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Abstract—Main memory is a significant energy consumer
which may contribute to over 40% of the total system power, and
will become more significant for server machines with more main
memory. In this paper, we propose a novel memory system design
named RAMZzz with rank-aware energy saving optimizations.
Specifically, we rely on a memory controller to monitor the
memory access locality, and group the pages with similar access
locality into the same rank. We further develop dynamic page
migrations to adapt to data access patterns, and a prediction
model to estimate the demotion time for accurate control on pow-
er state transitions. We experimentally compare our algorithm
with other energy saving policies with cycle-accurate simulation.
Experiments with benchmark workloads show that RAMZzz
achieves significant improvement on energy-delay2 and energy
consumption over other power saving techniques.

I. INTRODUCTION

Energy consumption has become a major factor for design
and implementation of computer systems. Inside many com-
puting systems, main memory (or DRAM) has been a critical
component for the performance and energy consumption.
As processors have moved to multi-/many-core era, more
applications run simultaneously with their working sets in
the main memory. Many online and data-centric applications
require low latency accesses, and large-scale memory-resident
computing systems like RAMCloud [29] are developed to host
hundreds of Gigabytes or even larger data in the main memory.
The hunger for main memory of larger capacity makes the
amount of energy consumed by main memory approaching
or even surpassing that consumed by processors in many
servers [16], [23]. For example, it has been reported that main
memory contributes to as much as 40–46% of total energy
consumption in server applications [25], [34], [23]. For these
reasons, this paper studies the energy saving techniques of
main memory.

Current main memory architectures allow the power man-
agement on individual memory ranks. Individual ranks at
different power states consume different amounts of energy
(idle, refresh and precharge energies). There have been various
power-saving techniques on exploiting the power management
capability of main memory [17], [18], [9], [3]. The common
research theme of those research studies is to exploit the
transition of individual memory ranks to low-power states for
energy saving. Fan et al. concluded that immediate transitions
to the low-power state save the most energy consumption for
most single-application workloads [12]. However, the decision
can be wrong for more memory intensive workloads such as

multiprogrammed executions. Huang et al. [18] has shown
that only the sufficiently long idle periods can be exploited
because state transitions take non-negligible amount of time
and energy. Essentially, the amount of energy saving relies
on the distributions of idle periods and the effectiveness on
how power management techniques exploit the idle periods.
Existing techniques are suboptimal in the following aspects:
(1) they do not effectively extend the idle period, either with
static page placement [11], [12] or with heuristics-based page
migrations [17], [18]; (2) the prediction on the demotion
time for a state transition is limited and static, either with
heuristics [17], [18] or regression-based model [12] that is not
robust for different workloads.

Those two shortcomings have hurt the effectiveness of
state transition-based energy saving approaches, especially
for memory intensive workloads. First, in memory-intensive
workloads, many idle periods are too short to be exploited for
state transitions. Advanced techniques should be invented to
consolidate the short idle periods into sufficiently longer ones.
Second, due to lacking of accurate prediction on the demotion
time, making wrong decisions is unavoidable, leading to
significant penalties in energy and delay.

To address the aforementioned issues, we propose a novel
memory design named RAMZzz with rank-aware power man-
agement techniques. Instead of having static page placement,
we develop dynamic page migrations to reflect the access lo-
cality changes in the workload. Pages are placed into different
ranks according to their access locality so that the pages in
the same rank have roughly the same hotness. As a result,
ranks are categorized into hot and cold ones. The hot rank is
highly utilized with reads/writes and has some very short idle
periods. In contrast, the cold rank has a relatively small number
of long idle periods, which is good for power state transitions
for energy saving. We further develop a prediction model to
estimate the idle period distribution. The prediction model
combines the historical page access frequency and historical
idle period distribution, and is specifically designed with the
consideration of page migrations among ranks. Based on the
prediction model, RAMZzz is able to optimize for different
goals such as energy saving and energy-delay2 (ED2). This
is achieved through adjusting the demotion time for the given
optimization goal.

We implement our design into a cycle-accurate simula-
tor PTLSim [36] and compute the energy and performance
of workloads. We use SPEC 2006 benchmark to evaluate
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RAMZzz in comparison with representative power saving
policies [22], [18], [11] and an ideal oracle approach. Our
experiments show that (1) with the optimization goal of ED2,
RAMZzz achieves an average ED2 improvement of 15.3–
38.2% over other power saving policies, and achieves only
10.3% on average larger ED2 than the ideal oracle approach;
(2) with the optimization goal of energy consumption, the
energy consumption of RAMZzz is on average 14.8–54.5%
lower than other policies, and is only 1.2% on average higher
than the ideal oracle approach.

To the best of our knowledge, RAMZzz is the first cost
model guided page placement algorithm for main memory
power saving. The key contributions of this paper are: 1) we
propose a page migration approach to dynamically consolidate
the idle periods among ranks to improve the effectiveness of
state transition-based power saving approaches; 2) we develop
a prediction model to estimate the suitable demotion time
for different optimization goals; 3) we implement our design
into a cycle-accurate simulator, and conduct extensive studies
to show the effectiveness of RAMZzz on multiple metrics
including ED2, energy consumption and performance.

Organization. The rest of the paper is organized as follows.
We introduce the background on basic power management of
DRAM in Section II. Section III describes the detailed design
and implementation of RAMZzz. The experimental results are
presented in Section IV. Section V summarizes the related
work. We conclude this paper in Section VI.

II. BACKGROUND

In this paper, we use the terminology of DDR-series mem-
ory architectures (e.g., DDR3 and DDR4 etc) to describe our
approach. DDR is usually packaged as modules, or DIMMs.
Each DIMM contains multiple ranks. In power management, a
rank is the smallest physical unit that we can control. Individ-
ual ranks can service memory requests independently and also
operate at different power states. The power consumption of
each rank can be divided into two main categories: active pow-
er and background power. Active power consists of the power
that is required to activate the banks and service memory
reads and writes. Background power is the power consumption
without any DRAM accesses. Background power is a major
component in the total DRAM power consumption (usually
larger than 50% among various workloads [18], [38]), and
tends to be more significant in the future. On one hand, there
has been a tremendous amount of research work on reducing
the DRAM stalls, which translates into the reduction of active
power. CPU caches are designed with large capacities. The
recent Intel Core i7 CPU can have a 12MB L3 cache. Software
optimizations like cache-friendly algorithms further reduce the
number of memory accesses. On the other hand, memory
capacity will become larger and is usually provisioned with
peak usage. Therefore, it is the focus of this paper on reducing
the background power consumption.

Different power states have different background power
consumptions. When a rank is idle, background power is still
consumed, unless the rank enters into a lower power state.

Fig. 1. DDR3 DRx4 R-DIMM at 1333 MHz [6]: (a) delays for power state
transitions, (b) power states, (c) energy consumption of state transitions.

To exit from a power down state, the disabled subcomponents
need to be reactivated and the rank needs to be restored to
the active state. State transitions among different power states
cause latency and energy penalties.

Depending on which subcomponents are disabled, modern
memory architectures support a number of power states with
complicated transitions [26], [27]. Due to the complexity,
previous studies [17], [18], [9], [12] usually abstract the power
state transitions with simplified models of several power states.
In this paper, we utilize a simplified model with three power
states (namely ACT, PRE and SR, illustrated in Figure 1(a)).
Note, many previous studies assume two states only (ACT and
a lower-power state, e.g., PRE or SR). Our prediction model
enables us to consider the state transitions of more power
states. Figures 1(b) and 1(c) show their power consumption
and penalty for transiting from PRE/SR back to ACT. All
the statistics numbers are calculated for DDR3 at 1333 MHz
with System Power Calculator [28], and one can calculate
those numbers for other memory architectures similarly. PRE
consumes 52% of the power of ACT, with relatively small
latency and energy penalties. In contrast, SR consumes only
17% of the power of ACT, with much higher latency and
energy penalties. The energy penalty by transiting from SR
to ACT is over an order of magnitude higher than that of
transiting from PRE to ACT.

Because the latency and energy penalty for switching from
deeper low-power states is substantially higher than the penalty
of switching from shallower states, entering deep power-down
states for short idle times could in fact hurt energy efficiency
because the power savings might not be able to offset the
high latency penalty of switching back to active state. Thus
the effective use of deeper low-power state is contingent on
having long idle periods on a rank. That naturally leads to
two problems: 1) how to create longer idle periods without
modifying the application, and 2) how to make correct deci-
sions on state transitions. Those two problems are essential for
reducing background power consumption. In the next section,
we present our approach to address those two problems.

III. RANK-AWARE POWER MANAGEMENT

In this section, we start with an overview on the design ratio-
nales of RAMZzz. Next, we give the detailed design of two
key components in RAMZzz including dynamic migrations
and demotions. Finally, we put all the components together
and detail our memory design.



A. Overview

Our goal is to reduce the background power of DRAM. Due
to the inherent power management mechanisms of DRAM,
there are two obstacles in the effectiveness of reducing the
background power.

First, due to the latency and power penalty of transiting
from lower-power state to active state, it requires a minimum
length threshold for an idle period that is worthwhile to make
the state transition. Furthermore, the threshold value varies
with the amount of energy and delay penalties of different
state transitions for the same DRAM architecture and of the
same state transition for different DRAM architectures. Since
there is a length threshold for an idle period, an energy saving
technique needs to determine whether an idle period on a rank
is longer than threshold or not. Ideally, if the idle period is
longer than the threshold value, the rank should directly jump
to the lower-power state; otherwise, we should keep the rank
in the active state. However, it is not easy to predict the length
of each idle period, due to dynamic memory references.

Second, the state transition-based power saving approaches
cannot take full advantage of idle periods, especially for
memory intensive workloads. In memory intensive workloads,
the number of idle periods is large, and many of the idle
periods are too short to be exploited for power saving. It is
desirable to reshape the page references to different ranks so
that the idle periods become longer and the number of idle
periods is minimized.

We propose a novel memory design RAMZzz with dynamic
migrations and demotions to address the aforementioned ob-
stacles. We develop a dynamic page placement policy that is
likely to create longer idle periods. The policy takes advantage
of recency and frequency of pages stored in the ranks, and
ranks are categorized into hot and cold ones. The hot ranks
tend to have very short idle periods, and the cold ranks with
relatively long idle periods. Page migrations are periodically
performed to maintain the rank hotness (the period is defined
as epoch). With dynamic page migrations, short idle periods
are consolidated into longer ones and the number of idle
periods is reduced on the cold ranks. On the other hand, we
develop an analytical model to periodically estimate the idle
period distribution within a predefined interval (the period is
called slot). Our analytical model is based on the locality of
memory pages and the idle period distribution of the previous
slot. Given an optimization goal (such as minimizing energy
consumption or minimizing ED2), we use the prediction model
to estimate the suitable demotion time for the new slot.
Since the prediction has much lower overhead than the page
migration, a slot is designed to be smaller than an epoch.
In our design, an epoch consists of multiple slots. Figure 2
illustrates the relationship between slot and epoch. RAMZzz
performs prediction at the beginning of each slot and performs
page migration at the beginning of each epoch.

B. Page Migration

When an epoch starts, we first group the pages according
to their locality and each group maps to a rank in the DRAM.

cycle

TimeSlot i Slot i+1 Slot i+x

Epoch j

Prediction

Page migration

Fig. 2. Overview of RAMZzz.

Next, pages are migrated according to the mapping from
groups to ranks.

Rank-aware page grouping. We place the pages with
similar hotness into the same rank. We adopt the main memory
management policy named MQ [39]. We briefly describe the
idea of MQ, and refer the readers to the original paper for more
details. MQ has M LRU queues numbered from 0 to M -1.
We assume M = 16 following previous studies [39], [31].
Each queue stores the page descriptor including the page ID,
a frequency counter and a logical expiration time. The queue
with a larger ID stores the page descriptors of those most
frequently used pages. On the first access, the page descriptor
is placed to the head of queue zero, with initialization on its
expiration time. A page descriptor in Queue i is promoted to
Queue i+1 when its frequency counter reaches 2i+1. On the
other hand, if a page in Queue i is not accessed recently based
on the expiration time, its page descriptor will be demoted to
Queue i− 1.

An observation in MQ is that MQ has clustered the pages
with similar access locality into the same queue. Moreover,
unlike LRU, MQ considers both frequency and recency in
page accesses. As a result, we have a simple yet effective
approach to place the pages in the ranks. Suppose each rank
has a distinct hotness value. We assign the rank that a page is
placed in a manner such that: given any two pages p and p′

with the descriptors in Queues q and q′, p and p′ are stored
in ranks r and r′ (r is hotter than r′) if and only if q > q′

or if q = q′ and p is ahead of p′ in the queue. That means,
the pages whose descriptors are stored in a higher queue in
MQ are stored in hotter ranks. Within the same queue in MQ,
the more recently accessed pages are stored in hotter ranks.
Algorithm 1 shows the process of grouping the pages into R
sets, and each set of pages is stored in a memory rank. Each
rank has a capacity of C pages.

Algorithm 1 Obtain R page groups in the increasing hotness
1: initiate R empty sets, S0, S1, ..., SR−1;
2: curSet = 0;
3: for Queue i = M − 1, M − 2, ..., 0 in MQ do
4: for Page p from head to tail in Queue i do
5: Add p to ScurSet ;
6: if |ScurSet | = C then
7: curSet ++;

Figure 3 illustrates an example of page placement onto the
ranks. There are four ranks in DRAM, and each rank can
hold two pages. At epoch i, we run Algorithm 1 on the MQ
structures, and obtain the page placement on the right. For
example, P6 and P7 belong to Q3, which are the hottest pages,
and they are placed into the hottest rank (here r0). At epoch
i+1, there are some changes in the MQ (the underlined page
descriptors). With the page migration (the detailed algorithm
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Fig. 3. An example of page placement on ranks.

can be found in the later description), we obtain the placement
on the right. Note, page migration may change the hotness of
the ranks.

Page migrations. The hotness of each rank needs to adapt
to the changes in the access localities of the pages. Pages may
need to be migrated from one rank to another. Hot pages are
moved to hot ranks. Due to the capacity, some pages that are
originally stored in the hot ranks have to be moved to the cold
ranks. There are two major tasks. First, we need to determine
the hotness of each rank, i.e., which rank stores which set
(or group) of pages determined in Algorithm 1. According to
the current page placement among ranks, different mappings
from groups to ranks can result in different amounts of page
migrations, leading to different amounts of penalty in energy
and latency. In other words, given the current page placement,
we should find a mapping to minimize the amount of page
migrations. Second, given the mapping obtained in the first
task, we need to schedule the page migrations in a manner to
minimize the runtime overhead.

We determine the mappings from groups to ranks with
the consideration of the number of pages that do not need
migration. Our goal now is to find a rank permutation (n0,
n1, ..., nR−1) for (0, 1, 2, ..., R − 1) so that (1) rank ni is
hotter than rank nj if and only if i > j (0 ≤ i, j < R), and
(2) the number of page migrations is minimized (equivalently,
maximizing the number of pages that do not need migration).

We formulate this problem as finding a maximum matching
on a balanced bipartite graph. The bipartite graph is defined
as G whose partition has the parts U and V . Here, U and V
are defined as the rank permutation in the previous epoch (n′

0,
n′
1, ..., n′

R−1) and page groups obtained with Algorithm 1 in
the current epoch (SR−1, ..., S1, S0) respectively. An edge
between n′

i and Sj has a weight equaling to the number of
pages that exist in both rank n′

i and Sj . Since |U | = |V |,
that is, the two subsets have equal cardinality, G is a balanced
bipartite graph. We find the maximum matching of such a
balanced bipartite graph with the classic HopcroftKarp algo-
rithm. The maximum matching means the maximum number
of pages that are common in both sides, and equivalently the
matching minimizes the number of page migrations. Thus,
given the maximum matching with the set of edges (n′

ij
, Sj),

0 ≤ j < R, we get the rank permutation (n0 = n′
iR−1

,
n1 = n′

iR−2
, ..., nR−1 = n′

i0
) as the solution. Figure 4(a)

illustrates the calculation of the maximum matching for the
bipartite graph for the example in Figure 3. In this example,
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Fig. 4. An example of page migrations: (a) calculate the maximum matching
on the bipartite graph; (b) calculate Eulerian cycle for page migrations.

there are multiple possible matchings with the same maximum
matching weight. All the thick edges represent one of such
maximum matchings. Thus, the rank permutation is (r3, r1,
r2, r0).

After the page mappings to individual ranks are determined,
we know which pages should be migrated from one rank
to another. Inspired by Eulerian cycle in graph theory, we
develop a novel approach to perform multiple page migrations
in parallel. We consider a labeled directed graph Gm where
each node represents a distinct rank. An edge from node ni

to node nj is labeled with a page descriptor, representing the
page to be migrated from rank ni to rank nj .

Each strongly connected component of Gm has Eulerian
cycles. According to graph theory, a directed graph has a
Eulerian cycle if and only if every vertex has equal in
degree and out degree, and all of its vertices with nonzero
degree belong to a single strongly connected component. By
definition, each strongly connected component of Gm satisfies
both properties, and thus we can find Eulerian cycles in Gm.
The page migration follows the Eulerian cycle. So, each edge
is touched exactly once, meaning each page is migrated exactly
once. We divide the Eulerian cycle into multiple segments so
that each segment is a simple path or cycle. Then, the page
migrations in each segment can be performed concurrently.
Figure 4(b) illustrates one example of Eulerian cycle according
to the maximum matching on the left. The three migrations
form a Eulerian cycle, and they are performed in one segment.

To facilitate the concurrent page migrations according to
Eulerian cycle, each rank is equipped with one extra row-
buffer for storing the outgoing page. When migrating a page,
a rank needs to first write the outgoing page to the buffer
of the target rank, and then read the incoming page from its
buffer.

C. Prediction Model

When a new slot starts, we run a prediction model against
each rank. The model predicts the idle period distribution,
followed by estimating the demotion time for the new slot.

Predicting idle period distribution. Our estimation should
be adapted to the potential changes in the page locality as well
as the set of pages in each rank. Thus, our estimation considers
both the history distribution as well as the access locality of
each page in the previous slot.

We use the histogram to represent the idle period distribu-
tion. Suppose the slot size is T cycles, and the histogram has
T buckets. We denote the histogram to be Hist [i ], i = 0, 1, ...,
T . The histogram means there are Hist [i ] of idle periods with



the length of i cycles. One issue is the storage overhead of
the histogram. A basic approach is to store the histogram into
an array, and each bucket is represented as a 32-bit integer.
However, the storage overhead of this basic approach is too
high. Consider a slot size of 108 cycles in our experiments.
The basic approach consumes around 400MB per rank. In
practice, the histogram is usually very sparse, and there are
at most

√
T idle periods longer than

√
T cycles. Thus, we

develop a simple approach to store the short and the long idle
periods separately. In particular, we maintain two small arrays:
the histogram counters for the short idle periods no longer
than

√
T cycles, and another array of

√
T integers to store the

actual lengths of the long idle periods that are longer than
√
T

cycles. This simple approach reduces the storage overhead to
2
√
T integers. It takes only 80KB per rank to support the slot

size of 108 cycles. We calculate the histogram for idle periods
longer than

√
T cycles with just one scan on the array.

Our estimation specifically consider page migrations. If
the slot is not the beginning of an epoch, there is no page
migration and we use the actual histogram in the previous
slot, Hist ′[i], to be the prediction of the current slot, i.e.,
Hist [i] = Hist ′[i] (0 ≤ i ≤ T ). Otherwise, we need to
combine the access locality of the migrated pages with the
historical histogram.

Our estimation after page migration works as follows. We
model the references to the same page conforming to a Poisson
distribution. Suppose a page i is accessed with f times in a
slot. Under the Poisson distribution, the probability of having
one access to the page i within a cycle is pi = g·f

T , where
g is the memory access latency. In our implementation, we
take advantage of the frequency counter and the expiration
time in the MQ structure (as described in the previous section)
to approximate pi. This already offers a sufficiently accurate
approximation in practice. Given a rank consisting of N pages
(pages 0, 1, ..., N − 1), the probability of an idle cycle in the
rank is Q = (1 − p0) · (1 − p1)... · (1 − pN−1). Based on
Q, we can estimate the probability of forming an idle period
with length of k cycles (followed by a busy cycle in (k+1)th

cycle). That is, the probability of having an idle period of k
cycles is Wk = Qk · (1−Q).

We denote the old values of those probability values in
the previous epoch to be W ′

k (k=0, 1, 2, ..., T ). After page
migrations, we calculate Wk (k=0, 1, 2, ..., T ) according
to the pages in the rank. Given the actual histogram in the
previous slot, Hist ′[i], we can estimate the histogram of
the current slot with the ratio Wi/W

′
i , that is, Hist+[i] =

Wi/W
′
i ·Hist

′[i]. Finally, we normalize the histogram so that
the histogram represents the total time length of a slot. Denote
s′=Hist+[0]+

∑T
i=1(Hist

+[i] ·i). We normalize the histogram
with the value of T

s′ , e.g., Hist [i] = Hist+[i] × T
s′ . We use

Hist [i] as the prediction on the idle period distribution for the
current slot. Next, we use the histogram estimation to make
decisions on when to perform state transitions.

Determining the demotion time. With the predicted idle
period distribution, there are opportunities to avoid the state
transitions upon those short idle periods, and to have instant

state transitions for long idle periods. For example, if we know
all the idle periods are expected to be very long, we can set
the demotion time to be zero, thus performing instant state
transitions. So we have developed a simple approach to reduce
the total penalty of state transitions. The basic idea is to use
one demotion time to determine the state transitions within the
entire slot. That is, RAMZzz performs the state transition after
some idle period threshold ∆. If the idle period is shorter than
∆, RAMZzz does not make the state transition. The ∆ value is
determined according to the predicted idle period distribution.

Given the estimated histogram on idle periods, we estimate
the demotion time for a given optimization goal (such as
energy consumption or ED2). Here, we use the optimization
goal of energy consumption, and one can similarly extend
to other goals such as ED2. Since the choice on different
demotion times does not affect the energy consumption of
memory reads and writes, our metric can be simplified as the
total energy consumption of background power and the state
transition penalty.

We first present our algorithm design for two power states
only, and later extend it to handle multiple states as a chain of
two-state transitions. Suppose the idle period length is t cycles,
and the power consumption of the higher- and lower-power
states h and l are Ph and Pl, respectively. If t ≤ ∆, there is no
state transition and the energy consumption for the idle period
is denoted as a function Bshort(t), where Bshort(t) = Ph × t.
Otherwise, after time ∆, there is a state transition. At the
end of time t, a memory access comes and the rank transits
back to the active state. The energy consumption of the idle
period is denoted as a function, Blong(∆, t). By definition,
Blong(∆, t) = Ph × ∆ + Pl × (t − ∆) + El→active , where
El→active is the penalty of energy consumption transiting from
power state l to h.

Given the histogram Hist [i], i = 0, 1, ..., T , each Hist [i]
means there are Hist [i] idle periods with length i cycles. We
can calculate the total energy consumption for all the idle
periods, as E(∆) in Eq. (1). Our goal is to get the suitable
demotion time ∆ so that E(∆) is minimized.

E(∆) =

∆∑
i=1

(Bshort(i) ·Hist [i])+

T∑
i=∆+1

(Blong(∆, i) ·Hist [i]) (1)

We note that E(∆) is neither concave nor monotonic.
Therefore, we have to iterate all the possible values ∆=0, 1,
..., T , and find the suitable ∆. To make a compromise on the
prediction speed and accuracy, we use an exponential increas-
ing approach by iterating zero and ∆ = 2i (0 ≤ i ≤ log2 T ).
RAMZzz also allows users to specify a delay budget to limit
the delay penalty incurred by state transitions. We choose the
∆ value that minimizes E(∆) and has the total delay smaller
than the given delay budget.

Since we model the power management of DRAM with
three power states, the state transitions are viewed as a chain
of state transitions. We need two threshold values ∆1 and ∆2

that represent the demotion time transiting from ACT to PRE
and from PRE to SR, respectively. In our experiments, we
observed that those two transitions are already sufficient for
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Fig. 5. Memory controller with RAMZzz’s new modules highlighted.

our power management.

D. Put It All Together

The overall workflow of RAMZzz is designed as Algorith-
m 2. RAMZzz performs the memory references to the target
rank and updates the MQ structure and histogram used in idle
period estimation. At the beginning of each epoch, RAMZzz
decides the page migration schedule and starts to migrate the
pages to the destination ranks. At the beginning of each slot,
RAMZzz updates the demotion time for each rank.

Algorithm 2 Workflow of RAMZzz.
1: if any memory reference to rank r then
2: if rank r is in lower-power state then
3: Set r to be ACT;
4: Perform the memory reference to r;
5: Update the MQ structure;
6: Update the corresponding histogram counter according to the idle

period length;
7: else
8: Increase the current idle period, idleLen , by one cycle;
9: if idleLen ≥ ∆2 then

10: Transit to SR;
11: else
12: if idleLen ≥ ∆1 then
13: Transit to PRE;
14: if The current cycle is the beginning of an epoch then
15: Run page migration algorithm and schedule page migrations;
16: if The current cycle is the beginning of a slot then
17: Estimate the suitable demotion time (∆1, ∆2) for each rank;

RAMZzz adds a few new components to the memory con-
troller. Following the previous study [31], RAMZzz extends
a programmable controller [35] by adding its own new com-
ponents (shaded in Figure 5). The memory controller receives
read/write requests from the cache controller via the CMD FI-
FOs. The Arbiter dequeues requests from those FIFO queues,
and the controller converts those requests into the necessary
instructions and sequences required to communicate with the
memory. The Datapath module handles the flow of reads and
writes between the memory devices. The physical interface
converts the controller instructions into the actual timing
relationships and signals required for accessing the memory
device. All the logics of the new modules are performed
by the memory controller, and are designed off the critical
path of memory accesses, giving the priority to the memory
accesses from applications. In practice, some functionalities
including page migrations and state transitions according to
the prediction model can be offloaded to operating systems
(like previous studies [31], [17]). We add a flag bit to indicate
whether this request is from applications or new modules.

We briefly describe some important details of the new
modules. Four new modules including Migration, Remap,
Grouping and Demotion are added for implementing the
functionality of page migration, page remapping for a page
migration, page grouping and power state control in RAMZzz,
respectively. The Grouping module polls the CMD FIFO
queues and updates the MQ structure per new request. At
the beginning of an epoch, we perform grouping according
to the MQ structure. In the Migration module, the set of
scheduled migrations is maintained in a queue. The migrations
are enqueued in a manner that concurrent migrations of a
Eulerian cycle are put in consecutive positions. Page migration
starts from the beginning of an epoch, and is scheduled once
there is idle period so that it does not add delay to the
workload. The priority is given to longer segments because
they involve more pages. The Remap module maintains the
mapping from logical pages to physical pages. It takes the
latched logical page numbers involved in a segment, and
updates the page mapping in the page table. Note that the
migration and remapping of a segment blocks the accesses
to only the involved pages, and concurrent accesses to other
pages are still possible. Finally, the Demotion module runs the
prediction model and sets the demotion time.

Finally, we note that the structure complexity and storage
overhead of RAMZzz are similar to the previous proposals,
e.g., [18], [10], [11], [12], [32]. For example, our design
has small DRAM space requirement (less than 2% of the total
amount of DRAM). For page migration, only page descriptors,
their mapping tables and MQ structures are stored. For the
prediction model, we store the two arrays for calculating
the idle period histogram per rank, and reuse the frequency
counter and expiration time information in the MQ structure
for prediction.

IV. EVALUATION

In this section, we evaluate our design using energy, perfor-
mance and ED2 as metrics.

A. Methodology

We have integrated RAMZzz into PTLSim V3.0 simula-
tor [36], which offers cycle-accurate simulation. Our simu-
lation models all the relevant aspects of the OS, memory
controller, and memory devices, including page replacements,
memory channel and bank contention, memory device power
and timing, and row buffer management.

The main architectural characteristics of the simulated ma-
chine are listed in Table I. We simulate DDR3 DRAM with
different capacities (1GB, 2GB and 4GB etc) and different
numbers of ranks (4, 8, 12 and 16). All the ranks have the
same configurations and capacities. By default, we assume a
2GB DRAM with eight ranks. We calculate the memory power
consumption following the System Power Calculator [28],
with the power and delay illustrated in Figure 1. The power
consumption characteristics of DRAM is the same as those of
DDR3-1333 in the previous paper [6].



TABLE I
ARCHITECTURAL CHARACTERISTICS OF THE SIMULATED MACHINE. THE

DEFAULT SETTING IS HIGHLIGHTED.
Component Features
CPU 4 in-order core running at 2.667 GHz
TLB 64 entries
L1 I/D cache (per core) 48 KB
L2/L3 cache (shared) 256KB/4MB
Cache line/OS page size 64B/4KB
DRAM DDR3-1333
ranks 4, 8, 12, 16
capacity (GB) 1, 2, 4
delay and power see Figure 1

TABLE II
MIXED WORKLOAD: MEMORY FOOTPRINT, MEMORY ACCESSES

STATISTICS PER 5× 108 CYCLES (Mean AND Stdev
Mean

).

Name Footprint
(MB)

Mean
(106)

Stdev
Mean

Applications

M1 661.3 0.6 1.02 gromacs, gobmk, hmmer, bzip
M2 1477.4 1.7 1.11 bzip, soplex, sjeng, cactusADM
M3 626.6 2.9 0.59 soplex, sjeng, gcc, zeusmp
M4 537.8 3.5 0.47 zeusmp, gcc, leslie3d, omnetpp
M5 1082.9 4.4 0.71 gcc, leslie3d, calculix, gemsFDTD
M6 988.2 7.8 0.4 libquantum, milc, mcf, lbm

Workloads. We have used 19 applications from SPEC 2006.
Those workloads have widely different memory footprints
and localities. To assess our algorithm under the context of
multi-core CPUs, we study mixed workloads of four different
applications from SPEC 2006 (Table II). The mixed workloads
form multi-programmed executions on a four-core CPU, or-
dered by the average number of memory accesses (mean) and
the standard deviation (StdevMean ) per 5 × 108 cycles. The four
workloads start at the same time. We perform measurement
when all the workloads finish the initialization. For each
workload, we select the simulation period of 15 billion cycles
in the original PTLSim simulation, and that simulation point
represents a stable and sufficiently long execution behavior.

We study the distribution of idle periods. Figure 6 shows
the histogram of idle period lengths of the collected traces on
Rank 0. We observed similar results on other ranks. Many idle
periods are too short to be exploited for state transitions.
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Fig. 6. The histogram of idle periods with M2 on Rank 0.

Comparisons. To evaluate the proposed techniques in
RAMZzz, we have simulated the following techniques:

• No Power Management (BASE): no power management
technique is used, and ranks are kept active when they
are idle.

• Immediate Powerdown (IPD): This is the simplest form
of hardware power management. It is a static technique
where IPD immediately transits a rank to a lower-power
state when an idle period starts. IPD was previously
shown to be the most efficient [22], [12]. In this study,
we chose PRE as the target lower-power state when
the optimization goal is ED2, and chose SR when the
optimization goal is energy consumption.

• Immediate Powerdown with page migration (IPM):
this approach arguments IPD with our page migration
approach. IPM is similar to the previous work [18],
except the difference in the page hotness definition and
the heuristics in transiting from the middle power state
to the lowest power state.

• Predicted Powerdown (PP): PP arguments IPD by using
our histogram-based prediction on the idle period distri-
butions and finding the suitable demotion time for state
transitions.

To evaluate the effectiveness of our histogram-based predic-
tion, we also simulate an oracle approach (OPT). OPT is
the same as RAMZzz, except the demotion time in OPT is
determined with the future information, instead of history.
Specifically, at the beginning of each slot, we perform an
offline profiling on the current slot, and get the real histogram
of idle periods. Based on the histogram, we calculate the
optimal demotion time. Finally, RAMZzz allows users to
specify the slot and epoch sizes and delay budgets. By default,
the slot size is 108 cycles and an epoch consists of five slots
(5× 108 cycles), and delay budget is set to be 4% of the slot
size. We evaluate their impact in Section IV-D.

We compare the behavior of RAMZzz, BASE, IPD, IPM, PP
and OPT. All the metrics are normalized to those of BASE. To
demonstrate the flexility of our optimization metric, we assess
two optimization goals: ED2 and total energy consumption.
We report the metrics for DRAM only, to remove the impact
of other components in the machine. Due to space limitations,
we do not present the results for all workloads of single appli-
cation; instead, we report their geometric mean (GM), and also
four applications with different memory intensiveness. They
are omnetpp, cactusADM, mcf and lbm (denoted as S1, S2,
S3 and S4, respectively). They cover a wide range of memory
accesses intensiveness (0.1, 0.9, 8.0, 17.9 millions accesses on
average per 5× 108 cycles accordingly).

B. Results on ED2-Oriented Optimizations

We first compare the algorithms with the optimization goal
of ED2, simply because ED2 is a widely used metric for energy
efficiency. Figure 7 presents ED2 comparison for all the energy
saving approaches.

RAMZzz has much lower ED2 than other techniques, on
average 38.2%, 15.3%, 20.7% lower than IPD, IPM and PP re-
spectively. The reduction is more significant on the workloads
of single applications (S1–4) than the mixed workloads. There
are two major reasons. First, the page migration has a smaller
overhead, since the single-application workload has a smaller
memory footprint. The number of page migrations becomes



Fig. 7. Comparing ED2 with the optimization goal of ED2.

Fig. 8. The breakdown of energy consumption of RAMZzz with the
optimization goal of ED2.

very small after the first few epochs. In contrast, the execution
process of the workloads with a large memory footprint (such
as M5 and M6) consistently has a fair amount of page
migrations at all epochs. Second, the memory access is less
intensive on single-application workloads, and there are more
opportunities for saving background power. Figure 8 shows
the energy consumption breakdown for background power of
RAMZzz. As the workload becomes more memory intensive,
the portion of ACT becomes significant, indicating that many
idle periods are too short and they are not worthwhile to
perform state transitions (even with page migration). For the
less memory intensive workloads like S1 and M1, SR and PRE
have very significant portions in the total energy consumption,
indicating significant energy saving compared with ACT.

Due to the significant delay incurred by the immediate
power down, both IPD and IPM have very high ED2. Our
histogram-based prediction model accurately estimates the
suitable demotion time for the sake of minimizing ED2.
Figure 9 compares RAMZzz’s estimated demotion times to SR
with OPT on ranks 0 and 2 of executing M4. Our estimation is
very close to the optimal value on the two ranks. That shows
the effectiveness of our estimation, with page migrations
among ranks 0 and 2 and other ranks. We observe similar
results for different ranks and different workloads and also
for the demotion time to PRE. For the two techniques with
histogram prediction (PP and RAMZzz), they achieve a much
lower ED2 than BASE. Particularly, RAMZzz has a smaller
ED2 (15.3% on average) than IPM. When page migration is
disabled, PP has a smaller ED2 (20.3% on average) than IPD.
The impact of prediction model is relatively larger when page
migration is disabled.

With page migration, RAMZzz achieves a significant re-
duction on ED2 compared with PP (up to 42.9%, and 20.7%
on average for all workloads, see Figure 7). We also note
that the ED2 improvement of page migration is even higher
without the histogram prediction (with an average of 34.6%
ED2 reduction of IPM over IPD). Page migrations and accurate

Fig. 9. Comparing the demotion time to SR of RAMZzz and OPT.

demotion time prediction are additive to the overall ED2

improvement. Comparing the impacts of page migration and
prediction model, we find that the prediction model has a larger
impact. The prediction model has facilitated the energy saving
while keeping the delay budget.

Due to the accuracy of the demotion time prediction,
RAMZzz has only 10.3% on average larger ED2 than OPT
(see Figure 7). In other words, RAMZzz is already very close
to the offline oracle approach.

We briefly discuss the experimental results for the perfor-
mance and energy consumption without figures.

While RAMZzz is configured to optimize ED2, both delay
and energy consumption of RAMZzz are rather reasonable. Its
delay penalty is relatively small (5% on average larger than
BASE). The delay is mainly from state transitions. In contrast,
without demotion time prediction, IPD and IPM may suffer
from the long delay incurred from short idle periods, with
delays up to 38% and 27% higher than BASE.

For RAMZzz, the energy consumption is significantly re-
duced, 58% on average smaller than BASE. Also, the ener-
gy consumption of RAMZzz is 18–32% smaller than other
approaches. The energy consumption of page migrations is
less than 5% of the total energy consumption across all
workloads. We note that, IPD is actually quite competitive on
the energy consumption when the workload is less memory
intensive, such as single-application and M1 workloads. That
is consistent with the previous result [22]. However, IPD is
much worse for memory intensive applications such as M2–6.

C. Results on Energy-Oriented Optimizations

We also present the results when RAMZzz’s optimization
goal is set to energy consumption. We set the relatively high
delay budget (20%) to unleash the potential of energy saving.
Figure 10 compares the energy consumption and ED2 for
different techniques. We make the following observations.
First, RAMZzz has the lowest energy consumption. The im-
provement over IPD, IPM and PP are 54.5%, 35.1%, 14.8%,
respectively. Moreover, RAMZzz consumes only 1.2% on
average more energy than OPT on all workloads. Our study
on the demotion time also shows that our prediction model
is very close to OPT with the optimization goal of energy



Fig. 10. Comparing energy consumption with the optimization goal of energy
consumption.

Fig. 11. Comparing ED2 with varying DRAM capacity on M4.

consumption. Thus RAMZzz achieves the effectiveness and
flexibility in different optimization goals.

We briefly present the results for ED2 under the optimiza-
tion goal of energy consumption without figures. RAMZzz
still has a comparable ED2 with OPT, and outperforms other
techniques. The ED2 of RAMZzz is 14.1% on average higher
than that of OPT. In some cases, RAMZzz has a higher ED2

than BASE, because of the compromise between the energy
saving and delay penalty.

D. Sensitivity Studies

We use ED2 as the optimization metric to study the sensi-
tivity analysis. Since IPD and IPM have higher ED2 than PP
and RAMZzz, especially on memory intensive workloads with
large footprints, we present the results for PP, RAMZzz and
OPT. In those studies, we vary one parameter at a time and
keep other parameters in their default settings. Due to the space
limitation, we present the figures for M4 (as a modest case
among all those workloads) and comment on other workloads
without figures when appropriate.

DRAM parameters. We study the impact of different
numbers of ranks and memory capacities of DRAM. As the
number of ranks increases, we observed a rather stable ED2

for PP, RAMZzz and OPT. For all the three approaches, when
the number of ranks increases from 2 to 4, ED2 drops less
than 1%, because of a finer grained power control on ranks.
When the number of ranks increases from 4, 8 to 16, ED2

increases less than 3%. The major reason for increasing ED2 is
the increased amount of page migrations caused by increasing
the rank. Figure 11 shows the results for varying the memory
capacity. As memory capacities increase, all three methods
achieve a lower ED2, and the ED2 improvement of RAMZzz
over PP becomes larger. That indicates the effectiveness of our
approach on larger-memory systems.

RAMZzz parameters. We study the impact of different
epoch/slot sizes and delay budgets of RAMZzz.

Fig. 12. Comparing ED2 with varying epoch sizes on M4.

Fig. 13. Comparing ED2 with varying delay budget per slot on M4.

Figure 12 shows the results of varying epoch sizes. PP is
not sensitive to the epoch size, whereas the ED2 of RAMZzz
and OPT both increases slightly. That is because, for a longer
epoch, the rank hotness does not affect the changes in page
access locality in time, and the ED2 improvement brought by
page migrations is slightly reduced. We observed a similar
result when varying the slot size in (0.125× 108 × 2i) cycles
(i =0, 1, ..., 3). The ED2 of RAMZzz varies by less than
2%. In practice, we set the slot size to be 108 cycles as a
compromise on the prediction overhead and the accuracy.

Figure 13 compares ED2 for varying delay budget. A small
delay budget limits the potential for energy saving, whereas a
large delay budget leads to too aggressive energy saving and
exaggerates the delay incurred by mispredictions. In practice,
we set the delay budget within 1–4% for optimizing ED2.

Finally, we study the impact of static demotion time if
RAMZzz adopts one static demotion time during the entire
execution. The goal is to evaluate the effectiveness of our
dynamic prediction on demotion time. The result is shown
in Figure 14. We observed a concave trend on increasing the
static demotion time. When the static demotion time is small,
the trend shows sharp drops due to the reduced penalties in
energy and delay; when the static demotion time is large,
the trend shows increase due to missing the chance of state
transitions for better energy saving. All those static settings
have a higher ED2 than RAMZzz, justifying the necessity

Fig. 14. Evaluating RAMZzz with static demotion time on M4.



of dynamic predictions per slot. This observation is also
consistent with fluctuations on the suitable demotion time
observed in Figure 9.

V. RELATED WORK

We review the related work on energy saving with power
states and with other hardware and software approaches.

A. Energy Saving with Power States

Saving energy by transiting memory power states has at-
tracted many research efforts, covering memory controller
design, compilers and operating systems.

Different power state transition approaches have been devel-
oped for DRAM systems. Hur et al. [19] developed adaptive
history-based scheduling in the memory controller. Based on
page migration, Huang et al. [18] further stored the frequently-
accessed pages into hot ranks and left infrequently-used and
unmapped pages on cold ranks. Their decisions on page
migrations are based on heuristics. Lebeck et al. [22] studied
different page allocation strategies. Their approach does not
have the analytical model to guide the decision, or utilize both
recency and frequency to capture rank hotness. Diniz et al. [11]
limited the energy consumption by adjusting the power states
of DRAM. Different from their approach at the granularity of
ranks, our approach is finer grained with page migrations and
our prediction model offers a novel way of power management
on guiding page migrations and power state transitions. Fan
et al. [12] developed an analytic model on estimating the idle
time of DRAM chips using an exponential distribution. Their
model does not consider page migrations. Instead of relying on
the presumed knowledge of distribution, our prediction model
combines the historical information on idle period distribution
and page access locality.

DRAM power state transitions have been implemented in
operating systems and compilers. Delaluz et al. [9] present an
operating system based solution letting the scheduler decide
the power state transitions. This approach requires the inter-
faces of exposing and controlling the power states. Huang
et al. [17] proposed power-aware virtual memory including
memory allocations and page migrations. For energy efficient
compilations, Delaluz et al. [7] proposed compiler optimiza-
tions for memory energy consumption of array allocations.
They further combined the hardware-directed approach and
compiler-directed approaches [8] for more energy saving.

Some research efforts have been devoted to reduce the
power consumption of power state transitions. Bi et al. [4]
took advantage of the I/O handling routines in the OS kernel
to hide the delay incurred by memory power state transitions.
Balis et al. [5] proposed finer grained memory state transition.
Those approaches are complementary to the state transition-
based energy saving approaches.

B. Other Energy Saving Approaches

We review three categories of other hardware and software
approaches for DRAM power management.

The first category is to adjust the refresh rate or voltage
and frequency of DRAM. Flikker [24] assigns different refresh
rates according to the locality of the data. The idea of Flickker
is to keep the critical portion of DRAM refreshed at the regular
refresh rate, while the portion containing non-critical data
is refreshed at substantially lower rates. Pandey et al. [30]
addressed the energy waste during DMA transfers. Memory
voltage and frequency scaling is a recent approach to reduce
DRAM energy consumption [6], [10].

The second category is on reducing the number of devices
involved in a memory request. Mini-rank [37] uses a small
bridge chip on each DRAM DIMM to break a conventional
DRAM rank into multiple smaller mini-ranks. The goal is to
reduce the rank power consumption in a single memory access.
Micro-page [32] collocates heavily accessed small chunks
from different OS pages in a row-buffer to improve the locality.

The third category is on CPU cache management. Amin et
al. [2] proposed rank-aware CPU cache replacement policy for
energy efficiency of memory ranks.

Recently, different architectural designs of DRAM system-
s [1], [20], [38], [33] are explored on multi-core processors
for performance, energy, reliability and other issues. Cache-
centric optimizations (either cache-conscious [15] or cache-
oblivious [14], [13]) reduce memory access and create more
opportunities for energy saving. Besides optimizations target-
ing at general DRAM systems, some researchers have also
proposed energy saving techniques for specific applications
such as databases [3], [21] and video processing [21].

VI. CONCLUSION

In this paper, we have proposed a novel memory design
RAMZzz to reduce the DRAM energy consumption. It em-
braces two rank-aware power saving techniques to address
the major obstacles in state transition-based power saving
approaches. One is dynamic page migration to consolidate the
short idle periods into longer ones and unleash the potential of
state transitions, and the other one is an accurate prediction on
the demotion time to minimize the delay and energy penalty
in state transitions. We evaluate RAMZzz with SPEC 2006
in comparison with other power saving techniques. Our sim-
ulation results demonstrate significant improvement on ED2

and energy consumption over other power saving techniques.
Moreover, RAMZzz performs very close to the ideal oracle
approach: achieving 10.3% on average larger ED2 with the
optimization goal of ED2, and only 1.2% on average higher
energy consumption with the optimization goal of energy
consumption.
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