for Optimiz-
ing Application Performance on Multi-Core Processors.
http://tree.celinuxforum.org/CelfPubWiki/ELC2006Present
ations?action=AttachFile&do=get&target=Ganesh-
CELF.pdf.

[16] Innovative Computing Laboratory (ICL). HPC Challenge
Benchmark. http://icl.cs.utk.edu/hpcc/.

[17] H. W. Jin, S. Sur, L. Chai, and D. K. Panda. Limic: Sup-
port for high-performance mpi intra-node communication on
linux cluster. In International Conference on Parallel Pro-
cessing, 2005.

[18] I. Kadayif and M. Kandemir. Data Space-oriented Tiling for
Enhancing Locality. ACM Transactions on Embedded Com-
puting Systems, 4(2):388–414, 2005.

[19] M. Koop, W. Huang, A. Vishnu, and D. K. Panda. Memory
Scalability Evaluation of the Next-Generation Intel Bensley
Platform with InfiniBand. In Hot Interconnect, 2006.

[20] J. Liu, J. Wu, and D. K. Panda. High performance RDMA-
based MPI implementation over InfiniBand. Int’l Journal of
Parallel Programming, In Press, 2005.

[21] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale. NAMD:
Biomolecular Simulation on Thousands of Processors. In
SuperComputing, 2002.

[22] Tian Tian and Chiu-Pi Shih. Software Tech-
niques for Shared-Cache Multi-Core Sys-
tems. http://www.intel.com/cd/ids/developer/asmo-
na/eng/recent/286311.htm?page=1.

