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ABSTRACT
Interaction-based systems have been widely used in many enter-
prises like Grab to enable quick and easy analysis of large-scale
spatial data. Unlike traditional instruction-based query processing
systems, modern interaction-based systems allow users to issue
complex queries through simple interactions with a Graphical User
Interface (GUI). While such systems have significantly transformed
the process of spatial query processing, they still rely on a process-
after-query approach for executing the queries. Even though the
user is continuously interacting with the GUI, the actual processing
is only initiated after the user completes their interactions, thus
wasting the opportunities to reduce the response time of query
processing.

Inside Grab, we develop Poet, a progressive execution framework
to continuously analyze user interactions and to perform progres-
sive execution as soon as the system gains reasonable confidence
regarding the user intentions. By integrating Poet, the interaction-
based system can begin processing before the query is expressed
in its whole by the user. The user interactions are captured and
modelled in Markov chains, which guide the probability of progres-
sive execution. For handling large-scale trajectory data in Grab, the
progressive execution engine of Poet has been designed on top of
Apache Flink. Our experiments show that Poet is able to reduce
the latency in generating the output, providing a more interactive
experience. Our experiments find that Poet helps reduce the query
execution latency by up to 25x.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; •Human-
centered computing → Visual analytics.
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1 INTRODUCTION
The explosive growth in ride-hailing and food delivery services [2–
4] in the last decade has lead to the generation of large amounts of
trajectory data from GPS-enabled devices like smartphones. Among
these services, Grab Holdings Pte. Ltd. (Grab) is the largest ride-
hailing and food delivery platform in Southeast Asia. Like other
similar companies, efficient analysis of spatial data is key to improv-
ing vehicle routing, minimizing congestion, and improving service
quality at Grab.

To allow data scientists and data engineers to easily and effi-
ciently explore spatial data sets at a large scale, numerous interaction-
based systems [8, 16, 26, 35] have been introduced in the past.
Unlike traditional instruction-based systems (e.g., those with op-
erational commands in SQL and Python), which require the user
to spend considerable amounts of time expressing their trajectory
queries as precise instructions with geographical coordinates, mod-
ern interaction-based systems make use of user-friendly GUIs for
issuing queries. Response time is an important design consideration
in those interaction-based systems.

Many existing systems still rely on traditional process-after-query
based frameworks for executing the queries and processing the un-
derlying data, which cause long response time. The system simply
keeps track of the user interactions until an explicit signal to begin
query execution is issued by the user (either through a button press
or other explicit interactions). However, such an approach is ineffi-
cient since these systems fail to take advantage of the opportunity
to process data as the user is interacting with the system. This is
especially problematic, since issuing complex queries that requires
the execution of a sequence of operators can be time-consuming,
even on an interaction-based system. There are many opportunities
to take advantage of this time period for useful computation. Even
worse, this approach often defeats the purpose of interactive GUIs
for analytical query processing, due to the high latency between
query issue and the generation of the output data.

To address these inefficiencies, we have developed Poet, an
interaction-based progressive execution system for analyzing large
scale spatial data sets in Grab. Poet has addressed two major tech-
nical challenges. First, it is challenging to efficiently predict user
intentions [9, 10]. Second, the progressive execution of the query
plan is carefully optimized to minimize the overhead. There is a
trade-off between the frequency of execution plan updates and the
opportunities for progressive execution.

Poet keeps track of user interactions and predicts user intentions
(i.e., in the form of query template) and execution parameters during
the user expresses the query. For this, Poet makes use of an n-
order discrete-time Markov Chain [9], taking into account past user
interactions and the underlying data set. The execution engine in
Poet then begins execution based on the predictions. The query plan
and parameters derived based on the predictions are constantly
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evaluated against new user interactions (i.e., feedback), and the
execution is refined progressively. For this, the spatial operators in
Poet are designed to ensure that progressive updates to the input
data set or query parameters lead to a minimal amount of additional
computation and data accesses. To handle large data sets in Grab,
we have developed Poet on top of Apache Flink, a popular high-
performance data stream engine.

The major contributions of this paper are as follows:
• We study existing interaction-based query processing sys-
tems and detail their inefficiencies when interactively pro-
cessing large scale spatial data sets.

• We propose Poet, an interaction-based query processing
system that supports the progressive execution of spatial
queries. Poet makes it possible to progressively execute spa-
tial queries through efficient prediction of user intentions
and through the use of progressive designs for spatial opera-
tors.

• We present case studies to demonstrate the improvement in
the interactivity and overall query execution performance
of Poet when compared to existing interaction-based sys-
tems [8] for different use cases in Grab. Our experiments
find that, Poet helps reduce the query execution latency by
up to 25x.

The remainder of this paper is organized as follows. We present
the background and related work in Section 2. We present the
design and implementation of Poet in Section 3, followed by details
of our prediction engine and progressive execution unit in Sections
4 and 5, respectively. We present detailed experiments in Section 6,
and conclude in Section 7.

2 BACKGROUND & RELATEDWORK
2.1 Interactive Spatial Systems
Interaction-based systems improve the user experience for data sci-
entists and engineers by allowing them to issue complex analytical
queries through simple interactions with the system. Numerous
interactive systems have already been proposed for non-spatial
data sets [17, 20, 21, 25]. However, by design, these systems are not
suitable for efficient progressive processing of spatial data objects.

For processing spatial data sets, interactive systems (e.g., [6, 16,
27]) typically adopt a two-layer design consisting of 1) an interactive
visualization layer that allows users to issue queries and handles
the presentation of the output, and 2) an analytical layer that is
responsible for executing queries issued by the user. The interactive
layer keeps track of user interactions and builds a query/execution
plan after the query is entirely expressed. Despite the interactive
nature of those systems, they still adopt a process-after-query ex-
ecution approach and lack any form of predictive or progressive
execution of queries. In the following, we review some of those
systems, and refer readers to a survey [23] for more related work.

DisDC [27] proposed a new computing model to improve the
performance of interactive spatial data analysis by mapping pixels
on display to spatial objects and then performing the computation
based on the pixels on the screen. Xin et al. [16] proposed Viptra,
an interactive front-end framework providing visualization on top
of UltraMan [15], a distributed in-memory system for big trajec-
tory data. Semantic Traj [6] proposed the integration of semantic

information along with the visualized trajectory data to promote
an easy understanding of the trajectory objects and enable efficient
query issue. Wang et al. [31] proposed an interactive visualization
platform for analyzing traffic jam data. Further, interaction-based
systems like Vaite [35] and Vaud [13] were proposed specifically
for the analysis of urban spatial data.

2.2 Progressive Query Execution
There have been numerous studies on adopting progressive execu-
tion for many applications like image retrieval [29], online adver-
tisements [11] and relational entity resolution [7]. However, these
studies often focus on designing progressive versions of specific
non-spatial operators, which is non-trivial to be extended to spatial
processing. Further, while progressive optimization of relational
queries has been explored in literature [28, 33, 37], they are not
capable of executing the operators progressively.

Progressive versions of spatial operators like trajectory similarity
search [12, 14, 34], spatial join [19, 24, 36] and others [5, 30] have
also been explored in the literature. However, these operator im-
plementations are designed for non-interactive spatial processing
systems and are hence not suitable for highly interactive systems
like Poet.

There have been implementations that steer users towards inter-
esting queries and operator parameters [10, 21] or pre-fetch data
based on a predictive understanding of user intentions [9]. How-
ever, these systems either do not support progressive execution
of queries/operations or their progressive execution is limited to
specific operations like pre-fetching of data tiles and not complex
spatial operators.

2.3 Spatial Data Analysis at Grab
Grab is now the largest ride-hailing and food delivery platform in
Southeast Asia. The spatial data set that needs to be processed at
Grab consists of the following two objects: GPS record and Tra-
jectory. A GPS record is simply a 3-tuple consisting of latitude,
longitude and the timestamp collected from GPS enabled client
devices (smartphones or tablets owned by drivers). The latitude
and longitude values in the GPS record together help identify the
drivers’ location and the timestamp represents the time at which
the data was collected from the client device. Further, a trajectory
is simply a time ordered collection of GPS records along with other
information that is relevant to Grab’s business. Overall, the data set
used in study consists of 418,403 trajectories and 112,569,492 GPS
records. Further, the GPS records were collected from the users in
Singapore and Indonesia at a sampling rate of 1 second. The data
set includes records collected as recently as December 2018.

There are many scenarios for interactive spatial processing in
Grab. We use the following two to motivate our studies.

Scenario 1: Understanding the trajectory/trip pattern to/from spe-
cific areas of interest.

Data scientists at Grab frequently analyze trajectory/trip patterns
to/from major areas of interest (e.g., airports and shopping malls)
over specific periods of time (e.g., peak hours and non-peak hours).
The insights gained from this analysis often helps optimize their
services. To execute this query on an interactive system like Poet,
a data scientist would first zoom and pan over the map to focus in



Poet: an Interactive Spatial Query Processing System in Grab SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA

on the specific region they are interested in. The user would then
draw a polygon around the region, which triggers a spatial join
between the trajectory objects and the polygon object expressed by
the user. The user may then use the timeline to filter out only the
trajectories/trips that were generated during specific time periods.
Overall, the need to perform a spatial join over a large trajectory
data set makes this query time consuming, leading to a significant
delay between the query issue and the generation of the output.
Figure 1a shows the typical interactions of a user to issue the above
query in Poet.

Scenario 2: Identifying missing road network data.
Despite the improvements to the mapping services in the last

decade, there are still regions where the underlying road network
data is incomplete. For example, information like the direction of
travel allowed along a road segment or sometimes even the entire
road segment itself could be missing in the data provided by the
mapping services. This can be detrimental to services like Grab as it
leads to increased operational costs. Hence, data engineers in Grab
makes use of past trip data to identify such missing information. To
identify missing road network data, engineers would simply draw
a trajectory in the relevant region and query the system to find
trajectories similar to the one expressed by the user. The presence
or absence of trajectories similar to the one expressed by the user
would help them to identify the missing road network data. Figure
1b shows the typical interactions of a user to issue the above query
in Poet.

(a) Scenario 1

(b) Scenario 2

Figure 1: User interactions when issuing queries.

3 SYSTEM DESIGN OF POET
In this section, we present the design overview of Poet, the interaction-
based progressive query execution system proposed in this study.
As shown in Figure 2, Poet consists of two major components: 1)
an interactive client application running on a touch- or pointer-
enabled device (e.g., smartphone, tablet, and personal computers)
and 2) a high-performance query execution unit running on remote
clusters. Note, touch- or pointer-enabled client devices often have
limited storage and computation capabilities. Hence, the client ap-
plication is only responsible for managing the user interactions,
and all processing of the underlying spatial data set is carried out
by the execution unit running on powerful remote clusters.

The key design goal of Poet is to make efficient use of the oppor-
tunities for the progressive execution of spatial queries as the query
is being expressed by the user. We achieve this in the following
ways. First, by efficiently predicting user intentions, Poet begins

Figure 2: Architecture design of Poet.

Figure 3: The GUI of Poet running on an iPad.

processing of the underlying data set before the query is expressed
in its entirety by the user. Second, by designing efficient progressive
versions of the commonly used spatial operators, Poet minimizes
the cost of miss-prediction of user intentions.

3.1 Interactive Client
The interactive client application of Poet allows users (data sci-
entists and engineers) to issue complex spatial queries through
simple interactions. The client application is designed specifically
for touch or pointer enabled devices like smartphones, tablets, and
personal computers. As shown in Figure 2, the interactive client
application consists of the following key components: 1) a graphical
user interface (GUI), 2) an interaction prediction engine (IPE), and
3) a query plan generator.

Graphical User Interface (GUI). As shown in Figure 3, the
GUI component of the interactive client application consists of
the map of a geographical region (Singapore in Figure 3) with
which the user can interact using a pointing device (e.g., fingers,
cursor, and stylus, to name a few). Currently, our client application
supports the following set of user interactions: zoom in/out, pan
left/right/up/down, draw, annotate (marking up a geographical
region), and timeline update (using the timeline shown on the right
in Figure 3). These interactions are mapped to standard gestures
available in the specific input device (touch or non-touch). For
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example, the zoom-in/out interaction can be issued using two-finger
gestures on a touch-enabled device or themousewheel in non-touch
enabled devices. The GUI keeps track of user interactions and feeds
them into the IPE as the user interacts with the system. Note, when
an interaction is fed into the IPE, the GUI attaches a set of interaction
specific parameters along with it (e.g., the start and end point of the
drawing for the draw interaction). That means, each state in IPE
has parameter values associated with it. These parameters are later
used to derive query/operator execution parameters (performed by
the query plan generator).

Interaction Prediction Engine (IPE). The IPE helps Poet to
understand the user intentions before it is expressed in its entirety
by the user. The IPE achieves this by predicting future user interac-
tions based on the user interactions already issued by the user. Like
past studies [9, 10], the IPE uses an n-order Markov Chain to predict
future user interactions. Markov chains assume that the users’ past
moves can be good indicators of future actions. Hence, an n-order
Markov chain can be used to predict the next user interaction, given
past 𝑛 user interactions. More details regarding the training of the
Markov model and prediction of user intentions can be found in
Section 4. Finally, the sequence of the past user interactions and the
predicted future interactions are fed into the query plan generator
by the IPE, for generating the query plan.

Query PlanGenerator. The query plan generator in Poet trans-
lates the sequence of interactions received from the IPE (𝐼1, 𝐼2, ..., 𝐼𝑛)
into a query plan or a sequence of spatial operations (𝑄 = 𝑂1,𝑂2, ...,𝑂𝑙 ).
Note, the parameters associated with each operator (e.g. predicates
in a filter operation) in the query plan is derived based on the pa-
rameters associated with the interactions. More details regarding
how a sequence of interactions are converted to a sequence of op-
erators can be found in our past study [8]. The generated query
plan is then sent to the query execution unit running on a remote
cluster for execution.

Finally, since the probabilistic prediction of future user interac-
tions using a Markov chain can have errors, the IPE updates the
query plan generator with a new sequence of interactions whenever
wrong predictions are detected. The IPE constantly evaluates its
past predictions with the new set of user interactions generated by
the GUI. The query plan generator, in turn, updates the query plan
and the query execution parameters based on the new sequence of
interactions. The updated query plan is then relayed to the query
execution unit for execution.

3.2 Query Execution Unit
The query execution unit of Poet is responsible for executing the
query plan (𝑄 = 𝑂1,𝑂2, ...,𝑂𝑙 ) in the cluster. After the client appli-
cation submits the query to the query engine, the execution unit
first optimizes the query plan for the underlying data set (using the
query optimizer) and then dispatches the operators in the query
plan for execution. To enable progressive execution, the query exe-
cution unit maintains a context for each user session. The context
keeps track of the query plan under execution, the execution param-
eters of the operators and the current set of intermediate as well as
output data. Further, to ensure high performance computation, the
spatial operators in Poet are designed on top of Apache Flink [1].
This means that 1) the execution unit is capable of distributing

the execution of its spatial operators over a number of processing
nodes and 2) all spatial operators in Poet operate on data loaded
on to main memory during the system initialization. The current
system focuses on optimizing individual queries. We are interested
in exploring multi-query optimizations like [38].

In a progressive execution system based on prediction of user
intentions, the query plan or the query execution parameters sub-
mitted to the execution unit at any given time. There is a trade-off
between the frequency of execution plan updates and the opportu-
nities for progressive execution.

Poet addresses this inefficiency and minimizes the amount of
unnecessary computation and data accesses in the following ways.
First, to efficiently handle cases where the query plan itself needs
to be updated through the addition or removal of spatial operators,
Poet maintains a snapshot of the output generated by the operators
that were executed speculatively (those operators given by our
predictions, which have not yet been expressed by the user). We
do not maintain the output snapshot for all the operators in the
query plan because the updates to the query plan resulted from
the wrong predictions will be limited to the operators that were
executed speculatively. Second, to handle the updates to the exe-
cution parameters of an operator in the query plan, Poet makes
use of progressive implementations of the spatial operators that
are capable of handling updates to the query execution parameters.
These operators ensure that the amount of additional computations
required on update to the query execution parameters are kept
to a minimum. More details regarding the implementation of the
progressive spatial operators can be found in Section 5.

3.3 Case Studies using Poet
For the two case studies presented in Section 2.3, we discuss how
progressive execution help improve their query response time and
overall query execution performance, thereby improving the pro-
ductivity of data engineers and data scientists at Grab.

Scenario 1: Poet helps improve the overall execution performance
of the above query in the following ways. First, based on the pan
and zoom interactions issued by the user when trying to focus
in on the region of interest, the IPE predicts the users interest
in a particular region. This initiates a pre-fetching of the spatial
data in the region. Second, as the system recognizes that the user
has focused their attention on a specific region, the IPE predicts
the users intention to markup a region using a polygon. Now, it
is not feasible to accurately predict the exact region that will be
annotated by the user. Hence, the IPE predictively sets good enough
polygon parameters based on past user interactions. Third, if the
IPE predicts that the user would further perform a temporal filtering
on the data, then Poet further prepares the output of the spatial
join for progressive filtering of the trajectory data.

Scenario 2: First, similar to scenario 1, Poet predicts the users’
interest in a specific region as they zoom and pan around on the
GUI. This helps pre-fetch spatial data in the region before the user
begins expressing the trajectory. Second, as the user begins express-
ing the reference trajectory by drawing on the GUI, the system
progressively computes the similarity of the pre-fetched trajecto-
ries with respect to the trajectory being expressed by the user. In
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Figure 4: Simplified version of the user interaction model
used by the IPE.

the ideal case, only the similarity for the last segment of the trajec-
tory expressed by the user will need to be computed after the user
completes their drawing.

4 PREDICTING USER INTERACTIONS
Predicting user intentions is key to ensure effective progressive
execution of queries as the user is interacting with the system.

4.1 User Interaction Models
To enable efficient prediction, the IPE develops a user interaction
model (UIM) trained for each user in the system. The UIM is es-
sentially a Markov chain describing a sequence of possible events
in which the probability of the next event depends past n events.
Figure 4 represents a simplified version of the Markov chain used
by the IPE. Each state in the UIM represents a unique interaction
issued by the user and the arcs between the states represent the
transition from one interaction to another by the user. Note, the
actual UIM used in our system is much more complicated than
the one shown in Figure 4, which is simplified for presentation
purposes.

Poet uses the same structure (the states and transitions) of the
UIM for different users, since each user has access to the same set
of interactions. However, the transitions probabilities in UIM are
generated separately for each individual user. This is done during
the calibration phase of the IPE, which helpsmore accurately predict
the individual user intentions. In the remainder of this section, we
detail how the UIM is calibrated for each individual user and the
prediction process that helps predict the user interactions based on
the UIM.

4.2 Calibration Stage
The calibration stage of the IPE is responsible for generating the
probability values associated with each arc/transition in the UIM.
Since these transition probabilities must take into account the
unique characteristics and interactions patterns of each user, the
calibration process is executed separately for each user. Currently,
the calibration process in Poet is invoked for only three scenarios:

new users, periodical model maintenance or when requested by
the user.

The calibration process for each user happens in two phases.
In phase 1, the user will be asked to issue a pre-determined set of
queries using the front-end GUI. These are often simple queries
consisting of 1 or 2 spatial operators and are mostly used to tune
the parameters associated with each individual interactions (e.g.,
users typical zoom level). In phase 2, the user is asked to issue
a set of frequently used query templates using the GUI. This is
important because, based on their job role, different teams at Grab
often focus on a different set queries/interactions. The system keeps
track of the user interactions during the phase and generates a
sequence of interactions corresponding to each query issued by
the user. Once the user finishes expressing the queries, the set of
interaction sequences generated by the user is then used to generate
the transition probabilities in the UIM using Algorithm 1.

Algorithm 1:Markov chain probability computation.
Input: 𝐿, sequences of past interactions and 𝑛, order of

Markov Model.
Output: 𝑛𝑒𝑥𝑡𝑃𝑟𝑜𝑏, the next interactions’ probabilities.

1 Function GenerateMarkovProbabilities(L, n)
2 stateFreq = []; nextFreq = [][]; nextProb = [][];
3 for each sequence S in L do
4 for each arr in GetAllSubarrays(S, n + 1) do
5 state = GetSubarray(arr, 1, n);
6 next = GetSubarray(arr, n + 1, 1);
7 stateFreq[state] += 1;
8 nextFreq[state][next] += 1;
9 end

10 end
11 for each state in nextFreq do
12 for each next in nextFreq[state] do
13 nextProb[state][next] = nextFreq[state][next] /

stateFreq[state];
14 end
15 end
16 return nextProb
17 end
18 Function GetAllSubarrays(S, n)
19 A = [];
20 for i from 1 to len(S)-n do
21 A.add(Subarray(i, n));
22 end
23 return A;
24 end
25 Function GetSubarray(arr, start, length)
26 return arr[start : start + length];
27 end

Algorithm 1 generates the transitions probabilities between in-
teractions (or the weights of the edges in the UIM). In our n-th order
Markov model, each state is defined to be a sequence of interactions
of length n. Given a UIM(𝑈 ), a list of sequences (𝐿 = 𝑆1, 𝑆2, ..., 𝑆𝑖 , ...)
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of past interactions the algorithm works as follows. For each se-
quence 𝑆𝑖 , we obtain all sub-arrays of length n within the sequence
(Line 5), along with the next succeeding the state (Line 6). We then
update the frequencies of each sub-array of n-states as well as the
frequency of the succeeding (Lines 7 and 8). We are then able to
compute the state transition probabilities of each interaction based
on the previous n-interactions/states as shown in Lines 11 - 14. Note,
the model that is generated from the training process is similar to
n-gram models applied in computational linguistics [22], which is
sufficiently efficient and accurate in our experiments.

4.3 Prediction Stage
In the prediction stage, the IPE is responsible for predicting users
intention (or the query the user is trying to express using the GUI)
based on the user’s past interactions.

Each spatial operator in Poet is expressed as an ordered sequence
of basic interactions (or states in UIM). Hence, the user intentions
can be determined by simply predicting a sequence of future user
interactions. Overall, the prediction problem can be expressed as
follows.

Problem Definition. Given a UIM(U), an ordered sequence
of past interactions (𝐼𝑐 = 𝐼1, 𝐼2, ..., 𝐼𝑛) and a probability thresh-
old (𝑃 ), generate the longest sequence of future interactions (𝐼𝑝 =

𝐼1, 𝐼2, ..., 𝐼𝑚) that has a probability of occurrence higher than 𝑃 .

Algorithm 2: Interaction prediction based on Markov
model.
Input: 𝐼𝑐 : the sequence of past n interactions.
𝑃 : threshold probability.
𝑈 : The user interaction model.
Output: 𝐼𝑝 : The predicted future interaction(s)

1 Function PredictInteractionSequence(𝐼𝑐 , 𝑃 ,𝑈 )
2 return FutureIntrs(𝐼𝑐 , 𝑃 , 1)
3 end
4 Function FutureIntrs(𝐼𝑐 , 𝑃 , curProb)
5 𝐼𝑝 = []; maxProb = 0;
6 for intr in U.NextStates(𝐼𝑐 ) do
7 p = curProb × U.TransitionProbability(𝐼𝑐 , intr);
8 if p > P then
9 future = [intr, FutureIntrs([𝐼𝑐 [1 : 𝑛], 𝑖𝑛𝑡𝑟 ], 𝑃 , p)];

10 if len(𝐼𝑝 ) < len(future) or (len(𝐼𝑝 ) == len(future)
and p > maxProb) then

11 𝐼𝑝 = future;
12 maxProb = prob;
13 end
14 end
15 end
16 return 𝐼𝑝 ;
17 end

Solution. To predict the sequence of future user interactions (𝐼𝑝 ),
the IPE makes use of Algorithm 2. Note, if there is no sequence with
a probability of occurrence higher 𝑃 then an empty set is returned.
Given past n interactions, Algorithm 2 aims to predict the longest
sequence of future interactions with a probability > 𝑃 . Based on

the n-order Markov model built by Algorithm 1, we assume that
the future interactions depends only on the past n interactions.

The IPE invokes Algorithm 2 with the set of past n interactions
(𝐼𝑐 ), the probability threshold (𝑃 ) and the user interaction model (𝑈 )
containing the transition probabilities, as inputs. The prediction
algorithm then recursively enumerates a tree of interactions where
the probability of reaching each new level is determined based
on the past n-levels. Further, each branch in the tree is only enu-
merated until the probability of reaching the last level falls below
the probability threshold. The algorithm then returns the longest
sequence of future interactions with a probability higher than the
threshold. This algorithm is very lightweight, with minimal runtime
overhead. Note, a lower threshold would lead to more frequent and
early predictions but will increase the rate of mis-predictions and
vice versa. For our experiments in Section 6, we set this threshold
value to be 0.7. Finally, when two or more sequences with the same
length satisfy the probability threshold, we choose the sequence
with highest probability.

5 PROGRESSIVE EXECUTION
The use of progressive execution helps Poet minimize the impact
of miss-predictions by the client application. Progressive operators
in Poet are designed with the ability to progressively process large
scale spatial data sets and handle repeated updates to the operator
parameters. Note, in Poet, a progressive spatial operator is triggered
by a sequence of interactions. Now, any update to the operator
parameters (e.g., filter predicate) may require 1) processing of an
additional set of input tuples (e.g., more trajectory objects from
a different region) and 2) additional computation on the spatial
objects which are in the current set of output objects.

To ensure efficient progressive execution with minimal overhead,
we adopt the following design rationales for the progressive spatial
operators. First, we make sure that the additional input data objects
that are chosen for processing by the operators as a result of an
update to the operator parameters does not include any tuples
that are currently in the set of output data objects. This helps avoid
unnecessary repeated processing of the same spatial objects. Second,
the spatial objects in the current output data set that needs to be
processed again as a result of an update to the operator parameters
should be kept to a minimum.

In the remainder of this section, we present the implementation
details of two of the key progressive spatial operators in Poet: tra-
jectory similarity search (TSS) and spatial Join. Poet supports other
operators that are relevant to Grab’s data analysis tasks, such as fil-
tering (e.g., invoked using the timeline in the GUI) and aggregation.
For each operator, we develop techniques to minimize the overhead
of updates to the operator parameters.

5.1 Trajectory Similarity Search (TSS)
The TSS operator identifies all trajectories that are similar to a
given reference trajectory. Note, two trajectories are considered to
be similar if the similarity metric (e.g., Fréchet distance [18]) of the
two trajectories is above a specified threshold. As noted by scenario
2 in Section 3.3, the TSS operator often helps data engineers in Grab
to identify missing road network data.
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The user can trigger the TSS in Poet by simply focusing in on a
specific geographical region and then drawing a trajectory (referred
to as the reference trajectory). Due to the progressive nature of
Poet, the operator will begin computing the similarity between the
reference trajectory and the trajectories in the underlying data set
as soon as the drawing state in the UIM is activated/predicted by the
IPE. The computation continues until the user finishes expressing
the reference trajectory (i.e., on exit from the drawing state).

Numerous TSS implementations have been proposed in the lit-
erature [12, 14, 34]. The progressive TSS implementation used in
Poet was designed based on the more recent algorithm [14]. Unlike
the original implementation, the implementation in Poet is capable
of progressively computing the similarity between the reference
trajectory and the trajectories in the underlying data set as the
reference trajectory is being expressed by the user.

The pseudo-code for the progressive TSS implementation used in
Poet is presented in Algorithm 3. To enable a progressive execution,
the reference trajectory is broken down into segments and sent to
the execution unit by the client application at the granularity of a
single segment. In addition to this, as soon the user focuses in on
a specific region and the IPE predicts the future possibility of the
user drawing a trajectory, the trajectory objects in the underlying
data set will be pre-fetched by the execution unit to help improve
the performance of the subsequent operators. For reducing the disk
I/O, we make use of a virtual page table to enable pre-fetching
by keeping track of the physical locations of each page of spatial
objects. The page table is checked before a new page is accessed for
processing. Anytime a page is pre-fetched, the page table is updated
to reflect this.

Now, the progressive TSS operator in Algorithm 3 is invoked
as soon as the first segment is expressed by the user. The operator
is also provided with a similarity threshold (𝑆𝑇 ) and a minimum
bounding rectangle (𝑚𝑏𝑟 ). The values for these parameters are
either estimated by the IPE or expressed by the user. The𝑚𝑏𝑟 is
simply a rectangle around a geographical region and the progressive
TSS implementation limits the number of trajectory objects that are
processed to those that lie within the𝑚𝑏𝑟 for each input segment.
The intuition here is that the users are often only focused on the
spatial objects in the region that is visible on the screen.

For each new segment received by the operator, the code in Lines
17 - 22 retrieves the trajectories in the underlying data set that fall
within the𝑚𝑏𝑟 around the segment and computes their similarity
with the received segment (Line 18). Note, we adopt the same least
common sub-sequence approach as in the case of the previous study
for similarity computation [14]. The computed similarity value of
each candidate trajectorywithin the𝑚𝑏𝑟 is stored in 𝑠𝑖𝑚_𝑙𝑖𝑠𝑡 . When
a trajectory achieves a cumulative similarity (combined similarity
with all the segments) higher than the threshold, it is added to the
output data set and is not considered for future segments.

As mentioned before, due to the predictive and highly inter-
active nature of Poet, parameters like the 𝑆𝑇 and 𝑚𝑏𝑟 could be
later updated (either by the user or as the result of a wrong pre-
diction). Lines 5 - 9 and 10 - 16 handle the updates to the 𝑆𝑇 and
𝑚𝑏𝑟 parameters respectively. An update to the 𝑆𝑇 would require a
revisiting of the trajectories identified for the previous segments,
and trajectories will have to be added or removed from the output
set depending on the new values of 𝑆𝑇 . Similarly, an update to the

Algorithm 3: Progressive trajectory similarity search.
Input: 𝑇 : The underlying trajectory data set.
𝑆𝑇 : The similarity threshold.
seg : The first segment of the reference trajectory.
mbr : The minimum bounding rectangle.
Output: 𝑜𝑢𝑡𝑝𝑢𝑡 : The set of output trajectories.

1 Function ProgressiveTSS(T, 𝑆𝑇 , seg, mbr)
2 output = []; count = 0;
3 segs[count] = seg;
4 while segs[count] != Nil do
5 𝑆𝑛𝑇 = NewThreshold();
6 if 𝑆𝑛𝑇 != 𝑆𝑇 then
7 UpdateTrajectorySet(sim_list, output, 𝑆𝑇 , 𝑆𝑛𝑇 );
8 𝑆𝑇 = 𝑆𝑛𝑇
9 end

10 new_mbr = NewMBR();
11 if new_mbr != mbr then
12 for seg in segs do
13 UpdateTrajectorySet(sim_list, output,

new_mbr, mbr);
14 end
15 mbr = new_mbr;
16 end
17 for trajectory in T.GetTrajectories(mbr, segs[count])

do
18 sim_list[trajectory][count] =

ComputeSimilarity(segs[count],
LCSS(trajectory, segs[count]));

19 if CumSimilarity(sim_list[trajectory]) > 𝑆𝑇 and
trajectory not in output then

20 output.append(trajectory);
21 end
22 end
23 count++;
24 segs[count] = NextTrajectorySegment();
25 end
26 return output;
27 end

𝑚𝑏𝑟 would lead to more trajectory objects being added or removed
to or from the 𝑠𝑖𝑚_𝑙𝑖𝑠𝑡 depending on the new value of𝑚𝑏𝑟 .

5.2 Spatial Join
The spatial join operator in Poet identifies all the trajectories pass-
ing through a polygonal region expressed by the user. As noted by
scenario 1 in Section 3.3, the spatial operator helps data engineers
in Grab to study/analyze trajectory/trip patterns to/from specific
regions of interest.

The user can trigger the spatial join operator in Poet by simply
focusing in on a specific geographical region and then annotating
a region using a polygon. Due to the progressive nature of Poet,
the operator will begin performing the spatial join between the
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polygon and the trajectories in the underlying data set as soon as
the region annotation state is activated/predicted by the IPE.

Numerous studies on spatial joins exist in literature [19, 24, 36].
Specifically, we design our progressive spatial join implementation
based on the study by Oje et. al. [24], which has been widely used
in spatial systems. However, unlike the original study, our imple-
mentation is designed to support more complex updates to the level
of detail of the polygon being used for the join operation.

Algorithm 4: Progressive spatial join.
Input: 𝑇 : The underlying trajectory data set.
𝑃 : The reference polygon.
Output: 𝑜𝑢𝑡𝑝𝑢𝑡 : The set of output trajectories.

1 Function ProgressiveSpatialJoin(T, P)
2 output = [];
3 region_list = [];
4 while P != nil do
5 𝑃𝑁 = GetPolygon();
6 if 𝑃𝑁 != P then
7 UpdateTrajectorySet(P, 𝑃𝑁 , output);
8 end
9 for region in P.index_regions()
10 if region not in region_list then
11 if region.isEnclosed(P) then
12 output.append(T.GetTrajectories(region));

13 end
14 else
15 for t in T.GetTrajectories(region)
16 if t.isInside(ref_polygon) then
17 output.append(t);
18 end
19 end
20 region_list.append(region);
21 end
22 end
23 end

The pseudo-code for the progressive spatial join implementation
used in Poet is presented in Algorithm 4. To enable progressive
execution, an operator is designed to support progressive update
to the polygonal structure being expressed by the user. In addition
to this, as soon as the user focuses in on a specific region and
the IPE predicts the future possibility of the user annotating the
region using a polygon, the trajectory objects in the underlying
data set will be pre-fetched by the execution unit to help improve
the performance of the subsequent operators.

Initially, the spatial join operator in Algorithm 4 is invoked with
a simple rectangular region estimated/predicted by the IPE as the
user zooms into the region of interest. As the user begin annotating
the region, the changes to the polygonal structure is progressively
updated by the client application. The operator makes use of aggres-
sive indexing to determine the trajectory objects that pass through
the polygon expressed by the user. For this, we make use of a grid
index where the entire region is divided into small rectangular

Figure 5: Example query execution in Poet.

grids and each index entry has pointers to the coordinates of the
trajectories that lie within the region. Hence, the operator first
decomposes the polygon in to a set of small index regions (Line
9) which are completely or partially enclosed within the polygon.
Now, if a region is completely enclosed within the polygon then
all the trajectories that it points to will be added to the output list
(Lines 11 - 13). Further for partially enclosed regions, each individ-
ual trajectory is checked to ensure that they lie inside the polygon
(Lines 14 - 19). To minimize the execution cost, we also make sure
that a region that is explored once is not explored again (Line 10)

Now, for each update to the polygon (Lines 5 - 8) the following
actions are executed by the 𝑈𝑝𝑑𝑎𝑡𝑒𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑆𝑒𝑡 function. First,
the trajectories in the regions that are partially or completely en-
closed by the new polygon but not by the original polygon is added
to the output set if they are inside the new polygon. Second, the
trajectories in the regions that are partially or completely enclosed
by the original polygon but not by the new polygon are removed
from the output set if they are not inside the new polygon. This
helps ensure the correctness of execution.

6 EXPERIMENTS
In this section, we evaluate the efficiency of Poet in analyzing mas-
sive spatial data sets at Grab. As mentioned before, data scientists
and engineers at Grab make use of Poet for issuing complex queries
by simple interactions with the system. Figure 5 shows an example
query issue and the presentation of the output to the user by Poet.

Hardware.While Poet supports distributed execution of spatial
operators, our experiments were conducted on a powerful server
equipped with a Xeon E5-2698 v4 CPU with 20 cores, operating at
2.20 GHz. The node is also equipped with 256 GB of main memory.

Workload. For evaluating the efficiency of Poet we make use of
taxi trip data of Grab users. As detailed in Section 2.3, the data set
consists of over 418K trajectory objects. To effectively evaluate the
ability of Poet to help improve the data analysis process at Grab,
we make use of the two scenarios described in Section 3.3. In Grab,
Scenario 1 (S1) helps data scientists to understand trajectory/trip
patterns to/from a specific area of interest at a given time; while Sce-
nario 2 (S2) helps data engineers to identify missing road network
data by searching for trajectories similar to a reference trajectory
at specific periods of time.

Experimental Outline. In Section 6.1, we evaluate the effi-
ciency of the IPE in Poet to efficiently predict the user interactions.
In Section 6.2, we evaluate the efficiency of the progressive spatial
operators in executing the query while it is being expressed by the
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Figure 6: Impact of order of Markov model on prediction.
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Figure 7: Prediction accuracy of IPE for the two case studies.

user. Finally, in Section 6.3, we detail how Poet helps improve the
overall query execution performance at Grab.

6.1 Impact of Predictive Execution
As mentioned before, the IPE in Poet helps predict user intention
based on an n-order Markov model. Now, the order of the Markov
model (i.e., the value of n) can have significant impact on the quality
of prediction and performance of the IPE. To demonstrate this, we
present the average prediction accuracy of the IPE for different
values of n in Figure 6. The results show that, too small values of n
achieve poorer prediction accuracy as it fails to take into account
sufficient number of past user interactions. Further, increasing the
value of n beyond a value of 3 leads to minimal improvement in
prediction accuracy (and sometimes a degradation in accuracy),
while significantly increasing the space and time complexity of the
training and prediction algorithms. Hence, for the remainder of our
experiments, we use a value of n = 3, which achieves a reasonable
balance between prediction accuracy and the cost of the prediction.

To further understand the ability of the IPE in predicting user
intentions, we conduct a user study with the help data scientists
at Grab. The minimum, maximum and mean prediction accuracy
achieved by the IPE for scenarios S1 and S2 during the study is
presented in Figure 7. Note, the accuracy values are based on a
sample of 30 query issues each for S1 and S2 by the users. Further,
a prediction by the IPE is considered to be accurate, if it is able to
interpret the next spatial operator that will be issued by the user.

As shown in Figure 7, the IPE is able to predict the next spatial
operator with an accuracy above 80% for both S1 and S2. This
helps Poet to pre-fetch data objects and begin processing of the
underlying data set as the query is being expressed by the user. The
runtime overhead of IPE should be quite minimal, since it runs very
smooth on an iPad Pro.
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Figure 8: Progressive execution overhead in operators.

6.2 Impact of Progressive Execution
To demonstrate additional computation and data accesses (during
each execution parameter update) as opposed to the traditional
process-after-query based approaches, we present the execution
time breakdown of the progressive version of three key spatial
operators in Poet: trajectory similarity search (TSS), spatial join
(SJ) and temporal filter (TF). Note that in Figure 8, the overhead
is measured as the additional cost of updating query execution
parameters as opposed to the case when there are no progressive
updates to the execution parameters. Since progressive execution
does not reduce the total amount of work that needs to be done, the
implementation does encounter some amount of overhead resulted
from mis-predictions and updates to parameters. However, the
results in Figure 8 clearly show that in spite of frequent updates to
the query execution parameters, the operator implementations in
Poet is able to keep the overhead of mis-predictions and updates to
parameters to a minimum (< 15% of the total execution time).

Now, to understand the ability of a progressive system in re-
ducing the execution latency of spatial queries, we present the
normalized execution latency of TSS, SJ, and TF in Poet with re-
spect to an existing system named TraV [8] in Figure 9. The latency
is defined as the time between the user finishing their interactions
with the GUI for a specific query/operator and the time when the
output data is generated by the server. We define the normalized
latency improvement as the ratio of the latency of TraV over that
of Poet. The results in Figure 9 clearly show that a progressive
execution scheme can help reduce the execution latency of spatial
operators in an interaction-based system by up to 10x.

In summary, the results in Figures 8 and 9 together shows that,
while progressive execution does lead to some level of additional
computation and data accesses, it can help significantly reduce the
execution latency by allowing the system to process the underlying
data set as the user is interacting with the system.

6.3 Overall Comparison
We demonstrate the effectiveness of Poet in improving the overall
query execution performance for some application scenarios at
Grab. For the comparison, we use TraV [8] as baseline. Besides S1
and S2, we also use two scenarios S1’ and S2’, which are the same as
S1 and S2 except that they do not perform a temporal filter. The re-
sults are in Figure 10, which clearly show that 1) Poet helps improve
the overall query execution performance at Grab by up to 1.7x and
2) progressive execution scheme can help improve the performance
even when expressing relatively simpler queries like S1’ and S2’.
The improvement in the overall query execution performance is
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significantly smaller than the improvement in latency (Figure 9),
since the overall processing time includes the time taken by the
user to express the query. Nevertheless, Poet offers much better
response time and interactiveness for spatial analysis in Grab.

7 CONCLUSION
In this paper, we propose Poet, an interaction-based progressive
spatial data processing system at Grab. Poet keeps track of user
interactions and predicts user intentions with a Markov Chain
model. Further, Poet supports the progressive processing of the
underlying data set, allowing its spatial operator to process the data
as the query is being expressed by the user. The experiments show
that Poet helps reduce the query execution latency by up to 25x and
improve the overall query execution performance by up to 1.7x. As
for future work, we are interested in exploring GPU accelerations
like [32] for achieving more real-time spatial data analytics.
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