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ABSTRACT
Modern processor technologies have driven new designs and
implementations in main-memory hash joins. Recently, Intel
Many Integrated Core (MIC) co-processors (commonly known
as Xeon Phi) embrace emerging x86 single-chip many-core
techniques. Compared with contemporary multi-core CPUs,
Xeon Phi has quite di↵erent architectural features: wider
SIMD instructions, many cores and hardware contexts, as well
as lower-frequency in-order cores. In this paper, we experi-
mentally revisit the state-of-the-art hash join algorithms on
Xeon Phi co-processors. In particular, we study two camps of
hash join algorithms: hardware-conscious ones that advocate
careful tailoring of the join algorithms to underlying hard-
ware architectures and hardware-oblivious ones that omit
such careful tailoring. For each camp, we study the impact
of architectural features and software optimizations on Xeon
Phi in comparison with results on multi-core CPUs. Our ex-
periments show two major findings on Xeon Phi, which are
quantitatively di↵erent from those on multi-core CPUs. First,
the impact of architectural features and software optimiza-
tions has quite di↵erent behavior on Xeon Phi in comparison
with those on the CPU, which calls for new optimization and
tuning on Xeon Phi. Second, hardware oblivious algorithms
can outperform hardware conscious algorithms on a wide pa-
rameter window. These two findings further shed light on
the design and implementation of query processing on new-
generation single-chip many-core technologies.

1. INTRODUCTION
In computer architecture, there is a trend where multi-core

is becoming many-core. This in turn requires that there is a
need for serious rethinking on how databases are designed and
optimized in the many-core era [7, 6, 24, 11, 15, 26]. Recently,
Intel Many Integrated Core (MIC) co-processors (commonly
known as Xeon Phi) are emerging as a single-chip many-core
processors in many high-performance computing applications.
For example, today’s supercomputers such as STAMPEDE
and Tianhe-2 have adopted Xeon Phi for large-scale scien-
tific computations. Compared with other co-processors (e.g.,
GPUs), Xeon Phi is based on x86 many-core architectures,

thus allowing conventional CPU-based implementations to
run on it. Compared with current multi-core CPUs, Xeon
Phi has unique architectural features: wider SIMD instruc-
tions, many cores and hardware contexts, as well as lower-
frequency in-order cores. For example, an Xeon Phi 5110P
supports 512-bit SIMD instruction, and 60 cores (each core
with four hardware contexts and running at 1.05 GHz). More-
over, Intel has announced its plans for integrating Xeon Phi
technologies into its next-generation CPUs, i.e., Intel Knights
Landing (KNL) processors. There are a number of prelim-
inary studies on accelerating scientific applications on Xeon
Phi [23, 17, 20]. However, little attention has been paid to
studying database performance on Xeon Phi co-processors.

Hash joins are regarded as the most popular join algorithm
in main memory databases. Modern processor architectures
have been challenging the design and implementation of main
memory hash joins. We have witnessed fruitful research ef-
forts on improving main memory hash joins, such as on multi-
core CPUs [22, 8, 7, 6, 24], and GPUs [16, 13, 14, 18]. Various
hardware features interplayed with database workloads cre-
ate an interesting and rich space from simply tuning param-
eters to new algorithmic (re-)designs. Properly exploring the
design space is important for performance optimizations, as
seen in many previous studies (e.g., [7, 6, 24, 21, 16, 13, 14]).
New generation single-chip many-core architectures such as
Xeon Phi are significantly di↵erent to multi-core CPUs (more
details in Section 2). Therefore, there is a need to better
understand, evaluate, and optimize the performance of main
memory hash joins on Xeon Phi.

In this paper, we experimentally revisit the state-of-the-art
hash join algorithms on Xeon Phi co-processors. In particu-
lar, we study two camps of hash join algorithms: 1) hardware-
conscious [22, 7, 6]. This camp advocates that the best perfor-
mance should be achieved through careful tailoring of the join
algorithms to underlying hardware architectures. In order to
reduce the number of cache and TLB (Translation Lookaside
Bu↵er) misses, hardware-conscious hash joins often have care-
ful designs on the partition phase. The performance of the
partition phase highly depends on the architectural parame-
ters (cache sizes, TLB, and memory bandwidth). 2) hardware-
oblivious [8]. This camp claims that without a complicated
partition phase, the simple hash join algorithm is su�ciently
good and more robust (e.g., handling data skew).

This study has the following two major goals. The first goal
is to demonstrate through experiments and analysis whether
and how we can improve the existing CPU-optimized algo-
rithms on Xeon Phi. We start with the state-of-the-art par-
allel hash join implementation on multi-core CPUs1 as the

1http://www.systems.ethz.ch/node/334, accessed in 04/2014
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baseline implementation. While the baseline approach of-
fers a reasonably good start on Xeon Phi, we are still fac-
ing a rich design space from the interplay of parallel hash
joins and Xeon Phi architectural features. We carefully study
and analyze the impact of each feature on hardware conscious
and hardware oblivious algorithms. Although some of those
parameters have been (re-)visited in the previous studies on
multi-core CPUs, the claims of previous studies on those pa-
rameter settings need to be revisited on Xeon Phi. New archi-
tectural features of Xeon Phi (e.g., wider SIMD, more cores
and higher memory bandwidth) require new optimizations for
further performance improvements and hence we need to de-
velop a better understanding of the performance of parallel
hash joins on Xeon Phi.

The other goal of this study is to analyze the debate be-
tween hardware conscious and hardware oblivious hash joins
on the emerging single-chip many-core processors. Hardware
conscious hash joins have been traditionally considered to be
the most e�cient [22, 10, 9]. More recently, Blanas et al. [8]
claimed that hardware oblivious approach is preferred since it
achieves similar or even better performance when compared
to hardware conscious hash joins in most cases. Later, Balke-
sen et al. [6] reported that hardware conscious algorithms still
outperformed hardware oblivious algorithms in current multi-
core CPUs. While the implementation from Balkesen et al. [6]
can be directly run on Xeon Phi, many Xeon Phi specific op-
timizations have not been implemented or analyzed for hash
joins. The debate between hardware-oblivious and hardware-
conscious algorithms requires a revisit on many-core architec-
tures.

Through an extensive experimental analysis, our experi-
ments show two major findings on Xeon Phi, which are quan-
titatively di↵erent from those on multi-core CPUs.

First, the impact of architectural features and software op-
timizations on Xeon Phi is much more sensitive than those
on the CPU. We have observed a much larger performance
improvement by tuning prefetching, TLB, partitioning, etc,
on Xeon Phi than those on multi-core CPUs. The root cause
of this di↵erence is the architectural di↵erence between Xeon
Phi and CPUs interplayed with algorithmic behavior of hash
joins. We analyze the di↵erence with detailed profiling results,
and reveal the insights on improving hash joins on many-core
architectures.

Second, hardware oblivious hash joins can outperform hard-
ware conscious hash joins on a wide parameter window - thanks
to hardware and software optimizations in hiding the mem-
ory latency. With prefetching and hyperthreading, hardware
oblivious hash joins are almost memory latency free, omitting
the requirement of complicated tuning and optimizations in
hardware conscious algorithms.

To the best of our knowledge, this is the first systematic
study of hash joins on Xeon Phi. We believe that the insights
and implications from this study can shed light on further
research in query processing on next-generation single-chip
many-core processors.

The rest of the paper is organized as follows. We intro-
duce the background on Xeon Phi and state-of-the-art hash
join implementations in Section 2. Section 3 presents the de-
sign and methodology, followed by the experimental results
in Section 4. Finally, we have some discussions on future
architectures in Section 5 and conclude in Section 6.

2. BACKGROUND AND RELATED WORK
2.1 Background on Xeon Phi

Table 1: Specification of hardware systems used for evalua-
tion.

Xeon Phi 5110P Xeon E5-2687W
Cores 60 x86 cores 8 cores
Threads 4 threads/core 2 threads/core
Frequency 1.05 GHz/core 3.10 GHz/core
Memory size 8 GB 512 GB
L1 cache (32KB data cache

+ 32KB instruction
cache)/core

(32KB data cache
+ 32KB instruction
cache)/core

L2 cache 512 KB/core 256 KB/core
L3 cache NA 20 MB
SIMD width 512 bits 256 bits

In this work, we conduct our experiments on a Xeon Phi
5110P co-processor, with the hardware features summarized
in Table 1. As a single-chip many-core processor, Xeon Phi
encloses 60 single in-order replicated cores, and highlights the
512-bit SIMD vectors and ring-based coherent L2 cache ar-
chitecture. This model packs 8 GB of RAM with a maximum
memory bandwidth of 320 GB/sec. Utilizing these features is
the key to achieve high performance on Xeon Phi.

512-bit SIMD vector processing units (VPUs). Intel
Xeon Phi has 32 512-bit registers on each core. It is able to
process up to 16 single precision elements or 8 double preci-
sion elements in one cycle. Compared with the latest Intel
Xeon CPUs, the vector width is doubled from 256 bits to 512
bits. Besides, Xeon Phi also provides a few unique SIMD
primitives, such as scatter/gather. Utilizing SIMD VPUs ef-
ficiently is the key to deliver high performance on Xeon Phi
[23, 17].

Coherent L2 cache with ring interconnection. All L2
caches are coherent through the ring interconnection. When a
cache miss occurs on a core, the data on other cores’ L2 caches
are checked via the ring interconnection instead of causing a
cache miss directly. The L2 cache size is 512 KB per core, and
around 30MB in total. Since the memory latency is high (in
hundreds of cycles), data locality is important on the small
L2 cache.

Xeon Phi has other hardware characteristics that may af-
fect the algorithm design. 1) Hyperthreading. Each core
on Xeon Phi supports four hardware threads. 2) Thread
a�nity. This is the way of scheduling threads on underlying
cores, which a↵ects the data locality. 3) TLB page size.
This can be configured with either 4KB or 2MB (huge page).
The huge page can reduce the page faults. 4) Prefetching.
With higher memory bandwidth, Xeon Phi can support ag-
gressive prefetching capabilities including hardware and soft-
ware approaches. Hardware prefetching is enabled by default.

2.2 Hash joins
Memory stalls are the major performance bottleneck of

main memory hash joins [22]. Current hash join algorithms
can be broadly classified into two di↵erent camps [7, 6]. Hard-
ware oblivious hash joins have the rationale of keeping the
algorithm design and optimization simple. In contrast, hard-
ware conscious hash joins advocate careful tuning and tailor-
ing on algorithm designs and optimizations according to the
underlying hardware. Compared with hardware oblivious al-
gorithms, they have a fine tuned partitioning phase, in which
both relations are partitioned into the same number of smaller
partitions, each of which can fit into the cache.

2.2.1 Hardware Oblivious Join
The basic hardware oblivious join algorithm is simple hash

join algorithm (SHJ). It consists of two phases namely – build
and probe. A hash join operator works on two input relations,
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R and S. We assume that |R|  |S|. In the build phase, R is
scanned once to build a hash table. In the probe phase, all the
tuples of S are scanned and hashed to find the matching tuples
in the hash table. Recently, a parallel version of SHJ is devel-
oped on multi-core CPUs [8], which is named no partitioning
algorithm (NPO). In the previous study [8], NPO is shown
to be still better than current hardware conscious algorithms.
The key argument is that multi-core processor features such
as Simultaneous Multi Threading (SMT) and out-of-order ex-
ecution (OOE) can e↵ectively hide memory latency and cache
misses. We present more details on NPO.

Build phase. A number of worker threads are responsible
for building the shared hash table in parallel. Pseudo code for
the build phase is shown in Listing 1. In Line 2, the hash index
idx of the tuple is calculated using an inline hashing function.
The default HASH in our study is the radix-based hash func-
tion, which is widely used in the previous studies [8, 22]. In
the bucket chaining implementation, the hash bucket of the
corresponding idx is checked for a free slot. If a free slot is
found (Lines 4–7), the tuple is copied to this slot. Otherwise,
an overflow bucket ofb is created and the tuple is inserted to
this bucket (Lines 8–12). Note that, this paper illustrates the
algorithm in code lines for two reasons: firstly to o↵er readers
more and deeper understandings on the computational and
memory behavior of hash joins; secondly to have fine-grained
profiling studies at the level of code lines in the experiments
(e.g., in Section 3.1).

1 for(i=0; i < R->num_tuples; i++){
2 idx = HASH(R->tuples[i].key);
3 lock(bucket[idx]);
4 if(bucket[idx] IS NOT FULL){
5 COPY tuple to bucket[idx];
6 increment count in bucket[idx];
7 } else {
8 initialize overflow_bucket ofb;
9 bucket[idx]->next = ofb;

10 COPY tuple to ofb;
11 increment count in ofb;
12 }
13 unlock(bucket[idx]);
14 }

Listing 1: Build phase of NPO

Probe Phase. In probe phase, each tuple Si from relation
S is scanned. The same hash function as build phase is used
to calculate bucket indexes. The resultant bucket is probed
for a match. Due to the bucket chaining implementation,
the memory accesses are highly irregular. Manual software
prefetching is needed to hide the latency caused by irregular
memory accesses. We can manually prefetch a bucket which
will be accessed with a prefetching distance of PDIST itera-
tions ahead. To fetch this bucket, we need to first determine
the ID of the bucket and later issue the prefetch instruction
for prefetching. The code for probe phase with prefetching is
shown in Listing 2. Lines 3–6 show the code for prefetching.

1 int prefetch_index = PDIST;
2 for (i = 0; i < S->num_tuples; i++){
3 if (prefetch_index < S->num_tuples) {
4 idx_prefetch =
5 HASH(S->tuples[prefetch_index++].key);
6 __builtin_prefetch(bucket+idx_prefetch,0,1);
7 }
8 idx = HASH(S->tuples[i].key);
9 bucket_t * b = bucket+idx;

10 do {
11 for(j = 0; j < b->count; j++){
12 if(S->tuples[i].key == b->tuples[j].key)

13 ... // output a match
14 }
15 b = b->next;
16 } while(b);
17 }

Listing 2: Probe phase of NPO

2.2.2 Hardware Conscious Join
Hardware conscious hash joins have attracted much at-

tention by introducing a more memory e�cient partitioning
phase. Graefe et al. [12] introduced histogram based parti-
tioning to improve the hash join. Manegold et al. [22] intro-
duced radix partitioning hash join in order to exploit cache
and TLB for optimizing the partitioning based hash join algo-
rithms. Kim et al. [19] further improved the performance of
the radix hash join by focusing on task management and queu-
ing mechanism. Balkesen et al. [6] experimentally showed
that the architecture-aware tuning and tailoring still matter
and hash join algorithms must be carefully tuned according
to the architectural features of modern multi-core processors.

In this study, we focus on two state-of-the-art partitioned
hash join algorithms [6, 7]. The first one is the optimized
version of bucket chaining based radix join algorithm (PRO),
and the second one is parallel histogram based radix join al-
gorithm (PRHO). Both algorithms are radix join algorithm
variants, and have similar phases: partition, build and probe.

1 //Step 1: Calculate Histogram
2 for(i = 0; i < num_tuples; i++){
3 uint32_t idx = HASH(rel[i].key);
4 my_hist[idx] ++;
5 }
6 //Step 2: Do prefix sum
7 //Step 3: Compute output address for partitions
8 //Step 4: Copy tuples to respective partitions
9 for(i = 0; i < num_tuples; i++ ){

10 uint32_t idx = HASH(rel[i].key);
11 tmp[dst[idx]] = rel[i];
12 ++dst[idx];
13 }

Listing 3: Partitioning phase of PRO/PRHO
PRO. PRO has three phases: partition, build and probe.
Partition. A relation is divided equally among all worker

threads for partitioning. The partitioning can have multiple
passes. To balance the gain and overhead of partitioning, one
or two passes are considered in practice. In the first pass of
partitioning, all the worker threads collaborate to divide the
relation into a number of partitions in parallel. In the sec-
ond pass of partitioning (when enabled), the worker threads
work independently to cluster the input tuples from di↵erent
partitions.

A typical workflow of partitioning for either the first or the
second pass is shown in Listing 3. rel is the chunked input
relation (R or S) that the worker thread receives and needs
to be partitioned. An array structure dst[] keeps track of
the write locations for next tuple for each of the partitions.
Partitioning phase starts with the calculation of the histogram
of the tuples assigned to each thread. In Steps 2 and 3, the
threads either collaboratively or independently determine the
output write location for each partition, depending on which
pass the partitioning is at. Finally, in Step 4 (Lines 9–13), the
tuples are copied to respective partitions determined through
hashing function.

Build phase. PRO uses a “bucket chaining” approach to
store the hash table. In Listing 4, in Line 5, the next array
helps to keep track of the previous element whose tuple index
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Table 2: Profiling results for the baseline implementation
(PRO)

Part. 1 Part. 2 Build +
Probe

Recommended
value [5]

CPI 9.71 4.4 6.53 < 4
L1 hit % 98.2 97.6 70 > 95
ELI 1062 636 88 <145
L1 TLB hit % 92.4 92.9 99.6 >99
L2 TLB hit % 95.1 100 100 >99.9

is hashed into the cluster. In Line 6, the bucket variable
keeps track of the last element that is hashed into the current
cluster. Note that indexes stored in these arrays are used for
probing.

1 next = (int*) malloc(sizeof(int) * numR); //numR is
the input relation cardinality.

2 bucket = (int*) calloc(numR, sizeof(int));
3 for(i=0; i < numR; ){
4 idx = HASH(R->tuples[i].key);
5 next[i] = bucket[idx];
6 bucket[idx] = ++i;
7 }

Listing 4: The build phase of PRO
Probe Phase. PRO scans through all the tuples in S and

then calculates the hash index of each tuple HASH(Si). De-
pending on HASH(Si), we visit the HASH(Si) bucket that
is created from relation R in build phase to find a match for
Si. In PRO, these buckets can be accessed and di↵erentiated
using bucket[] and next[] arrays.

1 for(i=0; i < S->num_tuples; i++ ){
2 idx = HASH(S->tuples[i].key);
3 for(hit = bucket[idx]; hit>0; hit=next[hit-1])
4 if(S->tuples[i].key == R->tuples[hit-1].key)
5 ... // output a match
6 }

Listing 5: The probe phase of PRO
PRHO. PRHO and PRO have same design for partition-

ing, however, PRHO di↵ers in build and probe phases. Com-
pared with PRO, PRHO reorders the tuples in the build phase
to improve the locality. For more details, we refer readers to
the previous studies [6, 7].

3. DESIGN AND METHODOLOGY
Since Xeon Phi is based on x86 architectures, existing multi-

core implementations can be used as baseline for further per-
formance evaluation and optimization. In this study, the
baseline implementation is adopted from the state-of-the-art
hash join implementations [6, 7]. We start with profiling re-
sults to understand the performance of running those CPU-
optimized codes on Xeon Phi. Through profiling, we identify
that memory stalls are still a key performance factor for the
baseline approach on Xeon Phi. This is because, the base-
line approach does not take into account many architectural
features of Xeon Phi. Therefore, we enhance the baseline
implementations with Xeon Phi aware optimizations such as
SIMD vectorization, prefetching and thread scheduling. In
the remainder of this section, we present the profiling results
and detailed design and implementation of our enhancement.

3.1 Profiling
We have done thorough profiling evaluations of the base-

line implementations (NPO, PRO and PRHO) on Xeon Phi.
More details on the experimental setup are presented in Sec-
tion 4. Table 2 shows the profiling results under the default
join workload for PRO. PRO embraces 2-pass partitioning

Table 3: The top five time consuming code lines in PRO
Code line Time contribution
Line 11 in Partition (Listing 3) 40%
Line 3 and 10 in Partition (Listing 3) 22.4%
Line 3 in Probe (Listing 5) 13%
Line 4 in Probe (Listing 5) 9.6%
Line 5 in Build (Listing 4) 3%

Table 4: Optimizations on enhancing the baseline approach.
Xmeans high importance for optimizations, and - means
“moderate”.

mNPO mPRO mPRHO
SIMD - X X
Huge Pages - X X
Prefetching X X X
Software Bu↵ers - X X
Thread scheduling X X X
Skew handling - X X

(denoted as Part. 1 and Part. 2). For almost all the counters,
PRO has much worse values than the recommended values [5].
That means, the data access locality on caches and TLB is
far from ideal, and further optimizations are required on Xeon
Phi. We observed similar results for NPO and PRHO.

We further perform detailed profiling at the level of code
lines, which can give us more understanding on the key perfor-
mance insights of hash joins. Table 3 shows the top five time
consuming code lines in PRO. We find that random mem-
ory accesses are the most time consuming part of PRO. For
example, the random memory accesses in Line 11 of the par-
tition phase contribute to over 40% of the total running time
of PRO. The second most significant part is hash function
calculations. Generally, we have similar findings on NPO and
PRHO.

Our profiling results reveal the performance problems/bot-
tlenecks of the baseline approach on Xeon Phi. We develop
a series of techniques to optimize the baseline approach on
Xeon Phi. Particularly, we leverage 512-bit SIMD intrinsics to
improve the hash function calculations and memory accesses,
and further adapt software prefetching and software managed
bu↵ers to reduce the memory stall. We study the impact of
huge pages to reduce TLB misses, and thread scheduling and
skew handling for balancing the load among threads. Since
Xeon Phi is a single-chip many-core processor, load balanc-
ing is also an important consideration. We denote mNPO,
mPRO and mPRHO as our implementations on Xeon Phi af-
ter enhancing the baseline approach (NPO, PRO, and PRHO,
respectively) with those optimizations.

The sensitivity of various optimization techniques on our
implementations is summarized in Table 4.

3.2 Xeon Phi Optimizations
Due to the space limitations, we focus our discussion on

PRO as the optimizations have been equally applicable to
NPO and PRHO. We present our implementation for columns
with 32-bit keys and 32-bit values as an example to better
describe the implementation details. Similar mechanisms can
be applied to columns with other widths.

3.2.1 SIMD Vectorization
Xeon Phi o↵ers 512-bit SIMD intrinsics, which is in con-

trast with current CPU architectures with no more than 256-
bit SIMD width. Due to the loop dependency, many code
lines that are important to the overall performance cannot be
automatically vectorized by Intel ICC compiler. For example,
Lines 2–5 in Listing 3 cannot be automatically vectorized by
ICC compiler.
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We manually vectorize the baseline approach by explicitly
using the Xeon Phi 512-bit SIMD intrinsics. Our manual vec-
torization has two major kinds of code modification. First, we
apply SIMD to perform hash function calculations for multi-
ple keys in parallel. Given 512-bit SIMD width, we are able
to calculate hash functions for 16 32-bit keys in just a few
instructions. Second, we use the hardware supported SIMD
gather intrinsic to pick only keys from the relation. Given
the 512-bit support, 512-bit of data (e.g., 16 tuples of 32 bits
each) is gathered from memory in a single call of load intrin-
sic. Additionally, we exploit the SIMD vector units during
build and probe phases for writing and searching tuples in
groups of 16 for 32-bit keys or 8 for 64-bit keys. The code to
process 32-bit keys is shown in Lines 12–14 in Listing 6 and
in Lines 9–11 in Listing 7 (presented in Section 3.2.2).

With SIMD, we are able to increase the number of tuples
processed per cycle. Additionally, we also exploit other op-
timization techniques such as loop unrolling and shift opera-
tions to increase the e�ciency of SIMD executions.

3.2.2 Prefetching
To hide data access latency, Xeon Phi supports aggressive

prefetching capabilities to hide the long memory latency with
useful computation (e.g., hash function calculations). Due to
random memory access patterns, hardware prefetching is not
su�cient, and software prefetching is imperative to manually
prefetch the data in advance. Software prefetching has been
studied on the CPU [10, 6]. Note, CPU cores are out-of-
order and instruction parallelism can hide memory latency to
a large extent. In contrast, Xeon Phi features in-order core
designs, which are more prone to memory latency.

The code for the build phase and probe phase of mPRO
with software prefetching is shown in Listing 6 and Listing 7
respectively. The key parameter is the prefetching distance
(PDIST). If the distance is too large, the cache may be pol-
luted. If the distance is too small, memory latency may not
be well hidden. We analyze the vectorized code to determine
an appropriate prefetching distance as follows.

1 // Points to S->tuples in case of probe phase
2 int *lRel=(int32_t*)R->tuples;
3 const __m512i voffset = _mm512_set_epi32(30, 28, 26,

24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 0);
4 for(i=0; i < (numR - (numR%16)); ){
5 // Prefetch to L1
6 _mm_prefetch((char*)(lRel+PDIST),_MM_HINT_T0);
7 _mm_prefetch((char*)(lRel+PDIST+16),_MM_HINT_T0);
8 // Prefetch to L2
9 _mm_prefetch((char*)(lRel+PDIST+64),_MM_HINT_T1);

10 _mm_prefetch((char*)(lRel+PDIST+80),_MM_HINT_T1);
11 // SIMD gather
12 key = _mm512_i32gather_epi32(voffset,

(void*)lRel, 4);
13 key = simd_hash(key,MASK,NR);
14 _mm512_store_epi32((void*)extVector, key);
15 #pragma prefetch
16 for(int j=0;j<16;j+=1){
17 next[i] = bucket[extVector[j]];
18 bucket[extVector[j]] = ++i;
19 }
20 lRel+=32;
21 }

Listing 6: Build phase of mPRO
With the 32-bit keys, each iteration in Listing 6 requires ac-

cesses to di↵erent cache lines. This is due to random accesses
in Line 18. Suppose one cache line can hold only 8 tuples. In
order to process 16 tuples in Line 14, there is a need to bring
two cache lines to execute the gather instruction. Therefore,

at the beginning of each iteration, we issue two prefetching
instructions as seen in Lines 6 and 7. One cache line is re-
quired to service next[] variable in Line 18. Due to in-order
nature of Xeon Phi, it keeps waiting for these cache line re-
quests, without OOE. Therefore, we set the PDIST value to
64, and prefetch two tuples ahead in L1 cache and 4 tuples
ahead in L2 cache, as shown in Lines 7–11 in Listing 6. We
can similarly determine the suitable PDIST value in Listing
7.

1 for(i=0; i < numS-(numS%16); ){
2 //Prefetch to L1
3 _mm_prefetch((char*)(lRel+PDIST),_MM_HINT_T0);
4 _mm_prefetch((char*)(lRel+PDIST+16),_MM_HINT_T0);
5 //Prefetch to L2
6 _mm_prefetch((char*)(lRel+PDIST+64),_MM_HINT_T1);
7 _mm_prefetch((char*)(lRel+PDIST+80),_MM_HINT_T1);
8 //SIMD gather
9 key=_mm512_i32gather_epi32(voffset,(void*)lRel,4);

10 key = simd_hash(key, MASK, NR);
11 _mm512_store_epi32((void*)extVector, key);
12 for(int j=0;j<16;j+=1) {
13 int hit = bucket[extVector[j]];
14 for(; hit > 0; hit = next[hit-1]){
15 if(*(p+(j<<1)) == Rtuples[hit-1].key)
16 output (i, j); //find a match
17 }
18 i++;
19 }
20 lRel += 32;
21 }

Listing 7: Probe phase of mPRO

3.2.3 Software Managed Buffers for Partition Phase
Our implementation can be configured to run either 1 or 2-

pass partitioning. Each partitioning pass is comprised of two
steps. First, the prefix sum histogram is calculated to deter-
mine the base memory addresses of each partition. Second,
re-ordering of tuples is performed for appropriate partitions
depending on calculated hash values. SIMD vectorization and
software prefetching are implemented. The key performance
bottleneck in this phase is the excessive memory accesses.

We try to tackle this problem with software managed bu↵ers.
In particular, the basic idea is to use many software managed
cache line sized bu↵ers for writes. We note that this method
was adopted by various authors previously. In contrast with
the previous studies that leverage this mechanism to reduce
the TLB pressure [6, 25, 7], our main goal is to hide cache ac-
cess latency for the in-order core design of Xeon Phi. The size
of the bu↵er is set to be cache line size of Xeon Phi. Suppose
the tuple size of our implementation is 8 bytes. We can store
8 tuples in one such bu↵er and write 8 tuples in one cache line
when the bu↵er is full. We adopt software managed bu↵ers
only for first pass of partitioning phase. In the second pass,
the overhead of managing these bu↵ers outweighs the benefit
in our experiments.

3.2.4 TLB and Huge Pages
Xeon Phi TLB can be used either in 4 KB or 2 MB page

configuration. The latter one is generally called as huge pages.
When huge pages are enabled, a TLB can map to 256 MB of
memory compared to just 256KB memory when it is disabled.
Enabling huge pages can reduce page faults significantly on
Xeon Phi.

3.2.5 Thread Affinity Scheduler
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Since Xeon Phi has much more cores than CPUs, we study
the impact of thread a�nity schedulers. OpenMP basically
supports three broad approaches to assign threads to cores –
Compact, Scatter and Balanced. Suppose there areNt threads
(with ID 0, 1, ..., Nt � 1) and Nc (with ID 0, 1, ..., Nc � 1)
cores in total, and each core supports nh hyperthreads per
core. Suppose Nt is a multiple of Nc. (1) Compact assigns
threads as near as possible to each other. Thread i is as-
signed to core bi/nhc. (2) Scatter separates the threads as far
as possible, and allocates threads in a round-robin manner.
Thread i is assigned to core bi%Ncc. (3) Balanced allocates
the threads evenly across the cores. Consecutive threads are
assigned close to each other. Thread i is assigned to core
b i
Nt/Nc

c.
The existing implementations assign the threads either through

a CPU mapping text file or in a compact way without taking
into the consideration of the load distribution among cores.
In this study, we implement the three schedulers (Compact,
Scatter and Balanced) with pthreads in our system. This
also avoids a tedious process of maintaining a long list of 240
threads and its physical core a�nity using a text file.

3.2.6 Skew Handling
As discussed earlier, load balancing is a key issue for many-

core processors like Xeon Phi. Balkesen et. al[6] adopted a
fine-grained task decomposition method to handle load im-
balance in skewed relations. In case of skewed dataset, some
of the partitions are much larger than others. Finer-grained
decomposition of task addresses this problem by further parti-
tioning the larger partitions. Hence, we should appropriately
determine the threshold size of the partitions that must be
further partitioned. In this paper, we modify the model to
account for average work load per thread. Whenever the load
of a particular thread crosses X times than the average load,
the extra load is assigned to a free worker thread. Here, X
is the threshold parameter. We experimentally determine the
value of X, since it depends on the architecture and workload
features.

4. EVALUATION
This section presents our experimental results on Xeon Phi,

in comparison with the results on CPUs.

4.1 Experimental Setup
Hardware platform. We conduct our experiments on a

server equipped with two Intel Xeon E5-2687W CPUs (de-
noted as CPU) and Xeon Phi co-processor 5110P (denoted
as Xeon Phi). The hardware specifications of CPU and Xeon
Phi are shown in Table 1 in Section 2. By default, only one
CPU or one Xeon Phi is used for experiments, unless specified
otherwise.

Workloads. We adopt the same workload as the previous
studies [6], [19] Specifically, we perform the equi-join queries
on two relations R and S (in the form of “SELECT R.payload,
S.payload FROM R, S WHERE R.key=S.key”). Every tuple
in S has exactly one matching tuple in R. Table 5 summa-
rizes the default setting for two workload queries with 32-bit
and 64-bit keys. This workload is denoted as random work-
load. Additionally, we perform experiments on skewed data
sets with zipf distribution with the same relation sizes as the
random workload.

Implementation details. Our implementation is devel-
oped using C and Pthreads, and compiled with optimization
level 3 using the Intel compiler ICC 13.1.0. Additionally, we
perform performance profiling using Intel VTune Amplifier

Table 5: Default settings for queries with 32-bit and 64-bit
keys

w/ 64-bit keys w/ 32-bit keys
Size of key/payload 8/8 bytes 4/4 bytes

Size of R 64 million tuples 128 million tuples
Size of S 64 million tuples 128 million tuples

Total size of R 977 MiB 977 MiB
Total size of S 977 MiB 977 MiB

XE 2013. We mainly investigate the following metrics, includ-
ing L1 cache hit ratio, estimated latency impact (denoted as
ELI), L1 and L2 TLB hit ratio. ELI is a rough approximation
of the number of clock cycles devoted to each L1 cache miss
[5]. This gives an indication of whether the L1 data misses
are hitting in the L2 cache e↵ectively. All implementations
run on Xeon Phi as native programs. This allows us to focus
on its single-chip many-core features.

Previous studies [8, 7, 6] have mostly excluded the cost of
materializing the matching result of the join. In our study, the
measured time includes the time of outputting the matching
result in the format of <R.payload, S.payload>.

Evaluation plan. We first evaluate and analyze Xeon Phi
optimizations on hardware oblivious and hardware conscious
algorithms separately. We quantitatively study how the im-
pact of optimizations and tunings on Xeon Phi are di↵erent
from those on CPU. Next, we compare the performance of
the join algorithms with size ratio and skew factor varied. By
default, all our experiments are done to evaluate the query
with 32-bit keys of random workloads (without data skew),
unless specified otherwise.

4.2 Performance Study on NPO/mNPO
Thread scheduling. We first study the thread schedul-

ing for NPO and mNPO, which includes thread a�nity and
hyperthreading. Figure 1 shows the results when the number
of threads is varied. We use vertical lines (“HT boundary”)
to indicate where hyperthreading starts for the balanced and
scatter thread a�nity schedulers. For the compact scheduler,
hyperthreading is enabled for all points in the figure. We
make the following three observations.

The first observation is for mNPO on Xeon Phi (Figure
1(a)), it achieves the best performance in the balanced sched-
uler as it is able to utilize all cores as well as cache local-
ity in the most e�cient manner. Due to poor cache uti-
lization among threads in the scatter scheduler, mNPO per-
forms slightly worse in the scatter scheduler than the bal-
anced scheduler. Moreover, the compact scheduler performs
the worst as it cannot utilize all cores when there are fewer
than 240 threads. At 240 threads, the compact and balanced
schedulers have almost the same best performance. This is
because they do not di↵er in their thread distribution method-
ology on cores when all threads are used. On the other hand,
the scatter scheduler achieves worst performance when there
are 240 threads. We use the balanced scheduler with 240
threads as the default setting for thread scheduling, unless
specified otherwise.

The second observation is on the performance scalability us-
ing hyperthreading on Xeon Phi. In Figure 1(a), when there
are two threads per core (120 threads in total) the perfor-
mance is improved by 27%, as compared to the case when
there is only one thread per core (60 threads in total). Fur-
thermore, the performance is improved by 13% when the num-
ber of threads per core increases from two to four. This in
turn indicates that the hyperthreading is able to improve the
performance of mNPO on Xeon Phi. This is mainly because
hyperthreading hides the memory access latency e�ciently.
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vary the number of threads forn NPO and mNPO for 32‐bit workload, record nsec per output tuple
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150 6.6586667 5.572 5.3806667
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210 4.8507619 4.8461905 4.9374286
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Figure 1: E↵ect of thread scheduling for mNPO on Xeon Phi
and NPO on CPU

The third observation is that the thread a�nity has little or
no performance impact on the CPU, when there are more than
8 threads. With fewer than 8 threads, there are unused CPU
cores in the compact scheduler. Compared with Xeon Phi, the
CPU has lower memory access latency and supports OOE
execution. These di↵erences o↵set the performance impact
of di↵erent thread-a�nity schedulers. As a result, the mNPO
performance on Xeon Phi is much more sensitive to the thread
a�nity than NPO on the CPU.

Prefetch distance. Figure 2 shows the performance of
mNPO/NPO with the prefetch distance varied on Xeon Phi
and CPU respectively. From Figure 2(a) we observe that
setting the prefetch distance at two on Xeon Phi boosts up
the performance by a factor of 2 when compared with the
implementation without software prefetching (i.e., prefetch
distance is 0 in Figure 2(a)). On the other hand, compar-
ing Figure 2(a) with Figure 2(b), we observe that the perfor-
mance changes are di↵erent on the Xeon Phi and CPU. On
the CPU, prefetch distance is less sensitive as long as it is
larger than six. In contrast, on the Xeon Phi (Figure 2(a)),
the performance is significantly improved when the prefetch
distance increases from 0 to 1, but slightly reduced when the
prefetch distance becomes further larger. This suggests that
the prefetch distance should be carefully tuned for mNPO on
Xeon Phi. Also, Xeon Phi allows software prefetching into
L1/L2 caches.
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Figure 2: Performance impact of prefetch distance for mN-
PO/NPO

Other techniques. As summarized in Table 4 in Section
3, other techniques do not help improve the performance of
mNPO on Xeon Phi significantly. The corresponding figures
are omitted due to page limits. Although SIMD vectorization
does help improve the SIMD utilization, the reduction in the
overall running time is very small. On the other hand, soft-
ware managed bu↵ers and huge pages do not improve the per-
formance of mNPO, given that hyperthreading coupled with
tuned prefetching distance e↵ectively hides memory latency.

Cache e�ciency. We summarize the cache e�ciency in
Table 6. Our optimization on prefetching helps improve the
performance significantly and the algorithm is able to achieve

Table 6: Cache e�ciency of mNPO on Xeon Phi.
L1 hit % ELI L1 TLB hit % L2 TLB hit %

Build 99.9 0 87.4 94.8
Probe 100 0 89.5 95.9

near 100% L1 hit and almost zero latency in accessing L2
cache (as ELI equals to zero).

4.3 Performance Study on Radix Join
Thread scheduling. Figure 3 shows the performance im-

pact of di↵erent thread a�nity schedulers for mPRO and
mPRHO on Xeon Phi. The results on the CPU are omit-
ted as the thread a�nity has little or no performance impact
on the CPU (they are similar to NPO on the CPU in Fig-
ure 1(b)). Figure 3 shows that the balanced scheduler is the
best choice among the three. This can be attributed to even
distribution of workload across physical cores. The compact
scheduler performs very poorly as some of the physical cores
may remain free while others can become overloaded. The
scatter scheduler is in between as nearby threads do not share
cache.

vary the number of threads, for 32 bit workload, record nsec per output tuple
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Figure 3: E↵ect of thread scheduling for radix hash join on
Xeon Phi.

From Figure 3, we further analyze the scale-up of mPRO
and mPRHO with hyperthreading. We focus on the bal-
anced scheduler that achieves the best thread a�nity. mPRO
achieves the best performance when three threads are running
per core. However, mPRHO achieves the maximum perfor-
mance when four threads are running per core. This indicates
that mPRHO su↵ers more from memory stalls, as observed
in the profiling results. We use this configuration for default
thread scheduling for mPRO and mPRHO, unless specified
otherwise.

Radix configuration. We investigate the performance
impact of radix configuration (the number of partition passes
and the number of radix bits) for mPRO and mPRHO. Figure
4 and Figure 5 show the performance with varying number of
bits on Xeon Phi and CPU, respectively. On the CPU (Figure
5), 2-pass partitioning first becomes more e�cient with the
number of radix bits increased, and then its performance is
stable when the numbers of radix bits are larger than 11 and
14 for PRO and PRHO, respectively. For single-pass parti-
tioning, the performance has a concave trend and achieves the
best performance at 13 radix bits for both PRO and PRHO.
In contrast, very di↵erent trends are observed on Xeon Phi
(Figure 4). Firstly, 2-pass partitioning is better than 1-pass
partitioning in most cases. Secondly, both 1-pass and 2-pass
partitioning are much more sensitive to radix bits compared
to those on the CPU.

The number of radix bits is a key tuning parameter on
both the Xeon Phi and the CPU. Still, misconfiguration of
this parameter can be much more costly on Xeon Phi. In
case of large partitions, more tuples are hashed into the same
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Figure 4: Performance impact of various radix configuration
for radix hash join on Xeon Phi

bucket. This results in fewer random accesses although more
time is spent in the probe phase. Therefore, we need to find
a sweet spot between the two competing factors. For 1-pass
the radix bits should be set to 13, and for 2-pass the radix
bits needs to be set to 15 on Xeon Phi.
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Figure 5: Performance impact of various radix configuration
for radix hash join on CPU

Huge pages. Figure 6 shows the performance impact of
huge pages on Xeon Phi. Figure 6(a) shows that with the
huge page enabled, the overall performance is improved by
around 15% for both mPRO and mPRHO on Xeon Phi. We
further investigate the cache hit ratio for L2 TLB. Figure 6(b)
shows that for the partition pass 1 (Part. 1 in Figure 6(b)),
the L2 TLB hit ratio is improved from 95.4% to 99.8%, which
in turn confirms the data locality improvement by enabling
huge pages.
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Figure 6: Performance impact of huge page for radix join on
Xeon Phi

Prefetch distance. Figure 7(a) shows that, in comparison
with the default prefetch distance (10) in the baseline imple-
mentation, the optimized prefetch distance improves the per-
formance by 4.7% and 3.1% for mPRO and mPRHO, respec-
tively. We further investigate the estimated latency impact
(ELI) for mPRO in Figure 7(b). It shows that the ELI num-
bers of our optimized implementation are in or close to the
range of ideal value (< 145 [5]). However, with the prefetch

distance in the baseline implementation, it introduces consid-
erable memory latency. This also demonstrates the di↵erence
on tuning the prefetch distance between Xeon Phi and CPU.

0

2

4

6

8

mPRO mPRHO

ns
ec
 p
er
 o
ut
pu

t t
up

le Opt.
Default prefetch

(a) Performance

190 175
55

777

306

67

0

200

400

600

800

1000

Part 1 Part 2 Join

E
st

. l
at

en
cy

 im
pa

ct

Opt. Prefetch default

(b) ELI for mPRO
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Software managed bu↵ers. Figure 8(a) shows that with-
out the software managed bu↵ers, the numbers of nsec per
output tuple increase from 4.63 to 5.75 for mPRO, and corre-
spondingly from 5.04 to 6.16 for mPRHO. We also investigate
the cache e�ciency in Figure 8(b). It shows that without the
software managed bu↵er, the partition passes introduce sig-
nificant memory latency with the ELI of 1630 and 261 for
pass 1 and pass 2, respectively.
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Skew handling. As discussed in Section 3, we need to
tune the skew handling model to gain maximum performance
on Xeon Phi. The entire algorithm can be split up into the
following five sub-tasks – T1: histogram calculation for R,
T2: histogram calculation for S, T3: partitioning pass one,
T4: partitioning pass two, T5: join phase. We show the
coe�cient of variance among threads for two di↵erent cases
– skew handling in the previous study [6] when running on
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Table 7: E↵ect of various optimization techniques for radix
join on Xeon Phi (nsec per output tuple)

mPRO mPRHO
Best achieved 4.63 5.04
Balanced scheduler disabled 5.52 NA
Huge pages disabled 5.48 5.92
SIMD disabled 5.39 5.84
Prefetching(default distance) 4.82 4.23
Software managed bu↵ers disabled 5.75 6.16

Original code (all disabled) 8.71 8.90

Xeon Phi (old), and our optimized model (opt) in Figure 9.
The skew factor in the zipf distribution is set to 1.5.

Figure 9(a) shows the coe�cient of variation for the exe-
cution time of each thread, which indicates the average time
di↵erence among threads. This shows that the workload im-
balance among threads mainly happens in T5 while work-
load in other tasks is equally distributed among the worker
threads. An average time di↵erence of less than 2% is ob-
served for task T1 to T4. Note that, T1, T2, T3 and T4
together are the build phase. If we sum up their elapsed time
for each thread, we observe that the coe�cient of variation
among threads for the build phase is around 0.5%. This indi-
cates that the workloads are well balanced for the build phase.
In task T5, depending on the skew, the size of the partition
can vary greatly. In case of original source code (old), we
observe that the coe�cient of variation is 1.1.

On the other hand, after optimizing the threshold param-
eter X (opt), the workload is again balanced equally among
threads. Our experiments (Figure 9(b)) suggest that further
partitioning is required only when the size of partition be-
comes 4 times as the average size of the partition. In Figure
9(b), we show that the parameter X is sensitive on Xeon
Phi and can cause big performance penalty, if misconfigured.
However, such a trend is not observed on the CPU.

Summary of optimization techniques. Table 7 sum-
marizes the performance impact for various optimization tech-
niques on Xeon Phi. To study the impact of individual tech-
niques, we disable the technique from the implementation
with full optimizations enabled (“best achieved”). Among all
techniques, software managed bu↵ers turns out to be the most
important optimizations, with the reduction of over 1 nsec per
output tuple. This signifies the importance of memory stall
reductions for hardware conscious hash joins. Additionally,
this table also indicates that mPRO outperforms mPRHO on
Xeon Phi (4.63 versus 5.04 nsec per output tuple).

Cache e�ciency. We summarize the cache e�ciency in
Table 8. This shows that mPRO achieves excellent cache
e�ciency on Xeon Phi. L1 cache, L1 TLB and L2 TLB all
achieve optimal or near optimal hit ratio. For ELI, they have
also achieved or been very close to the ideal range (< 145
according to Intel’s suggestions [5]).

Table 8: Cache e�ciency of mPRO on Xeon Phi.
Part. pass 1 Part. pass 2 Join

L1 hit % 99.6 97 77
ELI 190 175 55

L1 TLB hit % 100 100 100
L2 TLB hit % 100 100 100

4.4 Hardware Oblivious vs. Hardware Con-
scious

In this section, we compare the best implementations of
hardware conscious and hardware oblivious hash joins. On
Xeon Phi, mPRO performs better than mPRHO. On the

CPU, PRO is more e�cient than PRHO as shown in the pre-
vious study [6], which is also consistent with our evaluations.
Therefore, in this section, we use NPO and PRO on the CPU,
and mNPO and mPRO on Xeon Phi.

Time breakdown. Figure 10 shows the overall time break-
down. In Figure 10(a), the probe phase takes slightly more
time than the build phase on Xeon Phi. However, the build
phase takes more time on the CPU. In Figure 10(b), the par-
tition phase takes considerable time on both Xeon Phi and
CPU.

Memory bandwidth. Xeon Phi has a theoretical peak
memory bandwidth of 320 GB/sec, which can support more
aggressive memory prefetching for hash join. We investigate
the memory bandwidth for mNPO and mPRO on Xeon Phi.
From the profiling result, the peak memory bandwidth of
mNPO and mPRO are around 15 GB/sec and 27 GB/sec,
respectively. The peak memory bandwidth is observed al-
most stably during the process. We notice that the memory
bandwidth of both mNPO and mPRO exceeds the CPU’s
hardware limited peak bandwidth (measured as around 13
GB/sec). The high memory bandwidth is able to support
more aggressive memory prefetching on Xeon Phi.
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Figure 10: Time breakdown on Xeon Phi and CPU

Overall performance comparison. We study the end-
to-end comparison for both queries with 32-bit (Figures 11)
and 64-bit (Figure 12) keys. These two figures show that our
conclusion on the CPU is consistent to the previous state-of-
the-art study [6]. That is, PRO is better than NPO for both
queries with 32-bit and 64-bit keys. In contrast, on Xeon Phi,
mNPO is more competitive than mPRO. For the query with
32-bit keys, mNPO is slightly better than mPRO (4.40 ver-
sus 4.63 nsec per output tuple). Instead, for the query with
64-bit keys, we observe that mNPO is considerably better
than the radix join mPRO 5.71 versus 8.01 nsec per output
tuple. The performance di↵erence between the queries with
32-bit and 64-bit keys is because that the tuple copies are
costly in the hash join. The doubled tuple width can sig-
nificantly increase this cost. Since mNPO has fewer times
of copies per tuple than mPRO, mNPO outperforms them
more in the query with 64-bit keys. One major factor is on
the memory performance. According to Table 6, the ELI for
mNPO is 0. This indicates that there is almost no memory
latency and the memory performance is highly optimized for
mNPO. However, the ELI for mPRO as shown in Table 8 is
55-190. Thus, the memory saturation is a performance issue
for mPRO. Finally, we also find our Xeon Phi implementa-
tions are significantly better than their CPU counterparts in
most cases. This demonstrates the promising results of the
e�ciency of our implementations on a single-chip many-core
processor. CPU is more competitive only for PRO when eval-
uating the query with 32-bit keys, which is better than both
mNPO and mPRO as shown in Figure 11.
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Figure 11: Overall performance comparison on Xeon Phi and
CPU for the query with 32-bit keys
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Figure 12: Overall performance comparison on Xeon Phi and
CPU for the query with 64-bit keys

Using di↵erent hash functions. We also investigate the
performance of using di↵erent hash functions. Besides the
radix-based hash function (the default hash function in our
experiments), we have implemented two more hash functions,
which are djb2 [1] and MurmurHash3 [4]. All of them are
implemented using SIMD intrinsics. Our experiment shows
that the performance numbers slightly change by using dif-
ferent hash functions (the figures are omitted due to page
limitation). However, our main finding obtained in Figures
11 and 12 still holds.
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Figure 13: Performance comparison on Xeon Phi and CPU
for the query with 32-bit keys of skewed workload

Skewed datasets. Figure 13 shows the performance com-
parison with the skew factor in zipf varied for the query with
32-bit keys. On Xeon Phi, for low skewed datasets, mNPO
and mPRO both are stable and consistent in performance
(Figure 13(a)). However, for high skew, the mNPO outper-
forms mPRO by an edge of around 0.6 - 3.3 nsec per output
tuple. It shows that in high skewed datasets, the performance
of mPRO decreases and mNPO increases. The reason is that,
in mNPO the chance of hitting a tuple correctly increases with
increasing skew due to low branch miss prediction and cache
locality. On the other hand, for mPRO, the performance de-
creases due to extra overhead in skew handling of the parti-
tioning phase. This is a trend reversal when compared to the

results on the CPU (Figure 13(b)). On the CPU, PRO always
performs better than NPO.

Various relation size ratios. In this experiment, the size
of relation S is kept fixed as the default size (64 M tuples for
the query with 64-bit keys and 128 M tuples for the query
with 32-bit keys) and the size of relation R is varied from 2 M
tuples to 64M tuples in case the query with 64-bit keys and
to 128 M tuples in the query with 32-bit keys.

The comparison result is shown in Figure 14(a) for the
query with 32-bit keys and Figure 14(b) for the query with
64-bit keys on Xeon Phi. Figure 14(a) shows that for the
query with 32-bit keys, mNPO is better than mPRO in most
cases, except when there are 32 and 64 million tuples in re-
lation R. On the other hand, for the query with 64-bit keys
on the Xeon Phi, Figure 14(b) shows that mNPO is always
better than mPRO. The same trend is observed on the CPU,
and hence the figures are omitted.
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Figure 14: Performance comparison with relation size ratio
varied for the queries with 32-bit and 64-bit keys on Xeon
Phi.
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Figure 15: Performance comparison on Xeon Phi and CPU
with di↵erent payload sizes of relations R and S (both rela-
tions have 6.4 million tuples).

Performance with various payload sizes. We evaluate
the relations with di↵erent payload sizes when fixing the key
size to 4 bytes. In this experiment, we vary the size of the
payload from 4 bytes to 128 bytes for both relations with 32-
bit keys, and inline the payload in both the build and probe
phases of the algorithms (mPRO and mNPO on Xeon Phi,
and PRO and NPO on the CPU). Figure 15 shows the per-
formance comparison when both relations have 6.4 million
tuples so that the experiment with the largest payload can
still fit into Xeon Phi. As the payload size increases, the
execution times of all the join algorithms increase dramati-
cally due to the increased numbers of memory accesses to the
payload. On Xeon Phi, the partition-based join algorithm is
even more inferior to the simple hash join algorithm, due to
the excessive memory accesses to the payload in the partition
phase. Thus, mNPO performs much better than mPRO as
the payload size increases, in comparison with those shown in
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Figure 11. In contrast, the di↵erence between PRO and NPO
becomes smaller on the CPU, as the payload size increases.

Comparison with sort-merge join on Xeon Phi. Sort
merge join is able to take advantage from SIMD vectors sig-
nificantly [7]. As a sanity check, we also compare the per-
formance of state-of-the-art SIMD based sort merge join [7]
with our implementation on Xeon Phi. Note that the ex-
isting sort merge join source code uses 256-bit AVX2 SIMD
instructions, which is incompatible with Xeon Phi’s 512-bit
SIMD instruction set. As a start, we used the 256-bit SIMD
based implementation from the authors [7], and changed the
implementation to 512-bit SIMD based implementation.
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Figure 16: Performance comparison for sort merge join with
and without SIMD parallelism on CPU and Xeon Phi.

We first study the performance impact of SIMD parallelism
for sort merge join on CPU and Xeon Phi. Figure 16 shows
the performance is considerably improved on both the CPU
and Xeon Phi by utilizing SIMD, which is improved by 3.4X
and 1.6X, respectively. That shows the e�ciency of having
SIMD executions on sort-merge joins on Xeon Phi.
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Figure 17: Performance comparison for sort merge join and
hash join on CPU and Xeon Phi.

Next, we perform the end-to-end performance comparison
between the hash join and sort merge join on CPU and Xeon
Phi. Figure 17(b) shows that on the CPU, sort merge join is
worse than PRO, but much better than NPO. This is consis-
tent to the conclusion from previous literature [7]. However,
on the Xeon Phi, mNPO and mPRO are much more com-
petitive than sort merge join. In fact, we have applied the
optimization and tunings from this study (e.g., huge pages
and software prefetching) to optimize the start-of-the-art sort-
merge join on Xeon Phi. The profiling results demonstrate
that memory stalls are still a major performance issue for
sort-merge join. Also, memory stalls limit the power of 512
bit SIMD executions. That shows the architectural di↵er-
ences between Xeon Phi and the CPU, which calls for new
algorithmic redesign to improve sort-merge joins. This ob-
servation is consistent with the findings of this paper. Since
the main focus of this paper is on main memory hash joins,
we leave optimizing the sort-merge join on Xeon Phi as our
future work.

Economic cost comparison between Xeon Phi and
CPU. Finally, we study the performance per dollar, i.e., the
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Figure 18: Cost e�ciency (the higher is better) comparison
for CPU and Xeon Phi.

number of output tuples per second per dollar. Specifically,
suppose the throughput is n output tuples per second, and C
is the price for a processor. We get the performance per dollar
to be n

C . A higher value means a better cost e�ciency. The
price for a single Xeon Phi and Xeon E5-2687W on the market
are approximately $2500 [2] and $1900 [3], respectively.

Figure 18 compares the cost e�ciency of hash join on a
single Xeon Phi with the CPU. The server has two sock-
ets of CPU, and we also perform the evaluations on both
sockets. For no partitioning join (NPO and mNPO), Xeon
Phi (mNPO) has significantly higher cost e�ciency compared
with the CPU (NPO). However, for radix hash join, CPU
(PRO) is more competitive than Xeon Phi (mPRO). Also,
the cost e�ciency of a single CPU is even higher than that
of two sockets. The two-socket performance is only 70%
and 66% faster than the single-socket performance on NPO
and PRO, respectively. Note, the CPU-based implementation
taken from previous study [7] supports the NUMA aware op-
timization. Still, due to NUMA involved in the two sockets,
the scaling of performance and cost e�ciency on the number
of sockets is limited.

4.5 Summary and Lessons Learnt
Through the experimental analysis on main memory hash

joins on Xeon Phi and CPUs, we have the following key find-
ings, which are significantly di↵erent from those on the CPU.

Firstly, even though Xeon Phi is a x86 many-core processor
that allows the state-of-the-art CPU-based implementation
to run on, tuning and optimizations are still necessary for the
e�ciency on Xeon Phi. For hash joins, software prefetching is
the most important factor for hardware oblivious algorithms,
and radix bit configurations, software managed bu↵ers and
huge pages are the three most important optimizations for
hardware conscious algorithms.

Secondly, the impact of tuning and optimizations accord-
ing to architectural features of Xeon Phi is more sensitive
to that on CPU. That means, it could be more challenging
and necessary for performance tuning and optimizations on
future many-core processors. With this sensitivity for tuning
and optimization techniques, algorithms have to be carefully
tuned or redesigned, or new performance models are required,
in order to achieve better performance on Xeon Phi. For ex-
ample, more aggressive software prefetching is used on Xeon
Phi, compared with the CPU.

Thirdly, hardware oblivious hash joins outperform hard-
ware conscious hash joins on a wide parameter window on
Xeon Phi. Particularly, mNPO outperforms mPRO on the
following scenarios: 1) the tuple size is large (e.g., queries
with 64-bit keys or with larger payloads), 2) the relation is
skewed, and 3) when the relation size is small. That means,

11



the debate between hardware oblivious and hardware con-
scious algorithms should be revisited when modern processor
technologies change.

5. FUTURE ARCHITECTURES
In this section, we examine the growing trends of single-

chip many-core architectures. Intel plans to integrate many-
core technologies into its CPU products. In the following, we
examine the impact of more cores, wider SIMD, and out-of-
order core design.

1. More cores. In Section 4, we observe almost lin-
ear scalability of the optimized hash joins with the increasing
number of cores/hardware contexts. We conjecture that the
hash join will scale well on the future single-chip many-core
processors like Intel Knights Landing (KNL) processors.

Table 9: E↵ect of SIMD width (nsec per output tuple)
SIMD width (bits) 64 128 256 512 1024 (predicted)

mPRO 6.75 5.83 4.72 4.63 4.09

2. Wider SIMD. Wider SIMD execution units are an-
other important exciting feature in single-chip many-core ar-
chitectures [6, 7, 25]. In Table 9, we emulate the experiments
on SIMD width varied from 64-bit to 256-bit with 512-bit
SIMD instructions. Based on the results, we perform re-
gression analysis on predicting the performance of 1024 bits
with the core frequency unchanged. Increasing from 512 bits
to 1024 bits will bring a marginal performance improvement
(around 12%).

3. Out-of-order execution. Both our analysis and ex-
periments show that in-order core design of Xeon Phi hin-
ders the e�ciency of hash joins, particularly causing poor
L1 cache performance. Future many-core processors will em-
brace out-of-order core designs. As a sanity check, we mea-
sure the performance of a hash join on sorted input data. In
our implementation, the case of sorted data represents a more
regular access pattern, which gives very good L1 cache perfor-
mance. The performance improves around 5%, in comparison
with the random workload when evaluating the query with
32-bit keys. That implies out-of-order core design could fur-
ther bring slight performance improvement of the optimized
main-memory hash joins.

6. CONCLUSIONS
As modern processor technologies evolve, the performance

of main memory hash joins needs to be revisited regularly
with time. In this paper, we experimentally investigated the
performance of a single-chip many-core processor (Intel Xeon
Phi). Compared with other emerging co-processors, Xeon Phi
is a x86 based many-core processor, which enables us to o↵er
a more extensive and end-to-end comparison with the state-
of-the-art hash joins on multi-core CPUs. The architectural
di↵erences between Xeon Phi and multi-core CPUs lead to
quantitative di↵erences on two major aspects: 1) the impact
of architecture-aware tuning and optimizations is more sen-
sitive on Xeon Phi than that on multi-core CPUs, and 2)
hardware oblivious hash joins are very competitive to and
even outperform hardware conscious hash joins in most work-
load settings on Xeon Phi. Our experimental results also
show that starting with the state-of-the-art implementation
on CPUs, both hardware oblivious and hardware conscious
approaches require careful tuning and optimizations for e�-
ciency on Xeon Phi. We believe that the study in this paper
sheds light on the design and implementation of databases on
new-generation single-chip many-core processors.

There are a number of future studies. First, we will in-
vestigate how to take advantage of the computation power of
both the CPU and the Xeon Phi, as a NUMA architecture.
Second, we are developing a full-fledged query processor and
evaluating more complex queries and larger data sets on Xeon
Phi. Third, our preliminary study shows that sort merge join
is less competitive on Xeon Phi. Still, it is an open problem
on comparing the performance between sort merge join and
hash join.

The code of this study is available at
http://pdcc.ntu.edu.sg/xtra/phijoin.html.
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