GraphM: An Efficient Storage System for High Throughput of
Concurrent Graph Processing

Jin Zhao
Huazhong University of Science
and Technology, China*
zjin@hust.edu.cn

Ligang He
University of Warwick, United
Kingdom
ligang.he@Qwarwick.ac.uk

Haikun Liu
Huazhong University of Science
and Technology, China*
hkliu@hust.edu.cn

ABSTRACT

With the rapidly growing demand of graph processing in the
real world, a large number of iterative graph processing jobs
run concurrently on the same underlying graph. However, the
storage engines of existing graph processing frameworks are
mainly designed for running an individual job. Our studies
show that they are inefficient when running concurrent jobs
due to the redundant data storage and access overhead. To
cope with this issue, we develop an efficient storage system,
called GraphM. It can be integrated into the existing graph
processing systems to efficiently support concurrent itera-
tive graph processing jobs for higher throughput by fully
exploiting the similarities of the data accesses between these
concurrent jobs. GraphM regularizes the traversing order of
the graph partitions for concurrent graph processing jobs
by streaming the partitions into the main memory and the
Last-Level Cache (LLC) in a common order, and then pro-
cesses the related jobs concurrently in a novel fine-grained
synchronization. In this way, the concurrent jobs share the
same graph structure data in the LLC/memory and also the

* Jin Zhao, Yu Zhang (Corresponding author), Xiaofei Liao, Hai Jin,
Haikun Liu, and Yicheng Chen are with National Engineering Research
Center for Big Data Technology and System, Services Computing
Technology and System Lab, Cluster and Grid Computing Lab, School
of Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan, 430074, China.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SC ’19, November 17-22, 2019, Denver, CO, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6229-0/19/11...$15.00
https://doi.org/10.1145/3295500.3356143

Yu Zhang
Huazhong University of Science
and Technology, China*
zhyu@hust.edu.cn

Bingsheng He
National University of Singapore,
Singapore
hebs@comp.nus.edu.sg

Xiaofei Liao
Huazhong University of Science
and Technology, China*
xfliao@hust.edu.cn

Hai Jin
Huazhong University of Science
and Technology, China*
hjin@hust.edu.cn

Yicheng Chen
Huazhong University of Science
and Technology, China*
yichengchen@hust.edu.cn

data accesses to the graph, so as to amortize the storage con-
sumption and the data access overhead. To demonstrate the
efficiency of GraphM, we plug it into state-of-the-art graph
processing systems, including GridGraph, GraphChi, Power-
Graph, and Chaos. Experiments results show that GraphM
improves the throughput by 1.73~13 times.

CCS CONCEPTS

e Computer systems organization — Multicore archi-
tectures; e Information systems — Hierarchical storage
management.

KEYWORDS

Iterative graph processing; concurrent jobs; storage system;
data access similarity

ACM Reference Format:

Jin Zhao, Yu Zhang, Xiaofei Liao, Ligang He, Bingsheng He, Hai
Jin, Haikun Liu, and Yicheng Chen. 2019. GraphM: An Efficient
Storage System for High Throughput of Concurrent Graph Process-
ing. In Proceedings of the 2019 International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC
’19), November 17-22, 2019, Denver, CO, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3295500.3356143

1 INTRODUCTION

A massive number of concurrent iterative graph processing
jobs are often executed on the same cloud platform, e.g., the
Facebook Cloud [2] and the Huawei Cloud [3], to analyze
their daily graph data for different products and services. For
example, Facebook [2] adopts Apache Giraph [14] to support
many different iterative graph algorithms (e.g., the variants
of PageRank [22] and label propagation [7]) that are used by
various applications running on the same underlying graph,
e.g., social networks. However, existing solutions [11, 16, 17,
19] mainly focus on optimizing the processing of individual
graph analysis jobs. In order to achieve the efficient execution

https://doi.org/10.1145/3295500.3356143
https://doi.org/10.1145/3295500.3356143

SC '19, November 17-22, 2019, Denver, CO, USA

Job 1 Job 2 Job 3 Job 1

Job 2 Job 3
S E S S S X S S A I S X £ S XS S S S 8¢
@:‘_T:] LLe Secondary] E——HC Secondary|

storage storage

Job-specific| | Job-specific| [Job-specific|
data data data Graph
Graph Graph Graph data
[o] coj coj

Pl
Memory Memory

Data Access Synchronization. Runtime
Job-specific| Job-specific Job-specific
data at

Graph
Sharing & Dividing data

(a) Existing systems
Figure 1: Execution of concurrent iterative graph
processing jobs on (a) existing graph processing sys-
tems and (b) the ones integrated with GraphM

(b) Existing systems integrated with GraphM

of concurrent iterative graph processing jobs, the following
two key challenges need to be addressed.

First, there is much unnecessary data access cost when the
concurrent jobs running on the same underlying graph do not
take into account the similarities of their data accesses. It
eventually induces low throughput. Specifically, concurrent it-
erative graph processing jobs usually traverse the same graph
structure repeatedly and a large proportion of the graph data
accessed by them is actually the same. However, as shown in
Figure 1 (a), with the graph storage engines highly-coupled
with existing graph processing frameworks [11, 16, 17, 19],
multiple copies of the shared graph data are maintained in
the Last-Level Cache (LLC)/memory and are individually
accessed by the concurrently running jobs. It results in in-
efficient use of data access channels and storage resources
(e.g., the LLC/memory). There is a clear trend of running
more and more iterative graph processing applications on
the same platform. For example, DiDi [1] carries out more
than 9 billion path planing [6] daily in 2017. The highly
redundant overhead discussed above incurs low throughput
of concurrent iterative graph processing jobs.

Second, diverse graph processing systems, which are highly
coupled with their own storage engines, are developed, be-
cause it is important to employ suitable graph processing
schemes for better performance according to their own re-
quirements [20]. It is desired to decouple the graph storage
system from graph processing to allow different graph process-
ing systems to share a single optimized graph storage system,
i.e., one storage system for all. Then, an optimized storage
system can integrate with these graph processing engines
to enable the concurrent and efficient execution of existing
iterative graph processing applications while imposing little
programming burden on the users.

To address these challenges, a novel and efficient storage
system, called GraphM, is proposed in this paper. It is a
lightweight runtime system which can be run in any existing
graph processing system and enables the system to support
the concurrent execution of iterative graph processing jobs.
In GraphM, we design a novel Share-Synchronize mechanism
to fully exploit the similarities in data access between concur-
rently running jobs. The graph structure data is decoupled
from the job-specific data to be shared by multiple graph
processing jobs, while only the job-specific data is maintained
for each individual job. Then, GraphM regularizes the traver-
sal paths of the graph partitions for the concurrent jobs by

Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

é 35

= 30+

€

2 25

3 20

3 15

(=]

& 10

E 54

E]

z 0

0 20 40 60 80 100 120 140 160
Times(hours)

Figure 2: Number of jobs traced on a social network

streaming the partitions into the LLC/memory in a common
order and concurrently processing multiple jobs related to a
common graph partition in novel fine-grained synchroniza-
tion. Then, there is only a single copy of the graph structure
data in the LLC/memory for multiple concurrent jobs, and
the data access cost is amortized by them. More importantly,
the existing graph processing systems residing above GraphM
can still run with their own execution model, because the
traversal path of the systems are regularized transparently
in each iteration by GraphM. The idea is illustrated in Fig-
ure 1 (b), where only one copy of the common graph (rather
than several copies in the existing systems) is maintained
to serve multiple concurrent jobs and the concurrent jobs
can share the storage of the common graph and the data
access to it. When writing the graph processing applications,
the programmers only need to call a few APIs provided by
GraphM to achieve higher performance for the concurrent
execution of these applications. Moreover, in order to further
improve the throughput, a scheduling strategy is designed in
GraphM to specify the loading order of graph partitions to
maximize the utilization ratio of the graph partitions loaded
into the main memory.
This paper has the following main contributions:

e The redundant data access overhead is revealed when
existing graph processing system handles multiple con-
current jobs over a common graph, and the similarity
between data accesses of the jobs is investigated.

e A novel and efficient storage system is developed to
improve the throughput of existing graph processing
systems for handling concurrent jobs while little pro-
gramming burden is imposed on programmers.

e An efficient scheduling strategy is developed to fully
exploit the similarities among the concurrent jobs.

e We integrate GraphM into existing popular graph pro-
cessing systems, i.e., GridGraph [39], GraphChi [18],
PowerGraph [12], and Chaos [24], and conduct ex-
tensive experiments. The results show that GraphM
improves their performance by 1.73~13 times.

The rest is organized as follows. Section 2 discusses our
motivation. GraphM is presented in Section 3 and Section 4,
followed by evaluation in Section 5. The related work is
surveyed in Section 6. This paper is concluded in Section 7.

2 BACKGROUND AND MOTIVATION

Most existing systems [11, 16, 17, 19] are inherently designed
to optimize the performance of individual iterative graph pro-
cessing job. In fact, however, with the increasing demand for

GraphM: An Efficient Storage System for Concurrent Graph Processing

8 7 PageRank
@ @ Pagerank B B PageRan
Q6 wgc i 2100 wCC
Y El T 80 SBFS
S,]| SBFS S 60 SSSP
g SSSP é 0
52 E 20 S
g Q HEN
20 40

2 4
Number of concurrent jobs

2 4 8
Number of concurrent jobs C
(b) Total last-level cache misses

(a) Total memory usage

_ 0010 2600
a = PageRank 5] | =~PageRank
—10.009 wcCc 2 500 wWCC
5 £400 7| —BFs
gO‘OOB g 223’00 SSSP
£0.007 g 20
= ‘= 100
z - = 3 —_—
0.006 = B . e 0
1 2 4 8 i 4 8

1 2
Number of concurrent jobs
(d) Average execution time

Number of concurrent jobs

(c) Average number of LPI
Figure 3: Performance evaluation of concurrent iter-
ative graph processing jobs executed on GridGraph

graph analytics, various iterative graph algorithms are often
run concurrently on a common platform. Figure 2 shows the
variation of the number of concurrent graph processing jobs
within one week traced from a real Chinese social network.
We find that more than 30 jobs are executed concurrently at
the peak time, and the average number of concurrent jobs
is about 16. In particular, these concurrent jobs are often
handled on a common underlying graph. The data accesses
related to the graph occupy a large proportion of their mem-
ory overhead during the execution, which varies from 71% to
83% for different datasets [32].

2.1 Redundant Data Access Overhead

With the storage engines highly-coupled with existing graph
processing systems [11, 16, 17, 19], the common graph is in-
dividually accessed by concurrent iterative graph processing
jobs. It generates excessive unnecessary overhead in stor-
age resource and data access channel, and thus significantly
increases the data access cost. This eventually results in
low system throughput because the data access cost usually
dominates the total execution time of iterative graph process-
ing [28]. To demonstrate it, we evaluated the performance of
concurrent jobs on GridGraph [39] over Twitter [4], where
the platform is the same as that introduced in Section 5.

We observe that more data access cost is generated with the
increase of the number of concurrent jobs. It is because that
multiple copies of the common underlying graph are loaded
into the storage by its storage engine for the concurrent jobs.
For example, as depicted in Figure 3(a), the total amount of
memory usage for the processing of each partition significantly
increases due to redundant memory usage as the number of
jobs increases. Figure 3(b) describes the total number of LLC
misses for different number of concurrent graph processing
jobs over GridGraph [39], which represents the size of the
graph data loaded into the LLC. It can be seen that much
redundant graph data is also swapped into the LLC.

In addition, with more concurrent jobs, more serious con-
tention for storage resources and data access channels occurs
in a resource-limited machine, thereby causing more page
faults, LLC misses, etc. As shown in Figure 3(c), the average
number of LLC misses per Instruction (LPI) increases when
more concurrent jobs are executed over GridGraph [39], due

SC '19, November 17-22, 2019, Denver, CO, USA

&g g°
28 E
S, 28
> 3
3 57
s
s g
3 e
g [[o #>1 o #>2 =—#>4 ==#>8]]
g 60 | 25
5 1 2 3 4 5 6 1 2 3 4 5 6
a Time (hours)

Time %hours)
(a) Percentage of shared graph
Figure 4: Information traced on the social network

(b) Average data access times

to the intense cache interference caused by the fact that
multiple copies of the same graph partition are being in-
dividually loaded into the LLC. For example, when there
are eight concurrent jobs, the average number of the LPI of
these jobs increases by about 10% comparing with that of
one job, because the graph data required for the execution
of the instructions of different jobs is usually the same for
these concurrent jobs. It exacerbates the above challenges.
To show the impact of resource contention, Figure 3(d) shows
the average execution time of each job as the number of jobs
increases. It can be observed that the execution time of each
job significantly increases as the number of jobs increases.

2.2 Our Motivation

Figure 4(a) depicts the percentage of the graphs that are
shared by different number of concurrent jobs traced from a
social network, and Figure 4(b) indicates the average number
of accessed times of the graph partitions which have been
repeatedly accessed by different jobs in each time period (one
hour). It can be observed from Figure 4 that there are strong
similarities between the data accesses of many concurrent
jobs, because the same graph is repeatedly traversed by them.
Observation 1. Most proportion of the same graph is shared
by multiple concurrent jobs during the traversals, which is
called the spatial similarity. As shown in Figure 4(a), more
than 82% of the same underlying graph is concurrently pro-
cessed by the concurrent jobs during the traversals. Unfor-
tunately, in most existing systems, the intersection of the
graph data handled by the concurrent jobs is not shared
in the LLC/memory, and it is accessed by these jobs along
different graph paths individually, which results in a large
amount of redundant data access overhead. Ideally, it only
needs to maintain a single copy of the same graph data in the
LLC/memory to serve the concurrent jobs in each traversal.
Observation 2. The same graph data may be accessed by
different concurrent jobs over a period of time, which is called
the temporal similarity. In detail, since the same underlying
graph is individually handled by the concurrent jobs, the
shared graph data may be frequently accessed by multiple jobs
within their repeated traversals (about 7 times on average
as shown in Figure 4(b)). However, the existing systems are
not aware of this temporal similarity, so that the graph data
frequently accessed by different jobs may be swapped out of
the LLC/memory, which leads to the rise of the data access
cost. Therefore, the accesses to the shared graph data for
the concurrent jobs should be consolidated so that the same
graph data is only loaded into the LLC/memory once to be
handled by the concurrent jobs in each traversal for once.

SC '19, November 17-22, 2019, Denver, CO, USA

GraphM Architecture

CPU cores

Load

Chunk 1] [Chunk 2 Ji| Chunk
i Chunk 4 ;| tables

e

)

&

s

Graph partition E

LY Memory S

S

Load * |® =

I Graph sharing controller %

I c

)

Specific graph Chunk 15|

representation tables

Graph processing job queue M suspended job;
| (OB e | O o

— A

[Original graph data rofiled jo

I .. = Control flow
Secondary storage E Sepakdus —— Data flow

I Graph preprocessor

Figure 5: System architecture of GraphM

The strong spatial and temporal similarities motivate us
to design a storage system, which can integrate with existing
graph processing engines to manage the data accesses of con-
current iterative graph processing jobs for higher throughput
while imposing little programming burden on the users.

3 OVERVIEW OF GRAPHM

The storage system developed in this work is called GraphM.
It is designed as a runtime system and can be plugged into the
existing graph processing systems to manage the data access
to the shared graph stored in the storage resources (e.g., the
memory and disk). The key idea of our system is to enable
concurrent jobs to share a single copy of the common graph
and traverse the graph synchronously along the same graph
path. To achieve this goal, an efficient Share-Synchronize
mechanism and the corresponding pre-processing method are
proposed in GraphM. Further, several lightweight APIs are
provided for the existing graph processing systems to use.

3.1 System Architecture

Generally, the data needed by an iterative graph process-
ing job is composed of the graph structure data (i.e., the
graph represented by G=(V, E, W)), job-specific data (e.g.,
ranking scores for PageRank [22], and the component ID
for Connected Components [27]), marked as S. During the
execution, each job needs to update its S through traversing
the graph structure data until the calculated results converge.
Specifically, in existing systems [10, 18, 33, 39], G and S
are stored separately. GraphM enables G to be shared by
the concurrent jobs, thereby fully exploiting the strong spa-
tial and temporal similarities between these jobs. Figure 5
shows the architecture of GraphM. It consists of three main
components: graph preprocessor, graph sharing controller,
and synchronization manager, which are overviewed in the
following subsections.

Graph Preprocessor. The graph formats and the prepro-
cessing methods can be different for various graph processing
systems. Thus, before the graph processing, the original graph
stored in GraphM needs to be converted to the graph rep-
resentation format specific to the graph processing system
(which needs to handle this graph) using user defined function
Conwvert(). For example, the original graph data is converted
to the grid format for GridGraph [39], the shard format for
GraphChi [18], the CSR/CSC format for PowerGraph [12],
and the edge list format for Chaos [24]. After that, as existing

Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

Table 1: GraphM Programming Interface
APIs
Init()
GetActiveVertices() | Get active vertices in each iteration
Sharing() Load the shared graph data

Start()/Barrier() | Notify GraphM to start or end fine-
grained synchronization

Description

Initialization of GraphM

graph processing systems [10, 18, 33, 39], the graph is divided
into partitions for parallel processing and the operations of
the concurrent jobs are still performed on the specific graph
representation of the related system. Meanwhile, the graph
structure partitions are further logically divided and labelled
as a series of chunks according to the common traversing
order of the graph of the jobs for the purpose of fine-grained
synchronization as the following described. In addition, it can
exploit the cache locality because the chunks can be fit in the
LLC. When dividing a partition, a chunk_table array is gener-
ated to describe the key information of each logical chunk for
the purpose of regular accessing of the graph partition shared
by multiple jobs, where the specific graph representation is
not modified.

Graph Sharing Controller. After graph preprocessing, the
specific graph structure data needs to be loaded into the
memory to serve concurrent jobs. This functional module
is used to assign the loading order and also load the graph
structure partitions, which will be shared by concurrent jobs.
The module is designed as a thin API to be plugged into the
existing graph processing systems. The API can be expressed
as: P} «+ Sharing(G, Load()). G is the name of the graph to
be loaded and is used to identify the range of shared memory
which contains the shared graph partition. Load() is the orig-
inal load operation of the graph processing system integrated
with GraphM for the loading of graph data, and Pj denotes
a loaded graph structure partition P* shared by the 5 job.
When the jobs need to be concurrently executed (the step
@), the loaded graph structure data is only shared by active
jobs, while inactive jobs are suspended and wait for their
active graph vertices/edges to be loaded into the memory
(the step @). In addition, the mutations and updates of
the shared graph data are isolated among concurrent jobs
to ensure the correctness of the processing. In this way, only
one copy of the shared graph data needs to be loaded and
maintained in the memory to serve concurrent jobs. Thus,
the redundant cost of the memory resource and the amount
of disk data transfers are reduced.

Synchronization Manager. When the graph structure par-
tition is shared by concurrent jobs, it is individually accessed
by them in a consistent logical order according to its pro-
gramming model. However, since some jobs may skip the
inactive vertices for them and the computational complexity
of the processing of the streamed data is usually different
for various jobs, these jobs may process the shared graph
partitions in different orders. Hence, the shared graph data is
irregularly streamed into the LLC by concurrent jobs, result-
ing in unnecessary data access cost. To solve this problem,

GraphM: An Efficient Storage System for Concurrent Graph Processing

GraphM.Init() /*Initialization of GraphM*/
/[*Edge streaming function in GridGraph*/ StreamE (O
StreamEdges({ /) the active partitions*/

e [*Sety D
GraphM.GetActiveVertices()

+« [*Setup the active partitions*/ p - M
. for(each active ganmon)
for(each active on){ partition «— GraphM.Sharing(G, load())
/* The original data load operation*/ /*Notify GraphM to start synchronization*/

GraphM.Start()

rtiti load|
partition « load() for(each

for(each edge e partition)
/*Process the streamed edges*/
}

}

3}

(a) Pseudocode of GridGraph (b) Pseudocode of GridGraph integrated with GraphM
Figure 6: An example to illustrate how to integrate

GraphM into existing graph processing system

we use a novel and efficient fine-grained synchronization way
to fully exploit the temporal similarity between these jobs.

This module enables the chunks of the shared graph data
to be regularly streamed into the LLC by traversing the
same graph path in fine-grained synchronization. In detail,
each job needs to be profiled to determine the computational
load of each chunk before each iteration (the step (3)). The
computing resources are then unevenly allocated to the jobs
for their concurrent execution based on the skewed computa-
tional load of these jobs (the step (@), so as to synchronize
the graph traversals with low cost. By such means, each
chunk typically only needs to be loaded into the LLC once
and be reused by concurrent jobs in each iteration. Thus, it
significantly reduces the data access cost by fully exploiting
the similarities of these jobs.

Programming APIs. To invoke GraphM in graph analysis
programs, the user only needs to insert our APIs shown in
Table 1 into existing graph processing systems. Note that
it does not need to change the graph applications above
these graph processing systems. In detail, Init() is used to
initialize GraphM by preprocessing the graph as described
in Section 3. Sharing() function is inserted in existing graph
processing systems to replace the original data load operation
for the efficient load of the shared graph data. Note that the
parameter in the function Sharing() is various for different
graph processing systems, e.g., the parameter is the function
Load() for GridGraph and is the function LoadSubgraph()
for GraphChi. Meanwhile, two notification functions (i.e.,
Start() and Barrier()) are inserted at the beginning and the
end of the procedure that traverses the shared graph structure
partition for the graph processing systems, respectively. Note
that GetActive Vertices() is also provided to get the active
vertices before each iteration, because some graph processing
systems (e.g., GridGraph [39]) allow to use this operation
to skip the processing of inactive vertices. Figure 6 takes
GridGraph [39] as an example to show how to integrate
existing graph processing systems with GraphM to efficiently
support concurrent graph processing jobs, where Load() is
the graph loading operation of GridGraph [39].

3.2 Graph Preprocessing

The CPU utilization ratio and the cache locality may be
influenced by the chunk size, denoted by S.. Setting it too
large may increase the data access cost. This is because
when only a part of a chunk can be loaded into the LLC,
this part has to be swapped out when the rest of the chuck
is loaded into the LLC. Since a chunk will be accessed by

SC '19, November 17-22, 2019, Denver, CO, USA

Algorithm 1 Partition Labelling Algorithm

1: function LABEL(P?, Setl)
2 edge_num <+ 0

3 c_table < null

4 for each edge e € P do
5: if es € c_table then
6

7

8

9

c_table. NT (es) + c_table. N (es) + 1
else
c_table.InsertEntry({es, 1))
: end if
10 /*Count the number of edges labelled in c_table*/
edge_num < edge_num + 1
11: if edge_num x ‘%"‘ > S, or P is visited then
12: Set.Store(c_table)
13: /*Prepare to store information of next chunk*/
Clear(c_table, edge_num)
14: end if
15: end for
16: end function

different concurrent jobs, the part of the chunk that has been
swapped out has to be loaded into the LLC again, which
increases the overhead. On the contrary, setting the chunk
size too small may lead to frequent synchronization among
the concurrent jobs that are processing this chunk since only
when concurrent jobs have finished processing this chuck can
they move to process the next one.

The suitable chunk size S, is determined in the following
way. N denotes the number of CPU cores, and Crrc denotes
the size of the LLC. S, is set to be such a maximum integer
that satisfies Formula 1, where Sg is the size of the graph
data, |V| is the number of vertices in the graph, U, is the
data size of each vertex, and r is the size of the reserved
space in the LLC. The first term on the right of the formula
represents the LLC size required to accommodate the chunks
which are concurrently processed by the threads of a running
job (the number of threads usually equals to the number of
CPU cores in the computer, hence we have S. x N). The
second term represents the size required to accommodate the
job-specific data in the LLC. Note that the size of a chunk is
also a common multiple of the size of an edge and the size of
a cache line for better locality.

Se X N
Sex N+ =5 X |V x Uy +r < Crre 1)

With this setting, the same chunk only needs to be loaded
into the LLC once and is then reused by all concurrent jobs
with low synchronization cost. Only the job-specific data need
to be replaced by different jobs, where the jobs are triggered
to handle the loaded data in a round-robin way.

Note that the graph is not physically divided into the
chunks of the size discussed above. Rather, in the preprocess-
ing phase, the graph is traversed so that each graph partition
is labelled as a series of chunks in the order in which the
graph data is streamed into the LLC. The labelling infor-
mation of each chunk is stored in a key-value table, called
chunk_table. Each entry of the chunk_table is a key-value pair,

SC '19, November 17-22, 2019, Denver, CO, USA

Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

Algorithm 2 Graph Sharing Algorithm

1: function SHARING(G, LoAD()) /*Triggered by job j*/
2: /*Get an active partition P* that needs be loaded*/
P? « GetActivePartition()
3: /*Get the set of jobs that need to handle P**/
J' + GetJobs(P")

4: Resume(J?) /*Resume the suspended jobs in J**/
5: if j ¢ J* then /*j does not need to handle P**/
6: Suspend(j) /*Suspend the job j*/
7 end if
8: if P is not in the memory then
9: /*Create a shared buffer to store P'*/
Buf < CreateMemory(G, P%)
10: Buf + Load(P") /*Load P' into Buf*/
11: else /*Job j gets P’ in the shared buffer*/
12: Buf + Attach(G) /*Attach Buf to j*/
13: end if
14: Remove(j, J*) /*Remove j from J'*/
15: return Buf

16: end function

in which the key is the ID of a source vertex in the chunk
(denoted by v) and the value is the number of this vertex’s
outgoing edges in the chunk (denoted by Nt (v)).
Algorithm 1 shows how to label a partition, e.g., P*. When
an edge is traversed, N (v) of the edge’s source vertex (i.e.,
es) is incremented by one in the corresponding entry of
chunk_table (i.e., c_table) (Line 6). If the source vertex of
the edge is not found in c_table, a new entry (i.e., a key-value
pair) is created with the value being 1 and inserted into the
table (Line 8). When the number of edges in c_table makes
the chunk size to be the value determined by Formula 1 or all
edges of P* are visited (Line 11), these edges are treated as a
chunk and the c_table is stored as an element of an array, i.e.,
Set?, (it holds the information of all chunks in P?) (Line 12).
c-table is then cleared and used to store the information of
the next labelled chunk, where the value of edge_num is reset
to zero (Line 13). Note that this procedure only runs once
for a graph processing system, although it incurs extra cost.

3.3 Memory Sharing of Graph Structure

3.3.1 Sharing the Graph Structure. Generally, the graph struc-
ture data is divided into a series of partitions for parallel
processing. A partition is loaded into the memory only when
it is needed by some jobs (we call such partitions active
partitions). Note that the active partitions for different job-
s are usually different, because the jobs may traverse the
graph along different paths. Such information can be di-
rectly obtained from the graph processing system (e.g., the
should_access_shard array in the GridGraph [39]) because
the set of partitions to be processed by each job in the next
iteration can be gotten through tracing the partitions acti-
vated within the current iteration. A global table is created
to gather this information. Each entry in the global table
is a linked list to store the process IDs (PIDs) of the active
jobs of the corresponding graph partition. Each job needs to

high
Shared memory
Chunk 4 atio N
Chunk 3 Copy 3
Chunk 2 I C':‘:’.“k_‘i
Chunk 1 \copy Chunk 4 y '
Graph Structure = RCdLE co -
%f Job 1 Chunk 2 (—%— Chunk 1
Chunk 1 Grap? Structure
Shared Graph of Job 2
. Structure
Virtual address . Virtual address
of Job 1 low Physical address of Job 2

Figure 7: Consistent snapshots for concurrent jobs

update the global table in real time. Particularly, the order
of the entries in the global table is determined by the load-
ing order of their corresponding graph partitions by default.
After that, a lightweight API (i.e., the function Sharing()
described in Algorithm 2) is designed to extend the graph
loading operation in the existing systems, allowing the job
(e.g., the job j) to share the loaded graph partitions.

In detail, when the job j calls the function Sharing(),
it first gets the ID of an active partition P’ assigned by
GraphM (Line 2), where the loading order of the partitions
to be loaded is assigned by GraphM along the order of their
corresponding entries in the global table. The set of jobs
(e.g., J*) that need to handle P* are then obtained from the
global table (Line 3). After that, the active jobs recorded in
J¢ are popped from suspended_queue and their executions
are resumed (Line 4), if these jobs are suspended. If the
current job j is not in J* (i.e., j does not need to handle
Pi), it is suspended to release its computing resources for the
execution of the jobs that need to handle P?, and is pushed
into suspended_queue (Lines 5-7). If P* is not in the shared
memory, a buffer Buf is created to store it (Lines 9-10).
Otherwise, the job j is assigned to share the loaded graph
partition P? in the memory with the other concurrent jobs
(Line 12). Then, the PIDs of the job j is removed from the J*
(Line 14) and the job j begins to handle the graph partition
P! referenced by the returned results (Line 15).

3.3.2 Ensuring of Consistent Snapshots. The shared graph
may be updated or mutated by some jobs over time, result-
ing in incorrect results or runtime errors. Hence, a storage
management technique is further designed to ensure the con-
sistency of snapshots among the concurrent jobs.

When the shared graph structure data needs to be modified,
e.g., removing or adding edges/vertices, users need to call our
API to handle the evolving graph. In detail, GraphM first
copies the corresponding chunks of the graph data that need
to be modified to other shared memory space. If it is mutated
by a job, the modification will be applied to the copied
chunks, and alter the mapping of the virtual address of the
corresponding chunks in the job to the copied chunks. Thus,
the shared graph structure is not changed, it can be shared
by other jobs. Besides, the copied chunks will be released
when the corresponding job is finished. Different from graph
mutation, which is only visible to its corresponding job, the
graph update is only available to the jobs submitted after the
update. Therefore, the shared graph structure will be updated

GraphM: An Efficient Storage System for Concurrent Graph Processing

to serve the newly submitted jobs, and previous jobs can refer
to the copied chunks to continue their calculation. Note that
when all previous jobs are completed, these copied chunks
will be released. By doing so, the shared graph structure is
always visible and shared by the newly submitted jobs. Note
that Set® also needs to be updated accordingly when the
shared graph is updated.

As shown in Figure 7, two jobs are submitted, where job 1
is submitted before job 2. If a graph update arrives after the
submission of job 1, it will create a copy (e.g., copy 3) for
the corresponding graph structure data (e.g., chunk 3) for
job 1 to use, and chunk 3 is going to be updated. Besides,
the copied data will be released when job 1 is finished. Then,
a new graph structure chunk (i.e., update 3) is constructed
before job 2 is submitted. If job 2 needs to modify a chunk
(e.g., copy 2) of the graph structure, the mutation is applied
to the copied data to generate mutation 2, which is only
visible to job 2. Note that the graph mutations and updates
usually only happen to a small fraction of graph data, and
thus a majority of the graph structure data can be shared by
concurrent jobs and the update cost of the Set’ is also small.

3.4 Fine-grained Synchronization for
Regular Streaming

This section discusses the details of the fine-grained synchro-
nization way for efficient execution of concurrent jobs.
3.4.1 Mining the Similarities between Concurrent Jobs. This
fine-grained synchronization scheme mines the chunks of the
shared graph that can be concurrently handled by the jobs
in each iteration. Moreover, the similarities are dynamically
changed because the vertices in the chunks may be activated
or converged in some jobs during the iteration, which there-
fore needs to be dynamically updated before each iteration.
First, we monitor the chunks that need to be processed by
each job in the current iteration, i.e., some vertices in these
chunks are active for the job, especially the job that needs
to skip the useless streaming. For example, in each iteration,
SSSP [21] may only need to process a part of the graph data,
whereas PageRank [22] usually has to traverse the entire
graph structure. This information can be procured by tracing
the change of vertices states after each iteration. In general, a
vertex needs to be processed within the current iteration only
when its value has been updated by the neighbours within
the previous iteration. Note that the active vertices in the
first iteration are designated by the user for each job. To
express the active vertices succinctly, a bitmap is created for
each job. If some jobs do not skip the useless streaming, all of
their vertices are active by default. Then, the active chunks of
concurrent jobs can be easily obtained by their bitmaps and
the chunk_table arrays. Then, the similarities between the
data accesses of the concurrent jobs can be rapidly obtained
based on the intersection of their active chunks.
3.4.2 Fine-grained Synchronization of Traversals. To fully ex-
ploit the temporal similarity between the data access of the
concurrent jobs, it enables the chunks loaded into the LLC
to be processed by these jobs in a regular way. In detail, the
computing resources are unevenly allocated to the concurrent

SC '19, November 17-22, 2019, Denver, CO, USA

jobs to synchronize their data accesses, because the com-
putational loads of different jobs are usually skewed when
processing each chunk. Generally, the load of each job j for
a chunk is determined not only by the amount of edges that
need to be processed, but also by the computational com-
plexity of the edge processing function of this job, denoted
as T'(F;). In addition, the average data access time for each
edge, indicated as T(E), affects the execution time of the
jobs. Thus, for each job, the fine-grained synchronization has
two phases, i.e., the profiling phase and the syncing phase.

Profiling Phase. This phase is to profile the needed infor-
mation (i.e., T(F;) and T(E)) of the jobs. When a new job
(e.g., the job j) is submitted, the profiling phase of this job
traverses the shared graph partition (e.g., P*) and captures
its execution time, denoted by T}, which is composed of the
graph processing time and the graph data access time. Thus,
T} is represented as the following formula:

T(F)x > > Ni(u+

keCiveEVENA;

T(E)x > Y Nf(w) =T;

keCt vEVY

)

where C* is the set of chunks in the traversed partition P?,
and V is the set of vertices in the k'™ chunk. Aj is the set
of active vertices for the job j within the current iteration,
which can be easily obtained via its bitmap. N, (v) is the
number of out-going edges of the vertex v in the k" chunk. Vi
and N,f (v) are stored in the corresponding Seti. According
to Formula 2, after the processing of the first two active
partitions of each job 7, the needed information, i.e., T'(F})
and T(E), of the job j can be obtained, where T(E) is a
constant for the same graph and only needs to be profiled
once for different jobs.

Syncing Phase. After obtaining T'(F}) of the concurrent
jobs, the computational load of the jobs in each chunk is easily
acquired before each iteration. In detail, the computational
load of the j*™ job for the processing the k™" chunk (i.e., L?)
can be determined by the following equation:

Ly =T(F)x Y Nf(@) (3)
vEVENA;

Each partition may be handled by the threads of different
concurrent jobs. To achieve fine-grained synchronization and
better locality, the threads of different jobs handling the
same partition need to be migrated to the same CPU core
to synchronize their data access by scheduling their CPU
time slices. Usually, only a small amount of migrations are
generated, because these threads access a series of chunks
synchronously each time in the partition. After that, the
computing resources need to be allocated unevenly to the
threads of the concurrent jobs according to the skewed com-
putational load. Each thread monopolizes the CPU time to
finish processing the current chunk. Apparently, the execu-
tion time of the chunk for each thread can be represented by
its corresponding computational load according to Formula 3,
except the thread that first processes the chunk. It is because
that the graph data needs to be loaded into the LLC by this

SC '19, November 17-22, 2019, Denver, CO, USA

iteration
Ty Suspended Suspended
Job 1 Partition 1 Partition 2 Partition 3 Partition 4
_ iterafion y
Ty Suspended i, Resumed
Job2 [Partition 1 Partition 2 Partition 3 Partition 4

(@) The original loading order of the default strategy

iteration x iteration x+1:
X | Suspended

Job 1 Partition 2 Partition 3 Partition 1 Partition 4
_ iterafion y
~y Suspended Resumed
Job 2 Partition 2 Partition 3 Partition 1 Partition 4
[Pri(P) 1 1/2 1/3 1/3

(b) The loading order based on our scheduling strategy

Figure 8: An example to illustrate the scheduling
of loading order of partitions, where partition 1 is
activated by the other partitions of job 1 and can be
handled at the (z + 1) iteration for job 1

thread and its execution time ij for the k" chunk can be
obtained by the following equation:
k k +
Fj = Li +T(E) x 3 N (v) (4)
veEVE
After the corresponding execution times of all threads have
elapsed, the jobs will process the next chunk concurrently
with the reallocated computing resources.

4 THE SCHEDULING STRATEGY FOR
OUT-OF-CORE GRAPH ANALYSIS

The loading order of graph partitions in the out-of-core graph
processing systems may cause the similarities between the
data access of concurrent jobs not to be fully exploited due
to the following reasons. First, some jobs may only need to
handle a few of partitions in the current iteration, but more
partitions will be activated in the next iteration. For example,
in BFS [9] and SSSP [21] only one or a few vertices are
active at the beginning, but then a large number of vertices
will be activated by these vertices. Second, the activated
partitions may be accessed by other jobs in the current
iteration, e.g., PageRank [22]. Hence, a partition may be
repeatedly loaded into the memory to serve different jobs
in contiguous iterations, resulting inefficient usage of the
partitions that are loaded into the memory.

Because loading the partitions in different orders does not
influence the correctness of the final results [33], a scheduling
strategy is proposed to fully exploit the similarities across
different iterations. The key idea is to load the partitions
that are handled by the jobs with the least number of active
partitions. Other partitions may be activated in these jobs,
which can then advance to next iteration to process the
activated partitions, as shown in Figure 8. In this way, the
strategy enables the partitions loaded into the memory to
serve more concurrent jobs, further amortizing the data access
cost, especially when the size of the graph is very large.

To achieve the goal described above, each partition is
assigned a priority. The partitions with the higher priority

Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

Table 2: Graph datasets used in the experiments

Datasets Vertices Edges Data sizes
LiveJ [5] 4.8 M 69 M 526 MB
Orkut [5] 3.1 M 1172 M 894 MB
Twitter [4] 41.7M 1.5 B 109 GB
UK-union [4] 1336 M 55B 40.1 GB
Cluewebl2 [4] 9784 M 42.6 B 317 GB

are loaded first into the memory to serve the related jobs, so
that these jobs can complete current iteration as quickly as
possible to activate other partitions. Two rules are applied
when setting the priority. First, the partitions are given a
higher priority when they are handled by the jobs with fewer
active partitions. Second, a partition is given the highest
priority when it is processed by most jobs. In summary, the
priority Pri(Pi) of each partition P is set using Equation 5,
where J' denotes the set of jobs to handle P in the next
iteration, N;(P) denotes the number of active partitions of
the 5" job (i.e., a job of the set J*), and N(J*) denotes the
number of jobs in the set J°.
Pri(P') = MAX,.: ﬁ x N(J9) (5)
The values of N;(P) and N(J*) are directly obtained
from the global table. The priority is calculated before each
complete traversal over all the partitions. After that, the
entries in the global table are sorted according to the priority
of their corresponding partitions and determine the loading
order of the partitions. From Figure 8, we can observe that the
partition 1 can serve more concurrent jobs when it has been
loaded into the memory via this scheduling strategy. Then,
the similarities between concurrent jobs are fully exploited.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup

The experiments are conducted on a server with two 8-core
Intel Xeon E5-2670 CPUs (each CPU has 20 MB last-level
cache) operating at the clock frequency of 2.6 GHz, a 32
GB memory and a 1 TB hard drive, running Linux kernel
2.6.32. All codes are compiled with cmake version 3.11.0
and gcc version 4.9.4. Table 2 shows the properties of the
five real-world graphs used in our experiments, where LivelJ,
Orkut, and Twitter can be stored in the memory, while the
size of UK-union and Cluewebl2 are larger than the mem-
ory size. Four representative graph processing algorithms
are used as benchmarks, including weakly connected com-
ponent (WCC) [27], PageRank [22], single source shortest
path (SSSP) [21], breadth-first search (BFS) [9]. These al-
gorithms have different characteristics in the data access
and resource usage. For example, PageRank and WCC are
network-intensive [30], which need to frequently traverse the
majority of the graph structure, whereas SSSP and BF'S only
traverse a small fraction of the graph at the beginning.

To evaluate the performance, we submit WCC, PageRank,
SSSP, and BFS in turn in a sequential or concurrent manner
until the specific number of jobs are generated, where the
parameters are randomly set for different jobs although these

GraphM: An Efficient Storage System for Concurrent Graph Processing

SC '19, November 17-22, 2019, Denver, CO, USA

0 18 32 g
£ 16]] GridGraph-SEEE GridGraph-C GridGraph-M o 2'8 | Graph processing time Data accessing time] g 12 GridGraph-SEEE GridGraph-C GridGraph-M
S 14 g 4l 2 9 210
512 S] Bo 80 09 0?Q Q S o8
=1 7 : s)
g 10 g 20 28 983 £8s §F oF é
'80'8 g e "5% 228 g8% 0%, é%E '80'6
%0.6 § é-: o3 o9 588 gaf'& gos = o4
S 04 go [5 © o g ©° 0 £ 02
5 0.2 = 04 g g 5
Z 00 : | - 0.0 Z 0.0 = HH = : it
Livel Orkut Twitter UK-union Clueweb Lived Orkut Twitter UK-union Clueweb Livel Orkut Twitter UK-union Clueweb

Data sets

Data sets

Data sets

Figure 9: Total execution time for Figure 10: Execution time break- Figure 11: Memory usage for the 16

the 16 jobs with different schemes

jobs may be the same graph algorithm. In detail, the damping
factor is randomly set by a value between 0.1 and 0.85 for
each PageRank job. The root vertices are randomly selected
for the BFS jobs and the SSSP jobs. The total number of
iterations is a randomly selected integer between one and the
maximum number of iterations for each WCC job. For the
concurrent manner, the time interval between successive two
submissions follows the poisson distribution [13] with A = 16
by default. All benchmarks are run for ten times and the
experimental results are the average value.

To evaluate the advantages of GraphM, we integrate Grid-
Graph [39] with GraphM (called GridGraph-M in the experi-
ments) to run multiple concurrent graph processing jobs. We
then compare GridGraph-M with two execution schemes of
the original GridGraph, called GridGraph-S and GridGraph-

C. GridGraph-S sequentially processes the jobs, while GridGraph-

C concurrently handles the jobs (but each job runs indepen-
dently without sharing the underlying graph structure data
as in GridGraph-M). In GridGraph-C, the concurrent jobs are
managed by the operating system. We choose GridGraph [39]
since it is a state-of-the-art one and outperforms other out-
of-core graph processing systems [18, 25].

In addition, we also finally integrate GraphM into the other
popular systems (i.e., GraphChi [18], PowerGraph [12], and
Chaos [24]) and evaluate their performance. There, Eigen
(version 3.2.10) is needed by GraphChi. OpenMPI (version
2.1.6), boost (version 1.53.0), zookeeper (version 3.5.1), bzip2
(version 1.0.6), gperftools (version 2.0), hadoop (version 1.0.1),
and libevebt (version 2.0.18) are required by PowerGraph.
Boost (version 1.53.0) and zmq (version 4.3.1) are needed
by Chaos. The experiments of PowerGraph and Chaos are
done on a cluster with 128 nodes, which is connected via
1-Gigabit Ethernet. Each node is the same as the above
described. Because PowerGraph and Chaos may not get the
best performance due to high communication cost when all
nodes are used to handle all jobs for some graphs, the nodes
are divided into groups and each group of nodes are used
to handle a subset of jobs so as to make the jobs executed
over PowerGraph and Chaos in a high throughput mode,
where the newly submitted jobs are assigned to the groups
in turn. Note that, when some jobs need to be executed on
PowerGraph/Chaos over a group of nodes, the graph is only
loaded into the distributed shared memory consisting of the
memory of this group of nodes. In the experiments, for high
throughput of 64 jobs over LiveJ, Orkut, Twitter, UK-union,

down of jobs with different schemes jobs with different schemes

Table 3: Preprocessing time (in seconds)
LiveJ Orkut Twitter UK-union Cluewebl12
GridGraph 20.89 35.07 439.59 2,312.11 19,267.28
GridGraph-M 21.86 35.76 463.65 2,681.04 22,401.90

and Clueweb12, the suitable number of groups is set to 8, 8, 4,
1, 1 for PowerGraph and 8, 4, 2, 1, 1 for Chaos, respectively.

5.2 Preprocessing Cost

Table 3 shows the preprocessing cost of GridGraph and
GridGraph-M. We can observe that GridGraph-M takes little
additional time than the original system GridGraph, so as
to create the chunk_table and label the graphs by traversing
the graphs once. When the size of graph is larger than the
memory size, the labelling procedure of the graph increases
the preprocessing time by an average of 16.1%, because these
graph needs to be reloaded into the memory. When the graph
can be stored in the memory, the labelling procedure of the
graph only increases the preprocessing time by an average of
4%. As evaluated, the extra storage cost of GraphM is also
small and occupies 5.5%-19.2% of the space overhead of the
original graph, i.e., 70.6 MB (13.4%), 49.2 MB (5.5%), 2.09
GB (19.2%), 4.5 GB (11.2%), and 19.9 GB (6.3%) for Livel,
Orkut, Twitter, UK-union, and Clueweb12, respectively. In
general, when the graph has larger maximum out-degree and
lower average out-degree, the ratio of its extra space overhead
to the space overhead of the original graph is higher. It is
because that the vertices with larger out-degree have more
replicas stored in different chunks and the extra space over-
head is also usually proportional to the ratio of the number
of vertices to the number of edges. For example, the max-
imum out-degree and the average out-degree are 2,997,469
and 35 for Twitter, respectively, while they are 7,447 and
48 for Cluewebl2, respectively. Thus, the space overhead
ratio of Twitter is higher than that of Clueweb12. Note that,
although GraphM needs such extra space overhead, more
storage overhead can be spared by GraphM because only one
copy of the graph structure data (instead of multiple copies)
needs to be maintained by existing systems for multiple jobs
when they are integrated with GraphM.

5.3 Overall Performance Comparison

Figure 9 shows the total execution time of 16 concurrent jobs
with different schemes. It can be observed that GridGraph-M
achieves shorter execution time (thus higher throughput)

SC '19, November 17-22, 2019, Denver, CO, USA

8

Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

g 1.21(7 cridGraph-SFEH] GridGraph-C GridGraph-M| (77 cridGraph-SEEE GridGraph-C GridGraph-M| o 12 GridGraph-S Eii GridGraph-C GridGraph-M

5 10 g & € 10

3 oy G

o 0.8 ® 60 > 0.8

E 0.6 £ 2 % 0.6

g 04 9 E 04

o2 Y 202

Z 00 : | : 0 i b : 00l i i
Livel Orkut Twitter UK-union Clueweb Livel Orkut Twitter UK-union Clueweb Livel Orkut Twitter UK-union Clueweb

Data sets
Figure 12: Total I/O overhead for
16 jobs with different schemes

GridGraph-S i GridGraph-C GridGraph-M|

Normalized execution time
o
[oe}

Orkut Twitter UK-union Clueweb

Data sets
Figure 15: Performance of the jobs for the real-trace

124 ‘: GridGraph-S EEEH GridGraph-C GridGraph-M‘
1.0 p_ =
0.84
0.64
0.4
0.24
0.0

Normalized execution time

2 4 6 8 10
Value of A

Figure 16: Performance of GraphM for various A\
than the other two schemes for all graphs. Comparing with
GridGraph-S and GridGraph-C, GridGraph-M improves the
throughput by about 2.6 times and 1.73 times on average
respectively when the graphs can be stored in the memory,
and by 11.6 times and 13 times on average respectively in the
case of out-of-core processing. The throughput improvement
is achieved for the lower data access cost in GridGraph-M.

To evaluate data access cost, we further break down the
total execution time in Figure 10. It can be observed from
this figure that less graph data accessing time is required in
GridGraph-M compared with the other two schemes, espe-
cially when the size of the graph is very large. For example,
for UK-union, the data accessing time is reduced by 11.48
times and 13.06 times in GridGraph-M in comparison with
GridGraph-S and GridGraph-C. The reasons for the lower
data access cost of GraphM are two-fold: 1) only a single copy
of the same graph data needs to be loaded and maintained
in the memory to serve the concurrent jobs, reducing the
consumption of memory and disk bandwidth and the intense
resource contention; 2) the graph data is regularly streamed
into the LLC to be reused by the jobs, which avoids unneces-
sary memory data transfer by reducing LL.C miss rate and
minimizes the volume of data swapped into the LLC.

Figure 11 shows the usage of main memory during the
execution. As observed, GridGraph-M consumes less memory

Data sets
Figure 13: LLC miss rate for 16
jobs with different schemes

Datasets
Figure 14: Volume of data swapped
into the LLC for 16 jobs

GridGraph-S [GridGraph-C GridGraph-M

Normalized execution time
coooOoRrRREENN
OCNROPONEDPON

Normalized execution time
coooOoRRRREENN
CNROPOND DO N

Number of hops Number of hops

(@) BFS (b) SSSP
Figure 17: Impacts of the distance between the root

vertices of BFS or SSSP jobs

than GridGraph-C, but more than GridGraph-S. This is
because the graph structure data is shared in the memory for
concurrent jobs by GraphM (thus GridGraph-M consumes
less memory than GridGraph-C), and the job-specific data of
all concurrent jobs as well as the chunk_table of the loaded
graph data is loaded into the memory at the same time (thus
GridGraph-M consumes more memory than GridGraph-S).
Note that as the number of vertices in the graph increases,
the job-specific data for concurrent jobs need more memory
resource. For example, the memory usage of GridGraph-M
over UK-union is 8.2 times bigger than that of GridGraph-S
because the job-specific data of the 16 jobs is stored in the
memory. However, it is still only 71% of the memory usage
of GridGraph-C. Hence, the memory resource is efficiently
utilized in GraphM since redundant memory consumption
regarding the common graph structure data is eliminated.

In Figure 12, we evaluate the total I/O overhead of these
16 jobs over three schemes. As observed, the I/O overhead is
significantly reduced in GridGraph-M when the size of the
graph data is larger than the memory size. It is because that
the same graph data only needs to be loaded into the memory
once in each iteration for concurrent jobs. However, when the
graph can be fitted in the memory, there is no much difference
in the I/O overhead among these three schemes, since this
graph is cached in the memory via memory mapping and
only needs to be read from disks once. Thus, GraphM brings
better performance improvement for the out-of-core graph
processing for less I/O cost. More specifically, when processing
UK-union, the I/O overhead is reduced by 9.2 times and
10.1 times compared with GridGraph-S and GridGraph-C. In
addition, GridGraph-C usually performs more I/O operations
than GridGraph-S, because there is intense contention for
using the memory resource among the jobs, which causes the
graph data to be swapped out of the memory.

Next, we evaluate the LLC utilization of the different
schemas and show the results in Figure 13. As observed, the

GraphM: An Efficient Storage System for Concurrent Graph Processing

SC '19, November 17-22, 2019, Denver, CO, USA

)
g 12 ‘ GridGraph-M-without GridGraph-M o 500 ‘ GridGraph-S [GridGraph-C GridGraph-M‘— %08 | GridGraph-S [GridGraph-C GridGraph-M
o = =]
% 1.0 g 400 EO, 06
2 0.8 @ o
s £ 300 S
0.6 = c 04
3 S 200 S
= 0.4 g g 02
£ 100 i
§ 02 i B @ i
Z 00— - . i ¥ oLz il & 00 ; ﬁ
Livel Orkut Twitter UK-union Clueweb 1 2 4 1 4 8 16
Data sets Number of jobs Number of CPU cores

Figure 18: Total execution time
without/with our scheduling

LLC miss rate of GridGraph-M is lower than that of both
GridGraph-S and GridGraph-C. For example, for UK-union,
the LLC miss rate of GridGraph-M is only 15.69%, while the
rates are 45.3% and 43.3% for GridGraph-S and GridGraph-
C, respectively. It is mainly because only a single copy of
the graph structure data is loaded into the LLC and the
access to this data is shared by the jobs. The graph structure
data loaded into the LLC can serve more concurrent jobs in
GridGraph-M, resulting in better data locality for these jobs.

Moreover, we traced the total amount of data swapped
into the LLC for these 16 jobs. Generally, GridGraph-C needs
to swap a larger amount of graph data into the LLC than
GridGraph-S, because there is more redundant memory da-
ta transfer caused by the intense cache interference among
concurrent jobs. As shown in Figure 14, when processing
UK-union, the amount of data swapped into the LLC in
GridGraph-S is 65% of GridGraph-C. Nevertheless, we ob-
serve that the amount of swapped data in GridGraph-M is
still much less than GridGraph-S (e.g., only 55% for UK-
union). This is because the data access similarities among
concurrent jobs are fully exploited by GraphM.

We also evaluate the performance of GraphM via submit-
ting the jobs according to the real trace shown in Figure 2,
where different number of jobs are submitted at various point
of time according to the real trace. In Figure 15, the re-
sults show that GridGraph-M improves the throughputs of
GridGraph-S and GridGraph-C by 1.5-7.1 times, and 1.48—
9.8 times, respectively, for the real trace, because of lower
graph storage overhead and less data access cost.

In addition, we evaluate the impacts of job submission
frequency on GraphM over UK-union in Figure 16 by using
different value of A. The results show that higher speedup
is obtained by GraphM when the jobs is more frequently
submitted (i.e., larger). Figure 17 shows the performance
of 16 BF'S or SSSP jobs with randomly selected root vertices
within the range of different number of hops over LiveJ. We
find that higher speedup is achieved by GraphM for stronger
spatial /temporal similarities of the data accesses when the
root vertices of the BFS or SSSP jobs are closer to each other.

5.4 Performance of Scheduling Strategy

We also evaluate the impacts of our scheduling strategy
on the performance of GraphM when it is integrated with
GridGraph. GridGraph-M and GridGraph-M-without are
the versions of GridGraph-M with our scheduling strategy

Figure 19: Total execution time
for different number of jobs

Figure 20: Total execution time on
different number of CPU cores

Table 4: Execution time (in seconds) for other sys-
tems (i.e., GraphChi [18], PowerGraph [12], and
Chaos [24]) integrated with GraphM, where “ —"”
means it cannot be executed for memory errors

LiveJ Orkut Twitter UK-union Cluewebl2

GraphChi-S 2,348 2,248 43,032 149,352 >1 week
GraphChi-C 776 696 10,580 38,760 >1 week
GraphChi-M 344 468 6,128 12,436 248,840
PowerGraph-S 92 144 1,408 7,183 —
PowerGraph-C 83 111 1,153 6,653 —
PowerGraph-M 43 75 795 3,820 -
Chaos-S 224 159 4,668 29,538 487,272
Chaos-C 516 588 12,011 30,943 >1 week
Chaos-M 121 106 2,261 10,614 156,881

(Section 4) and without our scheduling strategy, respectively.
In Figure 18, we traced the total execution time of the above
16 jobs on GridGraph-M and GridGraph-M-without. We can
observe that GridGraph-M always outperforms GridGraph-
M-without. The execution time of GridGraph-M is only 72.5%
of GridGraph-M-without over Cluewebl2. It is because the
graph partitions loaded into the memory can serve as many
concurrent jobs as possible, minimizing the data access cost.

5.5 Integration with Other Systems

Table 4 shows the total execution time of 64 concurrent jobs
with different schemes, where the experiments for different
schemes of both PowerGraph and Chaos are done on a cluster
with 128 nodes as described in Section 5.1. We can observe
that all systems get better speedups after integrating GraphM
into them. Diverse graph processing systems get various
performance improvements after using GraphM, because the
ratios of the graph access time to the total execution time are
different for them. In general, when the ratio of data access
time to the execution time is higher for the original system,
the greater performance is gotten by GraphM via reducing
the redundant graph data storage overhead and access cost.

5.6 Scalability of GraphM

Figure 19 shows the performance of various number of concur-
rent PageRank jobs on different schemes of GridGraph over
Clueweb12. Better performance improvement is achieved by
GraphM when the number of jobs increases. GridGraph-M

SC '19, November 17-22, 2019, Denver, CO, USA

16] [Chaos-S [Chaos-C Chaos-M

Number of nodes
(a) PowerGraph (b) Chaos

Figure 21: Scalability of different distributed schemes

Number of nodes

gets speedups of 1.79, 3.04, 4.92; and 5.94 against GridGraph-
S when the number of jobs is 2, 4, 8, and 16, respectively. It
is because that more data access and storage cost is spared
by GraphM through amortizing it, as the number of jobs
increased. Note that the fine-grained synchronization opera-
tion of GraphM does not occur when there is only one job,
and thus there is no much difference in the execution time
among the three schemes at this moment. The synchroniza-
tion cost occupies 7.1%-14.6% of the total execution time of
the job on GraphM for our tested instances. In addition, as
the contention for resources (e.g., memory and bandwidth)
gets more serious, the performance of GridGraph-C becomes
much worse than that of GridGraph-M, even GridGraph-S.
Thus, simply adopting existing graph processing systems to
support concurrent jobs may be a terrible choice.

We then evaluate the scaling out performance of GraphM.
For this goal, we first evaluate the execution time of 16
jobs on different schemes of GridGraph for Twitter on a
single PC by increasing the number of CPU cores. From
Figure 20, we find that GridGraph-M performs better than
other ones under any circumstances, especially when the
number of cores is more, because the storage and access of
the graph structure data is shared by the concurrent jobs in
GridGraph-M, while the other schemes have a higher data
access cost. Second, we evaluate the performance of 64 jobs
on different schemes of PowerGraph and Chaos over UK-
union in Figure 21 by increasing the number of nodes from
64 to 128. We can observe that better scalability is also
achieved by integrating GraphM with them because of less
communication cost. Because the scalability of GraphM is
greatly decent in most situations, we believe that GraphM can
efficiently support concurrent graph processing in industry.

6 RELATED WORK

Recently, many graph processing systems have been pro-
posed. GraphChi [18] and X-Stream [25] achieve efficient
out-of-core graph processing through sequentially accessing s-
torage. Hao et al. [29] keep frequently accessed data locally to
minimize the cache miss rate. TurboGraph [15] fully exploits
the parallelism of multicore and FlashSSD to overlap CPU
computation and I/O operation. FlashGraph [38] adopts a
semi-external memory graph engine to achieve high IOPS and
parallelism. PathGraph [31] designs a path-centric method
to acquire better locality. By using the novel grid format
and the streaming-apply model, GridGraph [39] improves
the locality and reduces I/O operations. HotGraph [33], F-
BSGraph [34], DGraph [36], and DiGraph [35] accelerate
graph processing via faster state propagation. However, these

Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

systems mainly focus on optimizing individual graph process-
ing, which lead to redundant storage consumption and data
access cost as handling multiple concurrent graph processing
on same graph. Hence, Seraph [30] tries to decouple the data
model and computing logics for less consumption of memory.
CGraph [32, 37] proposes to reduce the redundant data ac-
cesses in the concurrent jobs. Nevertheless, they are tightly
coupled to their own programming models and graph pro-
cessing engines, which cause re-engineering burden of various
applications for users while using these engines. Compared
with them, GraphM transparently improves the throughput
of concurrent jobs on existing graph processing systems.

Meanwhile, some storage optimization methods are al-
so proposed to support efficient iterative graph processing.
Graphene [19] supports graph processing on disks via fine-
grained I/O management. GraFBoost [16] uses sort-reduce
accelerator to reduce the number of I/O accesses to flash stor-
age. V-Part [11] optimizes GraFBoost [16] using a new graph
partition scheme. GraphOne [17] proposes a storage system
for evolving graph using a data abstraction to enable data
access at different granularities with only a small data dupli-
cation. However, these storage systems still suffer from high
redundant data access cost for concurrent iterative graph jobs
without the consideration of the data access similarities. Note
that some graph storage and querying systems [8, 23, 26|
are recently devised for concurrent graph queries. However,
they are dedicated to graph queries which usually only access
different small subsets of a graph for exactly once, and can
not efficiently support iterative graph processing which needs
to frequently traverse the whole graph.

7 CONCLUSION

This paper proposes a storage system GraphM to integrate
with existing graph processing systems for efficient execu-
tion of multiple concurrent graph processing jobs. The key
mechanisms are an efficient Share-Synchronize method to
enable multiple jobs to share the graph structure data in
the LLC/memory, and a scheduling strategy to maximize
the utilization ratio of the graph structure data loaded into
the memory. Experimental results show that GraphM brings
a performance improvement up to 13 times. In future, we
will first exploit the use of new hardware to accelerate data
accesses of concurrent jobs for higher throughput. Second,
we will further optimize GraphM for distributed platforms.
Third, we will also optimize it for evolving graphs. Finally, we
will also research the security problems of GraphM because
it may be attacked by some jobs when they share a common
graph and some private information may also be leaked.

ACKNOWLEDGMENTS

‘We would like to thank our shepherd and anonymous reviewer-
s for their constructive comments. Yu Zhang (zhyu@hust.edu.cn)
is the corresponding author of this paper. This paper is sup-
ported by National Key Research and Development Program
of China under grant No. 2018 YFB1003500, National Natu-
ral Science Foundation of China under grant No. 61832006,
61825202, 61702202, and 61929103.

GraphM: An Efficient Storage System for Concurrent Graph Processing

REFERENCES

2019. didi. http://www.didiglobal.com/.

2019. facebook. http://www.facebook.com/.

2019. huawei. http://www.huawei.com/.

2019. LAW. http://law.di.unimi.it/datasets.php.

2019. SNAP. http://snap.stanford.edu/data/index.html.
Johannes Blum, Stefan Funke, and Sabine Storandt. 2018. Sub-
linear Search Spaces for Shortest Path Planning in Grid and
Road Networks. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence. 6119-6126.

Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna.
2011. Layered label propagation: a multiresolution coordinate-free
ordering for compressing social networks. In Proceedings of the
20th International Conference on World Wide Web. 587-596.
Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka,
Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin
Kulkarni, Harry C. Li, Mark Marchukov, Dmitri Petrov, Lovro
Puzar, Yee Jiun Song, and Venkateshwaran Venkataramani. 2013.
TAO: Facebook’s Distributed Data Store for the Social Graph. In
Proceedings of the 2013 USENIX Annual Technical Conference.
49-60.

Aydin Bulu¢ and Kamesh Madduri. 2011. Parallel Breadth-first
Search on Distributed Memory Systems. In Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis. 1-12.

Jiefeng Cheng, Qin Liu, Zhenguo Li, Wei Fan, John C. S. Lui,
and Cheng He. 2015. VENUS: Vertex-centric streamlined graph
computation on a single PC. In Proceedings of the IEEE 31st
International Conference on Data Engineering. 1131-1142.
Nima Elyasi, Changho Choi, and Anand Sivasubramaniam. 2019.
Large-Scale Graph Processing on Emerging Storage Devices. In
Proceedings of the 17th USENIX Conference on File and Storage
Technologies. 309-316.

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson,
and Carlos Guestrin. 2012. PowerGraph: distributed graph-
parallel computation on natural graphs. In Proceedings of the
10th USENIX Conference on Operating Systems Design and
Implementation. 17-30.

James Goulding, Simon Preston, and Gavin Smith. 2016. Event
Series Prediction via Non-Homogeneous Poisson Process Mod-
elling. In Proceedings of the 16th IEEE International Conference
on Data Mining. 161-170.

Minyang Han and Khuzaima Daudjee. 2015. Giraph unchained:
Barrierless asynchronous parallel execution in pregel-like graph
processing systems. Proceedings of the VLDB Endowment 8, 9
(2015), 950-961.

Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee,
Min-Soo Kim, Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: a
fast parallel graph engine handling billion-scale graphs in a single
PC. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 77-85.
Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and
Arvind. 2018. GraFBoost: Using Accelerated Flash Storage for
External Graph Analytics. In Proceedings of the 45th ACM/IEEE
Annual International Symposium on Computer Architecture.
411-424.

Pradeep Kumar and H. Howie Huang. 2019. GraphOne: A Data
Store for Real-time Analytics on Evolving Graphs. In Proceedings
of the 17th USENIX Conference on File and Storage Technolo-
gies. 249-263.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:
Large-Scale Graph Computation on Just a PC. In Proceedings
of the 10th USENIX Symposium on Operating Systems Design
and Implementation. 31-46.

Hang Liu and H. Howie Huang. 2017. Graphene: Fine-Grained
I/O Management for Graph Computing. In Proceedings of the
15th USENIX Conference on File and Storage Technologies.
285-300.

Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. 2014. Large-
scale distributed graph computing systems: an experimental e-
valuation. Proceedings of the VLDB Endowment 8, 3 (2014),
281-292.

Ulrich Meyer. 2001. Single-source shortest-paths on arbitrary
directed graphs in linear average-case time. In Proceedings of the
12th Annual ACM-SIAM Symposium on Discrete Algorithms.
797-806.

SC '19, November 17-22, 2019, Denver, CO, USA

22] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
[ge, Sergey , Raj ; y

grad. 1998. The PageRank citation ranking: Bringing order to
the web. Technical Report. Stanford Digital Library Technologies
Project.

Peitian Pan and Chao Li. 2017. Congra: Towards Efficient Process-
ing of Concurrent Graph Queries on Shared-Memory Machines. In
Proceedings of the 2017 International Conference on Computer
Design. 217-224.

Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and
Willy Zwaenepoel. 2015. Chaos: Scale-out graph processing from
secondary storage. In Proceedings of the 25th ACM Symposium
on Operating Systems Principles. 410-424.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-
stream: Edge-centric Graph Processing Using Streaming Parti-
tions. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles. 472—488.

Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li.
2016. Fast and Concurrent RDF Queries with RDMA-Based Dis-
tributed Graph Exploration. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation.
317-332.

Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph
processing framework for shared memory. In Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 135-146.

Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Helen Li, and
Yiran Chen. 2018. GraphR: Accelerating Graph Processing Using
ReRAM. In Proceedings of the 24th IEEE International Sympo-
stum on High Performance Computer Architecture. 531-543.
Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup
Graph Processing by Graph Ordering. In Proceedings of the 2016
International Conference on Management of Data. 1813—-1828.
Jilong Xue, Zhi Yang, Zhi Qu, Shian Hou, and Yafei Dai. 2014.
Seraph: an efficient, low-cost system for concurrent graph pro-
cessing. In Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing. 227—238.
Pingpeng Yuan, Wenya Zhang, Changfeng Xie, Hai Jin, Ling Liu,
and Kisung Lee. 2014. Fast Iterative Graph Computation: A Path
Centric Approach. In Proceedings of the 2014 International Con-
ference for High Performance Computing, Networking, Storage
and Analysis. 401-412.

Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Ligang He, Bingsheng
He, and Haikun Liu. 2018. CGraph: A Correlations-aware Ap-
proach for Efficient Concurrent Iterative Graph Processing. In
Proceedings of the 2018 USENIX Annual Technical Conference.
441-452.

Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Guang Tan, and
Bing Bing Zhou. 2017. HotGraph: Efficient Asynchronous Process-
ing for Real-World Graphs. IEEE Trans. Comput. 66, 5 (2017),
799-809.

Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, and Bing Bing Zhou.
2018. FBSGraph: Accelerating Asynchronous Graph Processing
via Forward and Backward Sweeping. IEEE Transactions on
Knowledge and Data Engineering 30, 5 (2018), 895-907.

Yu Zhang, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun Liu, and
Lin Gu. 2019. DiGraph: An Efficient Path-based Iterative Directed
Graph Processing System on Multiple GPUs. In Proceedings of
the 2019 Architectural Support for Programming Languages and
Operating Systems. 601-614.

Yu Zhang, Xiaofei Liao, Xiang Shi, Hai Jin, and Bingsheng He.
2018. Efficient Disk-Based Directed Graph Processing: A Strongly
Connected Component Approach. IEEE Transactions on Parallel
and Distributed Systems 29, 4 (2018), 830-842.

Yu Zhang, Jin Zhao, Xiaofei Liao, Hai Jin, Lin Gu, Haikun Liu,
Bingsheng He, and Ligang He. 2019. CGraph: A Distributed
Storage and Processing System for Concurrent Iterative Graph
Analysis Jobs. ACM Transactions on Storage 15, 2 (2019), 10:1—
10:26.

Da Zheng, Disa Mhembere, Randal C. Burns, Joshua T. Vogelstein,
Carey E. Priebe, and Alexander S. Szalay. 2015. FlashGraph:
processing billion-node graphs on an array of commodity SSDs.
In Proceedings of the 13th USENIX Conference on File and
Storage Technologies. 45—58.

Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph:
Large scale graph processing on a single machine using 2-level
hierarchical partitioning. In Proceedings of the 2015 USENIX
Annual Technical Conference. 375-386.

http://www.didiglobal.com/
http://www.facebook.com/
http://www.huawei.com/
http://law.di.unimi.it/datasets.php
http://snap.stanford.edu/data/index.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Redundant Data Access Overhead
	2.2 Our Motivation

	3 Overview of GraphM
	3.1 System Architecture
	3.2 Graph Preprocessing
	3.3 Memory Sharing of Graph Structure
	3.4 Fine-grained Synchronization for Regular Streaming

	4 The Scheduling Strategy for Out-of-core Graph Analysis
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Preprocessing Cost
	5.3 Overall Performance Comparison
	5.4 Performance of Scheduling Strategy
	5.5 Integration with Other Systems
	5.6 Scalability of GraphM

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

