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Abstract—Interests have been growing in integrating renew-
able energy into data centers, which attracts many research
efforts in developing green-aware algorithms and systems. How-
ever, little attention was paid to the efficiency of each joule
consumed by data center workloads. In fact, not all joules
are equal in the sense that the amount of work that can be
done by a joule can vary significantly in data centers. Ignoring
this fact leads to significant energy waste (by 25% of the total
energy consumption in Hadoop YARN on a Facebook production
trace according to our study). In this paper, we investigate
how to exploit such joule efficiency to maximize the benefits
of renewable energy for MapReduce framework. We develop
job/task scheduling algorithms with a particular focus on the
factors on joule efficiency in the data center, including the
energy efficiency of MapReduce workloads, renewable energy
supply and the battery usage. We further develop a simple
yet effective performance-energy consumption model to guide
our scheduling decisions. We have implemented GreenMR, an
energy-efficient and green-aware MapReduce framework, on top
of Hadoop YARN. The experiments demonstrate the accuracy
of our models, and the effectiveness of our energy-efficient and
green-aware optimizations over Hadoop YARN and a state-of-
the-art green-aware Hadoop YARN implementation.

I. INTRODUCTION

As emerging computing infrastructures, data centers con-
sume up to 3% of all global electricity production while
producing 200 million metric tons of CO2 in 2014 [1].
In order to reduce carbon emissions and financial burden
on the electricity, many data centers have been built, being
powered at least partially by renewable energy (or green
energy, such as solar and wind). On one hand, data centers
have been re-designed and integrated with the intelligence of
smartly drawing power from multiple sources, including green
energy from renewable and non-polluting sources and brown
energy from traditional polluting sources [2]. For example,
the renewable energy is utilized when it is available and the
brown energy is drawn from electric grid when renewable
energy is insufficient for powering the data center. Reducing
the amount of brown energy consumption is the key for
reducing the environmental pollution and can also reduce the
electricity bills [3]. Under this context, green-aware systems
that integrate the awareness of renewable energy has become
a hot research topic (e.g., [4], [5], [3], [6]). On the other
hand, data processing frameworks (such as MapReduce [7])
are becoming more and more important workloads in data
centers, which contribute to significant portions of energy con-
sumption. Particularly, we consider each job can be delayed
by a bounded amount of time and we have the opportunity
to schedule job/task for utilizing green energy. Overall, this
paper investigates whether and how we can reduce the brown

energy consumption for data processing frameworks in the
data center with both brown and renewable energy supply.

The key challenge of exploiting renewable energy is that
the sources are intermittent due to daily/seasonal effects.
Thus, the renewable energy supply may not match the work-
load demand, which results in the severe under-utilization
of renewable energy in a non-green-aware system. Green-
aware algorithms and systems (e.g., [3], [6], [4]) have been
developed to address the mismatch in the context of data
centers. The core ideas behind those studies are similar: they
delay workloads according to jobs’ deadline to match the
renewable supply.

While those green-aware algorithms and systems can ex-
ploit the green energy at a coarse-grained level, they fail to
capture the efficiency of each joule. We define the concept
of joule efficiency to be the amount of work that can be
done by a joule. Not all joules are equal in the sense that the
joule efficiency of the energy can vary significantly, depending
on when the energy comes and how the energy is used in
computing. Ignoring joule efficiency can lead to significant
energy waste (by 25% of the total energy consumption of
Hadoop YARN on a Facebook production trace according to
our study in Section IV).

We have observed a number of key factors resulting in joule
efficiency of data processing frameworks in data centers. First,
data processing frameworks, particularly MapReduce, has
non-linear performance speedup feature when the number of
machines increases. We run the GridMix benchmark and the
detail of the experimental setup can be found in Section IV.
We can see that running on fewer nodes is actually more
energy efficient (the total energy consumed for the job is
lower) than running on more nodes. Therefore, one joule
of energy can result in different amounts of work done,
depending on the workload characteristics and the number of
machines involved in the job. The largest difference is around
35%, which shows the significant energy waste if the energy
efficiency is ignored. Second, the renewable energy supply is
intermittent and time-varying, which may not match well with
the most energy-efficient execution plan of the MapReduce
workload. Third, battery has become an integral component
for many data centers in order to guarantee the availability
of the data centers [8]. Charging/discharging causes inherent
energy loss. Ideally, a green-aware system should be aware
of not only the green energy supply, but also joule efficiency
to maximize the effectiveness of utilizing green energy.

In this paper, we propose GreenMR, an energy-efficient
and green-aware MapReduce framework. With the slack time
on each job, we develop job/task scheduling algorithms by
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Figure 1: System overview of GreenMR

special considerations on the factors on joule efficiency in
the data center, including the energy efficiency of MapRe-
duce workloads, renewable energy supply and the battery
usage. Since finding the optimal scheduling solution is a NP-
hard problem, GreenMR embraces a series of simple and
effective heuristics for optimizations. We further develop a
performance-energy consumption model. The model guides
us to make the scheduling decision so that the deadline can
be met and joule efficiency can be accurately estimated for
scheduling the job/task at appropriate time.

We have implemented GreenMR on top of the Hadoop
YARN (2.4.0). We evaluate GreenMR in two complementary
approaches. First, we run real experiments with GreenMR on
a local cluster with micro benchmarks. Second, to allow more
comprehensive studies, we have developed a simulator that
replays the traces from the Hadoop cluster. Our experimental
results demonstrate that 1) Our performance-energy consump-
tion model can accurately predict the performance and energy
consumption of our local cluster, 2) GreenMR significantly
reduces the brown energy on both real experiments and
simulations (up to 35% and 28% reduction compared with
Hadoop YARN and GreenHadoop (the state-of-the-art green-
aware Hadoop) [4], respectively). Moreover, GreenMR has a
lower total energy consumption, by 21% and 19% smaller
than Hadoop YARN and GreenHadoop, respectively.

The remainder of this paper is organized as follows. Sec-
tion II formally defines the problem. Section III presents
our detailed design of GreenMR, followed by the experiment
results in Section IV. We review the related work in Section V
and conclude this paper in Section VI.

II. PROBLEM DEFINITION

In this paper, we consider reducing the brown energy usage
of data processing frameworks (particularly MapReduce) in a
single data center. The data center is powered by both brown
energy and green energy sources, with battery supports.

GreenMR allows users to specify the slack of a job: each
job has a specified deadline to define its slack. The deadline
is “soft”, mainly representing the quality of service.

The system overview of GreenMR is illustrated in Figure 1.
The system comprises of a Hadoop cluster, a charge controller,
an inverter, batteries and a switch. As the input voltage from
the renewable energy source varies dynamically, the charge
controller is used to prevent any overcharging. The charge
controller also monitors the charging/discharging operations.
With the charge controller, surplus green energy is automati-
cally charged into battery.

The data center has a switch connected with both green
sources and brown sources (e.g., public grids). Research has
been devoted to improve the effectiveness of this kind of
switch [6]. When the power demand is higher than green
power supply and/or the battery supply, it immediately draws
power from brown sources.

Data centers may have centralized batteries to provide
an uninterrupted power supply (UPS) for power failures.
More recently, data centers also incorporate batteries at the
rack- or even server-level, with higher energy efficiency than
centralized battery. Previous studies [9] have demonstrated
that batteries can be used to reduce the energy consumption
cost in the scale of data centers. Without loss of generality,
we model the battery with two parameters < Cp,e >, where
Cp is the effective capacity of the battery that can be used
for discharging and e is the charging efficiency of the battery
(0≤ e≤ 1). For a given charging power ∆x, we estimate the
energy storage increment as ∆x′ = ∆x · e. Here, we assume
the charging efficiency as constant for simplicity. GreenMR
can be extended to handle other battery models with variable
efficiency. Due to the inherent charging/discharging loss, the
battery is either charged or discharged at each time.

Optimization goal. Given the MapReduce workload with
predefined slacks, GreenMR dynamically schedules the work-
loads according to the green energy supply and joule effi-
ciency. The optimization goal is to minimize the total amount
of brown energy usage, given the constraint that all workloads
are completed before their predefined deadlines.

III. DESIGN AND IMPLEMENTATION

In this section, we start with an overall design of GreenMR.
Then, we give detailed designs of its key components.

A. Overall Design

We propose a MapReduce framework aware of joule effi-
ciency (GreenMR), and develop effective cost models and effi-
cient optimization algorithms to address the above-mentioned
technical issues. The overall design of GreenMR is described
in Algorithm 1. When a new job comes to the system, it
is initially put into a job waiting queue. For the jobs in the
job waiting queue, we need to conduct the performance and
energy consumption estimations on the job (Line 2). With
these estimations, we determine the most energy-efficient
execution configuration that satisfies the deadline (Line 3).
The configuration includes the number of servers and the
amount of physical resources per server. Then, GreenMR
adds the job to the job queue (Line 4). The job queue of
GreenMR is a multi-queue structure to express the energy-
efficient execution plan.

Algorithm 1 Overall design of GreenMR
1: if A new job J comes then
2: Conduct the performance and energy consumption estimations on J;
3: Determine the execution configuration that has the smallest energy consumption

and satisfies the deadline;
4: Add J and its energy-efficient configuration to the job waiting queue;
5: if Current time is the beginning of an epoch then
6: Conduct predictions on the workload and the green energy supply;
7: Generate the basic energy-efficient plan, P;
8: Optimize P by considering job transformations;
9: Optimize P with battery assisted green shifting;



GreenMR periodically generates the energy-efficient and
green-aware scheduling plan (Lines 5-9). At the beginning
of each epoch, we perform predictions on workloads and
the green supply. Given the most energy-efficient execution
configuration of each job, we first generate the basic energy-
efficient plan according to the cluster capacity. Next, we
apply a series of optimizations to reduce the brown energy
consumption of the plan, including job transformations and
battery assisted green shifting.

GreenMR periodically schedules jobs/tasks and performs
power management on servers according to the optimized
execution plan (the period is called a slot). In our design,
we consider fine-grained jobs/tasks scheduling and power
management and an epoch consists of multiple slots. For each
time slot, GreenMR decides the set of active servers and
allocates them to jobs and executes them according to the
execution plan. The other servers are transited to low-power
idle state (e.g., ACPIs S3). For all jobs to be scheduled in the
current slot, GreenMR adopts the deadline first scheduling
algorithm, which gives priority to the jobs close to deadlines.

Finally, we note that the epoch/slot design improves the
robustness of GreenMR to inaccurate energy usage predic-
tions or other dynamic factors including hardware failure,
I/O contention and workload imbalance [10]. GreenMR re-
evaluates and reacts to the system state every epoch/slot. For
example, if the current epoch is over-estimating the energy
usage, it may be forced to use more brown energy when
not necessary. However, scheduled jobs can finish faster than
expected, causing GreenMR to adjust by scheduling more jobs
from the job queue. In the following subsections, we present
the details on each key component in GreenMR.

B. Execution Plan Optimizations

We generate a basic execution plan with special considera-
tions on energy efficiency of data processing frameworks and
cluster capacity. Next, we further reduce the brown energy
consumption of the basic energy-efficient plan by job trans-
formations and battery assisted green shifting mechanisms.

1) Basic Energy-efficient Plan: At the beginning of an
epoch, we perform online predictions on the workload (in-
cluding job types and arrival rates etc) and on the green supply
for the epoch.

Workload prediction. Generally, it is difficult to have an
accurate prediction on the workload, because of the diversi-
fying job sizes [11]. Fortunately, we observe that small jobs
and large jobs in real production traces have very different
arrival patterns (see the experimental setup in Section IV-A).
Particularly, the arrival rate of small jobs (# maps is less
than ten in our experiment) can be predicted with relatively
high accuracy by using some simple time series analysis [12]
(prediction error is less than 8% in average for the real
production trace from Facebook). In our experiment, we apply
exponentially weighted moving average algorithm based on
the historical statistics data to predict the arrival rate for small
jobs. The total energy consumption and execution time of
these small jobs can be estimated accurately with similar
time series prediction algorithms. In our experiments, the
prediction error of energy consumption is less than 6% in

average and prediction error of execution time is less than
4% in average.

As for large jobs, they come in a more ad hoc manner,
and the energy consumption and execution time of large jobs
vary significantly. Instead, we estimate large jobs individually
using our cost model after they come. Since large jobs tend
to have longer execution time, such an on-demand prediction
has given sufficient optimization room for scheduling, as we
observed in our experiments.

Green supply prediction. Most green sources such as
solar and wind depend on weather. There are a number
of existing weather learning methods and models (e.g., [4],
[13]). This is not the focus of this paper. We simply adopt
the previous approach used in GreenHadoop [4], which has
been shown to achieve very good accuracy for solar energy.
Additionally, we also explicitly study the impact of prediction
errors in the experiments.

Execution plan generation. We now generate the basic
energy-efficient plan for GreenMR. We note that, different
from the SDE plan generated in GreenHadoop [4], the plan
generated by GreenMR has two distinct features. First, our job
execution configuration has the smallest energy consumption
while satisfying the deadline. Second, the plan generation is
guided by our energy consumption and performance model
for MapReduce jobs, rather than heuristics [4].

We develop a multi-queue to express the execution plan of
an epoch. Each epoch consists of N time slots and the slot
length is ts seconds, where one time slot corresponds to one
queue. There are N queues for the current epoch in our design,
expressed with q0,q1, . . . ,qN−1, where qi(0≤ i<N) maintains
all jobs with the slack time less than (i+ 1) · ts. A separate
queue q′ is used to store all jobs with the slacks beyond the
current epoch. Suppose a job with a slack of k is submitted
after t seconds of the beginning of current epoch, it will be
added to q t+k

ts
if t + k is within the current epoch, otherwise

it will be added to waiting queue q′. As the time goes by, at
the beginning of each time slot, the slacks of jobs belongs
to the current queue will decreases to [0, ts], and they all will
be assigned with the decided number of servers which are
scheduled to run until all tasks completes. At the beginning
of each epoch, jobs with the slacks smaller than the end of
the epoch are distributed to corresponding qi, and jobs have
not finished in the previous epoches will be distributed to q0.
Thus, the jobs for an epoch include the workload from q′ in
the previous epoch and the jobs that arrive during the current
epoch.

After initiating each job into the corresponding queue, we
ensure each slot can schedule all jobs/tasks allocated to it
subject to the cluster capacity. Suppose the numbers of servers
that are required in each time slot are ni(0 ≤ i < N). If
ni exceeds the cluster capacity, we need to move the jobs
running in current time slot with the earliest submission time
to the queue j ( j < i) with available resources. We repeat this
process until all ni are no larger than the cluster’s capacity.
Otherwise, the cluster is overloaded.

2) Optimizations with Job Transformations: We first define
four basic job transformation operations, and next present
the optimization techniques that leverage these defined op-



erations.
GreenMR supports four basic job transformation opera-

tions: 1) Delay( j, i): it delays the starting time of job j for
i time slots; 2) Advance( j, i): it advances the starting time
of job j for i time slots; 3) Promote( j, i): it increases the
number of machines allocated to the job j by one in time
slot i, so that it can complete faster but usually at the cost
of more energy consumption; and 4) Demote( j, i): it reduces
the number of machines allocated to the job j by one in time
slot i, which is a dual operation of promotion. Promotions
and demotions capture the non-linear performance and energy
consumption in MapReduce jobs. Our cost model can predict
the performance and energy consumption changes for the job
transformations.

Those four operations can be used together to form a
sequence of transformation operations. Additionally, the same
operations can be used multiple times. For example, we
should use promotions for x times if we want to add x
machines to the job.

Given the generated basic energy-efficient plan of the
current epoch and the predicted green energy distribution in
each time slot, we need to perform the transformations for
each job using the above four operations, and our goal is to
minimize the total brown energy consumption in the current
epoch among all jobs. We need to decide how many machines
to be assigned in each time slot for every job under the
deadline and resource capacity constraints. We can formulate
this problem into a temporal knapsack problem [14]. We omit
the formulation due to the space limitation. Since finding the
optimal solution to that problem is NP-hard, we propose a
series of simple and effective heuristics for optimizations.
Particularly, we propose a novel two-phase heuristics-based
approach to solve this non-trivial optimization problem. Those
two phases are complementary with each other. Phase 1
algorithm utilizes the delay and advance operations to shift the
basic energy-efficient plan as a whole without impact on its
energy efficiency. Phase 2 algorithm leverages the demote and
promote operations to change the shape of the basic energy-
efficient plan at the cost of the energy efficiency.

Phase 1: In this phase, we perform advance and delay
operations to reduce the brown energy consumption while
preserving the joule efficiency of the basic energy-efficient
execution plan of the current epoch. As all jobs in the basic
energy-efficient execution plan are delayed as late as possible,
any delay operations will cause deadline violations. Therefore,
we first perform the advance operations and then consider
the delay operations if the brown energy consumption can be
further optimized.

The optimization algorithm for Phase 1 is described in
Algorithm 2. First, we perform advance operations on the
basic energy-efficient execution plan. We iterate the execution
plan in ascending order (from the first time slot to the last
time slot in the epoch). For each time slot, we consider all
jobs that are submitted before that time slot while start after
that. If the brown energy consumption of the current epoch
can be reduced by advancing the starting time of any job,
we perform the advance operation on that job. Note, the
brown energy consumption of an epoch is estimated to be

∑
N
i=1 Max{Ji−Gi,0}, where N is the number of time slots

in one epoch, Ji is the total energy consumption of all jobs
running in time slot i (estimated using the cost model), and Gi
is the predicted amount of green energy in time slot i. Then,
we perform delay operations on the basic energy-efficient
execution plan. We iterate the execution plan in reverse order
(from the last slot forwarding to the first slot in the epoch).
For each time slot, we consider all jobs start before that time
slot. We iterate these jobs and perform delay operations on
them if the brown energy consumption can be reduced.

Algorithm 2 Optimization algorithm of Phase 1
1: for each time slot t of current epoch in ascending order do
2: J = jobs submitted before time t and start after time t;
3: for each job j in J do
4: u = brown energy consumption of the current execution plan;
5: s = start time of job j;
6: o = advance the start time of job j for s− t time slots;
7: if o can be performed on the execution plan then
8: v = brown energy consumption after performing operation o;
9: if v 6 u then

10: Advance( j, s− t);
11: for each time slot t of current epoch in reverse order do
12: J = jobs start before time t;
13: for each job j in J do
14: u = brown energy consumption of the current execution plan;
15: s = start time of job j;
16: o = delay the starting time of job j for t− s time slots;
17: if o can be performed on the execution time then
18: v = brown energy consumption after performing operation o;
19: if v 6 u then
20: Delay( j, t− s);

Phase 2: Complementary to Phase 1, we consider promote
and demote operations on the jobs if those transformations can
further reduce the brown energy consumption. Instead shifting
an execution plan of a job as a whole, Phase 2 algorithm can
change the shape of the execution plan at the cost of energy
efficiency.

The optimization algorithm for Phase 2 is described in
Algorithm 3. We iterate the execution plan optimized after
Phase 1 in ascending order. For each time slot t in the
current epoch, we consider workload shifting through promote
and demote operations to further reduce the brown energy
consumption. We add all jobs, which will be scheduled in
the current time slot, into a FIFO queue. We dequeue a job
from the FIFO queue each time and relocate the machine
assigned to the job in the current time slot to the slot with
the most surplus green energy supply if the brown energy
consumption can be reduced. The tasks to be scheduled on
this machine are also shifted accordingly. After the shifting,
we enqueue the current job in to the FIFO queue and repeats
this process until the FIFO queue becomes empty. We choose
the FIFO queue structure to make all jobs benefit from the
green energy evenly, which also minimizes the total reduction
of joule efficiency caused by the non-linear speedup feature
of Hadoop.

3) Battery Assisted Green Shifting: We can take advantage
of battery to store the green energy for future use when the
green energy supply is surplus. The (basic approach) adopted
by the previous studies (e.g., [3], [5]) are as follows. The
battery is charged only when there is surplus green energy
(i.e., the green energy supply is higher than the total energy
consumption). When the energy demand is higher than green
supply, the battery is first discharged. The discharging stops
when the battery capacity reaches a predefined threshold, only



Algorithm 3 Optimization algorithm of Phase 2
1: for each time slot m in the current epoch do
2: Q = /0; /* FIFO queue */
3: for each job j in time slot m do
4: Q.enqueue( j);
5: while Q 6= /0 do
6: u = brown energy consumption of the current execution plan;
7: j = Q.dequeue();
8: for each time slot n in slots with surplus green energy do
9: o = demote job j at time m and promote job j at time n;

10: if o can be performed on the execution plan then
11: v = brown energy consumption after performing operation o;
12: if v < u then
13: Promote( j, n);
14: Demote( j, m);
15: shift corresponding tasks from slot m to n;
16: u = v;
17: Q.enqueue( j);
18: break;

Figure 2: An example of battery assisted green shifting

for emergency use (e.g., when external energy sources are
unavailable), and the brown energy is used.

However, the basic approach does not consider joule effi-
ciency. If we find that storing the green energy can do more
work in the future (green shifting) rather than using it at
present, we can proactively store it into the battery despite
of the charging loss. This charging method can be feasible,
since MapReduce jobs exhibit non-linear speedup and energy
consumption behavior.

With the consideration of joule efficiency, the charging
of battery needs careful designs. Figure 2 gives an example
to show that how to reduce the brown energy consumption
through green energy shifting with the support of battery. In
Figure 2 (a), all green energy is utilized directly. Instead,
Figure 2 (b), only partial green energy is used after a job
transformation (demotion) and remainder is charged to the
battery for future use. It results in significant brown reduction
as green energy is utilized more efficiently.

We develop our battery assisted green shifting as a further
optimization for the execution plan optimized by job trans-
formations. Our optimization is periodically performed at the
beginning of each time slot. With the battery, we can delay
workload to later slots for higher energy efficiency. As there
is energy loss in charging/discharging, we need to assess the
tradeoff between energy gain of battery assisted green shifting
and the charging/discharging loss. Still, we can formulate this
problem as a nonlinear integer programming problem with
constraints (e.g., battery capacity and deadlines), which is NP-
hard. Therefore, we propose a heuristic algorithm to perform
the green shifting optimization on the execution plan after job
transformations.

Green shifting algorithm: We iterate the execution plan
in the ascending order. For each time slot, we consider

performing demote and charging surplus green energy for
future usage for all jobs in the current time slot. Similar to
Algorithm 2, we firstly add all jobs J to be scheduled in the
current time slot into a FIFO queue Q, and then dequeue a job
from Q each time and perform demote as well as charging for
future usage if brown consumption can be reduced. For each
job j dequeued from Q, if demotion will not cause deadline
violation, we perform demote operation on job j. Demote
operation on j causes less workload to be scheduled as surplus
green is not fully utilized, The surplus green energy can be
charged to battery and used to schedule the left workload for
higher energy efficiency in the later time slots. As there is
energy loss during charging/discharging, we need to evaluate
the favor (energy saving) coming from the efficient energy
usage and the energy loss before performing the green energy
shifting. We only conduct the green energy shifting when the
brown energy consumption can be reduced. Among all future
time slots, the one which can gain the most brown energy
reduction is chosen. After the shifting, we enqueue the current
job in to the FIFO queue and repeats this process until the
FIFO queue becomes empty. Similar to the Phase 2 algorithm,
we choose the FIFO queue structure to minimize the impact
on the reduction of the joule efficiency caused by the non-
linear speedup feature of Hadoop.

C. Cost Model

Since we use the performance-energy consumption models
at run time, we aim to develop a lightweight yet sufficiently
accurate cost model. Since small jobs (i.e., with less than
10 map tasks) are predicted with time series algorithms, the
model applies to large jobs only.

We have a number of design considerations. First, we
need to integrate the hardware profile including servers and
network switches to quantitatively reflect the relationship
between utilization and energy consumption. We assume that
the cooling energy consumption is strongly correlated to the
total energy consumption of servers and network switches,
and exclude the cooling energy consumption in our estimation
for simplicity. Second, we need to have the total execution
time and energy consumption of a MapReduce job, for the
effectiveness of any scheduling decision. Third, the runtime
overhead of the cost model should be low. There are a number
of performance models for MapReduce (e.g., [15], [16]). We
extend the prediction model used in Bazaar [15] according to
our design principles for guiding the scheduling decisions of
GreenMR. There is a tradeoff between runtime overhead and
model accuracy. Our design decision leans towards simplicity
with sufficient accuracy.

Overall, our performance-energy consumption model esti-
mates the energy consumption and execution time, given the
program for a MapReduce job, the size of the input data, and
a execution configuration as input. Table I lists the parameters
used in the cost model. The parameters are on the hardware
models in the cluster and on the MapReduce executions.

Job profiling: It is generally difficult to estimate the cost
of user-defined functions directly. Similar to the previous
studies [15], we profile the MapReduce program by executing
it using a random sample of the input data (in our experiment,
the number of map tasks is ten). The profiler determines the



Table I: Variables in the cost model
Tm Execution time of the map phase (sec)
Tr Execution time of the reduce phase (sec)
Pm Power consumption of the map phase (w)
Pr Power consumption of the reduce phase (w)
T io

m Waiting time of disk I/O in the map phase (sec)
T p

m Processing time of the map functions (sec)
Ts Shuffle time of the reduce phase (sec)
T io

r Waiting time of disk I/O in the reduce phase (sec)
T p

r Processing time of the reduce functions (sec)
Um CPU utilization of nodes in the map phase
Ur CPU utilization of nodes in the reduce phase
Um

s Switch utilization in the map phase
U r

s Switch utilization in the reduce phase
N # of nodes
Ns # of Switches
R Physical resources per node (CPU, MEM)
Rm Physical resources required by each map task (CPU, MEM)
Rr Physical resources required by each reduce task (CPU, MEM)
|I| The size of the input data (MB)
Bd Disk bandwidth under MapReduce-like access patterns (MB/s)
Bn Network bandwidth (MB/s)
Sm Data selectivity of map tasks
Sr Data selectivity of reduce tasks
Bm Processing rate of user-defined map function (MB/s)
Br Processing rate of user-defined reduce function (MB/s)
h A factor captures the extra disk I/O relative to the data read in

per reduce task

execution time for each task and each phase, the amount
of data consumed and generated by each task. All those
statistics are gathered from the log files generated during
execution, and can be used to determine the data selectivity
of map/reduce function (Sm, Sr) and the processing rate of
map/reduce function (Bm, Br). For instance, the processing
rate of the job’s map function can be easily obtained as
the ratio of the data consumed by individual map functions
to the actual running time of map function, measured with
Linux “time” command. We take the averages of the sample
executions as our predictions.

Hardware models: The hardware components include
network switches and servers. Total power consumption of
hardware consists of two types of power: static and dynamic
consumption. Static consumption (including storage architec-
ture, power supply, etc.) can be measured easily by keeping
hardware in an idle state. Here we mainly study the dynamic
consumption. For the server, we use the model from the
previous study [17]. The basic idea is to define a function
f(c) as the power of a server, where c is the CPU utilization.
For network switch, we adopt the power consumption model
from a previous study [18]. It is also a utilization based model.
The power of the switch is defined as g(c), where c is the
switch utilization. For space interests, we omit the details on
calibrating the model in our local cluster and refer readers for
more details in the original papers [17], [18], [19].

We model I/O and CPU processing of a MapReduce job
execution with the following two phases.

Map phase: We divide the map phase into two compo-
nents: disk I/O and data processing.

For the disk I/O, each map task reads its input split from
local disk (assuming the input is locally available) ,and then
writes the intermediate data generated by map function to
local disk. It is bounded by the effect of the disk bandwidth.
Thus, we calculate the waiting time of disk I/O in the map
phase (T io

m ) to be |I|×(1+Sm)
N×Bd

.
For the data processing, each map task applies the user-

defined map function on its input split. Thus, We calculate the

processing time of the map functions (T p
m ) to be |I|

N×(R/Rm)×Bm
.

We assume that the CPU is idle during the disk/network
I/O, the CPU utilization of the nodes in map phase (Um) is
estimated to be T p

m
T io

m +T p
m

. The switch utilization in the map
phase (Um

s ) is estimated to be zero. Hence, we calculate the
execution time and power consumption of the map phase as
follows,

Tm = T io
m +T p

m

Pm = N× f(Um)+Ns×g(Um
s )

Reduce phase: The reduce phase is divided into two
components: data shuffling and reduce processing.

For the data shuffling, reduce tasks complete two op-
erations. Each reduce task first reads its partition of the
intermediate data across the network, and then merges and
writes it to disk. Hence, the bandwidth of this operation
is the minimal value of Bd and Bn, which is expressed as
Min(Bd ,Bn). Next, the data is read from the disk and an
external merge is performed before the data is consumed
by the reduce phase. This operations is bounded by disk
bandwidth Bd . We use a factor h to capture the extra disk
I/O relative to the data read in for a reduce task, which is
obtained from job profiling. Thus, we calculate the shuffle
time (Ts) to be |I|×Sm

N ×
{

1
Min(Bn,Bd)

+ h
Bd

}
.

For the reduce processing, each reduce task reads its input
from disk, applies the user-defined reduce function and writes
the final result to disk. Similar to the map phase, we calculate
the waiting time of disk I/O in the reduce phase (T io

r ) to be
|I|×Sm×(1+Sr)

N×Bd
and the processing time of the reduce functions

(T p
r ) to be |I|×Sm

N×(R/Rr)×Br
.

The CPU utilization of the nodes in the reduce phase (Ur) is
estimated to be T p

r
Ts+T io

r +T p
r

. Given the amount of data shuffled,
we can easily derive the utilization U r

s for the switches
involved. Hence, we calculate the execution time and power
consumption of the reduce phase as follows,

Tr = Ts +T io
r +T p

r

Pr = N× f(Ur)+Ns×g(U r
s )

With these two phases modeled, the total execution time of
the job is simply Tm +Tr, and the total energy consumed is
Tm×Pm +Tr×Pr.

As we will see in the experiments, the cost model is simple
and lightweight, with only a small number of pre-executed
tasks and very low computation overhead. This profiling
process is done for large jobs only. Also, the cost model
is sufficiently accurate in capturing the performance and
energy consumption of MapReduce/Hadoop, and is effective
in guiding the scheduling and optimizations in GreenMR.

IV. EXPERIMENTAL EVALUATIONS

In this section, we evaluate GreenMR on a local cluster and
with simulations with production traces from Facebook.

A. Experiment Setup

We perform two complementary sets of experiments to
evaluate GreenMR. The first set of experiments is on a real



deployment on a 10-node cluster using micro benchmarks in-
cluding TeraSort in Hadoop APIs and GridMix1 benchmarks.
This small-scale experiment in the real cluster is to reveal
micro-level details with full control of choices on scheduling
optimizations and to evaluate the energy consumption and
performance models. The second set of experiments is to
perform simulations on the real-world trace from data centers
(particularly from Facebook) to assess the effectiveness of
GreenMR in large-scale systems.

In both sets of experiments in the local cluster and sim-
ulations, the battery and solar panels are simulated. The
battery charging efficiency is set to be 0.82, according to our
measurements on a Fujitsu lithium ion battery with 10.8 V
voltage. By default, the battery capacities are 1 kWh and 20
kWh for the experiments in the local cluster and simulations,
respectively. We use the real-world traces for solar energy
from Measurement and Instrumentation Data Center (MIDC),
because solar energy is widely available. By default, we use
the two days (May 1-2, 2011). We consider different solar
power scales to evaluate the impact of different numbers
of solar panels. By default, the peak solar power supply is
provisioned to the peak power usage of the cluster. The default
time slot size is one minute and the epoch size is 20 minutes.

We implement GreenMR based on top of Hadoop YARN
(2.4.0). We consider Hadoop YARN 2.4.0 as the baseline,
denoted as “Hadoop”. Hadoop uses the default scheduler, and
jobs are scheduled for executions without delay. We choose
the state-of-the-art green-aware Hadoop [4] (“GreenHadoop”)
for comparison. Unlike GreenMR, GreenHadoop has not
considered the joule efficiency of MapReduce or the energy
efficiency of the battery usage. We have got the original source
code of GreenHadoop and adapted GreenHadoop to run on
Hadoop YARN. To evaluate the separate benefits of individual
optimization techniques, we manually enable/disable certain
optimizations in both real deployment and simulations. Over-
all, we define three optimization variants: “GreenMR(BE)”,
“GreenMR(JT)” and “GreenMR”. The detailed configurations
of optimization techniques in all compared algorithms are
summarized in Table II. GreenMR has all the optimizations
on joule efficiency proposed in this paper. The difference
between GreenMR(BE) and GreenMR(JT) measures the ef-
fectiveness of our job transformations. The difference between
GreenMR(JT) and GreenMR measures the effectiveness of
our battery assisted green shifting optimization. Also, all
algorithms use battery, either in the basic approach or with
our proposed battery assisted green shifting technique. Like
GreenHadoop [4], all schedulers use the low power state
(ACPI S3) for power saving, and use the same replication
method for data availability when a machine is set to the low
power state.

The runtime overhead of running GreenMR scheduler is
small. In our experiment, that overhead for a typical MapRe-
duce job is less than 0.1 millisecond on a single Intel Xeon
X5675 CPU core. This is mostly ignorable for data-intensive
workloads.

1) Micro benchmark setup: The local cluster consists of
10 nodes, each with two Intel Xeon X5675 CPUs (12 cores

1http://hadoop.apache.org/docs/stable/gridmix.html

Table II: Configuration of optimization techniques for all
schedulers
aaaaaaa

Scheduler
Optimization SDE

Energy-
efficient

Plan

Job Trans-
formation

Basic
Battery
Usage

Green
Shifting

Hadoop 3
GreenHadoop 3 3
GreenMR(BE) 3 3
GreenMR(JT) 3 3 3

GreenMR 3 3 3

in total), 24 GB memory and 500G SATA disks. The idle and
peak power consumptions of one machine are 150 w and 280
w, respectively. The machines are connected with 10Gb/sec
Ethernet. One node is configured as master, and the others
are deployed as slaves. We use multiple meters to measure the
energy consumption of the whole system, including machines
and networking.

We assemble a micro benchmark according to the daily
pattern in Google search [20]. We consider four kinds of
jobs: Terasort and GridMix (WebdataSort, WebdataScan and
APISort). By default, the input size of each job is around
80 GB and the deadline is one hour. We consider a mixed
workload, where each job is randomly generated from four
kinds of jobs.

We have run each experiment for five times. Variances
among different runs are small, and we report averages.

2) Simulation setup: We implement a trace-driven simu-
lator by taking as input the solar traces and workload traces
from data centers. We simulate the charging/discharging life
cycles of battery and the power-performance tradeoff of the
workload. In particular, we use a synthetic trace that models
multi-user production workload in Facebook2 with a 600-
node cluster. We mimic the characteristics of its jobs using
“loadgen”. Loadgen is a configurable MapReduce job from
the Gridmix benchmark included in the Hadoop distribution.
The deadline of each job is computed based on its arrival
time, expected execution time and slack. By default, the slack
is set to 100% of the expected execution time. This setting is
reasonable in practice, in the sense that users can tolerate a
longer slack for a larger job. We also experimentally study
other slack settings. The servers is configured with the same
performance-energy consumption models as those in our local
cluster. We apply two-level tree-structured networks in our
simulation: intra-pod switch with 1Gb/sec bandwidth, and
inter-pod switch with 10Gb/sec bandwidth. Each pod has 32
machines.

We analyze the arrival pattern and energy consumption
statistics of jobs with different sizes. Small jobs (# Maps is
smaller than 10) contributes to over 70% of the number of
jobs, but their total energy consumption is less than 6%. In
contrast, the total energy consumption of the jobs with more
than 1000 map tasks accounts for over 79% of the total energy
consumption of the entire trace. As discussed in Section III-B,
we develop a job size-aware prediction on performance and
energy consumption. The arrival rate, energy consumption and
execution time of small jobs is predicted with a time series
algorithm, and large jobs are scheduled in an ad hoc manner.

2https://github.com/SWIMProjectUCB/SWIM/wiki
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Figure 3: Estimated and measured energy consumption of
individual jobs
B. Micro Benchmark Study

1) Model accuracy: We evaluate the accuracy of our
cost model. We present the evaluation on the total energy
consumption, since we have observed similar results on the
performance. We evaluate the accuracy of our energy cost
model by comparing energy consumption of individual jobs in
our micro benchmark. We choose four kinds of jobs: Terasort
and Gridmix (WebDataScan, WebDataSort and APISort). In
our experiment, the inputs are generated uniformly by using
TeraGen included in the Hadoop distribution and the data
generators included in Gridmix benchmark. Figure 3 shows
the estimated and measured energy consumption for running
each job in the local cluster. For all jobs, the difference
between estimation and measurement is smaller than 5%
of the measurement when the number of profiling tasks is
larger than 10, which validates the accuracy of the energy
consumption model. We also evaluate the average prediction
for Terasort and Gridmix workload by varying the number of
map task used for profiling. As we can see from the Table III,
our cost model achieves higher accuracy with the increase of
map tasks to be profiled.
Table III: Prediction error with different profiling overhead

# map task used for profiling 5 10 20 40
average prediction error 12.8% 4.9% 3.5% 2.9%

2) Overall comparison: Figure 4(a) shows the brown en-
ergy consumption of different schedulers in running the micro
benchmark. Overall, both GreenHadoop and GreenMR con-
sume less brown energy than Hadoop, thanks to the alignment
between power demand and green supply. Compared with
GreenHadoop, GreenMR still consumes less brown energy, by
embracing the energy-efficient optimizations. GreenMR(BE)
reduces the brown consumption by 7.1% compared with
GreenHadoop by considering energy efficiency. GreenMR(JT)
applies job transformations to the basic energy-efficient
plan and further reduces the brown consumption by 8.5%
over GreenMR(BE). By integrating battery-assisted shifting,
GreenMR reduces the brown consumption by 6% further over
GreenMR(JT).

Figure 4(b) shows the energy breakdown. We divide the
total energy into five categories: brown energy consumption,
green energy consumed by the workload directly, green energy
charged into battery, green energy wasted and data replication
overhead. Green energy wasted includes energy loss during
charging/discharging and the discarded part when battery is
fully charged. GreenHadoop can utilize more green energy
than Hadoop by aligning power demand with green supply.
However, without considering joule efficiency, it uses more
brown energy than GreenMR. Particularly, GreenMR(BE)
utilizes every joule of energy more efficiently and consumes

less brown energy than GreenHadoop. Job transformations in
GreenMR(JT) use more green energy in an efficient manner.
Finally, battery assisted green shifting techniques in GreenMR
charges more green energy into battery rather than using
it directly, because some green energy can be utilized with
higher energy efficiency in the future and thus further reduces
the brown energy.
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Figure 4: Overall comparison of the micro benchmark
We further study the replication overhead. Because we take

advantage of ACPI S3 to put servers to a lower power state
for energy saving, some data blocks should be replicated to
other servers for processing. We observed that the replication
overhead is negligible (smaller than 20% of the energy saving
by transiting the server to S3 when appropriate). Two more
issues are worth further discussions. First, the state transition
of a server is lightweight. The period of a server transiting
from S3 back to the active state is around 7 seconds, and
transiting from the active state to S3 takes only 1 second.
Second, the network performance of our cluster is reasonably
good. A data transfer of one HDFS chunk of 128MB takes
less than 0.3 second in our local cluster.

C. Large-scale trace study

We first evaluate the accuracy of our simulation, followed
by the detailed results on the production trace.

1) Simulation validation: We first evaluate the accuracy of
our simulation. We use the SWIM workload replay tool to
scale down Facebook production trace for our local cluster.
With a similar scale-down approach in the previous study [4],
we scale down the workload as follows: we reduce the data
by a factor of 8, and eliminate the largest 1.9% of jobs. We
schedule the scaled-down workload in our local cluster and
validate the simulation result with the real-measured value.
Figure 5 shows the measured and simulated energy consump-
tion. The difference between simulation and measurement is
small (less than 2 kWh), which validates the accuracy of our
simulator.
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Figure 5: Simulation validation on replayed Facebook trace
2) Overall comparison: Figure 6(a) shows the brown

energy consumption result on Facebook production work-
loads under five schedulers. The brown energy reduction of



GreenMR is even larger than that in the local cluster, by
35% and 28% over Hadoop and GreenHadoop, respectively.
Moreover, GreenMR has a lower total energy consumption,
by 21% and 19% smaller than Hadoop and GreenHadoop,
respectively. That shows the importance of integrating energy
efficiency into the system.

The energy consumption breakdown is shown in Fig-
ure 6(b). In the experiments, we have observed similar results
to the local cluster. We highlight with the following observa-
tions for simulations with the production workloads. First, the
replication overhead is more significant than that of the local
cluster, because data replications tend to be more frequent on a
large-scale cluster. However, it is still kept in a reasonable low
level (less than 5% of the total energy consumption). Second,
the battery plays a more important role in the large-scale
cluster especially for the variants of GreenMR, because green
energy is utilized with higher efficiency and more surplus
green energy can be charged into battery. Meanwhile, as
higher green supply and battery capacity are provisioned in
our simulation, Figure 6(b) shows more green energy waste
for the simulation study than our micro benchmark. Third, we
study the detailed energy consumption along the timeline. All
variants of “GreenMR” significantly reduce the peak usage of
brown energy, in comparison with GreenHadoop.
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Figure 6: Overall comparison of the Facebook production
workloads

Figure 7 shows the detailed energy consumption for
Facebook production trace for GreenHadoop, GreenMR(BE),
GreenMR(JT) and GreenMR. We can see 1) All variants
of “GreenMR” significantly reduce the usage of brown en-
ergy, in comparison with GreenHadoop. 2) Even though
GreenMR(BE) consumes less green energy compared to
GreenHadoop, the consumption of brown energy is still
reduced by considering energy efficiency. 3) GreenMR(JT)
applies job transformations to utilize green energy better,
therefore, the brown consumption is further reduced. 4)
GreenMR reduces the brown consumption the most, because
battery-assisted optimization charges the current available
green energy into battery if it can be utilized more efficiently.

V. RELATED WORK

Energy-efficient MapReduce. Recently, there have been
many research studies on improving the energy efficiency of
MapReduce/Hadoop. Roughly, we can categorize the related
work in the following two categories.

The first category is to turn down some machines in the
cluster for energy saving. Different approaches have been
developed to identify the machines to turn down [4], [21]. As
MapReduce co-locates computation and storage in the same
server, a main issue is how to place data replicas in HDFS

for data availability. Many energy-aware replication strategies
are proposed [22], [23]. These data placement policies are
complementary to GreenMR.

The second category is to reduce the energy waste accord-
ing to the non-power proportionality of data centers. Lang
and Patel [17] proposed an approach called All-In Strategy
(AIS), and used all the nodes in the cluster to run a batch
of workloads and then powered down the entire cluster.
BEEMR [24] splits the cluster into two disjoint zones, namely
interactive and batch zones. The interactive zone consists of
a small, fixed percentage of cluster resources and is always
fully powered on. The batch zone runs workloads in a batch
fashion, and is put into the low power state after the batch is
finished.

Green-aware algorithms and systems. There have
been many fruitful research on non-green-aware algorithms
and systems for deadline-constrained job/task scheduling
(e.g, [25]). Due to the dynamic feature of green energy,
renewable energy aware computing has become a hot research
issue in data centers. Some studies have developed models and
algorithms for predictions in order to minimize the cost of a
data center. Deng et al. [3] applied a two-state Lyapunov op-
timization to design an online control algorithm, SmartDPSS,
which optimally schedules multi-source energy supply in a
cost minimizing fashion. Chen et al. [26] proposed to schedule
workloads across multiple geographically distributed data
centers in order to utilize the renewable energy effectively.
Preemption policies have been implemented on YARN [27],
which further promotes the elasticity of green-aware algo-
rithms. However, checkpointing causes further I/O contention
and preemption increases complexity of schedulers, needs fur-
ther study. Recently, a number of real green-aware systems are
developed for different workloads. Researchers have proposed
to schedule batch jobs to maximize the usage of renewable
energy [28], [4], [29]. Goiri et al. has carried out a series
of studies and a green data center prototype [5] to manage
deferrable and non-deferrable workloads at the presence of
renewable energy. Chen et al. [6] proposed ReinDB that
integrates renewable energy supply into database systems on
a single server. Some attention has been paid to leverage
battery to store renewable energy [30], [31], [32], without
considering the energy efficiency of workloads. Few of the
previous studies have paid attention to the joule efficiency
problem, particularly in the MapReduce/Hadoop cluster. We
conjecture the concept of joule efficiency can also be applied
to other applications.

VI. CONCLUSIONS

This paper proposes GreenMR by integrating energy-
efficient and green-aware job/task scheduling into MapRe-
duce. The scheduling considers the key aspects of joule effi-
ciency in a MapReduce cluster, including energy efficiency of
MapReduce workloads, renewable energy supply and battery
usage. An analytical model is developed to guide scheduling
decisions. We have implemented GreenMR on top of Hadoop.
Our results demonstrate that GreenMR significantly reduces
the brown energy usage, by 35% and 28% reduction compared
with Hadoop and GreenHadoop (the state-of-the-art green-
aware Hadoop) [4], respectively. Moreover, GreenMR has a
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Figure 7: Detailed energy consumption
lower total energy consumption, by 21% and 19% smaller
than Hadoop and GreenHadoop, respectively. In the future,
we will integrate the energy efficiency into our previous study
which considers the performance-fairness trade-off [33].
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