
Improving Large Graph Processing on Partitioned Graphs
in the Cloud

Rishan Chen
Shenzhen Graduate School of

Peking University, China
crs@net.pku.edu.cn

Xuetian Weng
Shenzhen Graduate School of

Peking University, China
wengxt@gmail.com

Bingsheng He
Nanyang Technological

University
bshe@ntu.edu.sg

Mao Yang
Microsoft Research Asia

maoyang@microsoft.com

Byron Choi
Hong Kong Baptist University
bchoi@comp.hkbu.edu.hk

Xiaoming Li
Shenzhen Graduate School of

Peking University, China
lxm@pku.edu.cn

ABSTRACT
As the study of large graphs over hundreds of gigabytes becomes
increasingly popular for various data-intensive applications in
cloud computing, developing large graph processing systems has
become a hot and fruitful research area. Many of those existing
systems support avertex-orientedexecution model and allow users
to develop custom logics on vertices. However, the inherently ran-
dom access pattern on the vertex-oriented computation generates
a signi�cant amount of network traf�c. While graph partitioning
is known to be effective to reduce network traf�c in graph
processing, there is little attention given to how graph partitioning
can be effectively integrated into large graph processing in the
cloud environment. In this paper, we develop a novel graph
partitioning framework to improve the network performance of
graph partitioning itself, partitioned graph storage and vertex-
oriented graph processing. All optimizations are speci�cally
designed for the cloud network environment. In experiments, we
develop a system prototype following Pregel (the latest vertex-
oriented graph engine by Google), and extend it with our graph
partitioning framework. We conduct the experiments with a real-
world social network and synthetic graphs over 100GB each in
a local cluster and on Amazon EC2. Our experimental results
demonstrate the ef�ciency of our graph partitioning framework,
and the effectiveness of network performance aware optimizations
on the large graph processing engine.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special purpose and
Application based Systems; C.4.1 [Computer Systems Organi-
zation]: Performance of Systems—design studies

General Terms
Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee.
SOCC'12,October 14-17, 2012, San Jose, CA USA
Copyright 2012 ACM 978-1-4503-1761-0/12/10 ...$15.00.

Keywords
Large Graph Processing, Graph Partitioning, Cloud Computing,
Data Center Network

1. INTRODUCTION
Large graph processing has become popular for various data-

intensive applications on increasingly large web and social net-
works [20, 21]. Due to the ever increasing size of graphs,
application deployments are moving from a small number of HPC
servers or super computers [24, 13] towards the cloud with a
large number of commodity servers [29, 21]. Most processing
tasks in these graph applications mainly involve batch operations
in which many vertices and/or edges of the graph are accessed.
Examples of these tasks include PageRank [31], reverse link
graphs, two-hop friend lists, social network in�uence analysis [40],
and recommender systems [2]. In order to support different graph
applications, an ef�cient large graph processing engine is a must.

Previous studies on building such an engine is to adopt existing
distributed data-intensive computing techniques in the cloud [10,
17]. Most of these studies [43, 20, 21] are built on top
of MapReduce [10], which is suitable for processing �at data
structure, not particularly for graph structured data. More recently,
graph systems such as Pregel [29] and Trinity [35] have been
developed speci�cally for large graph processing. Those systems
support a vertex-oriented execution model and allow users to
develop custom logics on vertices. Take Pregel as an example.
Pregel executes user-de�ned functionCompute() per vertex in
parallel, based on the general bulk synchronous parallel (BSP)
model. By default, the vertices can be stored in different
machines according to the simple hash function. However, the
simple partitioning function leads to huge network traf�c in graph
processing tasks. For example, if we want to compute the two-hop
friend list for each account in a social network, every friend (vertex)
must �rst send its friends to each of its neighbors, then each vertex
combines the friend lists of its neighbors. Implemented with the
simple partitioning scheme, this operation results in huge network
traf�c because of shuf�ing the vertices.

A traditional way of reducing data shuf�ing in distributed
graph processing is graph partitioning [30, 26, 11]. Graph
partitioning minimizes the total number of cross-partition edges
among partitions in order to minimize data transfer. The com-
monly used distributed graph processing algorithms are multi-level
algorithms [24, 22, 36]. Those algorithms recursively divide the



graph into multiple partitions with bisections according to different
heuristics.

Even the baseline graph processing engine should store the graph
into partitions, as opposed to a �at storage. However, there is
little attention given to how graph partitioning can be effectively
integrated into large processing in the cloud environment. There
are a number of challenging issues in the integration. First, graph
partitioning itself is a very costly task, generating lots of network
traf�c. Moreover, partitioned graph storage and vertex-oriented
graph processing need careful revisit in the context of cloud. The
cloud network environment is signi�cantly different from those
in previous studies [24, 22, 26], e.g., Cray supercomputers or a
small-scale cluster. The network bandwidth is often the same
for every machine pair in a small-scale cluster. However, the
network bandwidth of the cloud environment is uneven among
different machine pairs. Current cloud infrastructures are often
based on tree topology [14, 5, 19]. Machines are �rst grouped
into pods, and then pods are connected higher-level switches. The
intra-pod bandwidth is much higher than the cross-pod bandwidth.
Even worse, the topology information is usually not available to
users due to virtualization techniques in the cloud. In practice,
such network bandwidth unevenness has been con�rmed by both
cloud providers and users [5, 19]. It requires careful network
optimizations and tuning on graph partitioning and processing.

In this paper, we propose a network performance aware graph
partitioning framework to improve the network performance of
large graph processing on partitioned graphs. The framework
improves the network performance of graph partitioning process
itself. More importantly, the graph partitions generated from the
framework improve the network performance of graph processing
tasks. To capture the network bandwidth unevenness, we model
the machines chosen for graph processing as a complete undirected
graph (namelymachine graph): each machine as a vertex, and
the bandwidth between any two machines as the weight of an
edge. The network performance aware framework recursively
partitions the data graph, as well as the machine graph, with
bisection correspondingly. That is, the bisection on the data graph
is performed with the corresponding set of machines selected from
the bisection on the machine graph. The recursion terminates when
the data graph partition can �t into main memory. By partitioning
the data graph and machine graph simultaneously, the number
of cross-partition edges among data graph partitions is gracefully
adapted to the aggregated amount of bandwidth among machine
graph partitions. To exploit the data locality of graph partitions,
we develophierarchical combinationto exploit network bandwidth
unevenness in order to improve the network performance.

We develop a system prototype (named Surfer) following Pregel
(the latest vertex-oriented graph engine by Google), and extend
it with our graph partitioning framework. We have evaluated the
ef�ciency of Surfer on a real-world social network and synthetic
graphs of over 100GB each in a 32-node cluster as well as
on Amazon EC2. The experimental results in the local cluster
demonstrate that 1) our bandwidth aware graph partitioning scheme
improves the partitioning performance by 39–55%, and improves
the graph processing by 6–71% under different simulated network
topologies; 2) our optimizations reduce the network traf�c by 30–
95%, and the total execution time by 30–85%. The experimental
results on Amazon EC2 shows that our optimizations in Surfer
reduce the total execution time by 49% on average.

The rest of the paper is organized as follows. We review
the related works on cloud computing and graph processing in
Section 2. We present our network performance aware graph

partitioning framework in Section 3. We present the experimental
results in Section 4, and conclude this paper in Section 5.

2. PRELIMINARY AND RELATED WORK
We review the preliminary and the related work that is closely

related to this study.

2.1 Cloud computing
A cloud consists of tens of thousands of connected commodity

computers. A cloud system often runs in a subset of machines in
the cloud. Due to the signi�cant scale, the network environment
in the cloud differs with the small-scale cluster. The current cloud
practice is to use the switch-based tree structure to interconnect
the servers [14]. The key problem of the tree topology is the
network bandwidth of any machine pair is not necessarily uniform,
depending on the switch connecting the two machines [17].
Moreover, as commodity computers evolve, the cloud evolves and
becomes heterogenous among generations [42]. For example,
current main-stream network adaptors provide 1Gb/sec, and the
future ones with 10Gb/sec. These hardware factors result in the
unevenness in the network bandwidth among machines in the
cloud.

In addition to hardware factors, software techniques can also
result in network bandwidth unevenness. For example, virtual
machine consolidation is an effective optimization for the resource
utilization of virtualization. Consolidation induces concurrent
tasks to compete for the network bandwidth on the same physical
machine. Different degrees of consolidation cause the bandwidth
unevenness among physical machines.

The unique network environment in the cloud motivates ad-
vanced optimizations with the knowledge of network topology
(such as multi-level data reduction along the tree topology [10]
and partition-based locality optimizations [33]) and scheduling
techniques [18]. However,the topology information in the cloud
is usually not available to cloud users due to the virtualization and
system management issues.First, virtualization hides the network
topology from users, without exposing the real con�gurations of
the underlying hardware. Second, cloud environments do not offer
administrator privileges on the hardware and software under the
virtualization layer. Such privileges are usually required for getting
the network topology information. This paper develops network-
centric optimizations for partitioning and processing a large graph,
without the requirement on the knowledge of network topology.

Designing an ef�cient and user-friendly development platform
for applications in the cloud is a hot research topic. A number of
cloud systems such as MapReduce [10] (its open-source variant,
Hadoop [15]) and Dryad [17] have been developed. The data is
stored in the distributed and replicated �le system such as GFS [12]
or BigTable [7]. All of these systems allow the data analysts
to easily write programs to manipulate their large scale data sets
without worrying about the complexity of distributed systems.
More recently, a number of cloud-based data management systems
have been developed for data warehousing workloads [39, 1, 16]
and on-line transaction processing [9]. All these studies mainly
focus on relational data, instead of graph structured data.

2.2 Graph processing
We denote a graph to beG = ( V; E), whereV is a (�nite) set of

vertices, andE is a (�nite) set of edges representing the connection
between two vertices. The graph can be undirected or directed.
This study focuses on directed graphs.

We useGi to denote a subgraph (or a partition) ofG and Vi

to denote the set of vertices inGi . We de�ne a non-overlapping



partitioning of graphG, to be {G1 , G2 ; :.., Gk }, where 8 i , j 2
[1...k], k � j V j, [ k

i =1 Vi = V , [ k
i =1 E i = E , Vi \ Vj = ; , where

i 6= j . We de�ne an edge to be aninner-partition edgeif both its
source and destination vertices belong to the same partition, and a
cross-partition edgeotherwise. A vertex is aninner vertexif it is
not associated with any cross-partition edge. Otherwise, the vertex
is aboundary vertex.

Large graph processing. Batched processing on large graphs
has become hot recently, mainly to meet the requirement on mining
and processing those large graphs. Examples include triangle
counting [40] and PageRank [31]. Surfer is designed to handle
the batched graph processing applications, not transactional graph
processing in graph databases like Neo4j and In�niteGraph etc.

There is some related works on speci�c tasks on large graph
processing in data centers [20, 43, 41, 34]. MapReduce [10]
and other systems such as Dryad [17] were applied to evaluate
the PageRank for ranking the web graph. HADI [20] and
PEGASUS [21] are two recent graph processing implementations
based on Hadoop. HADI [20] estimates the diameter of the large
graph. PEGASUS [21] supports graph mining operations with a
generalization of matrix-vector multiplication. DisG [43] is an
ongoing project for the web graph reconstruction using Hadoop.
Pujol et al. [34] studied different replication methods to scale
the social network analysis. Low et al. [28, 27] presents a new
framework with asynchronous programming, which is different
from the BSP model in Pregel. Pregel [29] is a BSP-based
graph processing engine, with the user-de�ned APICompute()
executed on vertices. In one iteration of BSP (i.e.,superstep
in Pregel's terminology), Pregel executesCompute() on all the
vertices in parallel. Hama [4] and Giraph [3] are two open-
source projects targeting at large graph processing. They adopt
Pregel's programming model but their storage is built on top of
HDFS. Trinity [35] is a recent research project in Microsoft, which
supports both transactional and batched graph processing. An
initial version of Surfer was demonstrated in the comparison with
MapReduce [8]. All those systems support the vertex-oriented
computation.

Network traf�c is a common bottleneck for vertex-oriented
computation in those graph processing engines. To the best of our
knowledge, this study is the �rst of its kind to alleviate the network
bottleneck of vertex-oriented computation on partitioned graphs in
the cloud.

Graph partitioning. Graph partitioning is a well-studied
problem in combinatorial optimization with an input objective
function. The input objective function in this study is to minimize
the number of cross-partition edges with the constraint of all
partitions with similar number of edges. This is because, the total
number of cross-partition edges is a good indicator for the amount
of communication between partitions in distributed computation. It
is anNP-complete problem [25]. Karypis et al. [24, 22] proposed a
parallel multi-level graph partitioning algorithm, with a minimum
bisection on each level. Since bisection is commonly used in multi-
level graph partitioning algorithms, this paper considers bisections.
However, the graph partitioning framework can be easily extended
to k-section based graph partitioning algorithms.

Since graph bisection has been a key operation in multi-level
graph partitioning [24, 22], we brie�y introduce the process
of bisection. There are three phases in a graph bisection,
namelycoarsening, partitioninganduncoarsening, as illustrated in
Figure 1. The coarsening phase consists of multiple iterations. In
each iteration, multiple adjacent vertices in the graph are coarsened
into one according to some heuristics, and the graph is condensed
into a smaller graph. The coarsening phase ends when the graph

Figure 1: The three phases in graph bisection:coarsening,
partitioning and uncoarsening.

is small enough, in the scale of thousands of vertices. The
partitioning phase divides the coarsened graph into two partitions
using a sequential and high-quality partitioning algorithm such
as GGGP (Greedy Graph Growing Partitioning) [23]. In the
uncoarsening phase, the partitions are then iteratively projected
back towards the original graph, with a local re�nement on
each iteration. The iterations are highly parallelizable, and their
ef�ciency and scalability has been evaluated on shared-memory
architectures (such as Cray supercomputers) [24, 22]. However,
in the coarsening and uncoarsening phases, all the edges may be
accessed, generating a lot of network traf�c if the input graph is
stored in distributed machines.

Existing distributed and parallel graph partitioning algorithms
such as ParMetis [30] are suboptimal in the cloud. In particular,
they do not consider the unevenness of the network bandwidth in
the cloud. While they have demonstrated very good performance
on shared-memory architectures [24], unevenness of network
bandwidth results in de�ciency in partitioning itself and also
the ef�ciency of partitioned graph storage and processing. For
example, the two partitions with a relatively large number of cross-
partition edges should be co-located within a pod, instead of storing
in different pods. Thus, we develop a network performance aware
framework to adapt multi-level graph partitioning [24, 22] to the
network environment in the cloud.

3. GRAPH PARTITIONING FRAMEWORK
In this section, we start with the motivations for network

performance aware optimizations. Next, we present the models
for multi-level graph partitioning and for the network performance
in the cloud environment. Finally, we present our network
performance aware framework for graph partitioning. In the next
section, we present the evaluation results on Surfer, which extends
Pregel with the proposed graph partitioning framework.

3.1 Motivations
Surfer is a master-slave system, consisting of one master server

and many slave servers. The slave servers store graph partitions
and perform graph computation. We study the factors affecting
the network performance of graph processing. We assume that
the amount of network traf�c sent along each cross-partition
edge is the same (denoted asb). Denote the number of cross-
partition edges from partitionGi to Gj to be C(Gi ; Gj ), and
the network bandwidth between the machines storedGi and Gj

to be B i;j . Since network bandwidth is a scarce resource in
the cloud environment [10, 17], we consider the bandwidth as
the main indicator for network performance, and approximate the
network data transfer time fromGi to Gj to be C ( G i ;G j ) � b

B i;j
.

This approximation is suf�cient for large graph processing in



(a) 64 instances (b) 128 instances (c) 128 instances

Figure 2: Network bandwidth unevenness in Amazon EC2: (a, b) Pair-wise network bandwidth varying the number of small
instances, (c) the distribution of pair-wise network bandwidth. The y-axis of all �gures is capped at 300 for clarity.

both private and public cloud environments, as we observed in
our experiments. AssumingP graph partitions are stored onP
different machines, the total network data transfer time incurred in
all partition pairs is

P P � 1
i =0

P P � 1
j =0

C ( G i ;G j ) � b
B i;j

.
Clearly, if the network bandwidth among different machine pairs

(B i;j , 8i; j < P ) is constant, minimizing the total number of
cross-partition edges also minimizes the total network data transfer
time. However, the network bandwidth among different machine
pairs can vary signi�cantly in the cloud. Such network bandwidth
unevenness has been observed by cloud providers [5, 19]. We
have also observed signi�cant network bandwidth unevenness
in Amazon EC2. Figure 2 shows the network bandwidth of
every machine pair among 64 and 128small instances (i.e.,
virtual machine) on Amazon EC2. The network bandwidth varies
signi�cantly. The mean (MB/sec) and standard deviation are
(112.8, 37.5) and (115.0, 40.2) for 64 and 128 small instances,
respectively. We observed that some pair-wise bandwidth is very
high (e.g., more than 500 MB/sec). The possible reason is
that those small instances can be allocated to the same physical
machine.

We also note that the network bandwidth between two instances
in the public cloud is temporally stable, with similar results
observed in the previous study [37]. That allows us to maintain
the network bandwidth for a machine pair with a reasonable long
period, and to develop network performance aware optimizations
for graph processing.

Due to the network bandwidth unevenness, the way of partition-
ing and storing graph partitions on the machines is an important
factor for the ef�ciency of graph processing. Since the number of
graph partitions and the number of machines for graph processing
can be very large, the possible solution space of storing graph
partitions to the machines is huge. ConsiderP partitions to be
stored onP machines. The space includesP ! possible solutions.
Another problem is how to make the graph partitioning and
graph processing algorithm aware of the bandwidth unevenness for
networking ef�ciency.

To address the network bandwidth unevenness in the current
cloud environment, we propose a network performance aware
framework for graph partitioning and graph processing. The basic
idea is to partition, store and process the graph partitions according
to their numbers of cross-partition edges such that the partitions
with a large number of cross-partition edges are stored in the
machines with high network bandwidth. This is because the
network traf�c requirement for those graph partitions is high.

3.2 Models
We use two models namelypartition sketchandmachine graph

to capture the features of graph partitioning process and network
performance, respectively.

3.2.1 Partition Sketch
We model the process of a multi-level graph partitioning

algorithm as a tree structure (namelypartition sketch). Each node
in the partition sketch represents the graph acting as the input for
the partition operation at a level of the entire graph partitioning
process: the root node representing the input graph; non-leaf nodes
at level (i +1 ) representing the partitions of thei th iteration; the leaf
nodes representing the graph partitions generated by the multi-level
graph partitioning algorithm. The partition sketch is ak-ary tree
for k-section based graph partitioning algorithm. Since this paper
mainly considers bisections, the partition sketch is represented as a
binary tree. If the number of graph partitions isP , the number of
levels of the partition sketch is (dlog2 Pe+ 1 ).

Figure 3 illustrates the correspondence between partition sketch
and the bisections in the entire graph partitioning process. In the
�gure, the graph is divided into four partitions, and the partition
sketch grows to three levels.

We further de�ne anideal partition sketchas a partition sketch
via optimal bisections on each level. On each bisection, the
optimal bisection minimizes the number of cross-partition edges
between the two generated partitions. The ideal partition sketch
represents the iterative partition process with the optimal bisection
on each partition. This is the best case that existing bisection-
based algorithms [30, 24, 22] can achieve. Partitioning with
optimal bisections does not necessarily result inP partitions with
the globally minimum number of cross-partition edges. Existing
studies [24, 22] have demonstrated that they can achieve relatively
good partitioning quality, approaching the global optimum. Thus,
we use the ideal partition sketch to study the properties of the multi-
level partitioning algorithm.

Analyzing the graph partitioning process, we have found that the
ideal partition sketch has the following properties:
Local optimality. DenoteC(n1 ; n2) as the number of cross-
partition edges between two nodesn1 and n2 in the partition
sketch. Given any two nodesn1 andn2 with a common parent node
p in the ideal partition sketch, we haveC(n1 ; n2) is the minimum
among all the possible bisections onp.

By de�nition of the ideal partition sketch, the local optimality is
achieved on each bisection.



Figure 3: Correspondence between bisections and the partition
sketch for the process of partitioning the graph into four
partitions.

Monotonicity. Suppose the total number of cross-partition edges
among any partitions at the same levell in the partition sketch to be
Tl . The monotonicity of the ideal partition sketch is thatTi � Tj ,
if i � j .

The monotonicity re�ects the increase in the number of cross-
partition edges in the recursive partitioning process.
Proximity. Given any two nodesn1 andn2 with a common parent
nodep, any other two nodesn3 andn4 with a common parent node
p0, andp andp0 are with the same parent, we haveC(n1 ; n2) +
C(n3 ; n4) � C(n � (1) ; n � (2) ) + C(n � (3) ; n � (4) ) where� is any
permutation on (1, 2, 3, 4).

According to local optimality, we know thatC(p; p0) =
C(n1 ; n3)+ C(n1 ; n4)+ C(n2 ; n3)+ C(n2 ; n4) is the minimum.
Thus, we have:

C (n 1 ; n 2 ) + C (n 1 ; n 4 ) + C (n 3 ; n 2 ) + C (n 3 ; n 4 ) � C (p; p 0) (1)

C (n 1 ; n 2 ) + C (n 1 ; n 3 ) + C (n 4 ; n 2 ) + C (n 4 ; n 3 ) � C (p; p 0) (2)

SubstitutingC(p; p0), we have

C(n1 ; n3 ) + C(n2 ; n4 ) � C(n1 ; n2 ) + C(n3 ; n4 ) (3)

C(n2 ; n3 ) + C(n1 ; n4 ) � C(n1 ; n2 ) + C(n3 ; n4 ) (4)

That means, we haveC(n1 ; n2)+ C(n3 ; n4) � C(n � (1) ; n � (2) )+
C(n � (3) ; n � (4) ) where� is any permutation on (1, 2, 3, 4).

The intuition of the proximity is, at a certain level of the ideal
partition sketch, the partitions with a low common ancestor have
a larger number of cross-partition edges than those with a high
common ancestor.

These properties of the partitioning sketch indicate the following
design principles for graph partitioning and processing, in order to
match the network bandwidth with the number of cross-partition
edges.

P1 . Graph partitioning and processing should gracefully adapt to
the bandwidth unevenness in the cloud network. The number
of cross-partition edges is a good indicator on bandwidth
requirements. According to the local optimality, the two
partitions generated in a bisection on a graph should be
stored on two machine sets such that the total bandwidth
between the two machine sets is the lowest.

P2 . The partition size should be carefully chosen for the ef-
�ciency of processing. The number of partitions should
be no smaller than the number of machines available for
parallelism. According to the monotonicity, a small partition
size increases the number of levels of the partition sketch,
resulting in a large number of cross-partition edges. On the
other hand, a large partition may not �t into main memory of

a machine, which results in random disk I/O in accessing the
graph data.

P3 . According to proximity, the nodes with a low common
ancestor should be stored together in the machine sets
with high interconnected bandwidth in order to reduce the
performance impact of the large number of cross-partition
edges.

3.2.2 Machine Graph Building
Graph partitioning and processing are usually performed on a set

of machines (or virtual machines) acquired from the cloud provider.
We model the machines used for processing the data graph as a
weighted graph (namelymachine graph). In a machine graph, each
vertex represents a machine. We assume that each machine has
the same con�guration in terms of computation power and main
memory. In practice, users usually acquire the virtual machines
of the same type for one application, because of convenience and
management. We consider handling heterogenous machines as
future work. An edge means the connectivity between the two
machines represented by the vertices associated with the edge, and
the weight is the network bandwidth between them. We currently
model the graph as an undirected graph, since the bandwidth is
similar in both directions. We use the following techniques to
build the machine graph without knowledge of network physical
topology.

Given a set of machines for partitioning, the machine graph
can be easily constructed by calibrating the network bandwidth
between any two machines in the set. In our experiments, we
measure the network bandwidth by sending a data chunk of 8MB.
We use the average of twenty measurements. ForN virtual
machines, we needN iterations of calibrations in order to get all
pair-wise performance. In each iteration,N

2 machine pairs are
calibrated. The maintenance is based on the classic exponential
average, by getting the bandwidth of data transfer in the graph
processing.

The left part of Figure 4(a) illustrates the machine graph for
four machines in a cluster with tree topology. The edge thickness
represents the weight: a thicker edge means a link with higher
bandwidth. The example cluster consists of two pods, and each
pod consists of two machines. Assuming that the intra-pod network
bandwidth is higher than the inter-pod one, and the intra-pod
bandwidth is the same across pods, we have the machine graph
with four vertices and six edges. The intra-pod connections are
represented as thicker edges, indicating that they have a higher
interconnected bandwidth.

In the remainder of this paper, we refer “graph" as a graph,
and “machine graph" and “data graph" as the machine graph
constructed from a set of machines in the cloud and the input data
graph for partitioning, respectively.

3.3 Bandwidth Aware Graph Partitioning
With the partition sketch and the machine graph in hand,

we develop a novel network bandwidth aware framework for
graph partitioning and processing in the cloud. The framework
enhances a common multi-level graph partitioning algorithm with
the network performance awareness. Given a set of machines to
partition the graph, the graph is initially stored in those machines
(usually according to the simple hash function). At each bisection,
all edges and vertices are accessed multiple times for coarsening
and uncoarsening. It generates a lot of network traf�c. Thus,
bisection should be designed to be aware of the network bandwidth
unevenness.



Figure 4: Mapping on the partition sketches between the
machine graph and the data graph.

There is one observation on multi-level graph partitioning
algorithms: due to the divide-and-conquer nature, there is no
data exchange between the two bisection sub-partitions generated
from the same bisection.Suppose a distinct subset of machines
is responsible for each of the two sub-partitions. The network
connections between the two subsets of machines are no longer
involved in the deeper level of the bisection. That means, we
should pick the high bandwidth connections remaining in the
subset of machines, and leave the low bandwidth connections as
those between the two subsets of machines. This is analogous to
performing graph partitioning on the machine graph with respect to
minimizing the total bandwidth between two subsets of machines.
That results in the correspondence between partitioning the data
graph and partitioning the machine graph, and we gradually assign
the subset of machines that are suitable to handle graph partitioning
at a certain level. At each level of graph partitioning, the framework
partitions the data graph and machine graph simultaneously, and
matches the network bandwidth in the cloud to the number of cross-
partition edges according to the partition sketch and the machine
graph.

The bandwidth aware graph partitioning framework is shown in
Algorithm 1. The framework simultaneously partitions the data
graph and the machine graph with multi-level bisections. At a
certain level, it assigns the machines in a partition of the machine
graph to perform partitioning on the partition of the data graph.
At the leaf level, graph partitions are stored in the machine in the
corresponding node in the machine graph. Finally, the partition
sketches for both machine graph and data graph are generated. In
Surfer, those partition sketches are stored as catalog data in the
master server.

The number of partitions,P , can be speci�ed by the user. In
Surfer, we determineP so that a graph partition can �t into the main
memory of a machine. This is to avoid the signi�cant performance
degradation due to the random disk I/O in graph processing. A
machine can hold more than one graph partition. In Line 4 of
ProcedureBAPart(M , G, l ), M consists of a single machine. We
further divideG into 2L � l partitions so that each partition can �t
into the main memory.

We use a local graph partitioning algorithm such as Metis [30]
to partition the machine graph, since the machine graph usually
can �t into the main memory of a single machine. On the
bisection of the machine graph, the objective function is to
minimize the weight of the cross-partition edges with the constraint
of two partitions having around the same number of machines.
This objective function matches the bandwidth unevenness of the
selected machines. The goal of minimizing the weight of cross-
partition edges in the machine graph corresponds to minimizing the
number of cross-partition edges in the data graph. This is a graceful

Algorithm 1 Bandwidth aware graph partitioning
Input: A set of machinesS in the cloud, the data graphG, the number of
partitionsP (L = log 2 P )
Description: PartitionG into P partitions withS
1: Construct the machine graphM from S;
2: BAPart(M , G, 1);//the �rst level of recursive calls.

Procedures:BAPart(M , G, l )
1: Divide G into two partitions (G1 andG2 ) with the machines inM ;
2: if M consists of a single machinethen
3: Let the machine inM bem.
4: Divide G into 2L � l partitions usingm with the local partitioning

algorithm;
5: Store the result partitions inm;
6: else
7: Divide M into two partitionsM 1 andM 2 ;
8: Divide G into two partitionsG1 andG2 with the machines inM

with distributed algorithm [22];
9: BAPart(M 1 , G1 , l+1);

10: BAPart(M 2 , G2 , l+1);

adaptation on assigning the network bandwidth to partitions with
different number of cross-partition edges. The constraint of making
partitions with the roughly same number of machines is for load-
balancing purpose, since partitions in the data graph also have
similar sizes.

Along the multi-level bisections, the algorithm traverses the
partition sketches of the machine graph and the data graph, and
builds a mapping between the machines and the partitions. The
mapping guides the machines where the graph partition is further
partitioned, and where the graph partition is stored. Figure 4
illustrates the mapping between two machine graphs and a data
graph for the partitioning framework. Take case (a) where four
machines are selected as an example. The bisection on the
entire graphG is done on all the four machines. At the next
level, the bisections onG1 and G2 are performed on podsM 1

and M 2 , respectively. Finally, the partitions are stored in the
machines according to the mapping. Note, we use the tree
structured network topology mainly for presentation purposes, and
our framework does not assume speci�c network topologies and
network environments.

The partitioning algorithm satis�es the three design principles:
1) the number of cross-partition edges is gradually adapted to the
network bandwidth. In each bisection of the recursion, the cut with
the minimum number of cross-partition edges in the data graph
coincides that with minimum aggregated bandwidth in the machine
graph. 2) The partition size is tuned according to the amount of
main memory available to reduce the random disk accesses. 3) In
the recursion, the proximity among partitions in the machine graph
matches that in the data graph.

3.4 Partitioned Graph Storage
We consider how graph partitions are distributed on the machines

so that the network performance is optimized. The distribution is
also maintained without re-partitioning when the machine graph
is signi�cantly changed. In Surfer, graph partitions are stored
securely with the replication scheme. In Amazon EC2, we store
graph partitions in Amazon S3 which offers secure storage by
default. For processing, we read the graph partitions from Amazon
S3, and store them on the local storage of virtual machines that we
have acquired for graph processing. If such a secure storage is not
available, one can develop a distributed �le system like GFS [12].
In both cases, graph partitions are stored in the local storage of
machines for graph processing.



We transform the problem of distributing graph partitions to the
machines as the problem of developing a node-to-node mapping
from the partition sketch of the data graph (DSketch) to the
partition sketch of the machine graph (MSketch). If a noden in
DSketch is mapped to a noden0 in MSketch, all the partitions
generated fromn is stored in the machines inn0. If n0 represents a
single machine, the mapping gives all the graph partitions stored
in that machine. DSketch and MSketch can be obtained from
catalog.

The node-to-node mapping fromDSketch to MSketch is
de�ned as follows. Let the number of levels inDSketch and
MSketch be L D andL M , respectively. We assumeL D � L M

so that each machine has one graph partition at least. LetRD and
RM be the root nodes ofDSketch andMSketch, respectively. We
de�ne a mappingM from DSketch to MSketch in a divide-and-
conquer manner (the below equation), whered1 andd2 is the left
and the right subtrees ofRD respectively, andm1 andm2 is the
left and the right subtrees ofRM respectively.d1 (or d2) can be
mapped to any ofm1 andm2 . Thus, we use "j" to indicate that
bothM mappings are valid.

M (R D ; R M ) =

8
><

>:

M (d1 ; m 1 ) ; M (d2 ; m 2 ) j
M (d1 ; m 2 ) ; M (d2 ; m 1 ) if R D andR M arenot leaves;
R D ! R M otherwise

The deepest level ofM (d ! m) means the partitions generated
from further partitioningd are stored on machinem. Figures 4
(a,b) illustrate the mappings fromDSketch and MSketch when
the number of machines are four and three, respectively. When
the number of machines is four, each graph partition is mapped to
different machines. When the number of machines is three, two
graph partitions inG1 are mapped to a single machine.

According to the de�nition, there is
Q L M

i =1 2i � 1 possible map-
ping candidates. In initialization, we can pick any one of them.
In maintenance, we choose the one that results in the minimum
network traf�c. Also note, the mapping obtained from Algorithm 1
satis�es this de�nition. Thus, if users acquire a different set of
machines, we only need to constructMSketch and calculate the
mapping (with theDSketch from the catalog). That is, we can
easily run graph processing on different sets of machines, without
repartitioning the data graph.

The mapping fromDSketch to MSketch needs to be main-
tained. In practice, data graphs are not often re-partitioned (i.e.,
DSketches are usually static). We need to maintainMSketch if
the machine graph is signi�cantly changed, for example, a machine
failure occurs. In particular, we periodically check the machine
graph to see whether we need to perform adjustment on the graph
partitions. For simplicity, we decide to perform adjustment if
the cross-machine bandwidth signi�cantly changes (e.g., the total
amount of bandwidth changes in the bandwidth is higher than a
prede�ned threshold), or when the set of machines changes. In
case whereMSketch is reconstructed, we consider all the possible
mappings fromDSketch to MSketch, and choose the one with the
smallest number of graph partition movements. Speci�cally, given
a mapping, we can obtain the graph partitions on each machine and
calculate the number of graph partition movements by comparing
the current graph partition distribution. Thus, we are able to shuf�e
the affected graph partitions only, without entirely repartitioning
the data graph.

The proximity of the data graph partitions is gracefully adapted
to the the network bandwidth of the machines during the mapping
process. That is, the total number of cross-partition edges in
the bisection represented byDSketch corresponds to the total
bandwidth of the connections in the cut of the bisection represented

Figure 5: Hierarchical combination according to the partition
sketch of the machine graph of eight machines.

by MSketch. Moreover, the partitions stored in a machine have the
same lowest common ancestor node inDSketch.

3.5 Hierarchical Combination
We extend the vertex-oriented execution model to exploit data

locality of graph partitions. Since combination is a commonly
used approach to reduce network traf�c in data intensive computing
systems [10, 17], we develop the combination optimization on
partitioned graph. The basic idea is to apply aCombine()
function (i.e.,Combinerin Pregel), and perform partial merging
of the intermediate data before they are sent over the network.
Combination is applicable when the combination function is
annotated as an associative and commutative function.

A basic approach islocal combination. Current graph engines
like Pregel and Trinity support this basic approach. For all the
graph partitions on a machine, we apply the local combination on
the boundary vertices belonging to the same remote partition, and
sends the combined intermediate results back to the local partition
for further processing.

Local combination is not aware of the network bandwidth
unevenness in the cloud network environment. This motivates us
to develop the network performance aware optimization for graph
processing, i.e.,hierarchical combination. In local combination,
it requires network data transfer for the boundary vertices of the
graph partition. Due to the irregular graph structures, the source
vertices are likely to be scattered on many different machines.
Thus, many data transfers are performed on the relatively low
bandwidth machine pairs, caused by the network bandwidth
unevenness.

Instead of direct data transfers after local combination, the data
of the source vertices can be combined among the machines with
high bandwidth before sending them to the target machine via
the connections with low bandwidth. Hierarchical combination
applies this idea in multiple levels according to the partition
sketch of the machine graph. With the hierarchical combination
optimization, the data transfer on the low-bandwidth connection
is reduced. We note that similar optimization techniques have
been adopted in other contexts to reduce network traf�c, e.g.,
MPI collective communications [32]. Differently, the proposed
hierarchical combination is guided by the partition sketches of the
machine graph and the data graph, which are speci�cally designed
for graph processing on partitioned graphs.

Figure 5 illustrates one example of performing hierarchical com-
bination on eight machines. Suppose each machine holds one graph
partition and machine 0 needs to read data from other machines.
Note that, the partition sketch of the machine graph has captured
the network bandwidth unevenness. After local combination on
each machine, we perform the �rst-level combination between two
machines (for example, between machines 6 and 7), and store
the result on arepresentativemachine. Machines 2, 4 and 6 are
the representative machines at the �rst-level combination. Further



combination is performed on the representative machines. Finally,
all the partial results are sent to machine 0. On the low-bandwidth
connections between machine 0 and machinei (4 � i � 7),
hierarchical combination has only one data transfer for the partial
results, compared with four in the baseline implementation with
local combination.

4. EVALUATION
In this section, we present the experimental results with real-

world and synthetic graphs.

4.1 Experimental Setup
We have conducted our experiments on a local cluster and

Amazon EC2. The local cluster has 32 machines, each with a Quad
Intel Xeon X3360 running at 2.83GHz, 8 GB memory and two 1TB
SATA disks, connected with 1 Gb Ethernet. The operating system
is Windows Server 2003. All the machines form a pod, sharing the
same switch. The current cluster provides even network bandwidth
between any two machines.

We develop a system prototype (named Surfer) following
Pregel [29], and extend it with our graph partitioning framework.
We implement Surfer in C++, compiled in Visual Studio 9 with full
optimizations enabled.

We have described some implementation details on graph
partitions. The data graph is divided into many partitions with
similar sizes, using our graph partitioning framework (Section 3).
Graph partitions are stored in the hard disk (such as local storage
in Amazon EC2), and a partition is loaded into main memory
when the task is initiated for processing the partition. The local
cluster adopts a distributed �le system with replications (each graph
partition has three replicas by default).

Surfer uses the adjacency list storage as graph storage. Other
graph storage formats are also applicable. The format is< ID , d,
neighbors > , whereID is the ID of the vertex,d is the degree
of the vertex, andneighbors contains the vertex IDsn0 , ..., nd� 1

of the neighbor vertices. Instead of maintaining a global mapping
from an arbitrary vertex ID to its partition ID, we encode the vertex
IDs such that the partition ID could be inferred from vertex ID
itself. The vertex ID is divided into two bits ranges, the higher
range represents its partition ID, and the lower stands for its offset
id within this partition. From this encoding, it is straightforward to
�nd the partition ID for a vertex.

Simulating different network environments. While Amazon
EC2 allows us to evaluate Surfer in a public cloud environment,
the network topology is hidden by virtualization. We need another
complementary approach to evaluate our framework in a controlled
manner. We simulate the network bandwidth unevenness in
the cloud network environment. In particular, we use software
techniques to simulate the impact of different network topologies
and hardware con�gurations. The basic idea is to add the latency
to the network transfer according to the data transfer time obtained
from network simulator. We denote the setting of the current cluster
to beT1 . We consider the following two settingsT2 andT3 . The
32 machines are simulated as a subset of machines in a much larger
cloud.

Since tree-structured network is the major topology in current
data centers [14, 5, 19], we simulate different tree-structured
network topologies. We simulateT2 as a tree topology. We
use < # pod, # level > to represent the con�guration of the
tree topology, where# pod is the number of pods used for graph
processing, and# level is the number of levels in the topology.
At each level of the tree topology, all-to-all communications in
graph processing cause the traf�c contention in the switch [14].

Figure 6: The variants of topologyT2 , simulating the machines
in the cloud with different tree network topologies.

P 2
i =1 x i =P 4

i =1 yi =
P 4

i =1 zi = 32 , x i � 1 (1 � i � 2), yj � 1, zj � 1
(1 � j � 4). By default, T2(2; 1): x1 = x2 = 16 ; T2(4; 1):
y1 = y2 ...= y4 = 8 ; T2(4; 2): z1 = z2 ...= z4 = 8 .

Figure 6 shows the three variants ofT2 with 32 machines examined
in our experiments. We can con�gure the number of machines in
different pods (T2(2; 1): x i � 1 (1 � i � 2), T2(4; 1): yj � 1,
T2(4; 2): zj � 1 (1 � j � 4)). By default, we assign the
same number of machines in each pod, and all the switches have
the bandwidth of 1Gb/sec. Our experiments are conducted without
the knowledge of network topologies. For different numbers of
pods and different distributions of machines among pods, we
observed that the machine graph model always correctly captures
the network bandwidth unevenness in the 32 machines.

T3 simulate a pod whose machines have two different con�gu-
rations. For simplicity, we simulateq (1 � q < 32) machines
randomly chosen from the pod having one half bandwidth of the
remainder machines in the cluster.

We develop a discrete-event network simulator forT2 andT3 .
We log the events of data send/receive operations in the execution
of Surfer, and then feed those events into the simulator to get
the delay of each send/receive operations. Next, we use those
latency information in the real execution by adding a latency into
the send/receive operations such that the time for sending the data
matches the simulation on the target tree topology.

Graph operations. We consider multiple common operations in
social network which represent basic processing on graphs [40, 2].
We can �nd their counterparts in other graph applications such as
web graph analysis.
Network ranking (NR) is to generate a ranking on the vertices in
the graph using PageRank [31] or its variants.
Recommender system (RS) is to evaluate how the advertisement of
a certain product propagates in the network. The recommending
starts with a set of initial vertices who have used the product.
For each individual using the product in the network, i.e., the
useP roduct value of the individual is true, the recommender
system recommends the product to all his/her friends. Each person
can accept the product recommending with a probabilityp.
Triangle counting (TC). Previous studies [40] show that the amount
of triangles in the social network of a user is a good indicator of the
role of that user in the social network. Triangle counting requires a
single iteration for propagation on the graph.
Vertex Degree Distribution (VDD) calculates the out-degree distri-
bution of a social graph.
Reverse Link Graph (RLG) is to process all the incoming edges
for the directed graph. The task is to reverse the source vertex and
destination vertex for each edge in the graph.
Two-hop Friends List (TFL) �nds the list of two-hop friends for
analyzing social in�uence spread, community detection and so on.
The ratio of the selected vertices is 10% in our experiments.

These graph operations have different characteristics to assess
different system aspects. VDD is a vertex-oriented tasks, and others



Table 1: The statistics of inner edge ratios with different
partition sizes

Number of partitions 128 64 32 16
Partition granularity (GB) 1 2 4 8
ier of our partitioning(%) 50.3 57.7 65.5 72.7

Figure 7: Performance improvement of bandwidth awareness
on graph partitioning over ParMetis.

are edge-oriented tasks. TFL has a heavy data transfer among
neighbor vertices, and NR has a relatively light data transfer.

Data sets.The data sets include a snapshot of the social network
in MSN collected in 2007 and synthetic graphs, each of which is
over 100GB. The social network used in this study contains 508.7
millions vertices and 29.6 billion edges. The number of edges in
the social network is almost �ve times as many as the largest one
in the previous study [21].

We generate synthetic graphs simulating small world phe-
nomenon. We �rst generate multiple small graphs with small-world
characteristics using an existing generator [6], and next randomly
change a ratio (pr ) of edges to connect these small graphs into a
large graph. The default value ofpr is 5%. We varied the sizes
of the synthetic graphs to evaluate the scalability of Surfer. The
default size is 100GB, with 408.4 million vertices and 25.9 billion
edges.

Metrics. We use two metrics for the time ef�ciency: the
response time and the total machine time, where the response time
is the elapsed time from submitting the job till its completion, and
the total machine time is the total time spent on the entire job on
all the machines involved. To understand the effectiveness of our
optimizations, we report two I/O metrics: the total network I/O and
the total disk I/O during the execution.

We run the same experiments for �ve times and report the
average execution time. The results across different runs are mostly
stable in our simulation. We obtain similar results for the real graph
and synthetic graphs. We mainly present our evaluation results
on the real-world social network, and the results for parametric

Figure 8: Performance improvement of bandwidth awareness
on graph partitioning over ParMetis on varying T2(2; 1).

studies on the synthetic graphs. We report the results for single
iteration only, unless speci�ed otherwise. Also, the reported results
are mainly from the local cluster, and the results for Amazon EC2
are presented in Section 4.6.

4.2 Results on Partitioning
Partitioning quality. We �rst investigate how the partition size

affects the quality of partitioning. We quantify the partitioning
quality with the inner edge ratio,ier = ie

j E j , whereie and jE j
are the number of inner edges and the total number of edges in the
graph. Table 1 shows theier values and the partition granularity
with the number of partitions varied. As we vary the number of
partitions from 16 to 128, the partition size decreases from 8GB
to 1GB, and theier ratio decreases from 72.7% to 50.3%. This
validates the monotonicity of graph partitioning: as the depth of
the partition sketch increases, the number of cross-partition edges
increases. Although the partition size at 4GB or 8GB provides
higher inner edge ratios, the graph partition and the intermediate
data usually cannot �t into main memory, and cause a huge amount
of random disk I/Os. Therefore, we choose 2GB as our default
setting, and divide the real graph into 64 partitions. We use this
setting for the real graph thereafter.

Performance improvement on graph partitioning. We next e-
valuate the effectiveness of our bandwidth aware graph partitioning
framework. We investigate the improvement on the elapsed time
of a well-known distributed graph partitioning software namely
ParMetis [30] onT2 andT3 when our framework is used, as shown
in Figure 7. Our framework has the same performance as ParMetis
onT1 .

On different network environments (T2 andT3), the bandwidth
aware graph partitioning framework achieves an improvement of
39–55% over ParMetis. ParMetis randomly chooses the available
machine for processing, without the awareness of the network
bandwidth unevenness. In contrast, due to the network perfor-
mance aware optimization, our framework effectively utilizes the
network bandwidth, and reduces the elapsed time of partitioning.
The performance improvement increases for the topologyT2 with
more levels or with more pods per level. This demonstrates the
effectiveness of the three design principles of an ef�cient graph
partitioning algorithm. Note, both techniques onT1 behave the
same, since every machine pair inT1 has almost the same network
bandwidth.

We further study the impact of different distributions of ma-
chines among pods. Figure 8 shows the performance improvement
of graph partitioning varying (x1 , x2) onT2(2; 1). As x1 increases
from 16 to 28, one pod has more machines and the network
bandwidth becomes more even among different machine pairs.
The performance improvement degrades. Whenx1 = 28 , the
performance improvement is around 10%. We observed similar
results on other network topologies.

4.3 Results on Graph Processing
We �rst study the impact of optimization techniques in the

execution in a single-iteration Surfer. We have studied the case
for multiple iterations, and obtained similar results. Tables 2 and 3
show the timing and I/O metrics on the applications onT1 . On
T1 , hierarchical combination degrades to the local combination
within individual graph partitions. We evaluate the impact of
hierarchical combination in the later experiment. We implement
these applications with Surfer in the following optimization levels.

O1. Surfer with graph partition storage distribution generated
from ParMetis, and no other optimizations.



Table 2: Response time and total machine time of applications onT1 (Seconds)
VDD RS NR RLG TC TFL

Res. Total. Res. Total. Res. Total. Res. Total. Res. Total. Res. Total.
O1 325 5523 592 9291 3421 48498 3815 47213 20125 156243 43245 607854
O2 325 5523 436 8954 2653 46823 3124 39212 17431 134091 38212 589967
O3 233 3658 518 7220 736 14278 2994 32140 5426 98645 77345 82529
O4 233 3658 273 5133 658 12872 2715 30173 3335 85568 6315 75657

Table 3: Disk and network I/O of applications onT1 (GB)
VDD RS NR RLG TC TFL

Network. Disk. Network. Disk. Network. Disk. Network. Disk. Network. Disk. Network. Disk.
O1 3 127 13 162 136 619 93 553 87 1325 2886 7087
O2 3 127 11 160 114 570 58 477 72 1202 2271 4908
O3 1 122 5 133 28 183 28 303 65 265 169 651
O4 1 122 5 132 27 181 25 263 61 255 138 618

O2. Surfer with storage according to the machine graph partition-
ing sketch, and no other optimizations.

O3. Surfer with local combination, but with graph partition
storage distribution generated from ParMetis.

O4. Surfer with local combination, with storage according to
machine graph partitioning sketch.

The difference between O1 and O2 as well as between O3
and O4 is the comparison between the ParMetis' graph partition
distribution and our bandwidth aware framework. The difference
between O1 and O3 as well as between O2 and O4 is to evaluate the
effectiveness of local combination in Surfer. Overall, we found O4
optimizes the performance dramatically. We make the following
observations on the optimizations on the topologyT1 .

First, comparing O1 with O2 and O3 with O4, we observed
that the bandwidth aware graph partitioning improves the over-
all performance. Without local combination, the performance
improvement is 3–17%. When both techniques are enabled,
the performance improvement is better, between 6% and 29%.
This measures the performance improvement of Surfer when
both optimization techniques enabled. OnT1 , the performance
improvement is contributed from the intra-machine locality, since
partitions with common ancestor nodes in the partition sketch
are stored on the same machine. Surfer schedules the execution
according to the partition sketch and takes advantage of such
locality. Since VDD is a vertex-oriented task, bandwidth aware
graph partitioning has little improvement.

Second, comparing O1 with O3 and O2 with O4, local com-
bination signi�cantly reduces the network I/O and disk I/O, and
contributes to the overall performance improvement. In speci�c,
the performance improvement is 22–86% on the ParMetis' graph
partition distribution, and 23%–87% on the storage distribution
according to the machine graph partitioning sketch.

Therefore, comparing O1 with O4, the storage distribution
and local combination are accumulative. Their combined perfor-
mance improvement is 30–85% and the combined network traf�c
reduction is 30–95% (except VDD), which also represents the
performance improvement of Surfer over the basic performance
with the partitioned graph. Among the applications in our
benchmark, the performance improvement for NR and TFL is
relatively high. Because these two applications generate huge
amounts of intermediate data, and local combination signi�cantly
reduces the data transfer, especially when the data distribution is
according to the bandwidth aware framework.

Figure 9: Impact of bandwidth aware partitioning on different
topologies

Figure 10: Performance comparison between MapReduce and
Surfer

Impact of hierarchical combination. We further investigate
the impact of hierarchical combination on different network
environments. We denote "Baseline 1" to be the baseline Surfer
with O3, and "Baseline 2" to be "Baseline 1" with the bandwidth
aware graph partitioning, without hierarchical combination. Thus,
the performance difference between Baseline 1 and Baseline 2
is the impact of bandwidth aware graph partitioning, and the
performance difference between Baseline 2 and Surfer (with full
optimizations) measures the impact of hierarchical combination
when bandwidth aware graph partitioning is enabled.

Figure 9 shows the performance of Surfer in comparison with
Baseline 1 and Baseline 2 onT2 andT3 . Bandwidth aware graph
partitioning signi�cantly improves the performance on different
network topologies, with an improvement up to 60%. With the
awareness of bandwidth unevenness, the hierarchical combination
further improves Baseline 2 by 10-12%.

We further study the impact of different distributions of ma-
chines among pods in those network topologies (Figures are omit-



Figure 11: Comparison of network ranking between
MapReduce and Surfer

ted). Generally, as one pod has more machines, the performance
impact of our graph partitioning framework degrades. Without
the knowledge of network topologies, the proposed graph parti-
tioning framework captures the network bandwidth unevenness for
improving the overall performance of graph processing. This is
consistent with the results on graph partitioning.

4.4 Comparisons with MapReduce
For the completeness of our study, we have compared Surfer

with MapReduce-based implementations. Figure 10 shows the
performance comparison between MapReduce and Surfer on the
applications. The MapReduce engine is built on top of Dryad [17].
Surfer is signi�cantly faster than MapReduce on most applications
(except VDD). In particular, the speedup on the response time is
between 1.7 to 5.8, which con�rms the importance of developing
graph-aware engines for large graph processing [29, 21].

We further study the performance comparison between MapRe-
duce and Surfer for network ranking under different simulated
topologies. Figure 11 shows the speedup (de�ned ast s

t m
, where

ts and tm are the response time for Surfer and MapReduce,
respectively). The MapReduce implementation does not have the
network bandwidth aware optimizations. Our network bandwidth
aware optimizations in Surfer further increase the performance
speedup over MapReduce onT2 andT3 .

4.5 Other System Features
Machine failure. Figure 12 shows the disk I/O rates of an

execution of the network ranking, where we intentionally kill a
machine at 235 seconds (as shown in Figure 12(a)). Upon detecting
the machine failure, Surfer decides to re-construct the machine
graph and to maintain the mapping from the partition sketch of
data graph to the partition sketch of machine graph. Two graph
partitions are replicated due to the replication protocol. When the
maintenance is �nished, Surfer immediately schedules the failed
task for re-execution. The re-execution happens in another machine
(shown in Figure 12(b)). Comparing the normal execution in
Figure 12(c), the entire computation with recovery �nishes in 723
seconds including a startup overhead of 10% over the normal
execution.

4.6 Results on Amazon EC2
We further study the network performance aware graph partition-

ing and graph processing on Amazon EC2. Figure 13 (a) shows
the performance improvement of our network bandwidth aware
optimization on graph partitioning, and Figure 13 (b) compares
the response time of NR with different approaches. We increase
the number of medium instances from 32 to 128 and meanwhile
increase the size of synthetic graphs from 25GB to 100GB. We
measure 100 times of each experiment on the same set of instances,
and report the average and the range for the elapsed time of

graph partitioning and processing. The variation is acceptable
in Amazon EC2. Due to the network bandwidth unevenness
in Amazon EC2, our network performance aware optimizations
improve both graph partitioning and processing, with 20–25%
performance improvement for graph partitioning and with 49%
and 18% performance improvement for NR over Baseline 1 and
2 respectively. This demonstrates the effectiveness of our network
performance aware optimizations in the public cloud environment.
We also performed the same experiment on other instances on
Amazon EC2 and observed similar results (�gures are omitted).

5. CONCLUSION
As data-intensive applications on large graphs become popular

in the cloud, the ef�ciency of large graph processing engines needs
to be carefully revisited. In this paper, we examine the unique
network environment in the cloud, and develop a bandwidth aware
graph partitioning framework to minimize the network traf�c in
partitioning and processing. We develop Surfer by extending
a system prototype following Pregel with the graph partitioning
framework. Our evaluation on the large real-world and synthetic
graphs shows the effectiveness of the bandwidth aware graph
partitioning and processing optimizations on Surfer. We expect
that our graph partitioning framework is applicable to other vertex-
oriented graph processing engines such as Trinity [35]. Our
future work is to explore monetary cost optimizations for graph
processing [38], and to investigate the performance of Surfer on
other network environments [14].

Acknowledgement
The authors would like to thank anonymous reviewers for their
valuable comments. The work of Rishan Chen, Xuetian Weng
and Xiaoming Li was partly supported by NSFC Grant 60933004
and SKLSDE-2010KF-03 of State Key Laboratory of Software
Development Environment at Beihang University. The work of
Bingsheng He was partly supported by SUG Grant M4080102.020
of Nanyang Technological University, Singapore.

6. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,

A. Silberschatz, and A. Rasin. Hadoopdb: an architectural
hybrid of mapreduce and dbms technologies for analytical
workloads.Proc. VLDB Endow., 2009.

[2] G. Adomavicius and A. Tuzhilin. Toward the next generation
of recommender systems: A survey of the state-of-the-art
and possible extensions.IEEE TKDE, 17(6):734–749, 2005.

[3] Apache Giraph.http://giraph.apache.org/.
[4] Apache Hama.http://hama.apache.org/.
[5] T. Benson, A. Akella, and D. A. Maltz. Network traf�c

characteristics of data centers in the wild. InIMC, 2010.
[6] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A

recursive model for graph mining. InFourth SIAM
International Conference on Data Mining, April 2004.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: a distributed storage system for structured
data. InOSDI, 2006.

[8] R. Chen, X. Weng, B. He, and M. Yang. Large graph
processing in the cloud. InProceedings of the 2010 ACM
SIGMOD International Conference on Management of data,
SIGMOD '10, pages 1123–1126, New York, NY, USA,
2010. ACM.



(a) Killed task (b) Recovery on another machine (c) Normal execution

Figure 12: Disk I/O rates rates over time for different executions of the NR

(a) Partitioning (b) NR

Figure 13: Network performance aware graph partitioning and NR on Amazon EC2 with the number of medium instances varied

[9] S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable
data store for transactional multi key access in the cloud. In
SoCC: ACM symposium on Cloud computing, 2010.

[10] J. Dean and S. Ghemawat. MapReduce: Simpli�ed data
processing on large clusters. InOSDI, 2004.

[11] B. Derbel, M. Mosbah, and A. Zemmari. Fast distributed
graph partition and application. InIPDPS, 2006.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google �le
system.SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[13] D. Gregor and A. Lumsdaine. The parallel bgl: A generic
library for distributed graph computations. InParallel
Object-Oriented Scienti�c Computing (POOSC), 2005.

[14] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a
scalable and fault-tolerant network structure for data centers.
SIGCOMM, 38(4), 2008.

[15] Hadoop.http://hadoop.apache.org/.
[16] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and

L. Zhou. Comet: batched stream processing for data
intensive distributed computing. InProceedings of the 1st
ACM symposium on Cloud computing, SoCC '10, pages
63–74, New York, NY, USA, 2010. ACM.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks.SIGOPS Oper. Syst. Rev., 41(3):59–72, 2007.

[18] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. Quincy: fair scheduling for distributed
computing clusters. InSOSP, 2009.

[19] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken. The nature of data center traf�c: measurements
& analysis. InIMC, 2009.

[20] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and
J. Leskovec. HADI: Fast diameter estimation and mining in
massive graphs with hadoop. Technical Report
CMU-ML-08-117, CMU, 2008.

[21] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A
peta-scale graph mining system - implementation and
observations. InICDM, 2009.

[22] G. Karypis and V. Kumar. Parallel multilevel k-way
partitioning scheme for irregular graphs. InSupercomputing,
1996.

[23] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs.SIAM J. Sci.
Comput., 20(1):359–392, 1998.

[24] G. Karypis and V. Kumar. A parallel algorithm for multilevel
graph partitioning and sparse matrix ordering.J. Parallel
Distrib. Comput., 48(1):71–95, 1998.

[25] B. W. Kernighan and S. Lin. An ef�cient heuristic procedure
for partitioning graphs.The Bell system technical journal,
49(1):291–307, 1970.

[26] S. Koranne. A distributed algorithm for k-way graph
partitioning. InEUROMICRO, 1999.

[27] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein. Distributed graphlab: a framework for
machine learning and data mining in the cloud.Proc. VLDB
Endow., 5(8):716–727, Apr. 2012.

[28] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. Hellerstein. Graphlab: A new framework for parallel
machine learning. InUAI, 2010.

[29] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. InSIGMOD, 2010.

[30] Metis.http://glaros.dtc.umn.edu/gkhome/views/metis/.
[31] L. Page, S. Brin, R. Motwani, and T. Winograd. The

pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, 1999.

[32] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg,
E. Gabriel, and J. J. Dongarra. Performance analysis of mpi
collective operations.Cluster Computing, 10(2):127–143,
June 2007.



[33] R. Power and J. Li. Piccolo: Building fast, distributed
programs with partitioned tables. InOSDI, 2010.

[34] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris,
P. Chhabra, and P. Rodriguez. The little engine(s) that could:
Scaling online social networks. InSIGCOMM, 2010.

[35] B. Shao, H. Wang, and Y. Li. The trinity graph engine.
Technical Report 161291, Microsoft Research, 2012.

[36] A. Trifunović and W. J. Knottenbelt. Parallel multilevel
algorithms for hypergraph partitioning.J. Parallel Distrib.
Comput., 68, May 2008.

[37] G. Wang and T. S. E. Ng. The impact of virtualization on
network performance of amazon ec2 data center. In
INFOCOM, 2010.

[38] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou.
Distributed systems meet economics: pricing in the cloud. In
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, HotCloud'10, pages 6–6, Berkeley, CA,
USA, 2010. USENIX Association.

[39] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi. Indexing
multi-dimensional data in a cloud system. InSIGMOD, 2010.

[40] H. T. Welser, E. Gleave, D. Fisher, and M. Smith. Visualizing
the signatures of social roles in online discussion groups.The
Journal of Social Structure, 2(8), 2007.

[41] W. Xue, J. Shi, and B. Yang. X-rime: Hadoop based large
scale social network analysis. InSCC, 2010.

[42] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving mapreduce performance in
heterogeneous environments. InOSDI, 2008.

[43] A. Zhou, W. Qian, D. Tao, and Q. Ma. DisG: A distributed
graph repository for web infrastructure (invited paper).
International Symposium on Universal Communication,
0:141–145, 2008.


