
A Study of Main-Memory Hash Joins on Many-core Processor: A
Case with Intel Knights Landing Architecture

Xuntao Cheng
Joint NTU-UBC Research Centre of Excellence in Active
Living for the Elderly, Nanyang Technological University,

Singapore

Bingsheng He
National University of Singapore

Xiaoli Du
National Lab for Parallel and Distributed Processing,
National University of Defense Technology, China

National University of Singapore

Chiew Tong Lau
Nanyang Technological University, Singapore

ABSTRACT
Advanced processor architectures have been driving new designs,
implementations and optimizations of main-memory hash join al-
gorithms recently. The newly released Intel Xeon Phi many-core
processor of the Knights Landing architecture (KNL) embraces inter-
esting hardware features such as many low-frequency out-of-order
cores connected on a 2D mesh, and high-bandwidth multi-channel
memory (MCDRAM). In this paper, we experimentally revisit the
state-of-the-art main-memory hash join algorithms to study how
the new hardware features of KNL affect the algorithmic design and
tuning as well as to identify the opportunities for further perfor-
mance improvement on KNL. Our experiments show that, although
many existing optimizations are still valid on KNL with proper tun-
ing, even the state-of-the-art algorithms have severely underutilized
the memory bandwidth and other hardware resources.

1 INTRODUCTION
Querying large data sets has become an inevitable and important
task for a wide range of applications, including main-memory
databases, data warehouse, business intelligence, data mining and
machine learning applications [17]. Many of these applications in-
volve joins of multiple relations, which are also the bottleneck of
many analytical queries. As a result, all these applications would
benefit from the performance improvements of main-memory joins.

In this paper, we focus on main-memory hash joins, which are
among the most important join algorithms in main-memory data
processing. Many studies have shown that the performance of
hash join algorithms is highly sensitive to the underlying hardware
platform [12, 26]. On x86-based processors, many previous work
have studied the design and implementations of hash joins on
the Intel Xeon Phi processor of the Knights Corner architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’17 , November 6–10, 2017, Singapore, Singapore
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4918-5/17/11. . . $15.00
https://doi.org/10.1145/3132847.3132916

(KNC) [7, 12, 23], and multi-socket multi-core CPUs [2, 26, 29].
They have proposed and studied a rich set of hardware-conscious
software optimizations such as SIMD vectorization, prefetching,
multi-pass partitioning, and NUMA-aware scheduling. By far, these
optimizations have shown significant performance impacts on x86-
based processors.

As Moore’s Law [21] continues to improve the transition density
and consequently the number of cores on a single chip, CPUs are
moving frommulti-core towards many-core architectures. Thus, we
have recently witnessed emerging many-core processors with new
hardware features. Intel has recently released the new generation of
Intel Xeon Phi many-core processor of the Knights Landing (KNL)
architecture [27]. KNL has many significant advancements in its
architecture compared with the previous generation of the Knights
Corner architecture. Particularly, KNL features many out-of-order
cores organized in the 2D mesh interconnection, and the high-
bandwidth Multi-channel DRAM (MCDRAM). For example, an Intel
Xeon Phi 7210 of the KNL architecture has 64 out-of-order cores
(each with four hardware contexts), and 16 GBMCDRAMwith peak
memory bandwidth of 373 GB/s, according to our measurements.
Those hardware features of KNL are significantly different from
KNC and multi-core CPUs, which potentially drives the research
for in-memory databases.

Due to the architectural differences of KNL compared with pre-
vious processors, it is still an open problem on how to achieve
better performance of main-memory hash joins. Software-managed
buffers, multi-pass partitioning, NUMA-aware scheduling andNUMA-
aware partitioning are all highly affected by hardware features in-
cluding cache and TLB sizes, the interconnection of cores, the main
memory, and the processor core designs. Thus, we are motivated
to carefully revisit these optimizations to search for new insights
and opportunities for performance improvements of in-memory
databases on KNL.

We begin with an experimentally study on the state-of-the-art
hash join algorithms on KNL by carefully revisiting the state-of-
the-art join algorithms to find out whether existing findings and
optimizations are still valid on KNL and to identify opportunities
for further performance improvements. We pay special attention to
whether the state-of-the-art algorithms can take advantage of new
features on KNL such as the MCDRAM and 2D mesh which stand
for potential trends of many-core processors in cores, memory and
the interconnection [20]. We also conduct extensive experimental

https://doi.org/10.1145/3132847.3132916

evaluations of three state-of-the-art hash join algorithms on KNL,
in comparison with KNC and multi-core CPUs.

We have observed many findings of the state-of-the-art hash join
algorithms on KNL. Example findings include: 1) existing prefetch-
ing techniques fail to hide the memory access latency of expensive
gather/scatter operations. 2) Current NUMA-aware optimizations
are not aware of KNL’s unique NUMA architectures. 3) The high-
bandwidth MCDRAM is underutilized. 4) The best performance
of partitioned hash join is achieved using only one forth of total
hardware threads. All those findings shed light on the opportunities
for further improving hash join algorithms on future many-core
processors.

Overall, we make the following contributions. First, we have
tuned and studied the state-of-the-art hash join algorithms and
optimizations on KNL extensively through experimental evalua-
tions. Secondly, we have identified several important lessons and
opportunities for further improvements based on the experimental
analysis. To the best of our knowledge, this is the first work that
systematically studies and improves hash join algorithms on KNL.

The rest of the paper is organized as follows. We introduce the
background and related work on Xeon Phi and state-of-the-art hash
join implementations in Section 2. In Section 3, we introduce the
methodology of our study. In Section 4, we experimentally study the
state-of-the-art hash join algorithms. We summarize our findings
and opportunities for further optimizations in Section 5 and finally
conclude in Section 6.

2 BACKGROUND AND RELATEDWORK
2.1 The state-of-the-art hash join algorithms
We choose three state-of-the-art hash join algorithms and imple-
mentations from existing studies: non-partitioning hash join (NPJ)
[23], partitioned hash join (PHJ) [23], and chunked parallel radix
join (CPRA) [26]. In the following, we first briefly describe the
sketch of each algorithm. Next, we review the tuning and optimiza-
tions that we apply to all three algorithms.

2.1.1 Non-partitioning hash join. NPJ (a.k.a simple hash join)
consists of two basic phases: build, and probe. The build phase
inserts records from the inner relation (often denoted as R) to a
hash table. The probe phase scans tuples from the outer relation
(often denoted as S) and checks the hash table for each scanned
record to find matches.

These two phases can suffer from cache and TLB misses, because
of random memory accesses to the hash table. However, modern
processors with out-of-order cores and hardware/software prefetch-
ing help to reduce and hide the latency of such random memory
access [3]. The state-of-the-art implementation of NPJ vectorized
the build and probe phases using 512-bit SIMD intrinsics [23]. Other
than applying SIMD instructions to calculate hash values or com-
pare keys for matches, SIMD gather/scatter intrinsics are used to
detect hashing conflicts. Their implementation works as follows.
First, it scatters an index vector with unique numbers per lane in
memory according to a target vector whose contents may have
conflicts. Next, it gathers these scattered numbers according to the
same target vector. Finally, it compares gathered numbers with
their original scattered values. Conflicts are exposed as unequal

lanes after this comparison. This novel approach has successfully
vectorized many important operations in hash joins.

2.1.2 Partitioned hash join. PHJ was initially proposed to fur-
ther avoid cache and TLB misses in the build and probe phases of
NPJ [4]. It first splits input relations into small size partitions and
then proceeds with the build and probe phases on each partition.
When the final partitions are small enough to fit in caches, cache
misses in the build and probe phases are reduced significantly.

The state-of-the-art vectorized and multi-thread implementation
of PHJ partitions both the inner and outer relations in multiple
passes [26]. Before each pass, a histogram is built to count the
number of records and mark address per partition. In the first
pass of partitioning, all threads work synchronously to divide the
whole relation into equal-size partitions with one for each thread.
In following passes, each thread works on its local partition to
produce cache-resident partitions.

2.1.3 Chunked parallel radix join. CPRA has been recently pro-
posed as an NUMA-aware variant of PHJ optimized for multi-socket
CPUs [26]. In CPRA, a thread partitions its chunk locally till the
chunk is fully partitioned and then collects records belonging to
partitions assigned to itself from other NUMA nodes to form com-
plete partitions. By doing so, expensive small randomNUMAwrites
are replaced with large sequential NUMA reads.

2.2 Related work on optimizing hash join
algorithms

In-memory databases have been a hot research topic, attracting
continuous research efforts (e.g., [14, 19, 22]). We refer readers
for recent surveys on in-memory databases [28, 30]. In the follow-
ing, we review more related work on hash joins for in-memory
databases.

Hash join algorithms have been studied on a wide range of differ-
ent hardware architectures such as multi-core CPUs [3, 29], multi-
socket NUMA architectures [18, 24, 26], many-core x86 processors
(KNC) [12, 23], GPUs [8, 13] and hybrid CPU-GPU architectures
[6, 9]. These architectures offer different opportunities for perfor-
mance improvements, and require architecture-aware optimizations
and tuning. On multi-core CPUs, Manegold et al. [4] identified the
main-memory access as the rising performance bottleneck and
showed that careful tuning of memory accesses could lead to signif-
icant performance improvements. Kim et al. [16] further identified
limited memory bandwidth per core as a major performance metric
influencing join algorithms. Balkesen et al. [2, 29] optimized join
algorithms on multi-core CPUs with many software optimizations
applied. Their open-source implementations using AVX SIMD in-
structions were used in many later studies (e.g., [12, 26]). Lang et
al. [1] studied the impact of different memory allocation methods
of NUMA architectures on joins and proposed to distribute data
carefully to achieve a balanced bandwidth utilization. Schuh et
al. [26] further proposed NUMA-aware partitioning and scheduling
to optimize partitioned hash joins on multi-socket CPUs.

GPUs provide a much higher level of thread-level parallelism
than multi-core CPUs to optimize hash joins. He et al. first imple-
mented relational operators on GPUs [8]. Taking advantage of the

hybrid CPU-GPU architecture, He et al. [6, 9] revisited hash joins
utilizing the shared main memory between the CPU and the GPU.

Many studies have accelerated the performance of database op-
erators on Intel Xeon Phi of KNC architectures. Jha et al. and Poly-
chroniou et al. brought hash joins to Intel Xeon Phi using 512-bit
SIMD instructions to vectorize both the computations and memory
access involved [12, 23]. Hou et al. [10] applied SIMD instructions
to automatically generate performance-competitive codes for sort-
ing networks. Their work has enabled us to revisit hash joins on
KNL and study the impacts of KNL’s new features.

There are multiple software optimizations designed for these
three state-of-the-art implementations on both multi-socket multi-
core CPUs and KNC.

• SIMD vectorization: x86-based processors support a wide
range of SIMD instructions sets. Intel Xeon Phi and the
latest Xeon CPUs support 512-bit SIMD intrinsics which
can compute eight double-precision or 16 single-precision
values in a single instruction. All the three state-of-the-art
implementations can be vectorized using such instructions
[23].

• Prefetching: Prefetching helps reducing memory access
latency by fetching data needed soon to either the L1 and L2
cache. It applies to both sequential memory accesses such
as loading keys and payloads as well as random memory
accesses such as building and probing hash tables [5, 12].

• Software-managed buffer : These buffers (a.k.a, write-combined
buffers) have been proposed to group multiple writes to
the same partition in a batch, reducing the number of ran-
dom memory accesses [12, 29]. The size of this buffer is
architecture dependent, which requires careful tuning.

• Multi-pass partitioning: Because splitting input relations
to small partitions involves random memory accesses, par-
titioned hash joins (including PHJ and CPRA) requires
multiple passes of partitioning, so that each pass does not
write to too many partitions and cause TLB misses. The
number of partitions per pass is usually bounded by the
TLB size [26].

• NUMA-aware partitioning: The above-introduced CPRA is
essentially based on NUMA-aware partitioning.

• NUMA-aware scheduling: This optimization interleaves the
placement of partitions across all NUMA nodes to utilize
all NUMA nodes in a balanced manner, [26].

Overall, all these optimization efforts keep utilizing new hard-
ware architectures to improve the performance of parallel database
operators like hash joins. These optimizations eventually contribute
to the performance of main-memory databases. Along with this line,
KNL represents a new generation of many-core processors with
high-bandwidth on-package memory. This study of hash joins shed
light on the need of experimental revisit and algorithmic redesign
of databases on such many-core architectures.

2.3 Intel Knights Landing Architecture
We conduct our experiments on an Intel Xeon Phi 7210 processor of
the KNL architecture, with major hardware specifications summa-
rized in Table 1. We compare it with a server-class multi-core Xeon

Table 1: Hardware specifications

Xeon E7-8893
v4 (CPU)

Xeon Phi
5110P (KNC)

Xeon Phi 7210
(KNL)

Cores 4 60 64
Threads 8 240 256
Frequency 3.20 GHz 1.05 GHz 1.30 GHz
L1 cache 32 KB data cache/instruction cache
L2 cache 256 KB 512 KB 1 MB per tile
L3 cache 60 MB shared

cache
None None

SIMD AVX2 KNC specific AVX-512

MCDRAM

D
D

R
 C

ha
nn

el
s

D
D

R
 C

ha
nn

el
s

Tile

D
D

R

MCDRAM

MCDRAM MCDRAM

D
D

R

Figure 1: Architecture of KNL

processor and a Xeon Phi 5110P processor of the KNC architecture
also introduced in the table.

The KNL architecture is illustrated in Figure 1. The KNL model
we use in this study consists of 32 tiles, 16 GB MCDRAM and other
hardware components which are all connected to a 2D mesh. Each
tile tightly couples two low-frequency out-of-order x86-based cores,
and two 512-bit Vector Processing Units (VPUs). Each core has its
L1 caches and shares a 1 MB L2 cache with the other peer in the
same tile. Through the memory channels, KNL connects to at most
400 GB DDR main memory.

x86-based cores. This KNL has 64 out-of-order cores (2 cores
per tile) and each core supports four hardware threads, provid-
ing 256 hardware threads which are more than those on a Xeon
CPU and KNC. According to our measurements using a micro-
benchmark, KNL can achieve 5,270 GFLOPS and 2,636 GFLOPS for
single-precision and double-precision computations, respectively.
KNL also has 4 MB TLB per core, which is twice as large as that on
KNC.

2Dmesh. The 32 tiles are connected to a 2D mesh on KNL. This
2D mesh can be configured into two or four NUMA nodes. We
illustrate the configuration of four NUMA nodes by dividing the
mesh into four parts using red lines in Figure 1. In this configuration,
KNL is a NUMA architecture where each NUMA node consists of 8
tiles (16 cores), 4GBMCDRAM, and 24 GBmainmemory. KNL offers
three clustering modes configuring the 2D mesh to determine the
mapping ofmemory space to tag directories of all cores: the all-to-all
mode, the quadrant mode, and the sub-NUMA mode. The all-to-all
mode has the longest memory accesses latency [11]. The quadrant
mode has the same mapping with the sub-NUMA mode without
exposing the NUMA architecture to applications. Our experiments
show that the sub-NUMA mode with four NUMA nodes always
delivers the highest performance among all modes and allow us to

apply NUMA-aware optimizations. The detailed results are omitted
due to space constraints. Thus, we choose the sub-NUMA mode in
the rest of this study.

Table 2: Memory specifications

DDR MCDRAM
Capacity 96 GB 16 GB
Read & write latency 180 ns ∼ 200

ns
180 ns ∼ 200
ns

Sequential copy band-
width

54 GB/s 373 GB/s

Sequential read bandwidth 80 GB/s 256 GB/s
Sequential write band-
width

38 GB/s 203 GB/s

MCDRAM. MCDRAM is an on-package high-bandwidth mem-
ory. Table 2 lists MCDRAM’s performance measured from our
micro-benchmark in comparison with the DDR4-2133 main mem-
ory (denoted as DDR) used in this study. The MCDRAM has a
smaller memory capacity than the DDR. The memory latency of
the MCDRAM is almost the same with that of the main memory.
However, the MCDRAM has 2x to 6x higher sequential memory
bandwidth than DDR. The MCDRAM can be configured into the
following three different modes at the boot-time.

• The cache mode: The MCDRAM serves as an LLC, which
is transparent to software applications.

• The flat mode: The MCDRAM is mapped ahead of the DDR
memory in the same address space in this mode, allowing
us to manage data placement explicitly.

• The hybrid mode: 50% of the MCDRAM can be configured
as LLC as in the cache mode, while the rest is configured
in parallel to the DDR as in the flat mode.

3 DESIGN AND METHODOLOGY
We have two main goals in this evaluation. The first is to identify
potential performance issues of the state-of-the-art hash join al-
gorithms on KNL while striving to achieve the best performance
for them by tuning existing software optimizations. The second is
to identify opportunities for further performance improvements
and offer insights for the design of future x86-based many-core
processors.

We first vectorize the implementations of the state-of-the-art
hash join algorithms using the latest AVX-512 SIMD intrinsics.
For non-partitioning hash join and partitioned hash join, we base
our implementation on the previous one built with KNC-specific
SIMD intrinsics [23]. We make necessary changes to the original
implementations by upgrading some SIMD computations to AVX-
512. We implement the algorithm of CPRA using AVX-512 from
scratch because the original implementation is built formulti-socket
CPUs without using 512-bit SIMD intrinsics. We apply existing
optimizations in these implementations.

For each algorithm, we first tune existing software optimizations
(reviewed and summarized in Section 2.2). Next, we evaluate their
performance in different modes of the MCDRAM on KNL. We

Table 3: Settings for hash join workloads

Small Large
Key/payload sizes 4 B / 4 B 4 B / 4 B
Length of R 128 million 1024 million
Length of S 128 million 1024 million
Distribution Uniform Uniform

compare the performance achieved in the cache mode and in the
flat mode of the MCDRAM to identify the gap between them.

We profile the implementations in detail to identify hotspots
and performance issues by measuring relevant hardware counters.
Based on these experimental studies, we further analyze and sum-
marize the opportunities for further performance improvements of
hash join algorithms on KNL.

4 EVALUATION
4.1 Experimental setup
We conduct our experiments on three hardware platforms: an Intel
Xeon Phi 5110 of the KNC architecture, an Intel Xeon Phi 7210
processor of the KNL architecture, and a system with four sockets
of Intel Xeon X7560 CPU. Each X7560 CPU has 16 hardware threads
running at 2.27 GHz, and 256 KB L2 data cache. We use ICC 17 to
compile all the programs with “O3” level optimizations, and Intel
VTune Amplifier XE 2017 to collect important hardware counters.

In all experiments, input relations initially reside in the main
memory. We perform equi-join queries on relations R and S (in the
form of “SELECT R.key, R.payload, S.payload FROM R, S WHERE
R.key == S.key”), which is the same with previous studies [12, 23,
26]. Matched results are materialized in the main memory. We
use two workloads with different input sizes listed in Table 3. The
Small workload is in line with previous studies where it is small
enough to fit into the 8 GB memory of KNC [12, 23]. We use the
Large workload in most cases where the KNC is not involved unless
specified otherwise. Because the total size of the Large workload
exceeds the capacity of the on-package MCDRAM on KNL, we can
use it to evaluate the utilization of both the DDR and the MCDRAM.
By default, both keys and payloads are random 32-bit integers
following a uniform distribution.

4.2 Evaluating existing software optimizations
on KNL

In this section, we tune the state-of-the-art software optimizations
of hash joins on KNL. We start with identifying the hotspots. For
each optimization, we tune its parameter and evaluate whether
existing prediction on its performance impact is still valid or not
on KNL.

4.2.1 Hotspots. We first breakdown the execution time and
identify hotspots at a fine-grained level while executing PHJ in
the cache mode. Table 4 shows the top three hotspots in PHJ on
KNL. The top two hotspots are probing in hash tables and resolving
hashing conflicts in all phases. These two hotspots involve random
memory accesses using SIMD gather/scatter intrinsics. We observe
similar results in the flat mode.

Table 4: Top hotspots in PHJ

Hotspot Time consump-
tion

Implementation

Probing hash tables 14.49% SIMD gather
Resolving hashing con-
flicts

13.96% SIMD gather/scatter

Loading keys and pay-
loads

10.81% SIMD sequential load

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 3 5 7 9 11 13 15

E
x

ec
u

ti
o

n
 t

im
e

(s
)

Prefetching distance (# cache lines)

Partition Build Probe

Figure 2: Impacts of prefetching distances on different
phases

Finding 1: SIMD gather/scatter operations involving random
memory accesses are the performance bottleneck.

4.2.2 Prefetching. We first show the execution time of the par-
tition, build and probe phases in PHJ with varying prefetching dis-
tances used for software prefetching techniques in Figure 2 [2, 12].
The best prefetching distance varies from phase to phase because
of different execution time per iteration in each phase. The optimal
prefetching distances have improved the performance of partition-
ing, build and probe phases by 2%, 36%, and 7%, respectively. The
partitioning and probe phases have barely benefited from software
prefetching. Although a relatively larger speedup has been achieved
in the build phase, it is far from the bottleneck of PHJ. Thus, soft-
ware prefetching is not impactful on PHJ overall. Similar results
have been observed in CPRA because of the same memory access
patterns in its partitioning phase.

We further report the overall speedup achieved in Figure 3a
on all three processors. Among NPJ executed on KNC, CPU, and
KNL, we observe that NPJ benefits the least on KNL from software
prefetching with a speedup of 10%. On the other hand, software
prefetching has improved the performance of PHJ by 2%, 39% and
9% on KNC, CPU, and KNL, respectively. Overall, the performance
improvement software prefetching can bring on hash joins on KNL
is no more than 10%. We further investigate the impact of hardware
prefetching on KNL. As shown in Figure 3b, hardware prefetch-
ing on KNL improves the performance of NPJ and PHJ by 44%
and 17%, respectively, which are much more impactful than soft-
ware prefetching. Software prefetching are less impactful on KNL
than KNC and CPUs. This is caused by KNL’s improved capability
of issuing memory requests. Firstly, there are more out-of-order
cores supporting more independent accesses to the main memory
through the mesh on KNL than those on KNC. Secondly, compared

0

0.5

1

1.5

2

2.5

S
p
ee

d
u
p

(a) Performance impacts of
software prefetching

0

0.5

1

1.5

2

2.5

NPJ PHJ

S
p
ee

d
u
p

(b) Performance impacts of
hardware prefetching on KNL

Figure 3: Impacts of prefetching on the overall performance
of various hash join algorithms

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

16 32 48 64 80 96 112 128

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

Buffer size (#tuples)

KNC CPU KNL

Figure 4: Impacts of software managed buffers

with CPUs, the impact of the low frequency of KNL’s cores is com-
pensated by KNL’s SIMD capabilities and the larger number of
cores.

Finding 2: Existing software prefetching techniques are not
impactful on KNL.

4.2.3 Software-managed buffers. Figure 4 shows the normalized
execution time of PHJ with varying sizes of the software managed
buffers on all hardware platforms. For each buffer size, we have
tuned other related parameters including the number of threads
and the number of partitions. The best buffer sizes are 16, 48 and 64
tuples for KNC, CPU, and KNL, respectively. The size of buffers is
bounded by the cache size per thread and the number of partitions
per thread. Although these three processors have the same cache
size per thread, PHJ on KNL manages to achieve the best perfor-
mance with fewer threads than that on KNC (see Section 4.2.4 and
[12]). Compared with the CPU, non-temporal 512-bit SIMD stores
allows KNL to process writes of buffers faster. The best performance
is 17% faster than the buffer size of one record on KNL. Previous
studies have not tuned this size [12, 26, 29].

Finding 3: Software-manged buffers are efficient on all these
x86-based processors. However, the optimal sizes of buffers
are different across these processors despite similar cache
sizes per core.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

8 9 10 11 12 13 14 15 16 17 18 19

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#Radix bits

KNC CPU KNL

Figure 5: Performance of PHJ on different processors with
varying number of radix bits for partitioning

4.2.4 Multi-pass partitioning. In Figure 5, we compare the nor-
malized execution time of PHJ with varying the number of radix
bits. For each radix bit, we tune the number of passes for the best
configuration for partitioning on each hardware platform. The best
configuration on KNC and CPU are two-pass and one-pass parti-
tioning, respectively. These findings are in line with existing studies
[12, 26]. On KNL, 2-pass partitioning performs the best, which is
similar to that on CPUs. Meanwhile, KNC and KNL require more
radix bits to achieve their best performance compared with CPUs.

We further show the details of multi-pass partitioning on KNL. In
Figure 6a, we plot the execution time of PHJ on KNL with varying
number of threads evenly scattered across all the 64 cores. Because
there are at most four hardware threads per core, we vary the
number of threads from 64 (one thread per core) to 256 (four threads
per core). For each number of threads, we have tuned the number
of passes and found that 2-pass is the best for all of them. Thus
we report the results of 2-pass. Surprisingly, we can observe that
64-thread delivers the best performance while using all 256 threads
delivers the worst performance. Using more threads reduces the
average L2 caches per thread bringing the need for more partitions
to reduce cache contentions in build and probe phases. Although
more partitions can help to alleviate cache contentions, it also incurs
more memory overhead.

In Figure 6b, we further zoom in on the execution time of PHJ
with 64 threads by tuning its number of passes from one to three.
We find that the 1-pass configuration runs the slowest and the best
result of the 2-pass is 13% faster than that of the 3-pass. This is first
because the 1-pass suffers the most from the overhead caused by
thread-level synchronizations [25]. The 2-pass and 3-pass achieve
their best performance with 12 bits and 14 bits, respectively. While
more passes indeed can take advantage of more number of parti-
tions and more radix bits, the extra memory overhead caused offsets
the benefits of adding one more pass.

Although the prediction for the optimal radix bits for partitioning
of existing study is still valid on KNL [26], we have taken the impacts
of hyper-threading into account in this study.

Finding 4: Multi-pass partitioning works well on KNL as on
other processors. However, the best performance of PHJ on
KNL is achieved using only one fourth of the total hardware
threads available with a small number of partitions.

0

5

10

15

20

25

30

8 9 10 11 12 13 14 15 16 17 18 19

E
x

ec
u

ti
o

n
 t

im
e

(s
)

#Radix bits

64-thread 128-thread

192-thread 256-thread

(a) Varying number of threads
for 2-pass

0
5

10
15
20
25
30

8 9 10 11 12 13 14 15 16 17 18 19

Ex
ec

ut
io

n
tim

e
(s

)

#Radix bits

1-pass 2-pass 3-pass

(b) Varying number of passes
for 64-thread

Figure 6: Performance of PHJ on KNL with varying configu-
ration for partitioning

4.3 Evaluating the utilization of new hardware
features

In this section, we evaluate the utilization of important new hard-
ware features on KNL including its NUMA architecture and the
high-bandwidth MCDRAM. Because these features represent the
trend of the development of hardware features on many-core pro-
cessors, we aim to acquire findings to guide further optimizations.

4.3.1 Memory bandwidth utilization. Memory bandwidth uti-
lization is important for memory-intensive database algorithms
like hash joins. Higher memory bandwidth utilization often leads
to better performance. However, we have found that it is not neces-
sarily the case for PHJ on KNL. In Figure 7, we show the average
memory bandwidth utilized during the partitioning phase of PHJ
using a different number of threads as discussed in the last section
as well as the optimal number of partitions and passes. For compar-
ison, we execute the PHJ on both the DDR and the MCDRAM and
report the memory bandwidth. On both memories, the 64-thread
PHJ performs the best. While the bandwidth achieved on the DDR
does not vary much for a different number of threads, 64-thread
PHJ uses 27% less memory bandwidth than the 256-thread one on
the MCDRAM. Although the 254-thread PHJ utilizes a memory
bandwidth as high as 348 GB/s, which almost reaches the peak, its
performance is worse than the 64-thread one. Figure 7 shows that
using more threads does indeed help to improve the memory band-
width. However, as explained in the last section, more threads also
need more partitions and passes which incur extra overhead [26].
It is this extra overhead that feeds the memory with more requests,
which in turn causes a higher memory bandwidth utilization.

Finding 5: The best partitioning configuration for PHJ does
not yield the highest memory bandwidth utilization.

4.3.2 NUMA-aware optimizations. We start our evaluation of
NUMA-aware optimizations with measuring KNL’s NUMA archi-
tecture using a micro-benchmark and compare it against that of
multi-socket CPUs because NUMA-aware optimizations are depen-
dent on the underlying NUMA architecture.

We find that KNL’s NUMA architecture is significantly different
to that of multi-socket CPUs. Figure 8 shows the measured sequen-
tial read, write and triad bandwidth of socket 0 accessing all four

0

50

100

150

200

250

300

350

400

64 128 192 256

M
em

o
ry

 b
an

d
w

id
th

 (
G

B
/s

)

Number of threads

DDR MCDRAM

Figure 7: Comparison of memory bandwidth utilized of PHJ
when executed on the DDR and the MCDRAM

0

20

40

60

80

100

120

0 1 2 3 0 1 2 3

DDR MCDRAM

M
em

o
ry

 b
an

d
w

id
th

 (
G

B
/s

)

NUMA node

Read Write Triad

Figure 8: NUMA bandwidth of socket 0 accessing all four
sockets

sockets on KNL including itself. There are four major observations.
Firstly, we can see that the bandwidth of accessing MCDRAM in
remote sockets is even much higher than accessing the local DDR.
This shows that the MCDRAM is always preferred than the DDR
for sequential memory accesses regardless of whether the access is
remote or not. Secondly, unlike multi-socket CPUs where remote
memory accesses are 60% to 89% lower than local ones depending
on distances and the number of hops involved [15], the differences
between local and remote accesses on KNL are much smaller. At
the DDR side, remote accesses are at most 26%, 21%, and 28% slower
than the local ones for read, write and triad operations. At the
MCDRAM side, other than the triad operation on the most remote
socket, all accesses measured are at most 18% slower than local
ones. Thirdly, we can observe a clear bandwidth pattern on KNL
determined by its 2D mesh. The bandwidth between socket 0 and
socket 2 are almost the same as the local bandwidth, meaning these
two sockets are very close. Meanwhile, socket 1 is farther away than
socket 2. And, socket 3 is the most distant one. This is because one
hop on the mesh takes 1, and two cycles on the Y and X direction,
respectively. Although the mesh looks to be symmetric as shown in
Figure 1, a socket is closer to its neighbor in the Y direction that the
other neighbor in the X direction regarding latency and bandwidth.
Thus, due to these significant differences, existing NUMA-aware
optimizations may not work well and efficient on KNL where the
underlying NUMA architecture is very different.

We further evaluate the performance impacts of existing NUMA-
aware optimizations on KNL. Figure 9 shows the performance com-
parison of CPRA and PHJ when threads scale up from one socket to
all sockets following both the compact and scatter thread affinity.

0

5

10

15

20

25

30

16 48 80 112 144 176 208 240

E
x

ec
u

ti
o

n
 t

im
e

(s
)

#threads

PHJ (Compact)
CPRA (Compact)
PHJ (Scatter)
CPRA (Scatter)

Figure 9: Performance comparison of PHJ and CPRA when
thread scales up across NUMA nodes

0

1

2

3

4

5

6

7

8

9

CPRA PHJ

E
x

ec
u

ti
o

n
 t

im
e

(s
)

NUMA read
Partition
Build & Probe

Figure 10: Time breakdown of CPRA and PHJ

For both of them, we have applied NUMA-aware partitioning, and
scheduling explained in existing work [26]. We make two obser-
vations in this figure. Firstly, both algorithms perform worse with
the compact affinity than with the scatter affinity. This is because
threads with the compact affinity are distributed across fewer cores
and fewer sockets so that they do not have access to memory con-
trollers and channels as much as the scatter affinity. Secondly, as
we expected, different to the previous finding on a 4-socket CPU
system, CPRA performs worse than PHJ on KNL.

To study the performance difference between CPRA and PHJ,
we show the breakdown of their execution time in Figure 10. A
significant portion of CPRA’s execution time is consumed by NUMA
reads. Although the replacement of NUMA writes with NUMA
reads in CPRA reduces the execution time ofmulti-pass partitioning,
PHJ is slightly faster in total. As shown in Figure 8, remote writes
on KNL are almost the same with local writes. However, remote
reads are a bit slower than local reads. Thus, this NUMA-aware
partitioning technique to trade remote writes for remote reads does
not work.

Finding 6: The existing NUMA-aware optimizations tech-
nique is not efficient on KNL. Because KNL’s NUMA archi-
tecture is different to that of multi-socket CPUs for which
existing optimizations are designed for.

4.3.3 Impacts of the MCDRAM. Figure 11 compares the exe-
cution time of three state-of-the-art hash join algorithms when
executed in the flat (where only the DDR is used), hybrid, and the
cache mode. The hybrid mode helps to reduce the execution time by
29%, 53%, and 58% for NPJ, PHJ, and CPRA, respectively. The cache
mode further reduces the execution time by 65%, 12%, and 7% for

0

5

10

15

20

25

NPJ PHJ CPRA

E
x

ec
u

ti
o

n
 t

im
e

(s
)

DDR
Hybrid
Cache

Figure 11: Performance comparison of NPJ, PHJ and CPRA
in different modes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NPJ PHJ CPRA

M
C

D
R

A
M

 h
it

 r
at

e

Hybrid Cache

Figure 12: MCDRAM cache hit rate in the hybrid and cache
mode

these three algorithms, respectively. Among them, PHJ performs
the best. Among the three hash join algorithms, NPJ benefits a lot
from the high-bandwidth MCDRAM configured as a third-level
cache, and the other two have only minor performance gain. Com-
paring the hybrid mode and the cache mode, we find that, the larger
the MCDRAM cache, the better the performance.

Although the hybrid and cache mode of the MCDRAM helps to
achieve immediate speedups, we find that the MCDRAM is under-
utilized in these modes. Figure 12 compares the MCDRAM cache
hit rate of these three algorithms. This rate is acquired from the
profiler in the same way as measuring LLC hit rate. NPJ achieves
higher hit rates than the other two. However, they all only hit the
MCDRAM cache around 50% of the time. This means that about
a half of memory accesses are directed to the DDR, the latency of
which are even longer than accessing the DDR directly in the flat
mode (without using the MCDRAM as an LLC).

Figure 13 shows the profiling results of PHJ running on either
type of memory alone (denoted as “DDR” and “MC.” for the DDR
and the MCDRAM, respectively) or in the cache mode (denoted
as “Cache”). We breakdown the execution of PHJ into three parts:
“Part. #1” (the first pass of partitioning), “Part. Other” (following
passes of partitioning) and “Build & probe”. We do not report TLB
hit rates here because we find that all memory accesses profiled hit
either the L1 TLB or the L2 TLB, taking advantage of KNL’s larger
TLB than CPUs and KNC.

There are rooms for improvements on cache hit rates in all
modes. We can see from Figure 13a that PHJ executing on the DDR
alone has higher L1 cache hit rates than the MCDRAM. In the
meantime, although the cache mode performs similarly with the

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

D
D

R

M
C

.

C
ac

h
e

D
D

R

M
C

.

C
ac

h
e

D
D

R

M
C

.

C
ac

h
e

Part. #1 Part. Other Build &

probe

L
1

 c
ac

h
e

h
it

 %

(a) L1 cache hit rate

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

D
D

R

M
C

.

C
ac

h
e

D
D

R

M
C

.

C
ac

h
e

D
D

R

M
C

.

C
ac

h
e

Part. #1 Part. Other Build &

probe

L
2

 c
ac

h
e

h
it

 r
at

e

(b) L2 cache hit rate

0
5

10
15
20
25
30
35
40
45
50

D
D

R

M
C

.

C
ac

h
e

D
D

R

M
C

.

C
ac

h
e

D
D

R

M
C

.

C
ac

h
e

Part. #1 Part. Other Build &

probe

C
P

I
p

er
 t

h
re

ad

(c) CPI per thread

0

20

40

60

80

100

120

140

D
D

R

M
C

.

C
ac

h
e

D
D

R

M
C

.

C
ac

h
e

D
D

R

M
C

.

C
ac

h
e

Part. #1 Part. Other Build &

probe

A
v

er
ag

e
b

an
d

w
id

th
 (

G
B

/s
)

(d) Memory bandwidth

Figure 13: Profiling results of PHJ

DDR on L1 cache hit rates, its L2 cache hit rates are worse than
the DDR, as shown in Figure 13b. This finding is in line with the
low-performance improvements achieved by software prefetching
on KNL.

We find that the MCDRAM contributes a lot in reducing CPI
per thread. In Figure 13c, the first pass of partitioning has much
higher CPI per thread on the DDR main memory in the flat mode.
Considering that PHJ has costly cache misses running on the DDR.
On the other hand, once the MCDRAM is used in the flat mode or
the cache mode, the CPI per thread drops significantly compared
with that on the DDR. We have observed similar results of NPJ in
all these cases.

Figure 13d shows the measured average memory bandwidth
of these phases of PHJ on different memory types. We can see
that the potentially high bandwidth of the MCDRAM has not been
reached in all cases. While using both the DDR or the MCDRAM,
the average bandwidth is only about 30 to 40 GB/s on the DDR and
about 100 GB/s on the MCDRAM, which are less than half of the
corresponding peak bandwidth. In the cache mode, the achieved
bandwidth is not much higher than that of the DDR because it is
bounded by the relatively slow bandwidth of the DDR.

Finding 7: The MCDRAM is very impactful for both non-
partitioning and partitioned hash joins. However, it is under-
utilized in the hybrid or cache mode on KNL.
Finding 8: Partitioned hash join can still outperform non-
partitioning hash join.

4.4 Summary of findings
4.4.1 Memory accesses. We find that existing software prefetch-

ing techniques are not sufficient on KNL. On the other hand, there is
no prefetching to assist random memory accesses in the expensive

gather/scatter operations which form the bottleneck in the state-of-
the-art hash joins. Software-managed buffers are still efficient on
KNL as it combines multiples memory writes into bulks. It is still
necessary to tune the buffer size which is hardware-dependent.

4.4.2 Partitioning. Although existing NUMA-aware partition-
ing techniques are not valid on KNL, existing multi-pass partition-
ing still has significant performance impacts on KNL once relevant
parameters are properly tuned. As a result, partitioned hash join
still outperforms non-partitioning hash join. We have found that
the best configuration for multi-pass partitioning is to use one hard-
ware thread per core and 64 threads in total on KNL, which has the
largest cache size per thread, lowest cache contentions, and modest
memory bandwidth utilization. Although this configuration leads
to the best performance, for now, it leaves three-fourth of total
hardware threads unused. On the other hand, although using all
hardware threads can improve the memory bandwidth utilization,
it cannot pay off the extra memory overhead caused by extensive
partitioning to avoid cache contentions.

4.4.3 Heterogeneous memory. We have found that the high-
bandwidth MCDRAM is very impactful on the performance of both
non-partitioning and partitioned hash joins. Once configured in the
cache mode, it can bring significant and immediate performance
speedup for hash join algorithms. However, the MCDRAM cache
hit rates are rather low, signaling its underutilization.

The involvement of the MCDRAM on KNL also changes the
underlying NUMA architecture. Many previous understating of
the NUMA architecture of multi-socket CPUs no longer holds. The
bandwidth of remote writes is almost the same with local writes.
Remote accesses do not reduce the read bandwidth as heavily as
that onmulti-socket CPUs. And, even accessing a remoteMCDRAM
is faster than accessing the local DDR. These findings have changed
the foundation of existing NUMA-aware optimizations.

5 OPPORTUNITIES
5.1 Exploiting the MCDRAM and the new

NUMA architecture
We have observed the MCDRAM is very useful for the performance
of hash joins. However, there are several challenges to exploit its
high memory bandwidth fully. Firstly, because the MCDRAM is
underutilized in the cache mode during hash joins as we found
out through evaluations, we need to optimize its usage explicitly.
Secondly, the MCDRAM’s capability is not enough to support large
relations in main-memory databases.

Hash join algorithms should be made aware of the MCDRAM
so that that above challenges can be sufficiently addressed. We
need to shift existing NUMA-aware optimizations from the local-
preferable design to a new MCDRAM-preferable design because
even accessing remote MCDRAM nodes is faster than accessing
local DDR nodes.

We envision an optimized placement of both the data and query
processing tasks to the MCDRAM and the DDR to take advantage of
both types of memory. For query processing, we envision a dynamic
data placement approach to optimize the data placement on KNL.
There are several data placement decisions for a column-store to
make. Firstly, we need to determine which data to be placed in

the MCDRAM. We also need to determine when to change the
placement of data and migrate it to adjust to runtime situations.
Secondly, for each column, we need to determine whether and how
to partition it as well as how to spread it across multiple sockets.

5.2 Exploiting abundant hardware threads
There are abundant free hardware threads (three fourth of the total
number), and underutilized memory bandwidth capacity of the
MCDRAM (about 100 GB/s) on KNL during the execution of the
carefully tuned partitioned hash join. Thus, there are still hardware
resources to exploit.

We envision an approach to first distinguish database algorithms
into two camps: locality-sensitive and locality-insensitive algo-
rithms. Next, tasks from these two camps can be co-scheduled
on the same core where more hardware threads can be exploited.
This differentiation according to data locality is necessary to avoid
or minimize cache contention and pollution. Thought the entire
hash join algorithm, the partitioning, build and probe phases all
have data locality. However, data transfers from the DDR to the
MCDRAM does not have locality. Thus, we can potentially utilize
all those free threads to help data migrations between the DDR
and the MCDRAM to assist the utilization of the high-bandwidth
MCDRAM.

5.3 Exploiting new SIMD instructions
The AVX-512 contains a new subset of instructions dedicated to
prefetch data for gather/scatter operations. A major advantage of
these new instructions is that they are handled by a separate unit
other than the main pipeline once issued, devoting the pipeline
to other instructions. With proper design and implementation, we
should be able to insert prefetching for the expensive gather/scatter
operations aiming for reduced execution time of them.

5.4 Optimizing other database algorithms
Most optimization opportunities apply to other database operators
including selection, aggregation, sort, etc.

The high bandwidth of the MCDRAM is beneficial to all sequen-
tial memory accesses in these database operators. For example, in
the state-of-the-art radix sort algorithm [23], the multiple passes
over the input to group records by individual digits are sequential
accesses. Thus, it can benefit from MCDRAM’s high bandwidth.

We can utilize the heterogeneous memory in parallel to get the
maximummemory bandwidth for algorithms with strong data-level
parallelism like the selection. By dividing input between the DDR
and the MCDRAM and scanning them using different threads, we
can utilize all memory controllers in parallel. The best performance
is achieved when the input is properly divided so that scanning in
the DDR and the MCDRAM finish simultaneously.

It is possible to exploit KNL’s new NUMA architecture for algo-
rithms with frequent inter-thread communications because the
bandwidth of remote accesses among MCDRAMs is not much
slower than local accesses. For example, in radix sort, records with
different radix bits can be written to the MCDRAM of different
NUMA nodes to facilitate further local processing without incur-
ring significant NUMA overhead.

Free hardware threads left by hash joins can be used for other
database algorithms as discussed above. And, new SIMD instruc-
tions such as prefetching for gather/scatter operations are widely
applicable to any algorithmswith indexed randommemory accesses.
For example, in a compressed column-store where a dictionary is
used, new prefetching instructions can help the gather operation
accessing the dictionary for the production of final results.

6 CONCLUSIONS
In this paper, we have experimentally studied the state-of-the-
art main-memory hash join algorithms on the latest Intel Xeon
Phi many-core processor of the KNL architecture. By tuning ex-
isting software optimizations, we have learned several lessons
on how KNL’s new features affect hash join performance, espe-
cially on prefetching and NUMA optimizations. Specifically, we
find that although many existing optimizations are still valid on
KNL with proper tuning, even the state-of-the-art algorithms un-
derutilize KNL’s hardware resources including its high-bandwidth
on-package MCDRAM. By analyzing performance issues we have
observed, we have identified important opportunities which lead
us to develop an improved hash join algorithm. Our experimental
results show that our improved hash join algorithm with explicit
optimizations of the underlying hardware outperforms the state-of-
the-art hash join algorithms on KNL. We believe that the study in
this paper sheds light on the design and implementation of database
operations on future many-core processors.

ACKNOWLEDGMENTS
The authors would like to thank Intel for hardware donations which
enabled this work, and Dr. Eric Lo for his comments on this paper.
This work is in part supported by a MoE AcRF Tier 1 grant (T1
251RES1610) and a MoE AcRF Tier 2 grant (MOE2017-T2-1-122).
This research is also in part supported by the National Research
Foundation, Prime Minister’s Office, Singapore under its IDM Fu-
tures Funding Initiative.

REFERENCES
[1] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. 2012. Massively

Parallel Sort-merge Joins in Main Memory Multi-core Database Systems. Proc.
VLDB Endow. 5, 10 (2012), 1064–1075.

[2] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. 2013. Multi-
core, Main-memory Joins: Sort vs. Hash Revisited. Proc. VLDB Endow. 7, 1 (2013),
85–96.

[3] Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and Evaluation
of Main Memory Hash Join Algorithms for Multi-core CPUs. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of Data. ACM,
37–48.

[4] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. 1999. Database Archi-
tecture Optimized for the New Bottleneck: Memory Access. In Proceedings of
the 25th International Conference on Very Large Data Bases. Morgan Kaufmann
Publishers Inc., 54–65.

[5] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. 2007.
Improving Hash Join Performance Through Prefetching. ACM Trans. Database
Syst. 32, 3 (2007).

[6] Xuntao Cheng, BingshengHe, and Chiew Tong Lau. 2015. Energy-Efficient Query
Processing on Embedded CPU-GPU Architectures. In Proceedings of the 11th
International Workshop on Data Management on New Hardware. ACM, 10:1–10:7.

[7] Xuntao Cheng, Bingsheng He, Mian Lu, Chiew Tong Lau, Huynh Phung Huynh,
and Rick Siow Mong Goh. 2016. Efficient Query Processing on Many-core
Architectures: A Case Study with Intel Xeon Phi Processor. In Proceedings of the
2016 International Conference on Management of Data. ACM, 2081–2084.

[8] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and
Pedro Sander. 2008. Relational Joins on Graphics Processors. In Proceedings of

the 2008 ACM SIGMOD International Conference on Management of Data. ACM,
511–524.

[9] Jiong He, Mian Lu, and Bingsheng He. 2013. Revisiting Co-processing for Hash
Joins on the Coupled CPU-GPU Architecture. Proc. VLDB Endow. 6, 10 (2013),
889–900.

[10] Kaixi Hou, Hao Wang, and Wu-chun Feng. 2015. ASPaS: A Framework for
Automatic SIMDization of Parallel Sorting on x86-based Many-core Processors.
In Proceedings of the 29th ACM on International Conference on Supercomputing.
ACM, 383–392.

[11] James Jeffers and et al. 2016. Intel Xeon Phi Processor High Performance Program-
ming: Knights Landing Edition. Morgan Kaufmann.

[12] Saurabh Jha, Bingsheng He, Mian Lu, Xuntao Cheng, and Huynh Phung Huynh.
2015. Improving Main Memory Hash Joins on Intel Xeon Phi Processors: An
Experimental Approach. Proc. VLDB Endow. 8, 6 (2015), 642–653.

[13] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. 2012. GPU Join
Processing Revisited. In Proceedings of the Eighth International Workshop on Data
Management on New Hardware. ACM, 55–62.

[14] A. Kemper and T. Neumann. 2011. HyPer: A hybrid OLTP amp;OLAP main
memory database system based on virtual memory snapshots. In 2011 IEEE 27th
International Conference on Data Engineering. 195–206.

[15] Tim Kiefer, Thomas Kissinger, Benjamin Schlegel, Dirk Habich, Daniel Molka,
and Wolfgang Lehner. 2014. ERIS Live: A NUMA-aware In-memory Storage
Engine for Tera-scale Multiprocessor Systems. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data. ACM, 689–692.

[16] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen,
Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009. Sort
vs. Hash Revisited: Fast Join Implementation on Modern Multi-core CPUs. Proc.
VLDB Endow. 2, 2 (2009), 1378–1389.

[17] Arun Kumar, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu. 2016. To
Join or Not to Join?: Thinking Twice About Joins Before Feature Selection. In
Proceedings of the 2016 International Conference on Management of Data. ACM,
19–34.

[18] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven Parallelism: A NUMA-aware Query Evaluation Framework for the Many-
core Age. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data. ACM, 743–754.

[19] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: Fast Scans for Main Memory
Data Processing. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. ACM, 289–300.

[20] Gabriel H. Loh. 2008. 3D-Stacked Memory Architectures for Multi-core Proces-
sors. In Proceedings of the 35th Annual International Symposium on Computer
Architecture. IEEE Computer Society, 453–464.

[21] G. E. Moore. 2006. Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE
Solid-State Circuits Society Newsletter 11, 5 (2006), 33–35.

[22] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo - a
Vector Algebra for Portable Database Performance on Modern Hardware. Proc.
VLDB Endow. 9, 14 (2016), 1707–1718.

[23] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM, 1493–1508.

[24] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anas-
tasia Ailamaki. 2016. Adaptive NUMA-aware Data Placement and Task Sched-
uling for Analytical Workloads in Main-memory Column-stores. Proc. VLDB
Endow. 10, 2 (2016), 37–48.

[25] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W.
Lee, Daehyun Kim, and Pradeep Dubey. 2010. Fast Sort on CPUs and GPUs:
A Case for Bandwidth Oblivious SIMD Sort. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data. ACM, 351–362.

[26] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison
of Thirteen Relational Equi-Joins in Main Memory. In Proceedings of the 2016
International Conference on Management of Data. ACM, 1961–1976.

[27] Avinash Sodani. 2015. Knights landing (KNL): 2nd Generation Intel® Xeon Phi
processor. In Hot Chips. IEEE, 1–24.

[28] Kian-Lee Tan, Qingchao Cai, Beng Chin Ooi, Weng-Fai Wong, Chang Yao, and
Hao Zhang. 2015. In-memory Databases: Challenges and Opportunities From
Software and Hardware Perspectives. SIGMOD Rec. 44, 2 (2015), 35–40.

[29] Jens Teubner, Gustavo Alonso, Cagri Balkesen, and M. Tamer Ozsu. 2013. Main-
memory Hash Joins on Multi-core CPUs: Tuning to the Underlying Hardware. In
Proceedings of the 2013 IEEE International Conference on Data Engineering. IEEE
Computer Society, 362–373.

[30] H. Zhang, G. Chen, B. C. Ooi, K. L. Tan, and M. Zhang. 2015. In-Memory Big
Data Management and Processing: A Survey. IEEE Transactions on Knowledge
and Data Engineering 27, 7 (2015), 1920–1948.

	Abstract
	1 Introduction
	2 Background and related work
	2.1 The state-of-the-art hash join algorithms
	2.2 Related work on optimizing hash join algorithms
	2.3 Intel Knights Landing Architecture

	3 Design and methodology
	4 Evaluation
	4.1 Experimental setup
	4.2 Evaluating existing software optimizations on KNL
	4.3 Evaluating the utilization of new hardware features
	4.4 Summary of findings

	5 Opportunities
	5.1 Exploiting the MCDRAM and the new NUMA architecture
	5.2 Exploiting abundant hardware threads
	5.3 Exploiting new SIMD instructions
	5.4 Optimizing other database algorithms

	6 Conclusions
	Acknowledgments
	References

