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ABSTRACT
Graphics Processing Units (GPUs) have evolved as a pow-
erful query co-processor for main memory On-Line Analyti-
cal Processing (OLAP) databases. However, existing GPU-
based query processors adopt a kernel-based execution ap-
proach which optimizes individual kernels for resource uti-
lization and executes the GPU kernels involved in the query
plan one by one. Such a kernel-based approach cannot utilize
all GPU resources efficiently due to the resource underuti-
lization of individual kernels and memory ping-pong across
kernel executions. In this paper, we propose GPL, a novel
pipelined query execution engine to improve the resource
utilization of query co-processing on the GPU. Different
from the existing kernel-based execution, GPL takes advan-
tage of hardware features of new-generation GPUs including
concurrent kernel execution and efficient data communica-
tion channel between kernels. We further develop an analyt-
ical model to guide the generation of the optimal pipelined
query plan. Thus, the tile size of the pipelined query exe-
cution can be adapted in a cost-based manner. We evalu-
ate GPL with TPC-H queries on both AMD and NVIDIA
GPUs. The experimental results show that 1) the analytical
model is able to guide determining the suitable parameter
values in pipelined query execution plan, and 2) GPL is able
to significantly outperform the state-of-the-art kernel-based
query processing approaches, with improvement up to 48%.

1. INTRODUCTION
Emerging hardware architectures have driven the database

community to revisit and redesign database systems. As a
powerful many-core accelerator, GPUs have recently been
designed as a query co-processor and become an effective
means to improve the performance of main memory databases
for OLAP (e.g., [15, 16, 35, 37, 18]). However, existing
GPU-based query processors adopt a kernel-based execu-
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tion (KBE) approach which optimizes individual kernels for
resource utilization and executes the GPU kernels involved
in the query plan one by one. Note, a kernel is a program
that runs in parallel on the GPU. The underlying rationale of
existing query co-processing is, given that individual kernels
are fully optimized, the overall query co-processing perfor-
mance is optimized.

Despite the effectiveness of such kernel-based approaches
on GPU-based query co-processing, we have identified a
number of severe issues in performance and resource under-
utilization. First, executing one kernel at a time causes se-
vere underutilization of GPU resources (e.g., memory band-
width and computational power). Second, the inter-kernel
communication is achieved through global memory or even
host main memory in KBE. On the one hand, this explic-
itly materializes intermediate results across kernels, which
increases GPU memory footprint. On the other hand, this
causes significant overhead in memory ping-pong to global
memory. Hence, KBE may incur serious performance degra-
dations and low utilization on GPU resources (refer to Sec-
tion 2.2). In this study, we investigate whether and how
we can further improve the performance of GPU query co-
processing by addressing the shortcomings of KBE.

Recently, some emerging hardware features have been in-
troduced to new-generation GPUs. First, they support con-
current kernel executions. Early GPUs only support a single
kernel running on the device. Recent GPUs from NVIDIA
(Fermi or Kepler architectures) can support up to 16 kernels
concurrently executed within the GPU. Second, a channel
mechanism is supported for efficient data communication
across kernels with proper tuning of configurations. These
two hardware features change the assumptions of KBE, which
opens new design space for query co-processing.

To take advantage of those emerging hardware features,
we propose GPL, a novel pipelined query execution engine
to improve the resource utilization of query co-processing
on the GPU. Pipelined query execution is a widely adopted
approach in existing database systems [41, 4]. However,
it has never been developed for query co-processing. On
new-generation GPUs, the support of concurrent kernel ex-
ecutions and channels enables the concurrent executions of
operators in the pipeline and efficient intermediate result
transfer among operators. Still, GPUs’ special architectural
characteristics and programming pattern make it challeng-
ing to implement an effective and efficient pipelined query
execution engine on GPUs.

Firstly, it is challenging to fairly allocate GPU resources
to concurrently running kernels. Imbalanced resource allo-



cation can seriously impact the efficiency of pipelined execu-
tion. The scheduling of workloads on GPUs is transparent
to users without a fixed mapping between kernels and GPU
resources, making resource allocation more difficult. Exist-
ing optimizations in pipelined execution such as preemption
[22] are hardly applicable to tune the workload distribution,
since current GPUs do not support preemption.

Secondly, various tuning knobs (such as the tile size) affect
the efficiency of the pipelined execution. A more platform-
dependent approach is needed to find the optimal pipelined
execution plan across GPUs from different vendors including
AMD and NVIDIA. Manually tuning the configuration for
each hardware platform is ineffective and error-prone.

We have proposed a series of designs and optimizations
in GPL to address the above challenges. Firstly, we adapt
the number of work-groups to control the amount of re-
sources allocated to each kernel in the pipeline execution.
We adopt the tiling technique to logically partition the in-
put data into smaller data tiles as inputs to the pipeline [41,
4]. Thus, workload imbalance can be minimized by adapt-
ing the tile size. Secondly, we further develop fine-grained
and lightweight operators that are efficient for pipelined ex-
ecutions, rather than simply adopting the operator imple-
mentation of existing GPU-based query co-processors [15,
40, 16, 37, 35, 18]. Finally, to find the optimal configura-
tion for the parameters of pipelined execution, we propose
an analytical model that has taken all tuning knobs as well
as hardware specifications into consideration. Thus, GPL is
portable across various platforms with little modification.

We have conducted experiments with TPC-H queries on
both AMD and NVIDIA GPUs, in comparison with the
state-of-the-art kernel-based query processing approaches [15,
16, 18]. The experimental results show that 1) the analyti-
cal model is able to guide the selection of suitable parameter
values in the pipelined query execution plan, and 2) GPL is
able to achieve a much better resource utilization and sig-
nificantly outperform the state-of-the-art kernel-based query
processing approaches, with a performance improvement up
to 48% on the AMD GPU. Experimental results for NVIDIA
GPUs can be found in Appendix A. To the best of our
knowledge, GPL is the first pipelined query execution en-
gine on GPUs.

The contributions of this paper can be summarized as
follows: (1) we have demonstrated severe resource underuti-
lization of existing GPU-based query co-processors; (2) we
have developed a novel pipelined query execution engine to
improve resource utilization of query co-processing on the
GPU; (3) we have proposed an analytical model that can
determine the optimal configuration for the parameters of
pipelined execution.

The remainder of this paper is organized as follows. In
Section 2, we introduce the background on GPU architec-
tures and pitfalls of KBE on GPUs as the motivations for
the design and development of GPL. In Section 3, we elabo-
rate the design and implementation details of GPL, followed
by an analytical model in Section 4. We present the exper-
imental results in Section 5. We review the related work in
Section 6 and conclude our paper in Section 7.

2. BACKGROUND AND MOTIVATION
In this section, we first introduce the background on GPUs.

Next, we elaborate the performance issues of current GPU
query co-processors.

Table 1: Hardware specification.

AMD NVIDIA
#CU 8 15
Core frequency (MHz) 720 875
Private memory/CU (KB) vector:64,

scalar:8
64

Local memory/CU (KB) 32 48
Global memory (GB) 32 12
Cache (MB) 4 1.5
Concurrent kernels 2 16
Programming API OpenCL CUDA

2.1 Graphics Processing Units
GPUs are originally designed as co-processors for CPUs to

process graphics tasks. In recent years, they have evolved
into a powerful accelerator for many applications such as
High Performance Computing (HPC) [25] and data process-
ing (such as MapReduce [12] and key-value stores [39]).
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Figure 1: GPU Architecture.

Though the detailed components of GPUs from different
vendors vary, their general architectural designs can be ab-
stracted in the same model as shown in Figure 1. For illus-
tration purposes, we use the terminology of AMD GPU and
our design and implementation can be extended to NVIDIA
GPUs with little modification. A GPU consists of multiple
Compute Units (CUs), each of which is further composed
of many vector Processing Elements (PEs). A program exe-
cuted by the GPU is called a Kernel. Each PE executes its
own instance of a kernel in a SIMD (Single Instruction Mul-
tiple Data) manner. Each PE has its own private memory
(registers) and all PEs of a CU share a local memory, both
of which are on-chip memory. Local memory is dedicated
to one CU and invisible to all other CUs. Global memory
is accessible to all CUs, and cache is placed between global
memory and CUs to reduce the performance gap between
PEs and global memory. The global memory for the AMD
GPU is the main memory in the system, whereas the global
memory for the NVIDIA GPU is within the GPU card.

The programmability of GPUs has been significantly im-
proved by various programming frameworks like DirectCom-
pute, CUDA and OpenCL. For illustration purposes, we use
terms in OpenCL unless otherwise specified. A kernel execu-
tion consists of multiple work-groups, each of which further
consists of multiple work-items. Each work-group is sched-
uled as the basic unit to one CU. Within a work-group, 64
work-items of that work-group are arranged together for ac-
tual execution on AMD GPU (denoted as a wavefront).

Recently, new-generation GPUs have been strengthened
with various enhancements, including concurrent kernel exe-
cution and mechanisms for efficient communication between



kernels. Table 1 shows the features of AMD and NVIDIA
GPUs used in our experiments.

Concurrent execution. Early GPUs only support a single
kernel execution. That is why most existing GPGPU appli-
cations focus on the implementations and optimizations in
a single-kernel-based pattern [9, 14, 13]. Recent GPUs from
AMD (GCN-based GPUs) have been enabled with concur-
rent kernel execution capability so that multiple kernels can
be executed on the same GPU simultaneously. For example,
AMD GPU support concurrent kernel execution with Asyn-
chronous Compute Engines (ACEs) that manages multiple
kernels in an interleaved fashion.

Efficient data communication across kernels. Efficient
data communication among concurrent kernel execution is
supported via channel. Vendors can have different termi-
nology and mechanisms for channel. On AMD GPU, pipe
is introduced in OpenCL 2.0. The main function of data
channel is to pass data between concurrently running ker-
nels without explicit materialization in global memory so
that these kernels can communicate with each other in a
finer-grained manner.

There are three key parameters for channel, including
packet size, number of channels and the total size of data to
be passed. Packet size is the basic unit of channel for data
transfer between two kernels. The number of channels de-
fines multiple channels that are able to transfer data more
efficiently between two kernels. With appropriate channel
settings, computations and memory accesses can be over-
lapped across kernels.

We conduct calibration experiments to have an in-depth
understanding on relationship between channel configura-
tions and the throughput. In the experiment, we set up
a simple chain of two kernels, producer and consumer. The
producer kernel generates N integers and passes them to the
consumer kernel. The channel packet size is set as 16 bytes,
which achieves the best efficiency in most scenarios. The
results are shown in Figure 2, when N is varied from 512K
to 8 million on AMD GPU. We find that both parameters of
data channel configurations can affect the throughput signif-
icantly. Also, the input data size (N) impacts the through-
put. When the input data is small, the channel is not fully
utilized. When the input data is too large, the working set
size is larger than the data cache. Cache thrashing occurs
and the throughput degrades. On the tested AMD GPU,
N = 1 million is the suitable size setting. Thus, a feasible
solution is that, if the input data is larger than the suitable
size setting, the input data is chunked with the suitable size
setting prior to transferring via the channel. For a general
approach across different platforms, we use calibrations on
varying the three key parameters, and obtain the suitable
parameter values. Particularly, we experimentally obtain
the relationship between the three key parameters and the
throughput as the input to our cost model to determine the
suitable channel configuration.

In the following of the paper, we mainly concentrate our
presentation on AMD GPU, and leave the detailed results
of NVIDIA GPU to Appendix A.

2.2 Pitfalls of Existing Query Co-Processing
Existing query co-processors [15, 40, 16, 37, 35, 18] mostly

rely on kernel-based executions (KBE). A relational opera-
tor is implemented with multiple kernels. For example, a
selection in GDB [13] can be implemented with 3 kernels
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Figure 2: The relationship between channel configurations
and throughput on AMD GPU for a packet size of 16 bytes.

including map, prefix sum and scatter. Existing query co-
processors optimize the performance of individual kernels
with various optimization techniques [14, 15] to exploit the
GPU parallelism and to reduce the memory stalls of ker-
nel execution. In KBE, each kernel is then executed on the
GPU. Still, we observe serious performance pitfalls when
evaluating an operator, even worse for a query. In the fol-
lowing, we summarize our observations, and present the ex-
perimental results from TPC-H queries with a scale factor
of 10. More details on experimental setup can be found in
Section 5.1.

To have a detailed understanding on the performance of
KBE, we report various performance counters to compre-
hensively evaluate GPL on both platforms. Cache hit ratio
measures the data locality exposed by data channels. Ker-
nel occupancy is the ratio of in-flight wavefronts executed
to the theoretical maximum wavefronts supported on each
CU. It is a main indicator of the device utilization. We use
the latest profiler from AMD (CodeXL) to obtain the above
performance counters.

Observation 1: Explicit materialization of intermediate re-
sults across kernels not only generates a large amount of
intermediate data, but also causes significant overhead in
the communication between kernels. We have similar obser-
vations for all the tested queries and use TPC-H Q14 as
an example for in-depth discussions. Figure 3 shows the
normalized size of intermediate data generated by TPC-H
Q14, with selections and joins. We normalize the interme-
diate data size to the input data size of the query. We also
vary the selectivity and compare the results with the de-
fault. Specifically, we have changed the interval in the pred-
icate of Q14

(
“l shipdate >= date [DATE] and l shipdate <

date [DATE] + interval 1 month”
)

to generate approximate
selectivity ranging from 1% to 100% on LINEITEM rela-
tion (16.4% by default). The size of the intermediate data,
which mainly include the tuples generated from the selec-
tion, and the intermediate results generated from the join
(l partkey = p partkey), increases with the selectivity. Af-
ter 75%, the intermediate results even exceed the original
data input. Large intermediate results would waste global
memory and cause memory access latency.

Such large intermediate results impose significant over-
head in the communication between kernels. Figure 4 presents
the cost of memory accesses through global memory, where
the memory stall (Mem cost) is directly obtained from hard-
ware profiler. The global memory accesses not only in-
cur high access overhead, but also sacrifice the overlapping
opportunity between query co-processing and data trans-
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Figure 4: High communication cost in query execution with
varying selectivity (Q14) on AMD GPU.

fers. Moreover, such bulky store/load operations are cache-
unfriendly, generating more cache misses and degrading the
query co-processing performance.

Observation 2: Processing one kernel at a time can lead
to severe resource under-utilization of the GPU (e.g., mem-
ory bandwidth and computational power). We collect the re-
source utilization statistics of 5 TPC-H queries (Q5, Q7, Q8,
Q9 and Q14) on AMD GPU in KBE approach and the av-
erage utilization results are presented in Figure 5. On AMD
GPU, we use hardware counters VALUBusy and MemUnit-
Busy to evaluate the utilization of vector ALU and mem-
ory bandwidth. Also, we observe that the computation and
memory utilization vary greatly among kernels. Within a
query, some kernels may have high computation utilization
but low memory utilization. Some other kernels favor more
memory resources than computation resources. Thus, KBE
barely can fully utilize both computation and memory re-
sources of the GPU.
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Figure 5: Low utilization of GPU resources in query execu-
tion on AMD GPU.

3. SYSTEM DESIGN AND IMPLEMENTA-
TION

We develop a pipelined query processing engine named
GPL to reduce inter-kernel communication overhead and
improve resource utilization of query co-processing. GPL
takes advantage of emerging GPU hardware features includ-
ing channels and concurrent kernel execution to improve the
resource utilization as well as to reduce memory overhead of
the KBE approach. We note that, if we implement pipelined
query processing on early GPUs with the support of only a
single kernel, the intermediate results have to be material-
ized into the global memory and hence this system will suffer
from similar performance bottleneck as KBE (as observed in
Section 2).

In this section, we first show the overall architectural de-
sign of GPL. Then, we present the implementation of GPL
operators. After that, we elaborate each key component of
GPL with more details.

3.1 Architectural Design of GPL

Tiling
Workload 

Scheduler

Cost model

Query plan 

generator

GPU

Configuration

Segment Sk
Query

Results

… …

Figure 6: Architectural overview of GPL.

Figure 6 presents the main components of GPL. Like exist-
ing pipelined execution engines [41, 4], a query Q is firstly
processed by the query plan generator to produce a seg-
mented query plan tree. Specifically, it is processed accord-
ing to its query plan tree T generated by Selinger-style op-
timizer [32]. Basically, T consists of a sequence of operators
(O(O0, O1, ..., Oi, ..., Om)). Such a sequence is produced by
traversing T in post-order so that all child nodes precede
before their parent nodes. We further denote the kernel se-
quence as K(K0,K1, ...,Kj , ...,Kn), including blocking and
non-blocking kernels. Because of the nature of blocking ker-
nels, T is partitioned into a set of segments (S). Here,

S = {S0(K0, ..., K̂p), ..., St(K0, ..., K̂q)} where Si is a seg-

ment consisting of multiple kernels (K0, K1,...), and K̂p and

K̂q are blocking kernels. We adopt an existing simple seg-
ment generation approach [23]. Each segment contains a
sequence of non-blocking kernels, ending by a blocking ker-
nel.

A segment is the basic unit for scheduling and execution in
GPL. Each segment contains one or more kernels that are
connected with channels, and simultaneously executed in
pipelines. The input relations (e.g., R and S) are processed
by tiling component to produce tiled relations (denoted as
R∗ and S∗), which are logically partitioned with nearly the
same size. One tile is scheduled by workload scheduler as in-
put to each segment. As we observed in Section 2.1, we need
to determine the suitable tile size so that the channel and
GPU resources can be fully utilized. Moreover, it also needs
to consider the influences from data channel and concurrent
kernel execution because they introduce additional cost such
as pipelined execution delay. We propose a cost model that
captures the characteristics of both queries and hardware.



The configuration produced from cost model can be used to
guide the setting of parameter values of GPL. The amount
of GPU resources allocated to each kernel is determined by
the configuration to minimize the estimated execution time
of individual segments. The workload scheduler component
schedules the segments to GPU for execution one by one.
Note, the output of a segment has to be materialized into
the GPU global memory, which will be used as inputs for
other segments.

3.2 Implementation of GPL Operators
GPL is based on an OpenCL-based query execution en-

gine, OmniDB [40]. This section focuses on how GPL is
developed from OmniDB. For the implementation details
of individual operators/primitives, we refer readers to the
previous studies [40, 15]. Even though GPL is based on
OmniDB, our goal is to address the performance problem of
kernel-based execution, which is adopted by most existing
studies on GPU-based query co-processing, including Om-
niDB [40], Ocelot [18], and Red Fox [36]. We conjecture
that the GPL design can improve the performance of all
those systems. As a start, we have implemented GPL based
on OmniDB, and leave the implementation on other systems
as our future work.

OmniDB is not designed with pipelined execution capabil-
ities. Our implementation specially maximizes the chances
of non-blocking executions. Particularly, we reuse and mod-
ify the kernels and primitives in OmniDB to support pipelined
execution if appropriate. In the following, we briefly de-
scribe the implementation details for selection, aggregation
and hash joins. The implementation of other operators fol-
lows the same methodology.

Selection: We simplify the selection in OmniDB by re-
moving prefix sum kernel. We only perform the map kernel
on each tuple for evaluating the selection predicates, and
send the satisfied tuple to the consumer kernel (if available)
via channel.

Aggregation: In OmniDB, prefix scan is used to calcu-
late the prefix sum in parallel upon an entire input. It is
also used to implement aggregations. In GPL, we use an
non-blocking approach by directly performing executions on
the intermediate results from the channel packet by packet.
Take the sum operator as an example. Upon receiving a
packet, the kernel updates the partial sum by adding the
values in the packet.

Hash join: We implement the simple hash join with two
phases, i.e., hash build and hash probe separately based on
existing code base [15] as primitives. Hash build is to build
the hash table, and hash probe is to probe the hash table for
matches. Both primitives are non-blocking. Still, it requires
a blocking barrier after hash build. Partitioned hash joins
can be implemented similarly, where the partition phase also
can be implemented in a non-blocking manner.

Despite the similarities, the execution model of OmniDB
and GPL are inherently different. We compare the query
execution plans of both KBE and GPL in Figure 7 for an
example query (Listing 1).

SELECT SUM(l_extendedprice * (1 - l_discount) * (1 +
l_tax)) AS sum_charge

FROM LINEITEM
WHERE l_shipdate <= DATE ‘1988-11-01’

Listing 1: An example query.

LINEITEM

Table Scan

AGG
(sum)

(a) Logical
Plan

LINEITEM

k_map

k_prefix_sum

k_scatter

k_reduce

(b) KBE

LINEITEM

k_map

k_reduce*

(c) GPL

Figure 7: Comparison of query execution plan.

In the query plan, the shadowed ellipses represent the
blocking operators and kernels. Blocking operators and ker-
nels need to materialize the intermediate result in global
memory. A blocking operator contains at least one block-
ing kernel. In conventional KBE implementations [15, 16,
13, 40], most operators are implemented in blocking fash-
ion for intra-kernel parallelism. For instance, to filter tu-
ples from LINEITEM that satisfy the predicate in the
example query, the prefix sum kernel (k prefix sum) is
used in KBE. As shown in Figure 7c, all kernels in the
query plan are non-blocking, and can be executed concur-
rently on the GPU. Thus, the concurrent kernel execution
can be exploited, rather than executing one kernel at a
time in KBE. In GPL, after the k map function is evalu-
ated on each tuple of the input tile, the satisfied tuples are
stored as a packet and passed to k reduce∗ together with
LINEITEM via channel for further processing. The re-
duce kernel (k reduce∗) directly performs the sum on each
element in the packet.

3.3 Tiling
GPL adopts the tile-based pipelined execution model [41,

4]. Figure 8 compares the data storage in KBE (w/o tiling)
and GPL, respectively. Without tiling, because KBE exe-
cutes kernels one by one on the GPU, the GPU is entirely
occupied by kernel Kj . Intermediate result R∗ is produced
and serves as the input to the next kernel Kj+1. With tiling
in GPL, R is firstly partitioned into much smaller tiles. Tiles
are processed one by one, immediately after the previous tile
has been completely processed by Kj . The intermediate re-
sult r∗i is passed to the next kernel via global memory (if
Kj+1 is blocking) or data channels (if Kj+1 non-blocking).

The tile size is an important parameter for the efficiency
of pipelined execution. Given a segment, the tile size deter-
mines the working set size of performing the pipelined exe-
cution as well as the amount of work on the GPU. Thus, on
the one hand, small tile sizes cause resource underutilization
of pipelined execution and dramatically degrade the data
channel efficiency (as we observed in Section 2), and such an
impact can be further exaggerated for deep pipelines. On
the other hand, large tile sizes result in inefficient communi-
cations between kernels due to cache thrashing. Therefore,
a carefully selected tile size is important in improving the
data channel efficiency.
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Figure 8: Execution model of KBE and GPL.

3.4 Usage of Data Channels
With data channels, the data transfer in the pipeline is

more efficient, further leading to fluent pipelined execution
and higher GPU resource utilizations. In Figure 7, any ar-
rows pointing to non-blocking nodes represent such data
channels. That means, the output generated by the previ-
ous node directly passed via data channel to the next node,
without materialization in the global memory.

Figure 9 presents the detailed mechanism of data pass-
ing between two kernels in the pipelined execution of GPL.
For AMD data channel, the space is used on reservation ba-
sis by each work-group. Each time after one work-group in
Kj has been finished, a synchronization operation is per-
formed so that the next kernel Kj+1 can fetch the results
immediately. This light-weight synchronization guarantees
data consistency as well as enables fine-grained coordination
between connected kernels. In GPL, read and write opera-
tions are executed in the scope of a work-group. Each time a
work-group of Kj that has finished its work is able to store
its results into data channel, regardless of the progress of
other work-groups. Once the corresponding work-group of
Kj+1 has received the data, it can start to execute without
synchronization with other work-groups. In this way, GPL
is able to establish a more fine-grained coordination between
Kj and Kj+1. Moreover, data channel can expose more data
locality. As the producer work-group stores its results into
the channel, the consumer work-group can fetch them im-
mediately. With a suitable tuning on the channel, it is very
likely that the data still resides in cache.

In Section 2, we have observed that appropriate parameter
settings are important for the throughput of data channels.
Based on the cost model, we determine the optimal settings
at various positions by capturing the dynamics among ker-
nels (such as selectivity) and differences between hardware.

Kj Kj+1

wg0 wg1 wg2 wg3
wg0 wg1 wg2 wg3

synch()
synch() synch() synch()

Data channel

Figure 9: Fine-grained data passing between kernels w/ data
channel.

3.5 Concurrent Kernel Execution
With concurrent kernel executions, the stages involved in

the pipeline execution of a query segment are executed con-
currently. Since stages can have different computation and
memory characteristics, the GPU resources can be better
utilized. We have designed a new execution paradigm com-
bined with tiling technique to accommodate multiple kernels
in a segment simultaneously. Figure 10 illustrates the work-
load distribution of three kernels Ki, Kj and Kk on the
GPU. In KBE without concurrent execution, the workload
scheduler distributes workload from one kernel each time

workload 
scheduler

Rk Kk

Rj Kj

Ri Ki

GPU

pm lm compute

limit

(a) w/o concurrent execution

workload 
scheduler

KkKjKi

rkrjri

GPU
pm lm compute

(b) w/ concurrent execution

Figure 10: Workload distribution w/o and w/ concurrent
execution (“pm” and “lm” denote private memory and local
memory, respectively).

onto all available GPU CUs. A single kernel cannot fully
utilize all resources (e.g., private memory, local memory and
compute units), as we have already observed in Section 2. If
Ki is constrained by certain resource (e.g., local memory),
the total active work-groups that can be scheduled for exe-
cution simultaneously is limited, leading to underutilization
of all other resources (private memory and compute units).
In contrast, in GPL the stages involved in the pipeline exe-
cution of a query segment are executed concurrently. Since
stages can have different computation and memory charac-
teristics, the GPU resources can be better utilized. In this
way, each resource can be used to serve more kernels simul-
taneously, leading to a higher overall resource utilization.

We propose to control the resource allocation indirectly by
adapting the work-group size as well as the total number of
work-groups. The work-group size is fixed at 64 (wavefront
size) to spawn more work-groups to gain scheduling flexibil-
ity. We leave choosing the optimal numbers of work-groups
of each kernel according to the cost model.

4. ANALYTICAL MODEL
There are a number of parameters introduced in GPL.

Inappropriate settings could cause significant performance
loss. Without an automatic approach, it is impossible to
evaluate and compare the performance of a large number of
execution plans and to choose the most efficient execution
plan. Therefore, we propose an analytical model to deter-
mine the optimal system configurations according to query
and hardware information automatically.

4.1 Cost Model
There have been a number of studies on estimating the

cost of individual database operators [13, 14, 15, 16]. We
integrate existing methods into our cost model for estima-
tions. However, additional factors related to tiling, data
channel and GPU resource allocation need to be taken into
consideration. The analytical model is designed to automat-
ically determine these factors accurately without sacrificing
performance.

For reference, we summarize all notations to be used in
the cost model in Table 2. Notations are categorized into
six groups: platform, profiling, program analysis, query op-
timizer, model output and calibration. Platform input no-
tations are platform specific and can be obtained from its
specification. Parameters from Profiling input are obtained
by profiling tools such as CodeXL and Visual Profiler. Pa-
rameters from program analysis can be obtained from pro-
gram analysis on the source code. Parameters from query
optimizer are determined by query optimizer. Parameters
from calibration are determined by calibration experiments.
Parameters from model output are calculated as output in



the cost model.

Table 2: Notations in the cost model

Notation Definitions Sources
#CU Number of CUs

platform input

w Cycles to execute one instruction
C Concurrency degree
mem l Global memory latency
c l Data cache latency
pmmax Amount of available private mem-

ory per CU
lmmax Amount of available local memory

per CU
wgmax Number of work-groups sup-

ported per CU
a wg Ki Number of active work-groups

supported per CU for Ki

profiling inputa CU Ki Number of active CUs for Ki

c inst Ki Number of compute instructions
for Ki

m inst Ki Number of memory instructions
for Ki

crKi
Data cache hit ratio for Ki

pm Ki Private memory usage in each
work-item for Ki

program analysis
lm Ki Local memory usage in each work-

item for Ki

rKi
Number of tiles processed by Ki

set l Set of kernels that are leaf nodes
in query plan tree

query optimizer
set b Set of kernels that have blocking

kernels as child nodes
wi Ki Work-group size in Ki

λKi
Ratio of intermediate data gener-
ated by Ki to ∆

Γ Relationship between data chan-
nel throughput and configuration

calibration

∆ Tile size

model output
TKi

Execution time of kernel Ki per
tile

TSk
Execution time of segment Sk

n Number of data channels between
two kernels

p Packet size of data channel (for
AMD only)

wg Ki Number of work-groups for Ki

rep Ki Times for a CU to complete Ki

c Ki Computation cycles of Ki

m Ki Memory cycles of Ki

delay Sk Delayed cycles in segment Sk

In the remainder of this section, we mainly present the
model for the AMD GPU and we briefly describe the exten-
sions needed for the NVIDIA GPU in Appendix A.

The data channels between running kernels pass data from
one end to the other end in a fine-grained pattern so that
the computation and data access latency can be largely over-
lapped. To quantitatively evaluate the performance of such
data channels, we adopt a calibration-based approach to de-
termine the relationship between the data channel through-
put and three factors: data size, number of channels, size
of packet (for AMD GPU). We find that for a given data
size d, the channel throughput changes depending on the
number of channels n and p. Thus, we conduct calibration
with various data set sizes and data channel configurations
to formulate the relationship between them as Γ in Eq. 1.

T = Γ(n, p, d) (1)

Given a kernel Ki, the output data size can be calculated
as ∆ × λKi which is the amount of data Ki will send to
Ki+1. λKi is a kernel-specific parameter representing the
data reduction ratio to the original tile size ∆ and is obtained
from the database query optimizer. For example, the output
data size for a selection kernel depends on the selectivity.
Given the output data size (d = ∆×λKi), we search the data

channel configuration that can maximize the data channel
throughput from the relationship Γ. We denote the nmax

and pmax to be the optimal values for n and p, respectively,
for that channel setting.

To evaluate the cost of each segment, we categorize the
cost into three parts: the computation cost (cKi), the mem-
ory cost (mKi) and the cost of delay (delaySk ) between ker-
nels of that segment due to imbalanced execution speed.

Computation cost: For each kernel executed on the GPU,
the scheduling unit is work-group, which is further divided
into execution unit wavefronts. As each work-item requests
the same amount of resources (private memory and local
memory) as well as the computation resources which is de-
termined by the number of CUs that is assigned to that
kernel, the total number of active work-groups (a wg Ki)
as well as active CUs (a CU Ki) is constrained by the total
available resources of each CU and the number of work-
groups (wg Ki) defined by programs. Given a segment Sk,
Eq. 2 presents the resource limitations on private memory,
local memory and CUs. The private memory (pm Ki) and
local memory (lm Ki) required by each work-item of Ki

can be obtained from analyzing the kernel code via program
analysis. Particularly, the program analysis is performed in
an off-line manner, with the source code of the kernel as
input. The amount of private/local memory usage in each
work item can be obtained from existing program analysis
tools, such as AMD APP Profiler. This analysis is not re-
stricted to certain query patterns.

Sk∑
pm Ki × wi Ki × wg Ki ≤ pmmax ×#CU

Sk∑
lm Ki × wi Ki × wg Ki ≤ lmmax ×#CU

Sk∑
wg Ki ≤ wgmax ×#CU

(2)

Under the condition in Eq. 2, the times (req Ki) to com-
plete all work-groups of Ki on the GPU is obtained in Eq.
3.

req Ki =
wg Ki

a wg Ki × a CU Ki
(3)

Thus, the total computation cost for kernel Ki on each
CU is calculated based on the profiled statistics on the num-
ber of computation and memory instructions in Eq. 4. w
is a platform-specific parameter to represent the number of
cycles to issue and execute one instruction. In our experi-
ments, w is 4 for both AMD and NVIDIA GPU. Due to the
resource limitations, Ki can be finished in req Ki times as
in Eq. 3.

c Ki = (c inst Ki +m inst Ki)× w × req Ki (4)

Memory cost: The memory cost consists of global memory
access cost and data channel access cost. For those kernels
in set l, they suffer from long access latency as they have to
fetch data from data tiles initially stored in global memory.
Besides, given a blocking kernel Ki, its parent kernel Kj is a
member of set b. All kernels in set b also suffer from global
memory latency as their directly preceding blocking kernel
materializes the intermediate results in the global memory.
Thus, the memory cost for kernels in set l and set b is de-
rived in Eq. 5. It consists of two parts: the cost of global
memory accesses and the cost of L2 cache accesses. The



number of memory accesses are calculated by cache hit ratio
(crKi) and the total number of memory instruction derived
from profiler.

m Ki =m inst Ki × (1− crKi)×mem l+

m inst Ki × crKi × c l,∀Ki ∈ set l ∪ set b
(5)

For the remaining kernels in the kernel set, the memory
cost is from data channel access overhead. As the data to
be passed to Ki over data channel is known (∆ × λ(Ki)),
the memory cost for these kernels can be obtained as Eq. 6
based on Eq. 1.

m Ki =
∆× λKi

Γ(nmax, pmax,∆× λKi
)
, ∀Ki ∈ (K − set l ∪ set b) (6)

Therefore, the expected execution time for Ki is derived
in Eq. 7 as the sum of computation time and memory access
time.

TKi = c Ki +m Ki (7)

Delay cost: Delay may be incurred between kernels as
they form producer-consumer chain to achieve pipelined ex-
ecution. The delayed cycles of the pipelined execution need
to be minimized to maximize the efficiency of each segment.
Eq. 8 calculates the total delayed cycles incurred within a
segment Sk by calculating the absolute value of the differ-
ence between two connected kernels Ki and Kj . The actual
execution time of segment Sk is shown in Eq. 9. Because
of concurrent execution, the execution time of a segment is
adjusted by 1

C
where C is the concurrency degree of given

platform (2 for the AMD GPU used in our study).

delay Sk =

Sk∑
abs(TKi ∗ rKi − TKj ∗ rKj ) (8)

TSk =
1

C
×

Sk∑
TKi + delay Sk (9)

The objectives of our analytical model is to minimize the
total execution time of all kernels within a segment Sk. To
minimize TSk , we extensively explore the search space by
adapting three parameters, ∆, n, p and wg Ki.

We have tried all means to reduce the solution space. In
our query optimization, the solution space is for individual
query segments. Moreover, for finding the optimal config-
uration of each query segment, we have used many effec-
tive approaches to reduce the solution space without signif-
icantly scarifying the solution quality. For each parameter,
we search the value within the feasible range. For example,
we find that the throughput of data channels continues to
drop when the number of channels is over 16. Thus, n can
be selected between 1 and 16. The wg Ki represents the
number of work-groups for each kernel. As work-groups can
be scheduled to any CUs, we set wg Ki integral multiple of
#CU . In this way, the search space and the overhead asso-
ciated with query optimization can be dramatically reduced.
In our experiments, the elapsed time for query optimization
is generally smaller than 5ms, which is ignorable compared
with the query processing time. With each set of these pa-
rameters, cKi , mKi , TKi and TSk also can be obtained ac-
cordingly. We determine the smallest TSk as the optimal
pipelined execution plan.

4.2 An Example
We use an example query (Figure 7) to show pipelined

plan generation on AMD GPU with our model.

The analytical model is applied to evaluate on a query
segment. Apparently, k map and k reduce∗ are in the same
segment Sk as both of them are non-blocking kernels.

Next, by program analysis we can obtain statistics about
the requirements for each type of resources, e.g., the local
memory and private memory usage. All these statistics and
parameter values need to satisfy conditions in Eq. 2.

After that, both kernels are launched together and k map
works on the first tile of LINEITEM . The tile size here is
a variable but initiated with a default value. Once the first
tile has been processed, CodeXL is used to collect runtime
information such as active wg Ki, number of computation
and memory instruction and cache hit crKi . With these in-
formation, theoretical computation and memory access time
can be calculated according to Eq. 3 to 6, depending on the
platform we use. On AMD GPU, the data channel cost is de-
termined by the size of data to be passed as well as the data
channel configurations. Thus, estimated execution time of
each kernel is a function of the number of work-groups for
each kernel, tile size and data channel configurations.

Another cost is delay cost between two connected kernels
if there is a difference between the estimated execution time
of them. As in Eq. 9, TSk is a function of wg Ki, ∆ and data
channel configurations. As the feasible range of these param-
eters has been constrained, the optimal parameter settings
can be found through searching the solution space.

5. EXPERIMENTAL EVALUATIONS
We experiment with TPC-H queries to evaluate the ef-

ficiency and effectiveness of GPL. Our experiments have
been conducted on AMD and NVIDIA GPUs. Furthermore,
to give more in-depth understanding on the performance
improvement, we further investigate hardware performance
counters on cache, memory units and device utilization.

5.1 Experimental Setup
Hardware. We evaluate GPL on both AMD and NVIDIA

GPU. Overall, we have similar findings on both GPUs. Here,
we focus our discussions on the AMD GPU, and the de-
tailed results on the NVIDIA GPU is presented in Appendix
A. The AMD platform is a coupled CPU-GPU architecture
(AMD A10 APU) in which the CPU and the GPU are in-
tegrated on the same die without PCI-e bus. More details
about the processor specification of the AMD and NVIDIA
GPU can be found in Table 1.

Workloads. We evaluate GPL on TPC-H queries (Q5,
Q7, Q8, Q9, Q14) with the scale factor (SF) of 10 (by de-
fault). Detailed description of these TPC-H queries is given
in Appendix B. The total size of the tables generated by the
standard dbgen utility is around 10GB. Q14 has a single join
operation, whereas other queries have multiple joins. Q8 and
Q9 involve rather complicated subqueries, and others do not
have. Those queries also have other common operators such
as group-by and order-by.

The KBE approach [15, 16] is the baseline to compare with
GPL. To have an in-depth understanding of the performance
of pipeline executions, we further compare the performance
of a GPL variant, namely GPL (w/o CE), by disabling con-
current execution and data channel in GPL. Thus, each tile
is executed by corresponding kernels and the intermediate
results have to be stored back to the global memory.

To show that the performance of GPL is comparable to
state-of-the-art systems, we further compare GPL against



Ocelot [18]. Ocelot is a hardware oblivious extension for
MonetDB [19], which is an in-memory column store database
system. It replaces MonetDB’s relational operators with
OpenCL based operators which can run on a wide variety
of devices that supports OpenCL. Ocelot supports all major
relational operators (selection, projection, grouping and ag-
gregation). However, in the current code base [31] it does not
support data-types greater than 4 bytes in size or operators
like multi-column sort. It also cannot support non-trivial
string operations like inequality and sorting etc. Following
the previous study [18], we have to slightly modify the TPC-
H queries (as in Appendix B).

5.2 Model Evaluation
To validate the effectiveness of our cost model, we show

the relative error associated with estimating the GPL run-
time by our analytical model. The relative error is defined
in Eq. 10, where Tmeasured is the measured execution time
for the query and Testimated is the estimated execution time
by our analytical model for the same query.

relative error =
|Tmeasured − Testimated|

Tmeasured
(10)

The relative errors associated with performance estima-
tion of all tested queries with the optimal configuration on
AMD GPU are shown in Figure 11. As the results show,
our cost model can predict relatively accurate system con-
figurations for GPL. Specifically, the cost model is able to
produce suggested values for parameters including tile size
and number of work-groups for each kernel. Note, our pre-
diction model generally underestimates the execution time.
One possible reason is that, when we consider the concur-
rency degree of given platform in Eq. 9, we assume ideal
parallelism, potentially leading to under-estimation.
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Figure 11: Relative error in estimating GPL runtime for
TPC-H queries.

We take Q8 as an example to illustrate the effectiveness
of our cost-based approach in determining the suitable pa-
rameter configuration. Similar results can be obtained from
other queries. We study the detailed results on AMD GPU:
1) the relationship between tile sizes and overall query pro-
cessing performance; 2) the relationship between resource
allocations (number of work-groups assigned to each kernel)
and delay cost.

Figure 12 presents the results of overall query processing
performance when we vary the tile size from 256KB to 16MB
while the other parameters are fixed to their default values.
For better presentation, we normalize the execution time of
all settings to that of 256KB. The star shows the optimal tile
size estimated by the model. The results show that if the tile

size is too small (resp. too large), the performance can be
degraded due to inefficient resource utilization (resp. cache
thrashing). Figure 13 shows that our cost model is able to
capture this trend with very small relative errors and is able
to estimate both the elapsed time and the optimal tile size
accurately. The derived optimal tile size is 4MB, which is
greatly different from the default size (1MB). The first query
segment contains three kernels (2 map kernels K0 and K1,
and 1 hashbuild kernel K2). The optimal numbers of data
channels between two map kernels and 1 hashbuild kernel
are 4 and 2, respectively. Our cost model is able to capture
the hardware characteristics as well as query statistics to
give an accurate estimation.
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Figure 12: The overall query processing performance with
varying tile sizes (Q8).
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Figure 13: Relative error in estimating GPL runtime with
varying tile sizes (Q8).

We further study the impact of the number of work-groups.
We select a set of work-group settings (from S1 to S7). For
each Si (i ∈ [1, 7]), where the number of work-groups as-
signed to each kernel is 2i−1 times of S1. We set S1 to be
2 for AMD GPU. Figure 14 shows the relative error in esti-
mating the GPL runtime and Figure 15 shows the impacts
of resource allocation imbalance on the overall query pro-
cessing performance in terms of delay cost (normalized to
the delay cost of S1). The optimal settings derived by our
cost model is S4 (denoted by the star) for Q8 on AMD GPU,
which is the setting with lowest delay overhead (Figure 15).
The minimal delay overhead also corresponds to the lowest
total query processing time. Note that the optimal setting
varies for different queries. From the results, we find that
our model is able to estimate the runtime of GPL with nom-
inal error even with a varying number of work-groups. Also
it can be seen that inappropriate resource allocations may
result in serious delay overhead, especially in pipelined exe-
cution paradigm where any delay incurred along the pipeline
can be exaggerated in the subsequent stages. Our model has
captured this delay cost of pipelined execution. Thus, it is



able to produce the optimal resource allocation for a given
query that incurs minimum delay cost.
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Figure 14: Relative error in estimating GPL runtime with
varying number of work-groups (Q8).
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Figure 15: The delay cost with varying resource allocations
(Q8).

5.3 Evaluation on GPL
5.3.1 Overall Comparison

Figure 16 shows the results for the TPC-H queries on
AMD GPU. If tiling is applied without concurrent execution
(GPL (w/o CE)), queries on AMD GPU suffer from perfor-
mance degradation up to 31% on AMD. On the one hand,
in the variant without concurrent execution, tiles are exe-
cuted one by one as that in KBE. Thus, additional overhead
is incurred by frequent kernel launches and large amount
of intermediate data materialization. On the other hand,
each time only one tile is processed by the GPU. Thus, in-
sufficient data level parallelism would underutilize the GPU
resources.

In GPL, concurrent execution as well as tiling are both ap-
plied together. By comparing query execution performance
in KBE and GPL, we find that GPL outperforms KBE by
over 48% on AMD GPU. Though applying only tiling would
incur non-negligible overhead to query execution, combining
tiling with data channels as well as concurrent execution can
offset those overhead and even introduce more performance
improvements over KBE approach. The main reasons in-
clude (1) the overhead of materialization of large intermedi-
ate results has been eliminated; (2) various types of kernels
are executed concurrently. Thus, different types of GPU re-
sources can be more efficiently utilized. It is even higher in
NVIDIA GPU as it supports more concurrency.

5.3.2 Settlement of KBE Pitfalls
Pitfalls existing in KBE approach (Section 2.2) have neg-

ative impacts on the query execution performance. To un-
derstand the performance improvement as shown above, we
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Figure 16: Comparison between KBE and GPL on AMD.

re-visit those pitfalls by examining them on both KBE and
GPL designs.

Figure 17 shows the normalized size of intermediate re-
sults materialized in global memory in GPL. We normalize
the results to the intermediate data size of KBE. In GPL,
most intermediate results are passed through data channel
in a fine-grained pattern so that the overhead can be over-
lapped with computation in concurrent kernel executions.
Thus, intermediate results only need to be materialized in
the global memory by blocking kernels like sort and hash
build in GPL. However, all intermediate results in KBE need
to be materialized in the global memory, resulting in high
materialization overhead. The sizes of intermediate results
materialized in the global memory in GPL are 15–33% of
that of KBE.
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Figure 17: Reduced intermediate results materialized in the
global memory (normalized to KBE).

We take Q14 as an example to demonstrate the reduction
in the size of intermediate data materialized in the global
memory in GPL, with varying selectivity ranging from 1%
to 100%. The results are presented in Figure 18. Because
of blocking kernels, intermediate data materialized in the
global memory cannot be completely eliminated. However,
the total size has been significantly reduced by data channel.
When the selectivity is increased to 100%, the size of materi-
alized intermediate results comes down from 1.38 times that
of original input data in KBE to just 0.22 times that of the
original input data in GPL. Therefore, more memory space
can be saved and the overhead of global memory accesses is
also reduced.

Figure 19 demonstrates the average resource utilization
for various TPC-H queries on AMD GPU. Compared with
KBE, GPL sustains steady and high resource utilization for
memory and computation, because of finer-grained workload
scheduling. Besides, the reduced memory stalls increases the
efficiency of both memory and computation resources.

To examine the communication overhead among kernels,
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Figure 18: Size of intermediate results in GPL with varying
selectivity (Q14).
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Figure 19: Improved GPU resource utilization on AMD
GPU.

we show the query execution time breakdown with Q8 on
AMD GPU in Figure 20. We have observed similar re-
sults for other queries. For GPL, two additional cost, the
data channel access cost (DC cost) and Delay cost existing
in pipelines, are included into total query execution time.
Thus, in GPL, the sum of memory cost, data channel cost
and delay cost can be treated as the communication cost.
The percentage of communication cost in GPL is up to 14%
of the total execution time. However, it can be as high as
34% of the total execution time in KBE. On the other hand,
GPL has better cache locality, resulting in an increase of
27% in cache hit ratio when compared to KBE (figures are
omitted).
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Figure 20: Query execution time breakdown (Q8) on AMD
GPU.

5.4 Evaluation with Varying Data Sizes
We vary SF from 0.1 to 10, generating input data rang-

ing from 100MB to 10GB. As the results show in Figure 21,

when the data size increases, the performance improvement
of GPL over KBE continues to increase on the AMD GPU.
Moreover, the elapsed time increases of query execution in
KBE are higher than those of GPL. As shown in Figure
10a, the KBE approach may be limited by a certain type of
resource. Thus, simply increasing the data level parallelism
cannot further improve the query execution performance in
KBE. On the contrary, GPL leverages the increased data
level parallelism and exploits the hardware strengths to over-
lap data accesses and computation for better performance.
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Figure 21: Query execution time on varying data size.

5.5 Performance Comparison with Ocelot
The comparison with Ocelot [18] was made for scale fac-

tors of 1, 5 and 10. Note, we cannot get the results for Q9
on Ocelot when the scale factor is 10. Figure 22 shows that,
for most of the queries in our evaluation, GPL is comparable
to or superior to Ocelot. For Q8 and Q9, GPL significantly
outperforms Ocelot. GPL and Ocelot have comparable per-
formance for other queries.

It would be a bit unfair to compare absolute execution
time of Ocelot to that of GPL. On the one hand, since Ocelot
is built on top of MonetDB, it can utilize optimizations like
pre-fetching, data compression etc which are already imple-
mented in MonetDB. Other major optimizations that are
available in Ocelot include: 1) Bitmaps. The intermediate
result of the selection operator is passed to the next opera-
tor as a bitmap in Ocelot. This helps Ocelot in reducing
memory transactions when compared to GPL (the inter-
mediate results are passed as integer arrays). 2) Caching
of hash tables. Since generating hash tables is very costly,
Ocelot’s memroy manager keeps a cache of previously gener-
ated hash tables by saving the memory allocation time. So
far, GPL does not have the above mentioned optimizations
in Ocelot. On the other hand, GPL has more advanced
pipelined query processing scheme, whereas Ocelot is still
based on KBE. A more detailed study on how to extend
our system with those advanced system features of Ocelot
is our future work. Another future direction is to integrate
GPL into Ocelot. Nevertheless, this comparison was made
to show that the performance of GPL is comparable to, or
even better than the state-of-the-art systems.

6. RELATED WORK
In-Memory Databases on CPUs. Larger main memory

sizes drive database systems from disk-based design to in-
memory design [34, 38, 19, 21]. As outlined in recent sur-
veys [34, 38], in-memory databases have many challenges
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Figure 22: Query Execution Time for GPL and Ocelot on
AMD GPU.

and opportunities for database research. We briefly review
the related work relevant to this study, and refer the readers
to those surveys for more details. Larger and faster caches
reduce the performance gap between CPU and memory. A
lot of cache-optimized algorithms (e.g., [1, 33, 24, 3, 7, 27])
have been developed to improve the cache locality. In our
study, GPL takes advantage of channels to reduce the mem-
ory stalls. On the other hand, the emerging trend of multi-
core and many-core processors enlarges the design space of
in-memory databases with new optimization knobs such as
data locality [8, 22] and SIMD [20, 29]. GPL is specifically
designed for new-generation GPUs with the support of chan-
nels and concurrent kernel executions.

Pipelined Query Processing. Pipelined query processing
has been extensively studied in relational database systems.
Volcano [10] is a classic model to achieve pipelined execution
paradigm in a tuple-at-a-time style. The simple execution
pattern fails to utilize the CPU parallelism. Other later sys-
tems such as X100 [4] and Vectorwise [41] introduce vector
processing capability to exploit the CPU parallelism. More
recently, pipelined query processing has been explored on
multi-core CPU [6] and NUMA architectures [22]. Particu-
larly, Leis et al. proposes a morsel-driven query execution
engine by dividing the input data into “morsels” as the ba-
sic scheduling unit and assigning them to each “worker” to
exploit the thread parallelism. Our pipelined execution is
similar to morsels and X100. Our work differs from theirs
in two major aspects. First, the pipelined execution of GPL
relies on kernels/primitives explicitly connected with chan-
nels, rather than a basic pipeline of operators. Second, GPL
takes advantage of GPU hardware features, while their study
does not. On the other hand, their study [22] targets at
multi-core and NUMA systems and most techniques cannot
be adopted into GPL. For example, preemption adopted in
their study is not supported at current GPUs.

With the growing demands for concurrent query process-
ing, identifying the opportunity of pipelining parallelism
among many concurrent queries becomes an effective means
to improve the query processing throughput. Harizopoulos
et al. [11] designed a novel operator-centric relational query
processing engine QPipe that can maximize the data and
workload sharing among queries. Pandis et al. [26] designed
DORA to decompose each transaction into smaller units and
each unit is assigned to cores based on data locality. Both
studies [11] and [26] try to achieve higher performance on
CPUs by improving data sharing and data locality. With
similar spirit on pipelined execution, GPL is specifically de-

signed with the GPU hardware features in mind, to achieve
higher resource utilization on GPUs. Giceva et al. [8] pro-
posed a novel deployment algorithm to multi-core systems,
by considering the behaviors of individual database oper-
ators and dataflow information. DataPath [2] introduces
a novel push based data centric approach for CPUs. Dif-
ferent from previous studies, this paper advocates efficient
pipelined execution on the GPU by taking advantage of
emerging GPU features.

Query Co-Processing on GPUs. Query co-processing on
GPUs has attracted much research attentions in recent years.
He et al. [14, 13] conduct systematic studies on the imple-
mentations and optimizations of a query co-processing en-
gine on GPUs. The same group further extends the study
to coupled CPU-GPU architectures such as AMD Fusion
[15, 16]. Yuan et al. [37] conducted a comprehensive study
of complex database queries with different software opti-
mizations and hardware configurations. A follow-up paper
from the authors [35] proposed a prototype system to share
GPU resources among multiple queries to improve system
throughput. Recently, Pirk et al. [28] proposed a novel
strategy to exploit GPUs in query co-processing. In their
proposal, approximate results are first calculated on the
GPU, and then the intermediate results are further refined
on the CPU. Heimel et al. [18] developed a database engine
based on a set of hardware-oblivious operators written in
OpenCL to achieve cross-platform capability with minimal
performance loss. Ocelot is built on top of MonetDB [19],
which is an in-memory column based database. However,
it does not support pipelined executions on the GPU. Ja-
son et al. [30] studied a set of database primitives on the
integrated GPU of a coupled architecture and show that
transparent access to CPU virtual addresses and very low
overhead of computation offloading are important for query
co-processing performance. Heimel et al. [17] proposed a
accelerated solution to quickly and accurately estimate the
selectivity of multi-dimensional predicates. All the previ-
ous studies use the kernel-based execution which has per-
formance pitfalls, as shown in Section 2. To the best of our
knowledge, GPL is the first pipelined query execution engine
on GPUs.

7. CONCLUSIONS
In this paper, we propose a novel GPU-based pipelined

query execution engine (GPL) on GPUs to address low de-
vice utilization problem of existing query processing engines
on GPUs. Specifically, we leverage emerging capabilities of
GPUs, including channels and concurrent kernel execution,
for the efficiency of pipelined query execution. The data
channel is placed between two neighbouring kernels to re-
duce the data transfer overhead and enables a finer-grained
concurrent kernel executions. We further propose an an-
alytical model to determine the optimal system configura-
tions such as tile size and resource allocation. We have con-
ducted the experiments with TPC-H queries on both AMD
and NVIDIA GPUs. The results show that GPL can signif-
icantly improve the query processing performance over the
state-of-the-art kernel-based approaches, with improvement
up to 48% on the AMD GPU.
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APPENDIX
A. GPL ON NVIDIA GPU

As in case of the AMD GPU, the latest GPUs from NVIDIA
(Fermi or Kepler architectures) have also been enabled with
concurrent kernel execution capability so that multiple ker-
nels can be executed on the same GPU simultaneously. They
also have the ability to pass data directely from one kernel
to another via Direct Data Transfer (DDT) [5]. All the
techiques used by GPL on AMD GPU are applicable to
NVIDIA GPU as well. To demonstrate that GPL works
on platforms other than the AMD GPU mentioned in Sec-
tion 5.1 we evaluate the performance of GPL on a NVIDIA
GPU (Tesla K40) which is connected to the CPU with PCI-
e 3.0 and has 12GB device memory. The data is initially
loaded to the GPU and the cost of PCI-e data transfer over-
head is omitted. The experimental results show that GPL
is able to outperform existing kernel-based query processing
approaches with performance improvement up to 47% on
the NVIDIA GPU.

In Section A.1, we describe the relationship between chan-
nel configuration and throughput on NVIDIA GPU. Section
A.2 describes how our analytical model (Section 4) can be
adapted to NVIDIA GPU. Finally, we present our experi-
mental results on NVIDIA GPU in Section A.3.

A.1 Kernel Communication on NVIDIA GPU
As mentioned in Section 2.1, calibration experiments were

conducted to have an in-depth understanding on relation-
ship between channel configurations and the throughput on
the Telsa K40 GPU. Unlike the AMD GPU, the NVIDIA
GPU do not need users to set the packet size. The results
are shown in Figure 23, where N is varied from 512K to
8 million on the NVIDIA GPU. As seen in Section 2.1, we
find that both parameters of kernel communication configu-
rations can affect the throughput significantly.
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Figure 23: The relationship between kernel communication
configurations and throughput on K40 GPU for a packet size
of 16 bytes.

A.2 Model for NVIDIA GPU
The model described in Section 4.1 can be extended to

NVIDIA GPU easily. The amount of private/local memory
usage of each work item in NVIDIA GPU is obtained us-
ing the NVIDIA CUDA Occupancy Calculator. To adapt
the cost model to NVIDIA GPU, only the data channel-
related equations need to be modified accordingly. Specifi-
cally, the only parameters that can affect the throughput in
of NVIDIA GPU are: (1) number of channels, (2) data size



to be passed. Therefore as seen in Section 4.1 the relation-
ship between them can be formulated as Eq. 11.

T = Γ(n, d) (11)

The global memory access overhead in Eq. 6 is also adapted
accordingly based on the adapted channel throughput.

m Ki =
∆× λKi

Γ(nmax,∆× λKi
)
, ∀Ki ∈ (K − set l ∪ set b) (12)

A.3 Experimental Evaluation
We experiment with TPC-H queries to evaluate the effi-

ciency and effectiveness of GPL and our analytical model.
We use the NVIDIA Visual Profiler to obtain values of the
hardware counters on the NVIDIA GPU.

A.3.1 Model Evaluation
Figure 24 shows the relative error (defined in Section 5.2)

made by the model for all tested queries with the optimal
configuration. The relative error in the execution time esti-
mation done by the model is very small for NVIDIA GPU
as well. Taking Q8 as an example, we present the results for
1) the relationship between tile sizes and overall query pro-
cessing performance; 2) the relationship between resource
allocations (number of work-groups assigned to each kernel)
and delay cost, on NVIDIA GPU. Figure 25 shows the rel-
ative error in estimating the optimal tile size and Figure
26 shows the change in runtime when we vary the tile size
from 256KB to 16MB while the other parameters are fixed
to their default values. These results show that our cost
model is able to estimate the optimal tile size accurately (as
indicated by the star) with very small relative error (Figure
26).
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Figure 25: The overall query processing performance with
varying tile sizes (Q8) on NVIDIA GPU.
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Figure 26: The overall query processing performance with
varying tile sizes (Q8) on NVIDIA GPU.

We also study the impact of the number of work-groups
on NVIDIA GPU. The results are simliar to those on the
AMD GPU.

A.3.2 Evaluation of GPL
Runtime Comparison. Figure 27 show the runtime results

for the TPC-H queries on NVIDIA GPU. It shows the run-
time of GPL with concurrent execution enabled and GPL
without concurrent execution. For better presentation, we
normalize the execution time of every query with runtime of
the KBE version of the same query. If tiling is applied with-
out concurrent kernel execution then the queries show up to
1.15 times performance degradation on NVIDIA GPU. This
is due to both insufficient data parallelism as well as due to
the overhead incurred by frequent kernel launches which in
turn is a result of input data tiling without using concurrent
kernel execution. In GPL, both concurrent kernel execution
and input data tiling are both applied together. The results
show that GPL outperforms KBE by 50% on NVIDIA GPU.
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Figure 27: GPL execution time normalized to KBE on the
NVIDIA GPU.

Resource Utilization. We take Q8 as an example to demon-
strate higher resource utilization achieved by GPL on NVIDIA
GPU. Figure 28 shows the average resource utilization achieved
by both KBE and GPL for Q8 on the NVIDIA GPU. These
results clearly shows that GPL is able to achieve higher av-
erage utilization of both memory and computational units
when compared to KBE, on NVIDIA GPU.

Communication overhead. To examine the communica-
tion overhead among kernels on NVIDIA GPU, we show the
breakdown of query execution time for Q8 in Figure 29. For
GPL, the data channel access cost (DC cost) andDelay cost
existing in pipelines are included into total query execution
time as mentioned in Section 5.3.1. In GPL communication
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Figure 28: Improved GPU resource utilization (Q8) on the
NVIDIA GPU.

cost is only 18% of the total execution time while in KBE it
can go up to 32%.
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Figure 29: Improved GPU resource utilization (Q8) on the
NVIDIA GPU.

Varying data sizes. GPL was also tested against KBE for
different data sizes by varying the scale factor from 0.1 to 10
(Figures are omitted). The results are similar to those on the
AMD GPU. When data size is small (100MB) GPL is only
slightly faster than KBE. This is because an input which
is too small cannot provide sufficient data level parallelism.
Still, as data size increases, the performance improvement
of GPL over KBE also increases.

B. TPC-H QUERIES
Since Ocelot does not support non-trivial string opera-

tions and multi-column sort, we used slightly modified ver-
sions of Q7, and Q9 to compare with Ocelot. Other queries
are the same as those in the previous study [18]. The TPC-H
queries used for comparison are given in Listings 2–6.

SELECT n_name ,
sum(l_extendedprice * (1 - l_discount)) as

revenue
from customer , orders , lineitem , supplier , nation ,

region
where c_custkey = o_custkey

and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’
and o_orderdate >= date ’1994 -01 -01’
and o_orderdate < date ’1995 -01 -01’

group by n_name

order by revenue desc

Listing 2: Query 5

select supp_nation , cust_nation , l_year ,
sum(volume) as revenue

from ( select n1.n_name as supp_nation ,
n2.n_name as cust_nation ,
extract(year from l_shipdate) as l_year ,
l_extendedprice * (1 - l_discount) as volume

from supplier , lineitem , orders , customer , nation n1,
nation n2

where s_suppkey = l_suppkey
and o_orderkey = l_orderkey
and c_custkey = o_custkey
and s_nationkey = n1.n_nationkey
and c_nationkey = n2.n_nationkey
and ((n1.n_name=’FRANCE ’ and n2.n_name=’GERMANY ’)
or (n1.n_name=’GERMANY ’ and n2.n_name=’FRANCE ’))
and l_shipdate between date ’1995 -01 -01’
and date ’1996 -12 -31’) as shipping

group by supp_nation , cust_nation , l_year
order by l_year

Listing 3: Query 7

select o_year , sum(case when nation = ’BRAZIL ’ then
volume else 0 end) / sum(volume) as mkt_share

from (
select extract(year from o_orderdate) as o_year ,

l_extendedprice * (1 - l_discount) as volume ,
n2.n_name as nation

from part , supplier , lineitem , orders , customer ,
nation n1, nation n2, region

where p_partkey = l_partkey
and s_suppkey = l_suppkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = ’AMERICA ’
and s_nationkey = n2.n_nationkey
and o_orderdate between date ’1995 -01 -01’
and date ’1996 -12 -31’
and p_type = ’ECONOMY ANODIZED STEEL’

) as all_nations
group by o_year
order by o_year

Listing 4: Query 8

select nation , o_year , sum(amount) as sum_profit
from (

select n_name as nation , extract(year from
o_orderdate) as o_year , l_extendedprice * (1
- l_discount) - ps_supplycost * l_quantity as
amount

from part , supplier , lineitem , partsupp , orders ,
nation

where s_suppkey = l_suppkey
and ps_suppkey = l_suppkey
and ps_partkey = l_partkey
and p_partkey = l_partkey
and o_orderkey = l_orderkey
and s_nationkey = n_nationkey
and p_partKey < 1000

) as profit
group by nation , o_year
order by o_year desc

Listing 5: Query 9

select 100.00 * sum(case when p_partKey then
l_extendedprice * (1 - l_discount) else 0 end) /
sum(l_extendedprice * (1 - l_discount)) as
promo_revenue

from lineitem , part
where l_partkey = p_partkey

and l_shipdate >= date ’1995 -09 -01’
and l_shipdate < date ’1995 -10 -01’

Listing 6: Query 14


