
Medusa: A Parallel Graph Processing System on
Graphics Processors

Jianlong Zhong
Nanyang Technological University

jzhong2@ntu.edu.sg

Bingsheng He
Nanyang Technological University

bshe@ntu.edu.sg

ABSTRACT
Medusa is a parallel graph processing system on graph-
ics processors (GPUs). The core design of Medusa is
to enable developers to leverage the massive parallelism
and other hardware features of GPUs by writing sequen-
tial C/C++ code for a small set of APIs. This simplifies
the implementation of parallel graph processing on the
GPU. The runtime system of Medusa automatically
executes the user-defined APIs in parallel on the GPU,
with a series of optimizations based on the architecture
features of GPUs and characteristics of graph applica-
tions. In this paper, we present an overview of the
Medusa system and a case study of adopting Medusa to
a research project on social network simulations. With
Medusa, users without GPU programming experience
can quickly implement their graph operations on the
GPU, which accelerates the discovery and findings of
domain-specific applications.

1. INTRODUCTION
GPGPU (General-Purpose Computation on Graph-

ics Processing Units) is gaining increasing popu-
larity in performance acceleration for many ap-
plications, including graph processing [8, 10]. A
Modern GPU can have over an order of magni-
tude higher memory bandwidth and computation
power than a multi-core CPU. With intensive
and application-specific optimizations, GPU-based
graph algorithms have shown significant perfor-
mance improvement over CPU-based implementa-
tions. For example, the GPU accelerated breadth
first search (BFS) algorithm is up tp 14 times faster
than multi-core implementation [10]. However,
despite the recent improvements on GPGPU pro-
grammability, writing a correct and efficient GPU
program is challenging in general and even more
difficult for the highly irregular graph applications.

To address the above-mentioned issues and sim-
plify programming graph processing algorithms on
the GPU, we propose the Medusa parallel graph
processing programming framework. Like exist-

ing programming frameworks such as Hadoop [17]
and Mars [9], Medusa provides a small set of
APIs for developers to implement their applications
by writing sequential (C/C++) code. Different
from Hadoop and Mars, which adopts the MapRe-
duce programming model [3], Medusa adopts our
novel “Edge-Message-Vertex” (EMV) graph pro-
gramming model for fine-grained processing on
edges, messages and vertices. Medusa embraces
an efficient message passing based runtime. It
automatically executes user-defined APIs in parallel
within one GPU and across multiple GPUs, and
hides the complexity of GPU programming from
developers. Thus, developers can write the same
APIs, which automatically run on one or multiple
GPUs. To maximally leverage the power of GPUs,
Medusa embraces a series of optimizations based on
the architecture features of GPUs and characteris-
tics of graph applications.

As a case study, we adopt Medusa to implement
GPU accelerated simulation of information propa-
gation over social networks. Simulation of informa-
tion propagation is computationally intensive and
fortunately highly parallelizable, which makes it
viable for GPU acceleration. By the case study, we
demonstrate that Medusa both improves the coding
productivity and brings significant performance
speedups.

This paper gives an overview of Medusa based
on work reported in [20, 18, 11, 12, 13]. We
first present the design of the main components
of Medusa’s system architecture and evaluation
results. We then present the case study developed
based on Medusa. Finally, we conclude this paper
and present the future work.

2. RELATED WORK
Parallel graph processing. It has been ob-

served that many common graph algorithms can be
formulated using a form of the bulk synchronous
parallel (BSP) model [14] (we call it GBSP). Under

the GBSP model, local computations on each vertex
are performed in parallel iteratively. At the end of
each iteration, vertices exchange data by message
passing, followed by a global synchronization. More
recently, the asynchronous model has been applied
to improve the convergence speed of some graph
applications [14]. Due to the synchronous nature of
the GPU programming model, we only support the
synchronous GBSP model on GPU at the moment.

GPGPU. We use NVIDIA CUDA’s terminology.
The GPU consists of multiple of streaming multi-
processors (SM), inside which there is an array of
scalar cores. A CUDA program, which is called
a kernel, usually consists of thousands of threads.
The massive number of threads of a kernel runs
on all the SMs of a GPU in parallel. Each 32 of
the threads are grouped into a warp and execute
synchronously. Divergence inside a warp introduces
severe performance penalty since different paths
are executed serially. The GPU requires coalesced
access to its memory to ensure high utilization of its
memory bandwidth. To achieve coalesced access,
threads in the same warp must access the same
memory segment each time. Another important
feature for performance optimization on the GPU is
the shared memory, which is a small piece of scratch
pad memory on the SM. Shared memory has much
lower latency compared with the GPU memory.
Utilizing shared memory can greatly improve the
data access performance of CUDA programs.

3. SYSTEM OVERVIEW
In this section, we give an overview on how users

implement their graph processing algorithms based
on Medusa, and outline the key modules of Medusa.

3.1 Programming with Medusa
We propose the EMV model as the programming

model of Medusa. EMV is similar to the GBSP
model and specifically tailored for parallel graph
processing on the GPU. To facilitate efficient and
fine-grained graph processing on the GPU, EMV
decomposes each iterative graph operation in GBSP
into three sub-iterations, i.e., processing on edges,
messages and vertices. Medusa hides the GPU pro-
gramming details from users by offering two kinds
of APIs, EMV APIs and system-provided APIs,
as shown in Tables 1 and 2, respectively. Through
those APIs, Medusa enables programmability and
efficiency for parallel graph processing on the GPU.

Each EMV API is either for executing user-
defined computation on vertices (VERTEX), edges
(ELIST , EDGE) or messages (MESSAGE , MLIST).
The vertex and edge APIs can also send messages

Device code APIs:
/* EDGE API */
struct SendDistance{
__device__ void operator() (Edge e){
 int head_id = e.get_head_id();
 Vertex head(head_id);
 if(head.get_updated())
 {
 unsigned int msg = v.get_distance() +
 e.get_length();
 e.sendMsg(msg);
 }
}
/* VERTEX API */
struct UpdateDistance{
__device__ void operator() (Vertex v){
 unsigned int min_msg = v.combined_msg();
 if(min_msg < v.get_distance())
 {
 v.set_distance(min_msg);
 v.set_updated(true);
 Medusa_Continue();
 }
 else
 v.set_updated(false);
}

Iteration definition:
void SSSP() {
 /* Initiate message buffer to UINT_MAX */
 InitMessageBuffer(UINT_MAX);
 /* Invoke the EDGE API */
 EMV<EDGE>::Run(SendDistance);
 /* Invoke the message combiner */
 Combiner();
 /* Invoke the VERTEX API */
 EMV<VERTEX>::Run(UpdateDistance);
}
Configurations and API execution:
int main(int argc, char **argv) {
 /* Load the input graph. */
 Graph my_graph;
 conf.combinerOpType = MEDUSA_MIN;
 conf.combinerDataType = MEDUSA_UINT;
 conf.gpuCount = 1;
 conf.continueIteration = false;
 /*Setup device data structure.*/
 Init_Device_DS(my_graph);
 Medusa::Run(SSSP);
 /* Retrieve results to my_graph. */
 Dump_Result(my_graph);

 return 0;
}

Figure 1: User-defined functions in SSSP
implemented with Medusa.

to neighboring vertices. The idea of providing these
APIs is mainly for efficiency. It decouples the
single vertex API of previous GBSP-based systems
into separate APIs which target individual vertices,
edges or messages. Each GPU thread executes
one instance of the user-defined EMV API. The
fine-grained data parallelism exposed by the EMV
model can better exploit the massive parallelism of
the GPU. In addition, a Combiner API is provided
to aggregate results of EDGE and MESSAGE
using an associative operator. This enhances the
execution performance since segmented-scan has
very efficient and load balanced implementation on
the GPU [15].

A small set of system provided APIs is designed
to hide the GPU-specific programming details. Par-
ticularly, Medusa provides EMV < type >:: Run()
to invoke the device code APIs, which automatically
sets up the thread block configurations and calls
the corresponding user-defined functions. Medusa
allows developers to define an iteration which ex-
ecutes a sequence of EMV < type >:: Run() calls
in one host function (invoked by Medusa :: Run()).
The iteration is performed iteratively until prede-
fined conditions are satisfied. Medusa offers a set of
configuration parameters and utility functions for
iteration control.

To demonstrate the usage of Medusa, we show an
example of the SSSP (Single Source Shortest Path)
implementation with Medusa, as shown in Figure 1.
The function SSSP() consists of three user-defined
EMV API function calls, which is the three main
steps of the algorithm. First, we use an EDGE type
API (SendDistance) to send tentative new distance
values to neighbors of updated vertices. Second, we
use a message Combiner to calculate the minimums
of received distances of each vertex. Third, we

Table 1: EMV APIs
API Type Parameters Variant Description
ELIST Vertex v, Edge-list el Collective Apply to edge-list el of each vertex v
EDGE Edge e Individual Apply to each edge e
MLIST Vertex v, Message-list ml Collective Apply to message-list ml of each vertex v
MESSAGE Message m Individual Apply to each message m
VERTEX Vertex v Individual Apply to each vertex v
Combiner Associative operation o Collective Apply an associative operation to all edge-lists or message-lists

Table 2: System provided APIs and parameters in Medusa
API/Parameter Description
AddEdge (void* e), AddVertex(void* v) Add an edge or a vertex into the graph
InitMessageBuffer(void* m) Initiate the message buffer

maxIteration The maximum iterations that Medusa executes (231 − 1 by default)
halt A flag indicating whether Medusa stops the iteration
Medusa :: Run(Func f) Execute f iteratively according to the iteration control
EMV<type>:: Run(Func f ′) Execute EMV API f ′ with type on the GPU

invoke a VERTEX type API (UpdateDistance)
to update the distances of vertices which receive
new distances lower than their current distances.
In the main function, we load the input graph
and configure the execution parameters such as
the Combiner data type and operation type, the
number of GPUs to use and the default iteration
termination behavior. Medusa::Run(SSSP) invokes
the SSSP function.

3.2 System Internals
We proposed various optimization techniques for

Medusa internals to ensure the high performance.
For example, we optimize the graph data layout on
the GPU memory, as well as layout of user-defined
data structures for the efficiency of GPU memory
access. Specifically, Medusa mainly consists of the
following key modules.

Graph Storage. The storage module of Medusa
allows developers to load the graph data through
adding vertices and edges with the system provided
APIs AddEdge and AddVertex . During loading of
the graph data, data are stored in our novel graph
layout optimized for GPU access [20]. Compared
with the classic adjacency list layout, the optimized
layout facilitates coalesced access during execution
of graph algorithms to ensure high memory band-
width utilization. After the graph is loaded into
main memory, it is automatically transfered to the
GPU memory.

Medusa code generation tool chain. Users
build Medusa-based programs with standard C/C++.
The Medusa code generation tool chain trans-
lates the user code into CUDA code. Firstly,
Medusa translates user-defined EMV APIs into
kernel codes, and generates corresponding ker-
nel invocation codes. Secondly, Medusa trans-
lates user-defined data structures, such as data
structures for vertex and edge, into GPU data
structures and corresponding data transfer codes.

Thirdly, Medusa inserts segmented-scan code for
the Combiner APIs.

Medusa runtime. This module provides run-
time support for user applications and manages
GPU resource and kernel executions. In particular,
this module has three main functionalities. First, it
supports the message passing interface. We develop
a novel graph aware message passing mechanism
for efficiency [20]. Second, Medusa runtime enables
transparent execution of user applications on the
multi-GPU environment. We further propose tech-
niques such as overlapping kernel execution with
data transfer and multi-hop replication to increase
the scalability of multi-GPU execution. Third,
Medusa runtime supports concurrent execution of
multiple Medusa tasks from different users. In the
multi-user environment, Medusa coordinates the
GPU memory allocation and kernel execution com-
mands to prevent resource allocation deadlocks and
exploit opportunities for performance improvement.
Meudsa runtime also exploits the complementary
resource requirements among the kernels to improve
the throughput of concurrent kernel executions.
More details about our concurrent kernel scheduling
mechanism can be found in our paper [19].

4. RESULTS
We evaluate Medusa with both synthetic graphs

generated by GTGraph [7] and publicly available
real world graphs [16, 1]. The details of the graph
data, including the numbers of vertices and edges,
and standard deviations of the vertex degree, are
shown in Table 3. Our workload includes a set
of common graph computation and visualization
primitives. The graph computation primitives in-
clude PageRank, BFS, maximal bipartite matching
(MBM), ans SSSP. Our experimental platform is a
work station with four NVIDIA Tesla C2050 GPUs
and two six-core Intel Xeon E5645 CPUs at 2.4
GHz. We developed a set of visualization primitives

Table 3: Details of graphs used in the
experiments

Graph Vertices
(106)

Edges
(106)

σ

RMAT 1.0 16.0 32.9
Random (Rand) 1.0 16.0 4.0
BIP 4.0 16.0 5.1
WikiTalk (Wiki) 2.4 5.0 99.9
RoadNet-CA (Road) 2.0 5.5 1.0
kkt power (KKT) 2.1 13.0 7.5
coPapersCiteseer (Cite) 0.4 32.1 101.3
hugebubbles-00020 (Huge) 21.2 63.6 0.03

Table 4: Coding complexity of Medusa im-
plementation and hand-tuned implementa-
tions.

Baseline Warp-centric Medusa
(N/Q)

GPU code lines (BFS) 56 76 9/7
GPU code lines
(SSSP)

59 N.A. 13/11

GPU memory man-
agement

Yes Yes No

Kernel configuration Yes Yes No
Parallel programming Thread Thread+Warp No

such as graph layout and drilling up/down. We
implement the force direct layout algorithm [4]. The
drilling up/down operation is implemented using
BFS. The visualization experiments are conducted
on a workstation with one NVIDIA Quadro 5000
GPU and one Intel Xeon W3565 processor with 4
GB memory.

Comparison with Hand-Tuned Implemen-
tations. We compare the traversed edges per
second (TEPS) of Medusa-based BFS with the basic
implementation from Harish et al [8] and the warp-
centric method from Hong et al [10]. Compared to
the basic implementation, Medusa performs much
better on all graphs except KKT. The average
speedup of Medusa over the basic implementa-
tion is 3.4. Medusa has comparable performance
with the warp-centric method, while the latter has
much more complicated implementation. We also
compare Medusa-based SSSP with Harish et al’s
implementation. Medusa achieves comparable per-
formance with Harish et al’s implementation except
on Road and Huge. This is because Road and Huge
have large diameters, which lead to large numbers
of iterations of Medusa. Table 4 shows the coding
complexity of the three implementations. Medusa
significantly reduces the developing effort by hiding
the GPU programming details and reducing the
lines of code.

Comparison with CPU-based Implementa-
tions. We compare Medusa with MTGL [2] based
multi-core implementations running on 12 cores.
Similar to Medusa, MTGL offers a set of data
structures and APIs for building graph algorithms.
MTGL is optimized to leverage shared memory
multithreaded machines. For all the computa-

(a) Overview (b) Two-hop neighbors of selected

author

Figure 2: Visualization results on DBLP co-
authorship graph.

tion primitives, Medusa is significantly faster than
MTGL on most graphs and delivers a performance
speedup of 1.0-19.6 with an average of 5.5.

We also evaluate the performance of our graph
visualization primitives. The input is the co-author
graph extracted from DBLP (http://dblp.uni-trier.de/xml/).
Figure 2(a) shows the results of our layout primitive
on the DBLP graph. On the Quadro 5000 GPU,
Medusa takes only 120 seconds to compute the
layout, while the 4-thread CPU implementation on
the Intel Quad-core CPU takes over 1000 seconds.
Figure 2(b) shows the two-hop neighbors of a
selected author Jiawei Han obtained by a drill-
down operation. Medusa greatly improves the
responsiveness of graph visualization tasks.

Scalability. The memory sizes of our input
graphs ranges from as small as less than 100 MB
(Wiki) to as large as 1 GB (Huge). Our experiments
show that Medusa fully utilizes the GPU for all
the graph sizes. We also evaluate the scalability
of Medusa on the multi-GPU environment with
BFS and PageRank. The speedup of BFS and
PageRank on four GPUs is 1.8 and 2.6, respectively.
BFS is lightweight on computation compared with
PageRank. Hence, the communication overhead is
larger for BFS, which leads to fewer speedups.

5. USER EXPERIENCE AND LESSONS
In this section, we present a case study on apply-

ing Medusa to accelerate information propagation
simulations over social networks. Information prop-
agation simulations provide a flexible and valuable
method to study the behaviors over complex social
networks.

Large-scale network-based simulations involving
information propagation often require a large amount
of computing resources. It is therefore necessary
to develop performance-oriented simulation tech-
niques and to map those optimized simulation
methods onto high performance computing (HPC)
platforms such as GPUs. For complex networks,
the network structures are highly irregular due to

the complicated relationships among the verticess.
Such irregularity of the data structure may exhibit
very poor memory access locality. The irregularity
of the network data structure poses great challenges
on efficient GPU acceleration.

5.1 Models of Information Propagation
The simulation of information propagation is

to investigate the interactive behaviors between
Active vertices and Inactive vertices within a
given network. Currently, the Independent Cascade
Model (ICM) [5] and the Linear Threshold Model
(LTM) [6] are widely used in studying the behaviors
of information propagation over networks. In the
ICM, we define an initial set of active vertexs A0

at step 0. The information propagation unfolds
in discrete time steps: at step t, the newly active
vertex vi has a single chance to activate its inac-
tive neighbor u with an independent probability
p(vi,u) ∈ [0, 1]. If vi succeeds in activating u, u
will transit its status from inactive to active at step
t + 1 and remain active afterwards [5]. Such a
process continues until no more new activations
are made in a step. In the LTM, each vertex on
the network is assigned with a random threshold
Tu ∈ [0, 1]. At step t, each inactive vertex is
influenced by its active neighbors (a set At, where
At is ø if no active neighbor exists). The influence
weight between the active vertex vi and the inactive
vertex u can be expressed as a probability b(vi,u).
Thus, vertex u’s influence weight from its active
neighbors can be calculated and represented by∑l
i=1 b(vi, u), where l denotes the number of active

neighbors and vi is the ith active neighbor of u [6].

If the transition probability
∑l
i=1 b(vi, u) is larger

than the predefined threshold value, u’s status will
transit from inactive to active at step t + 1 and
remain afterwords.

5.2 Implementations and Evaluations
Based on the ICM and LTM models (with adap-

tions to our application scenarios [11]), we first
introduce two types of simulation algorithms named
as C-Loop and T-Loop. 1) C-Loop: Starting from
the active vertices in the network, each active vertex
goes through its neighbors at each simulation step
and tests whether it can propagate the information
to the inactive neighbors with a specific probability.
If the inactive vertices receive the information, they
will change status to be active at the next step.
2) T-Loop: In contrast to the C-Loop, the T-
Loop starts from the inactive vertices and traces
the neighbors’ status at each step. The inactive
vertex can be activated at the next step by any

(a)
Simulation Steps

Figure 3: Execution time per simulation
step.

active neighbor if the transmission probability is
satisfied.

Both C-Loop and T-Loop can be easily im-
plemented using the ELIST API provided by
Medusa. Since the processing of neighbors in C-
Loop and T-Loop imposes no edge order constraint,
we also propose to use EDGE API to imple-
ment similar functionalities as C-Loop and T-Loop.
This is inspired by the analysis from Medusa that
EDGE API alleviates the load imbalance problem
of ELIST API and exhibits better data access
performance. We name the EDGE API based
algorithm as E-Loop. Different from the vertex-
oriented approach (C-Loop and T-Loop), the E-
Loop approach starts from each edge element and
checks the status of the connected pair of vertices.
If the two connected vertices have different status
such as Active-Inactive, the information can be
propagated from active to inactive with the given
probability.

Figure 3 shows the execution time per simulation
step on C2050. The dataset is a random graph
generated by GTGraph [7] with one million vertices
and 8 million edges. Due to different memory access
patterns, the above three algorithms can exhibit
different costs in each step of the simulation. For
example, the cost of a C-Loop step is initially small
due to the small number of active vertices. As
the number of active vertices increases, the cost
of a C-Loop step increases. The cost of T-Loop
iterations is opposite to that of C-Loop. In contrast,
the cost of a E-Loop stays stable in different
iterations. Compared to the CPU serial simulation
performance, the C2050 GPU based simulation
shows 12.5x, 13.1x, 15.6x speedup with CLoop,
T-Loop, and E-Loop, respectively [11]. The
different characteristics of the algorithms allow us
to adaptively choose the best algorithm based on
the per-step simulation information. More details
on this adaptation can be found in our paper [11].
We also experiment with synthetic and real world
graphs with varying sizes and obtained consistent
speedups [11, 13].

Simulation on Multiple GPUs. Using mul-
tiple GPUs for the simulation is a fast way to
increase the memory and computation capacities of
the system. We use the default graph partitioning
method of Medusa to partition the graph. Medusa
automatically builds the replicas for each partition
and handles the update of the replicas. Thus, with
Medusa, the network-based information propaga-
tion is enabled on multiple GPUs with minimized
effort. The simulation performance is improved by
2.7 times on four GPUs compared with on one GPU.
More details can be found in our paper [12].

5.3 Experience on Using Medusa
Medusa requires no knowledge of GPU program-

ming and greatly simplifies our work on utiliz-
ing GPUs for information propagation simulation.
First, the programming model of Medusa fits well
with the real information propagation process. In-
formation propagation over social networks usually
happens among neighboring vertices. Similarly,
Medusa allows users to formulate their algorithms
with the granularity of individual vertices or
edges. Second, the individual and collective APIs
of Medusa allow us to develop different approaches
(i.e., vertex-oriented and edge-oriented) for the sim-
ulation, leading to more opportunities for improving
the overall performance of the simulation. Third,
despite the fact that Medusa provides an abstract
data model and hides the GPU related implemen-
tation details from users, experienced users can still
easily access the underlying data structures and
conduct further customization. Forth, a Medusa
program can transparently run on multiple GPUs.
This feature of Medusa allows the user to enjoy the
benefits of multiple GPUs (more memory space and
computation power) with little extra implementa-
tion effort.

6. CONCLUSIONS AND FUTURE WORK
The design and implementation of Medusa show

that parallel graph computation can efficiently and
elegantly be supported on the GPU with a small
set of user-defined APIs. The fine-grained API
design and graph-centric optimizations significantly
improve the performance of graph computation
on the GPU. As for future work, we are consid-
ering offering dynamic graph processing support
in Medusa, and extending Medusa to large scale
systems such as clusters and clouds.

The source code of Medusa is available at http:

//code.google.com/p/medusa-gpu/.

7. ACKNOWLEDGEMENT

The authors would like to thank anonymous
reviewers for their valuable comments. This work is
supported by a MoE AcRF Tier 2 grant (MOE2012-
T2-2-067) in Singapore.

8. REFERENCES
[1] 10th DIMACS implementation challenge.

http://www.cc.gatech.edu/dimacs10/index.shtml.
[2] J. W. Berry, B. Hendrickson, S. Kahan, and

P. Konecny. Software and algorithms for graph queries
on multithreaded architectures. In IPDPS, pages 1–14,
2007.

[3] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[4] T. M. J. Fruchterman and E. M. Reingold. Graph
drawing by force-directed placement. Software:
Practice and Experience, 21:1129–1164, 1991.

[5] J. Goldenberg, B. Libai, and E. Muller. Talk of the
network: A complex systems look at the underlying
process of word-of-mouth. Marketing letters,
12(3):211–223, 2001.

[6] M. Granovetter. Threshold models of collective
behavior. American journal of sociology, pages
1420–1443, 1978.

[7] GTGraph Generator.
http://www.cc.gatech.edu/ kamesh/GTgraph/.

[8] P. Harish and P. Narayanan. Accelerating large graph
algorithms on the GPU using CUDA. In HiPC, pages
197–208. 2007.

[9] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and
T. Wang. Mars: a MapReduce framework on graphics
processors. In PACT, pages 260–269, 2008.

[10] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun.
Accelerating CUDA graph algorithms at maximum
warp. In PPoPP, pages 267–276, 2011.

[11] J. Jin, S. J. Turner, B.-S. Lee, J. Zhong, and B. He.
HPC simulations of information propagation over
social networks. Procedia Computer Science,
9:292–301, 2012.

[12] J. Jin, S. J. Turner, B.-S. Lee, J. Zhong, and B. He.
Simulation of information propagation over complex
networks: Performance studies on multi-GPU. In
DS-RT, pages 179–188, 2013.

[13] J. Jin, S. J. Turner, B.-S. Lee, J. Zhong, and B. He.
Simulation studies of viral advertisement diffusion on
multi-GPU. In Winter Simulation Conference (WSC),
pages 1592–1603, 2013.

[14] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A new
parallel framework for machine learning. In UAI, 2010.

[15] S. Sengupta, M. Harris, and M. Garland. Efficient
parallel scan algorithms for GPUs. NVIDIA. Technical
report, 2008.

[16] Stanford Large Network Dataset Collections.
http://snap.stanford.edu/data/index.html.

[17] T. White. Hadoop: The Definitive Guide: The
Definitive Guide. O’Reilly Media, 2009.

[18] J. Zhong and B. He. Parallel graph processing on
graphics processors made easy. PVLDB,
6(12):1270–1273, 2013.

[19] J. Zhong and B. He. Kernelet: High-throughput gpu
kernel executions with dynamic slicing and scheduling.
Parallel and Distributed Systems, IEEE Transactions
on, 25(6):1522–1532, 2014.

[20] J. Zhong and B. He. Medusa: Simplified graph
processing on gpus. IEEE Transactions on Parallel
and Distributed Systems, 25(6):1543–1552, 2014.

