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Transformation-Based Monetary Cost
Optimizations for Workflows in the Cloud

Amelie Chi Zhou and Bingsheng He

Abstract—Recently, performance and monetary cost optimizations for workflows from various applications in the cloud have become a
hot research topic. However, we find that most existing studies adopt ad hoc optimization strategies, which fail to capture the key
optimization opportunities for different workloads and cloud offerings (e.g., virtual machines with different prices). This paper proposes
ToF, a general transformation-based optimization framework for workflows in the cloud. Specifically, ToF formulates six basic workflow
transformation operations. An arbitrary performance and cost optimization process can be represented as a transformation plan (i.e., a
sequence of basic transformation operations). All transformations form a huge optimization space. We further develop a cost model
guided planner to efficiently find the optimized transformation for a predefined goal (e.g., minimizing the monetary cost with a given
performance requirement). We develop ToF on real cloud environments including Amazon EC2 and Rackspace. Our experimental
results demonstrate the effectiveness of ToF in optimizing the performance and cost in comparison with other existing approaches.

Index Terms—Cloud computing, monetary cost optimizations, workflows

1 INTRODUCTION

CLOUD computing has become an important computing
infrastructure for many applications. Its pay-as-you-go
pricing scheme has attracted many application owners to
either deploy their applications in the cloud or extend their
home clusters to cloud when the demand is too high. In
recent years, we have witnessed many scientific applica-
tions partially or entirely shifting from traditional comput-
ing platforms (e.g., grid) to the cloud [1], [2]. Due to the
pay-as-you-go computational behavior, the (monetary) cost
has become an important metric for system optimizations
[3]. Basically, a workflow management system should bal-
ance the cost and performance. Thus, performance and
(monetary) cost optimizations have recently become a
hot research topic for workflows in the cloud. A lot of
scheduling and optimization approaches have been devel-
oped (e.g., [4], [5], [6], [7], [8], [9D.

Despite of a lot of research efforts in this area, perfor-
mance and cost optimizations of workflows in the cloud are
still a non-trivial task, because of the following complicated
and inter-connected factors. First, users have different
requirements on performance and cost. Some existing stud-
ies [4], [5] have focused on minimizing the cost while satis-
fying the performance requirement, some are aiming to
optimize performance for a given budget [10] and others
are considering the tradeoff between performance and mon-
etary cost [7], [8], [11]. Second, different cloud offerings
result in significantly different cost structures for running
the workflow. Even from the same cloud provider, there are
multiple types of virtual machines (or instances) with
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different prices and computing capabilities. Third, work-
flows have very complicated structures and different com-
putation/IO characteristics, as observed in the previous
studies [12]. All those factors call for a general and effective
approach for performance and cost optimizations.

We review the existing studies and find that most of
them are ad hoc in the sense that they fail to capture the
optimization opportunities in different user requirements,
cloud offerings and workflows. For example, Kllapi et al. [7]
consider only a single instance type. However, previous
studies [13], [14] have shown that carefully selecting
instance types is important for the overall cost. Mao and
Humphrey [4] focus on minimizing the cost while satisfying
the performance requirement of individual workflows, and
simply use a fixed sequence of workflow transformation
operations. The fixed sequence can be effective for some of
the workflows and cloud offerings, but ineffective for
others. All those studies potentially lose optimization
opportunities for performance and cost.

To address the limitations of current approaches, we
believe that an extensible workflow framework is essential
for different and even evolving user requirements, cloud
offering and workflows. We have identified three design
principles. First, the framework should have an extensible
design on the workflow optimizations, which adapts to dif-
ferent cloud offerings and workflow structures. Second, the
framework should have a general optimization process for
different requirements on performance and cost constraints.
Last, the framework should be light weight for online deci-
sion making.

With these three design principles in mind, we propose
ToF, a transformation-based optimization framework for
optimizing the performance and cost of workflows in the
cloud. A workflow is generally modeled as a directed acy-
clic graph (DAG) of tasks. ToF guides the scheduling of
each task in the workflow, including which instance to
assign to and when to start execution. When a workflow is
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TABLE 1
Prices($/hr) and Capabilities of Four Types of On-Demand
Instances in Amazon EC2, US East Region
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TABLE 2
Prices($/hr) and Capabilities of Four Instance
Types in Rackspace

Type ECU | Mem(GB) | Disk(GB) Net. price RAM(GB) | vCPU | Disk(GB) | Net.(Pub./Int.) (Mbps) | price
ml.small 1 1.7 1 x 160 Low 0.06 0.5 1 20 20/40 0.022
ml.medium 2 3.75 1 x 410 | Moderate | 0.12 1 1 40 30/60 0.06
ml.large 4 7.5 2 x 420 | Moderate | 0.24 2 2 80 60/120 0.12
ml.xlarge 8 15 2 x 840 High 0.48 4 2 160 100/200 0.24

submitted to the cloud, each task is initially assigned to a
certain type of instance for execution. Based on the initial
instance assignment, we perform transformations on the
DAG. We categorize the transformation operations into two
kinds, namely main schemes and auxiliary schemes. The main
schemes reduce monetary cost while auxiliary schemes
transform workflows into a DAG that is suitable for main
schemes to perform cost reduction. Specifically, we have
formulated six basic workflow transformation operations
(Merge, Demote, Split, Promote, Move and Co-scheduling). The
former two are categorized as main schemes and the latter
four are auxiliary schemes.

With the transformation operations, we model an
arbitrary performance and cost optimization process to
be a transformation plan (i.e., a sequence of basic trans-
formation operations). All transformations form a huge
optimization space. We further develop a cost model
guided planner to help users to efficiently and effec-
tively choose the cost-effective transformation. The cost
model estimates the change in both monetary cost and
execution time introduced by each transformation opera-
tion. Moreover, we develop heuristics (e.g., iteratively
choosing the cost-effective main scheme and auxiliary
scheme) to reduce the runtime overhead of the optimiza-
tion process. Note that the initial instance assignment,
transformation operations and planner are extensible for
different implementations.

We implement the transformation operations and the
planner in ToF and evaluate it on Amazon EC2 and Rack-
space. We have conducted experiments on the performance
of ToF using two real-world workflow structures (Montage
[15] and Ligo [16]). We evaluate the individual performance
and cost impact of transformation and optimizations in
ToF and compare with the state-of-the-art auto-scaling
method [4]. ToF reduces the monetary cost by 30 percent in
comparison with the Auto-scaling method, with similar
optimization overhead. On the other hand, ToF outperforms
auto-scaling with 21 percent on the performance given the
budget constraint.

This paper makes the following two key contributions.
First, we propose a transformation-based workflow optimi-
zation system to address the performance and monetary
cost optimizations in the cloud. Second, we develop and
deploy the workflow optimization system in real cloud
environments, and demonstrate its effectiveness and effi-
ciency with extensive experiments. To the best of our
knowledge, this work is the first of its kind in developing a
general optimization engine for minimizing the monetary
cost of running workflows in the cloud.

The rest of this paper is organized as follows. We intro-
duce the background on cloud offerings and application
scenarios, and review the related work in Section 2.

Section 3 gives a system overview. We present our work-
flow transformation operations in Section 4, followed by
the cost model guided planner in Section 5. We present the
experimental results in Section 6 and conclude the paper in
Section 7.

2 PRELIMINARY AND RELATED WORK

In this section, we first describe cloud computing environ-
ments mainly from users’ perspective. Next, we present the
application scenario and review the related work.

2.1 Cloud Environments

Cloud providers lease computing resources in the form of
VMs (or instances). Typically, cloud providers offer multi-
ple types of instances with different capabilities such as
CPU speed, RAM size, I/O speed and network bandwidth
to satisfy different application demands. Different instance
types are charged with different prices. Tables 1 and 2 show
the prices and capabilities of four on-demand instance types
offered by Amazon EC2 and Rackspace, respectively. Ama-
zon EC2 mainly charges according to the CPU, whereas
Rackspace mainly on the RAM size. Both cloud providers
adopt the instance hour billing model, whereby partial
instance hour usage is rounded up to one hour. Each
instance has a non-ignorable instance acquisition time. For
simplicity, we assume the acquisition time is a constant, lag.
In this paper, we consider a single cloud provider with I
instance types, with assigned IDs to the instance types in
the increasing order of their prices. IDs are consecutive inte-
gers, from one to /.

In addition to the local storage resource on instances,
cloud providers also offer persistent storage (such as Ama-
zon S3). When instances are released, the data stored in the
local storage will be lost and those on persistent storage are
kept. With the persistent storage, users are able to store a
snapshot of the current execution and restart the execution
later. We call this process “checkpointing”.

Diversifying cloud offerings require more general per-
formance and cost optimization processes, instead of
specific or ad hoc strategies. Previous studies have stud-
ied the impact of different cloud offerings on the same
workload: 1) the performance varies significantly among
different cloud providers [17], 2) the performance and
cost vary significantly with different instance types and
numbers used from the same provider [13]. Moreover,
cloud itself also evolves. On the one hand, cloud prices,
as an economic concept, evolve through the time. Ama-
zon EC2 adjusted the price for several times in the past
five years. On the other hand, hardware and software
systems evolve, even without users’ notice.
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2.2 Application Scenarios

In this study, we consider the application scenario of users
purchasing instances from a public cloud provider to exe-
cute their workflows. Due to the pay-as-you-go nature of
cloud computing, users need to pay to the public cloud pro-
vider. In this scenario, users (e.g., scientists and officials)
submit their workflows to our workflow management sys-
tem, ToF, with predefined goals on the monetary cost and
performance. We assume users are independent with each
other, and there are no dependencies among users.

Users usually have different requirements on perfor-
mance and monetary cost [7]. One may want to minimize
the monetary cost of workflows while satisfying the prede-
fined deadlines. Our system assumes the users specify the
deadline for the entire workflow. This assumption has been
adopted in many existing workflow systems [4], [5], [8]. We
do not require users to specify the deadline for each task.
The deadline constraint of each task is automatically deter-
mined by ToF with an existing deadline assignment algo-
rithm. We use deadlines to represent the QoS requirements.
Note, the deadline is a soft deadline, not a hard deadline.
The other may want to minimize the execution time while
satisfying the predefined budget. More advanced con-
straints like skyline are also possible, and we refer readers
to the previous paper [7] for more details. In order to sup-
port flexible settings on the performance and cost con-
straints, we need a general workflow optimization
approach. Therefore, the goal of this paper is to develop a
general and effective optimization framework for work-
flows in the cloud, which is able to address different cloud
offerings and different user requirements.

2.3 Cost Optimization for Workflows

Performance and cost optimizations are a classic research
topic for decades. Many scheduling and provisioning algo-
rithms have been proposed leveraging market-based techni-
ques [11], rule-based techniques [8] and models [6] for cost,
performance and other optimization objectives. Different
applications require different performance and cost optimi-
zations. Many relevant performance and cost optimizations
can be found in databases [18], Internet [19], distributed sys-
tems [20] and so on. Performance and cost optimizations for
workflows have been well studied on grid [21], cloud [11]
and heterogenous computing environments [22]. Specifi-
cally, we review the most relevant workflow optimizations
in the grid and in the cloud.

The workflow scheduling problem has been widely stud-
ied in the grid environment [23]. Usually, execution time is
considered as the most important optimization criterion.
There have been many studies focusing on minimizing
makespan [24], [25]. Under the grid market concept, the
cost minimization problem has been studied in a good num-
ber of studies (e.g., [21], [26], [27], [28], [29]). Some of them
performed dual-objective optimizations [26].

Cloud, as a market, is different from grid [30], [31] in that
the total ownership cost of running a workflow is consid-
ered a much more important optimization criterion. Com-
pared with grid, cloud has unique features: billing hour
pricing, multiple instance types, elasticity, non-ignorable
instance acquisition time and so on. Thus, the techniques

invented in the grid environment need to be revisited, and
new algorithms and mechanisms should be developed for
performance and cost optimizations in the cloud.

Performance and cost optimization techniques have been
developed for a single cloud provider and multiple cloud
providers. There have been much more research studies on
a single cloud than on multiple clouds.

On a single cloud, the research can be generally divided
into three categories. The first category is auto-scaling (e.g.,
[4], [5D). The studies in this category are usually based on
heuristics, applying a fixed sequence of transformations on
the workflow. Mao and Humphrey [4] performed the follow-
ing operations one by one: merge (“task bundling” in their
paper), deadline assignment and allocating cost-efficient
machines, scaling and consolidation. This fixed sequence of
workflow transformations is ad hoc in the sense that there
are many possible sequences of transformations. The author
have not justify or prove the applicability of this fixed
sequence. As demonstrated in our experiments, workflows
can have very different transformations for minimizing the
monetary cost. The second category is dynamic provisioning
with prediction models (e.g., [6], [32], [33]). Building predic-
tion models is orthogonal to this study. The last category is
workflow scheduling [7], [8] with performance and cost con-
straints. Kllapi et al. consider the tradeoff between comple-
tion time and money cost for data processing flows [7].
Malawski et al. [8] proposed task scheduling and provision-
ing methods for grouped scientific workflows called ensem-
bles, considering both budget and deadline constraints. This
paper belongs to this category, but goes beyond the existing
studies in two major aspects. First, we formally formulate
the performance and cost optimization process with work-
flow transformation models. Second, we develop a cost
model guided optimization framework to optimally utilize
the transformation operations.

Considering multiple cloud providers, Fard et al. [11]
introduced a pricing model and a truthful mechanism for
scheduling workflows given performance and cost optimi-
zation objectives. Lucas Simarro et al. [34] considered the
problem of a cloud broker in the context of multiple cloud
providers with dynamic prices. We refer readers to a recent
survey [35] for inter-cloud optimizations. This paper
focuses on a single cloud provider, which is the common
case in practice.

Recently, researchers have also paid attention to energy
consumption of workflows. Ben Othman et al. [36]
considered the optimization goal of energy consumption
and performance. Zhu et al. [12] developed power-aware
consolidation to reduce the energy consumption while keep-
ing the performance constraint. Consolidation is similar to
our “co-scheduling” transformation. Since energy consump-
tion behaviors are significantly different from monetary cost
behaviors, energy-aware optimizations may not be applica-
ble to cost-aware optimizations, and vice versa. It is our
future work to extend our framework to reduce the energy
consumption.

3 OVERVIEW OF TOF

To support workflow management in the cloud, we have
adopted DAGMan [37] to manage task dependencies and
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Fig. 1. System overview of ToF.

added Condor [38] to manage task execution and instance
acquisition on real cloud providers. We consider Amazon
EC2 and Rackspace in this study.

ToF has two major components for performance and cost
optimizations: transformation model and planner. The
transformation model defines the set of transformation
operations for a workflow, and the planner performs the
transformation on the workflow according to the cost
model. Fig. 1 shows the application model of ToF.

The planner is ran periodically. The period is denoted as
the plan period. The workflows submitted during the epoch
are temporarily stored in a queue, and then the planner per-
forms optimization for all the workflows in the queue at the
beginning of a plan period. This batch processing has two
major benefits: first, maximizing the instance sharing and
reuse so that the cost is reduced; second, reducing the plan-
ner overhead.

In each plan period, after all the workflows in the queue
have been optimized, they are submitted to the cloud with
their execution plan for execution. The execution plan is a
set of instance requests. Each request includes the instance
type, the starting and ending time of the requested instance
and the task(s) scheduled to the instance.

To enable instance reuse at runtime, we maintain a
pool of running instances, organized in lists according to
different instance types. During runtime, instances in the
pool which reach hourly running time and are currently
idle will be turned off. An instance request is processed
at the instance starting time by first looking into the
instance pool for an idle instance of the requested type.
If such an instance is found, it will be selected for work-
flow execution. Otherwise, a new instance of the
requested type is acquired from the cloud provider.
Thus, the instances started during workflows execution
can be properly reused and their utilizations are
improved. Additionally, if we can reuse the instances,
the instance acquisition time is eliminated.

We present the details of the transformation and optimi-
zation components in the next two sections.

4 WORKFLOW TRANSFORMATION

In this section, we present the details on the transformation
model. The details on planner is presented in Section 5.
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4.1 Transformation-Based Optimizations
We define the following terminologies for transformation-
based optimizations.

Workflow. Generally, a workflow structure can be repre-
sented by a DAG G = (V, E), where V is the set of vertices
representing the tasks in the workflow and E is the set of
edges indicating the data dependencies between tasks.

Initial instance assignment. In each workflow, a task is ini-
tially assigned to an instance type for execution. According
to the assigned instance type, each task execution is repre-
sented by the earliest start time, the latest end time and an
instance. Our algorithm does not assume any specific initial
instance assignment. We present a number of heuristic-
based methods for initial instance assignment in Section 5.
Due to the data dependencies among the tasks, the assigned
instances themselves also form a DAG. We call this DAG
instance assignment graph (denoted as G), which has the same
structure as G.

Transformation operation. We define a transformation
operation to be a structural change in the instance assign-
ment DAG, denoted as o(G) — G, where G and G are the
instance assignment DAG before and after the transforma-
tion, respectively.

We further define the basic (or atomic) transformation
operation to be non-divisible. The six transformation opera-
tions that we will define later are all atomic transformation
operations. To make our presentation clearer, our notation
of an atomic transformation is simply on the most relevant
instances (i.e., vertices of the instance DAG). Note, other
vertices in the instance DAG need to be adjusted accord-
ingly after the transformation. For example, we represent
promoting an instance from type i to type j to be
PVi(to,t1)) — Vj(ta,t3), where i < j, assuming the task
runs on V; (an instance of type ¢) from ¢, to ¢; before promo-
tion; the task runs on V; (an instance of type j) from t; to t3
after promotion. The formulation of other transformation
operations can be founded in Table 3.

Since each instance is associated with one or more tasks
running on it, we use the expressions of “transformation on
an instance” and “transformation on a task” alternatively in
the rest of this paper.

Optimization sequence. We define the transformation set to
be the set of atomic transformation operations defined in
the system. Given a transformation set S, we define an opti-
mization sequence (or a transformation plan) to be a
sequence of atomic transformation operations applied to
the instance DAG. Particularly, an optimization sequence
consists of n atomic operations: o1, 02,..., 0, (n>1). 0;
(1 <@ < n) belongs to one atomic operation defined in S.

4.2 Transformation Set

In current ToF, we have developed six basic transformation
operations, namely Merge, Split, Promote, Demote, Move and
Co-scheduling. These basic transformations are simple and
lightweight. Moreover, they can capture the current cloud
features considered in this paper. They are the most com-
mon operations and widely applicable to workflow struc-
tures. For example, the operations of all the comparison
algorithms used in the experiments can be represented
using those transformations. However, we do not claim
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TABLE 3
Details of the Six Transformation Operations
Name Category | Description Formulation
. Merge multiple tasks to the same in- - - .
Merge Main stance to fully utilize partial hour. M(Vi(to, t1), Vi(t2,t3)) = Vi(to, t3)
Demote Main :;;selgn a task o a cheaper instance D(Vi(to,t1)) — Vj(t2,t3), where ¢ > j
Move Auxiliary | Delay a task to execute later. V(Vi(to,t1)) — Vi(ta,t3), where t3 = to + (t1 — t0)
Promote Auxiliary | Assign a task to a better instance type. | P(V;(to,t1)) — V;(t2,t3), where ¢ < j
. s Stop a running task at some checkpoint : : :
Split Auxiliary and restart it later. S(Vz(to, tl)) — Vi1 (to, tg), Via (t3, t4)
. - Assign two or more tasks to the same .
Co-scheduling Auxiliary insta.%lce for execution. C(Vi(to,t1), Vi(ta,t3)) — Vi(min(to, t2), maxz(t1,t3))

TFEET- The formulation V;(ty, t1) stands for an instance of type i and the task on this instance starts at t, while ends at t,.

they form a complete set. Users can extend more transfor-
mation operations into the transformation set. Adding a
transformation operation requires the modifications includ-
ing adding the cost model and transformation implementa-
tion on the instance DAG.

Based on their capabilities in reducing monetary cost, we
categorize the transformation operations into two kinds,
namely main schemes and auxiliary schemes. A main
scheme can reduce the monetary cost while an auxiliary
scheme simply transforms the workflows so that the trans-
formed workflow is suitable for main schemes to reduce
cost. By definition, Merge and Demote are main schemes,
and the other four operations are auxiliary schemes.

Table 3 summarizes the definition and categorization for
the six operations. In the remainder of this section, we
describe their implementation details.

Some examples of transformation are illustrated in Fig. 2.
We illustrate the transformation operations with an
instance-time chart, where the x-axis represents time and y-
axis represents the instance. An instance-time chart is simi-
lar to Gantt chart, with the box width as the execution time
and with dependencies between boxes. The height of the
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boxes stand for prices of instances. During the transforma-
tion, we maintain the structural dependency among tasks
even after transformations. Special cares are given to Merge
and Split. We present the details in the next section.

4.2.1 Main Schemes

Merge (M). The Merge operation performs on two verti-
ces when they are assigned to the same type of instances
and one vertex is assigned to start (shortly) after the
completion of the other one. Through merge, the two
tasks are assigned to the same instance, and the two
instance nodes in the instance DAG are merged to form
a super-node, which maintains the hierarchical relation-
ship among the merged nodes and also the structural
dependency with other nodes in the DAG. This super-
node can be treated the same as the other instance nodes
for further transformations. This operation increases the
usage of partial hours of instances. Take Fig. 2, for exam-
ple. Task A; and A, are assigned to the same instance
type but different instances. In our implementation, after
the Merge operation, the two tasks are running on the
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Fig. 2. Use cases of the six transformation operations shown in the instance-time chart.
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same instance. There is no need to adjust other vertices
in the instance assignment DAG.

Demote (D). Demote operation performs on a single ver-
tex by demoting the execution to a cheaper instance. That
can reduce the cost at the risk of a longer execution time. In
our implementation, we not only need to change the
demoted vertex, but also need to delay the starting time of
all vertices that have dependencies on the demoted vertex.
In Fig. 2, task A, is demoted from an instance of type i to a
cheaper instance of type j which is the same instance type
as task A; and As. Demotion may have chained effects with
other transformation operations. In this example, besides
the cost saved by demotion, merging task A;, A; and A3 can
further save the cost.

4.2.2 Auxiliary Schemes

Move (V). The Move operation moves a task afterward to
the end of another task in order to make chances for
main schemes to further reduce cost. Note, the instance
DAG uses the earliest start time and thus there is no
“move forward” transformation. In our implementation,
we not only need to change the moved vertex, but also
need to delay the starting time of all vertices that are
dependent on the moved vertex.

A key decision for the Move operation is where to move
the task. Generally we have two cases: move a task to
another task so that both tasks are assigned to the same
instance type, or to a task with a different instance type. In
the former case, we expect a Merge operation after the
Move operation. In the latter case, a Demote and a Merge
operation need to be performed to reduce cost. Our cost
model is used to guide this decision (Section 5). Fig. 2 shows
an example of the first case, where task B, of job B is moved
to the end of task Aj3. After the Move operation, we can
merge As and B;.

Promote (P). The Promote operation is a dual operation
for the Demote operation. It promotes a task to a better
instance at the benefit of reducing the execution time. The
implementation is the same as the Demote operation.

There are mainly two incentives to perform the Promote
operation. The first is to meet deadline requirement as
shown in Fig. 2. Second, although promotion itself is not
cost-effective, it creates chances for main schemes such as
the Merge operation to perform. For example, in Fig. 2, we
promote task A, from instance type ¢ to a better instance
type j. After the Promote operation, A;, A; and Aj are all
assigned to the same instance type and thus can be merged
to fully utilize instance partial hours.

Split (S). The Split operation splits a task into two, which
is equivalent to suspending a running task so that we can
make room for a more urgent task which is assigned to the
same instance type (with a Merge operation). With the
checkpointing technique, the suspended task can restart
after the completion of the urgent task. The Split operation
causes the checkpointing overhead. The Split operation
splits a node in the instance DAG into two sub-nodes, at the
time point when the urgent task starts. We maintain their
structural dependency with other nodes in the DAG. The
sub-nodes can be treated the same as the other instance
nodes for further transformations.
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In the example of Split in Fig. 2, due to the deadline con-
straint, the Move operation is not applicable. We can split
task A; at the start time of B; and let B; execute first. Then
we restart A; at the end time of B;. The start time of the
instance containing A;; is the same as the instance contain-
ing A; and its end time is the same as the start time of task
By . The start time of the instance containing A4, is the same
as the end time of task B; and its end time equals to the
sum of its start time and the execution time of Ajs. If the
checkpointing and restarting overhead is small, the benefit
of the Merge operation is compensated.

Co-scheduling (C). Some instance types (e.g., ml.xlarge
has eight virtual processing units on Amazon) can afford
multiple tasks running at the same time. The Co-scheduling
operation is to run multiple tasks which have similar start
and end time as well as similar leftover time before dead-
lines on the same instance. The number of tasks is set
according to the instance capability and performance deg-
radation. We use the existing model [12] to estimate the per-
formance degradation.

Fig. 2 shows a case of co-scheduling where task A, and
A3 have the same start and end time and because they
belong to the same job and have similar leftover time before
deadline. A Co-scheduling operation can be applied to A,
and Az. We update the end time of the co-scheduled tasks
according to the performance degradation estimation and
the start time of other tasks which are dependent on A, and
Aj accordingly.

5 TOF PLANNER

Having formulated the transformation set, we introduce our
design and implementation of the cost-model based planner
in ToF. ToF is a cost model guided greedy approach to
search for the optimal solution and is thus an approxima-
tion approach. The planner guides ToF to find the opti-
mized transformation sequence for workflows. The
selection of each transformation operation in the transfor-
mation sequence is guided by a cost model, which estimates
the monetary cost and execution time changes introduced
by individually applying each transformation operation in
the transformation set.

5.1 Planner

There are a number of technical challenges in designing and
implementing the planner. First, the transformation opera-
tions are composable. The order of applying transformation
operations also matters for performance and cost optimiza-
tions. The searching space for an optimal transformation
sequence is huge. Second, the optimization is an online pro-
cess and should be lightweight. We should find a good bal-
ance between the quality of the transformation sequence and
the runtime overhead of the planner. Due to the huge space,
a thorough exploration of the optimization space is impracti-
cal. Third, the planner should be able to handle different
tradeoffs on the monetary cost and performance goals.

To address these challenges, we have the following
designs on the planner. First, the planner is ran periodically,
as introduced in Section 3.

Second, the planner has two heuristics to reduce the
searching space. First of all, it uses main schemes and
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TABLE 4
All the Rules Used on Monetary Cost Optimization
Rule Condition Action

1 Merge can reduce cost Perform Merge

2 Demote can reduce cost while satisfies deadline constraint Perform Demote

3 Move can reduce cost while satisfies deadline constraint Perform Move

4 Promote can reduce cost Perform Promote

5 Split can reduce cost while satisfies deadline constraint Perform Split

6 Co-scheduling can reduce cost while satisfies deadline constraint | Perform Co-scheduling

auxiliary schemes alternatively during the optimization
process. Second of all, the planner uses the cost model to
prune the “unpromising” transformations.

Third, the planner is rule-based. The rule is defined to
consist of two components: condition and action, where
the condition is usually defined based on the cost and
performance optimization goal (e.g., the estimated mone-
tary cost can be reduced by 20 percent) and the action
consists of transformations on the workflow. As an
example, we show all the rules used on monetary cost
optimizations in our experiments in Table 4. The set of
rules in ToF affects the effectiveness of optimizations.
Users can define their own set of rules used in ToF, to
reflect their goals on the tradeoff between monetary cost
and performance. When applying a transformation oper-
ation such as Move, Demote and Split, we pretend to
apply the transformation, and check whether the trans-
formed workflow violates the given earliest start and lat-
est end time constraints in order to satisfy the deadline
requirement. If the constraints are violated, we will not
perform the operation. That means, this study focuses on
the goal of minimizing the monetary cost while satisfy-
ing the deadline. We briefly evaluate the goal of mini-
mizing the execution time given a budget.

Algorithm 1 illustrates the overall optimization process
of ToF in one plan period, which has implemented all the
three above-mentioned designs. Initially, each task in the
workflow is assigned with an instance type determined by
an instance assignment heuristic. We present and discuss
three initial instance assignhment heuristics later in this sec-
tion. The rules are based on Table 4. It iteratively selects the
cost-effective transformation. In one iteration, we first esti-
mate the (potential) cost reduction of each operation which
satisfies the deadline constraint. The cost model is described
in Section 5.2. Second, we select and perform the operation
with the most cost reduction. All selected transformations
form the optimization sequence.

Fig. 3 shows an example of applying Algorithm 1 to a
simple structured workflow with three tasks. The deadline
of the workflow is 120 minutes and the execution time of
Tasks 0, 1 and 2 on the assigned instance types are 30, 30
and 40 minutes respectively. In the first iteration, we first
check the operations in main schemes and find that no one
can reduce cost. We then check the operations in auxiliary
schemes and select the Move operation to perform as it can
introduce the most cost reduction. In the next iteration,
Merge from the main schemes is selected and performed,
after which no operation can further reduce the cost of the
workflow. After applying the Move and Merge operations,
the charging hours of executing this workflow is reduced
from three to two.

Algorithm 1 The optimization process of ToF for workflows
in one plan period.

1: Queue all coming workflows in a queue Q;
2: for each workflow w in Q do
3:  Determine the initial assigned instance type for each task in

w;
4: repeat
5. for each o0,, in main schemes (i.e., Merge and Demote) do
6: Pretend to apply 0., and check whether the earliest start or

latest end time constraint of any task in w is violated after
applying om;

7: if No time constraint is violated then
8: Estimate the cost reduced by performing o, using the
cost model;

9:  Select and perform the operation in main schemes which has
the largest cost reduction;
10: for each o, in auxiliary schemes (i.e., Move, Promote, Split
and Co-scheduling) do
11: Pretend to apply o, and check whether the earliest start or
latest end time constraint of any task in w is violated after

applying oq;

12: if No time constraint is violated then
13: Estimate the cost reduced by performing o, using the
cost model,;

14:  Select and perform the operation in auxiliary schemes which
has the largest cost reduction;

15: until No operation has a cost reduction;

16: return Optimized instance assignment graph for each workflow.

Plan period is an important tuning parameter in the plan-
ner. If the period is long, more workflows are buffered in
the queue. To make the optimization plan, more combina-
tions of tasks need to be checked for transformations and
the optimization space becomes much larger. When the
period parameter is short, the optimization space gets
smaller and the chance for operating transformations to
reduce cost decreases. We study the impact of this parame-
ter in Section 6.

D = 120min

30min 40min
Task 0 Task 1
O | Task 2
o @ Move Operation
30min 40min 40min
[ Tasko | Task1i | Task2
@ Merge Operation
110min
| Tasko | Taski | Task2 |

Fig. 3. Example of applying transformation operations on a three node
structured workflow.
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Initial instance assignment. It considers multiple heuristics.
We experimentally evaluate these heuristics, and pick the
one with the best result. In this paper, we present three ini-
tialization heuristics for initial instance assignment, namely
Best-fit, Worst-fit and Most-efficient.

The Best-fit heuristic assigns each task with the most
expensive instance type. This is to maximize performance
but at the cost of a high monetary cost. Ideally, it should sat-
isfy the deadline. Otherwise, we raise an error to the user.

The Worst-fit heuristic first assigns each task with the
cheapest instance type to minimize the cost. Then, we apply
the GAIN approach [39] to repeatedly re-assign tasks to a
better instance type. GAIN is a greedy approach which
picks the task with the largest benefit in execution time until
the deadline requirement is met.

The Most-efficient heuristic configures each task accord-
ing to deadline assignment. It first performs deadline
assignment using an existing approach [40] and then
assigns each task to the most cost-efficient instance type.
This approach is also used in the previous study [4].

Complexity analysis. To compute the time complexity of
our proposed algorithm, suppose Algorithm 1 has received
N workflows each with M tasks. Assume there are on aver-
age k iterations in the optimization. The algorithmic com-
plexity of Algorithm 1 is O(N-M?+kM-N). In our
evaluation, we find k is 97 and 43 for a Ligo and a Montage
workflow, respectively.

Our planner is memory efficient. In our experiment, the
memory overhead of the planner is 210 KB for a Ligo work-
flow and 190 KB for a Montage workflow.

5.2 Cost and Time Estimation

We develop simple yet effective cost models to estimate the
cost and the time changes for applying one transformation
operation on the instance DAG. Since an auxiliary scheme
does not directly reduce the cost, we estimate the potential
cost saving of the main schemes after applying the auxiliary
scheme. As for the time estimation, the changes of execution
time need to be propagated to all the tasks with dependen-
cies on the vertices affected by the transformation operation.
This paper estimates the worst case for the change of execu-
tion time, since worst-case analysis usually can have simpli-
fied estimation process.

In the following estimations, we use the following nota-
tions. The time estimation and price units are in hours. The
hourly price of a type-i instance is F;. Since partial hours are
rounded, a task A with execution time ¢4 on the instance
costs [ta] x P;.

We present our cost and time estimation for each trans-
formation operation as follows.

Merge operation. Assume tasks A and B are each running
on a type-i instance and they can be merged to the same
type-i instance. The execution time of task A and B are ¢4
and tp respectively and the time from the end of task A to
the start of task B is t4,. Then the cost saved by merging
tasks A and B can be estimated as below:

(Ttal + [ta] = [(ta + i +tgap)]) x Bi. (1)

Since the Merge operation does not change the total execu-
tion time of a job, we estimate the change of time to be zero.
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Move operation. Assume task A can be moved to the end
of task B to merge with B on the same type-i instance. The
execution time of task A and B are t4 and tp respectively.
Although the Move operation does not reduce cost directly,
the main schemes following it can save cost. Using the
Merge operation as an example, the cost saved by moving
task A to the end of task B can be estimated as below:

(Ttal + [ts] = [(ta +tB)]) x P (2)

Note that, after moving task A to the end of task B, the
start and end time of all tasks that are dependent on A will
change accordingly.

Estimating the time changed by applying the Move oper-
ation is more complex. Assume task A is moved t,, after-
wards to be merged with task B. If A is on the critical path
of the workflow, the execution time of the workflow is
delayed for ¢,,. If task A is not on the critical path, the delay
time is less than t¢,,. However, the overhead of deciding
whether a task is on the critical path is O(V + E). To reduce
time complexity, we simply estimate the execution time is
increased by t,,. We adopt the same idea for the time esti-
mation of the rest operations.

Promote and Demote operation. Since the Promote opera-
tion is a dual operation of Demote, we present the cost and
time estimation process using Demote. Assume we can
demote a task from a type-i instance to a type-j instance,
where i > j. The execution time of the task on the type-i
instance is ¢; and the execution time of the task on an
instance of type j (denoted as t;) can be calculated by its par-
allel rate. In this study, we estimate the task execution time
according to Amdahl’s law. The description can be found in
Section 6. The cost change introduced by the Demote opera-
tion is approximately:

[ti] x P; — [t;] x P;. (3)

Approximately, we estimate the execution time is
changed by ¢; — ¢;.

Split operation. Assume a task A starts on a type-i instance
at time ¢; and ends at time ¢,. The Split operation can split
task A at time ¢, and resume the rest of the execution at time
t,. The cost saved by the Split operation is estimated as:

(T(ta = )] = [t~ t)] = [t~ t)) x P (4)

The total execution time is estimated to be delayed by
t, —ts.

Co-scheduling operation. Assume tasks A and B are each
running on a type-i instance and their execution time are t4
and tp respectively. After Co-scheduling operation, tasks A
and B are running on the same type-i instance. Suppose the
performance degradation rate is 74 (14 > 1). That means, the
task execution time is increased by a factor of r4. The cost
saved by the Co-scheduling operation is estimated as:

([ta] + [tp] — [max(ta X rq,tpXq)]) X P (5)

Approximately, the execution time of the job that task A
belongs to is increased by max(ry X ta,r4 X tg) — t4 and the
execution time of the job that task B belongs to is increased
by max(rq X ta,rq X tg) —tp.
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(A) Ligo

(B) Montage

Fig. 4. Workflow structures of Ligo and Montage.

6 EVALUATION

In this section, we present the evaluation results of our pro-
posed approach.

6.1 Experimental Setup

We conduct our evaluations on real cloud platforms, includ-
ing Amazon EC2 and Rackspace. The experiments were
performed in December 2012 and the total cost for the
experiments is approximately $6,000. We mainly consider
the on-demand instance types, as shown in Tables 1 and 2.

Workload. We have used synthetic workloads based on
two real-world applications, namely Montage and Ligo.
Montage is an astronomical application widely used as a
Grid and parallel computing benchmark. Ligo (Laser Inter-
ferometer Gravitational Wave Observatory) is an applica-
tion used to detect gravitational-wave. The structures of the
two workflows are shown in Fig. 4. The two applications
have different workflow structures and parallelism. Ligo
has more parallelism and Montage has more complicated
structure. We generate tasks of different types from a set of
predefined task types. The execution time of four different
types of tasks on the m1.small instance type are set as 30, 90,
150 and 210 minutes. For each task type, we estimate its exe-
cution time on other instance types according to Amdahl’s
law. Assume the execution time of a task on an instance of
type i is t;. Assume the CPU capability of the type-j instance
is k times as powerful as the type-i instance, we have
the task execution time on the instance of type j to
be t; = Pr x4 (1 — Pr) x t;, where Pr is the parallel rate
defined in Amdahl’s law. The I/O and network time of
workloads are included in the sequential part of the total
execution time. In Section 6.3.2, we vary Pr to study the
effectiveness of ToF on workloads with different I/O and
network characteristics. The performance degradation rate
for Co-scheduling operation is around 1.25 in our study.
We define D,,,, as the execution time of a workflow when
its tasks are all assigned to the cheapest instance type while
D,,;, as the execution time of a workflow when all tasks are
assigned to the most expensive instance type.

To assess our framework under the context of different
workflow types, we study the workload with continuous
submissions of one workflow type (either Montage or Ligo),
as well as a mixed workload of the two applications. In the
mixed workload, the workflow type is randomly selected
between Montage and Ligo. We assume the workflow sub-
mission rate follows Poisson distribution. By default, the

arrival rate of workflows is 0.1 per minute. For each work-
load, we submit around 100 jobs which is sufficiently large
for measuring the stable performance.

Comparisons. To evaluate the effectiveness of the pro-
posed techniques in ToF, we have implemented the follow-
ing algorithms for comparisons:

e Baseline. The Baseline approach simply uses the ini-
tial instance assignment in ToF, without any trans-
formations and optimizations.

e Auto-scaling [4]. We adopt the Auto-scaling approach
[4] as the state-of-the-art comparison.

e Greedy. The Greedy approach is similar to ToF. The
difference is that, ToF uses an planner to guide the
transformation while the Greedy approach ran-
domly selects a transformation operation until the
termination condition is reached.

Theoretically, all the comparison approaches are inferior
to ToF. Specifically, Baseline only adopts the initialization
technique used in ToF, without the latter transformation-
based optimizations. Auto-scaling is basically a special case
of ToF, where the bundling, consolidation and parallelism
reduction operations adopted in Auto-scaling are equivalent
to the Merge, Demote/Promote and Move operations in ToF.
However, Auto-scaling does not have the cost model as
guidance whereas ToF does. While Greedy has the same set
of transformation rules, it uses a random approach to deter-
mine which transformation to use. As our cost model is suffi-
ciently accurate, Greedy is inferior to ToF in terms of both
optimization overhead and the effectiveness of optimization.

All the metrics are normalized to those of Baseline. To demon-
strate the effectiveness of our framework, we mainly com-
pare the optimized total monetary cost and average
execution time of workloads.

We perform sensitivity studies on the parameters of
ToF: initialization heuristic (1H), plan period (P), deadline
(D) and parallel rate (Pr). We also study the performance
of ToF under different arrival rates of workflows. The
default settings for those parameters are as follows: IH is
Most-efficient, P is 15 minutes, D is 0.5 X (D5 + Dpin) and
Pris 0.6. Each evaluation is repeated for 10 times and the
average result is reported.

In the following evaluations, we first verify the accuracy
of the cost estimation model. Next, we present the optimiza-
tion results of ToF on minimizing the monetary cost while
satisfying the performance requirements. Finally, we pres-
ent the evaluation of ToF on optimizing the workflow exe-
cution time given budget requirements in Section 6.4.

6.2 Evaluations on Cost Estimation
In this section, we evaluate the accuracy of our cost estima-
tion model.

Tables 5 and 6 show the real and estimated monetary cost
saving of specific operations on Ligo and Montage work-
flows in one plan period. The estimated monetary cost sav-
ing is returned by our cost estimation model and the real
cost saving is calculated by differentiating the total mone-
tary cost before and after performing an operation. The esti-
mated cost is almost the same as the real cost on both
workflows except for some outliers. The outliers exist
mainly because our cost estimation model can only look-
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TABLE 5
The Real and Estimated Monetary Cost Saved by Transformation Operations in One Plan Period on Ligo Workflow
Iteration Step
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 | Step 11
D - |D —- | D —
. . P =P =1V =1V =V = |P =|P = |P —
Transformation Operations M M M M M M M M V - |V = |V =
M M M
Real Cost 0.06 0.06 0.06 0.12 0.12 0.06 0.06 0.12 0.24 0.4 0.12
Estimate Cost 0.06 0.06 0.12 0.12 0.12 0.06 0.12 0.12 0.24 0.4 0.12
TABLE 6

The Real and Estimated Monetary Cost Saved by Transformation Operations in One Plan Period on Montage Workflow

Iteration Step
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9
Transformation Onerati P oV (Vv os|v vy | D2y oy
ransformation Operations | ¢ M M M M M 9 M M
Real Cost 0.12 0.06 0.06 0.12 0.12 0.06 0.18 0.06 0.06
Estimate Cost 0.12 0.12 0.12 0.12 0.06 0.06 0.18 0.06 0.06
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Fig. 5. Cost optimization results on different workflow structures under the pricing scheme of Amazon EC2.

ahead one step. The further cost change caused by other
tasks dependent on the operated task is ignored in estima-
tion. The optimization overhead of ToF is 0.4 and 0.2 sec-
onds for one Montage job and one Ligo job, respectively.

6.3 Results on Cost Optimizations

In this section, we first present the overall comparison results
of ToF with other optimization methods on minimizing mon-
etary cost and then conduct sensitivity studies of ToF on dif-
ferent parameters. The optimization goal is to minimize the
monetary cost given a deadline to each workflow.

6.3.1 Overall Results

Fig. 5a shows the overall monetary cost results of ToF, Auto-
scaling and Greedy methods on the Montage, Ligo and
mixed workload using the pricing scheme of Amazon EC2.
The standard errors of the overall monetary cost of ToF,
Auto-scaling and Greedy are 0.01-0.05, 0.01-0.06 and 0.03-
0.06 respectively on the tested workloads. On average, ToF
obtains the smallest monetary cost in all three workloads,
meaning the designed transformation set is suitable for dif-
ferent structures of workflows. ToF saves more monetary
cost than Baseline, Auto-scaling and Greedy by 21-27, 21-30
and 15-17 percent, respectively. Auto-scaling has similar
monetary cost result as Baseline. This means Auto-scaling
has missed a great number of optimization opportunities

that can be discovered by our transformation operations.
Fig. 5b shows the average execution time results. The stan-
dard errors of the average execution time of ToF, Auto-scal-
ing and Greedy are 0.02-0.08, 0.02-0.07 and 0.05-0.1
respectively on the tested workloads. Although the average
execution time of ToF is longer than the other algorithms, it
guarantees the deadline requirement in all cases.

To better understand the cost saving of ToF over the
other compared algorithms, we analyze the number of
instances started and their average utilizations during
workflow execution. Table 7 shows the results for Ligo. All
the methods do not choose any m1.xlarge, simply because
the deadline is sufficiently loose for using cheaper instances.
The total number of instances started in ToF is smaller than
Baseline and Auto-scaling. This is because the transforma-
tion operations such as Move and Merge have made the
execution plan with high utilizations. Compared to Greedy,
ToF manages to make execution plans with more cheaper
instance types. The utilizations of the instances in ToF are
also higher because of selecting the proper transformation
guided by the cost model.

We have also performed the overall experiment under
the pricing scheme of Rackspace. Fig. 6a shows the overall
monetary cost results and Fig. 6b shows the average execu-
tion time results on Rackspace. The standard errors of the
overall monetary cost of ToF, Auto-scaling and Greedy are
0.01-0.04, 0.02-0.06 and 0.03-0.06 respectively on all tested
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TABLE 7
Total Number of Instances Started and Their Average Utilizations during the Execution
of Ligo Workflows under the Pricing Scheme of Amazon EC2

Algorithm Baseline Auto-scaling [ Greedy ToF
Instance Type | # instances  Average Uti.  # instances  Average Uti.  # instances  Average Uti.  # instances  Average Uti.
ml.small 447 93% 448 91% 293 95% 432 97%
ml.medium 141 94% 132 93% 119 95% 62 94%
ml.large 96 95% 91 94% 81 94% 69 94%
ml.xlarge 0 - 0 - 0 - 0 -
16 16 y
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Fig. 6. Cost optimization results on different workflow structures under the pricing scheme of Rackspace.

workloads. The standard errors of the average execution
time of ToF, Auto-scaling and Greedy are 0.03-0.09, 0.02-
0.07 and 0.05-0.13 respectively on the tested workloads. We
have observed similar findings as the results of Amazon
EC2, and thus focus on the evaluations on Amazon EC2 in
the remainder of this section.

6.3.2 Sensitivity Studies

We have conducted sensitivity studies on different parame-
ters. Since we have observed similar results across work-
loads, we focus on Ligo workload in the sensitivity studies.
In each study, we vary one parameter at a time and keep
other parameters in their default settings. We only present
the monetary cost optimization results in the following stud-
ies to learn the sensitivity trends of ToF over the parameters.

Initial instance assignment heuristics. Fig. 7 shows the mon-
etary cost results under the three different initialization heu-
ristics, namely Best-fit, Worst-fit and Most-efficient. Note,
Auto-scaling uses the Most-efficient heuristic only. ToF
achieves a smaller cost than Baseline, Auto-scaling and
Greedy in all cases, which shows the effectiveness of our
transformation operations and the cost-based rule. ToF
obtains the most significant cost reduction over Baseline
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Fig. 7. Overall monetary cost results of sensitivity studies on the initial
instance assignment heuristics.

under the Best-fit heuristic. This is because all tasks are
assigned to the best instance type after the Best-fit initializa-
tion, which provides a significant space for cost optimiza-
tions using Demote.

Plan period. We vary the plan period parameter from 5 to
25 minutes and present the resulting monetary cost results
in Fig. 8. The monetary cost obtained by ToF decreases
when plan period varies from 5 to 20, but increases when
the plan period increases to 25. Although a longer plan
period offers a larger optimization space, it tightens the
deadline of workflows since the workflows have to wait lon-
ger in the queue in order to be scheduled. A suitable choice
of the plan period should balance these two issues. In our
study, we choose the plan period of 15 minutes.

Deadline. Deadline is an important factor to determine
the initial configurations of tasks and further affects the
optimization results. We evaluate the compared algorithms
under deadline requirement varying from 1.5 x D,;;,,, 0.5x
(Dmin + Dpaz) to Dyyoy. Fig. 9 shows the resulting monetary
cost results. ToF obtains the lowest monetary cost among
the compared algorithms under all deadlines. As the dead-
line becomes loose, more tasks can be assigned to cheaper
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Fig. 8. Overall monetary cost results of sensitivity studies on the plan
period parameter.



96 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.2, NO.1,

T :7 ]
08| &\A/A J
-
I3
o
o
> 06 4
b
o
c
S 04} : 1
= —— Auto-scaling|
—— ToF
0.2+ —>— Greedy 4
0.0 : ‘ ‘
525 1080 1950

Deadline (D)

Fig. 9. Overall monetary cost results of sensitivity studies on deadline.

instance types. The cost saving of ToF over Baseline and
Auto-scaling is higher when deadline is 1,080 minutes. This
is because when deadline is tight, e.g., 525 minutes, many
tasks have to be assigned to expensive instance types in
order to meet deadline requirement. In this case, the opera-
tions such as Demote are not applicable. Similarly, when
deadline is loose, e.g., 1,950 minutes, many tasks can be
assigned to cheap instances and there is no need to perform
operations such as Demote. When deadline is 1,950
minutes, only the m1.small type of instances are used and
all compared algorithms are almost the same.

Parallel rate (Pr). We also evaluate the performance of the
compared algorithms when the parallel rate parameter
varies from 0.4, 0.6, 0.8 to 0.95. The evaluated results are
shown in Fig. 10. Different parallel rate values stand for dif-
ferent application types. For example, parallel rate of 0.8 and
0.95 could stand for compute-intensive applications while in
applications with parallel rate of 0.4 and 0.6, network or I/O
time are dominating the total execution time. As the parallel
rate increases, the monetary cost of the compared algorithms
decreases. This is because, with a higher parallel rate, tasks
can benefit more from instances with higher capability.
Under different parallel rates, ToF always obtains the lowest
monetary cost among all compared algorithms. This demon-
strates the effectiveness of our design to a wide areas of
applications. ToF saves more cost when parallel rate is
higher. This is because the compute-intensive applications
can benefit more from transformations like Demote.

Effectiveness of auxiliary schemes. We also evaluate the
effectiveness of each single operation in auxiliary schemes
on cost optimization. We evaluate ToF without the Move
operation (denoted as w/o Move), ToF without the Pro-
mote operation (denoted as w/o Promote), ToF without the

1.2

1of o— ¢ - o
o8l m ]
@

o

(8]

>06F 4
% —— Auto-scaling

S 04 [DToF J
= —>— Greedy

02 4

0.0 L— : : .

0.4 0.6 0.8 0.95

Parallel Rate (Pn)

Fig. 10. Overall monetary cost results of sensitivity studies on the paral-
lel rate parameter.
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Split operation (denoted as w/o Split) and ToF without the
Co-scheduling operation (denoted as w/o Co-scheduling)
in each experiment. Fig. 11 shows the optimized monetary
cost results. All results are normalized to the ToF result
with all auxiliary schemes. The monetary cost results are all
above one, meaning that ToF performs the best for mone-
tary cost optimization when using all the auxiliary
schemes. The monetary cost obtained by w/o Co-schedul-
ing is smaller than the others and the number of Co-sched-
uling operations adopted during ToF execution is also
smaller than the other operations. This is because the tasks
in Ligo are of different types, the chance of two tasks having
similar start and end time as well as similar leftover time
before deadlines is low.

Arrival rate. We evaluate the effectiveness of ToF when
the arrival rate of workflows varies from 0.1, 0.2, 0.4, 0.6 to
0.8. Fig. 12 shows the optimized total monetary cost results.
ToF has the lowest cost among the compared algorithms
under all arrival rates. The cost saving of ToF slightly
increases, from 27 to 32 percent over Baseline, when the
arrival rate gets larger. This is because with a larger arrival
rate, there are more workflows queuing up within one plan
period, which creates more chances to perform the transfor-
mation operations.

6.4 Results on Performance Optimizations

In this section, we evaluate ToF with the goal of minimizing
workflow execution time given a budget on each workflow.
The extension is simple. First, in the initialization step, the
three initialization heuristics are extended to satisfy budget
requirement. The Best-fit and Most-efficient heuristics
adopt the GAIN [39] approach to make sure of budget while
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Fig. 12. Overall monetary cost results of sensitivity studies on the arrival
rate of workflows.
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Fig. 13. Execution time optimization results of the three compared algorithms on different workflow structures.

the Worst-fit heuristic simply assigns each task to the
cheapest instance type. The planner guides the optimiza-
tion process with a time-based rule. Since Auto-scaling was
not proposed to optimize execution time, we also modified
it in the following way: starting from a tight deadline, each
task is configured with the most cost-efficient instance type
according to deadline assignment. According to the current
task configuration, if the total cost is larger than budget, we
loose the deadline a bit and re-run the task configuration
until the total cost is less than budget. We resume the rest of
the auto-scaling optimizations from this preprocessed state.

Fig. 13a shows the optimized average execution time and
Fig. 13b shows the corresponding total cost obtained by the
compared algorithms on three different workflows. All
parameters are set as default. Promote operation is now the
only main scheme and the other operations are categorized
as auxiliary schemes. The budget is set as twice the total
cost of executing the workflow when all of its tasks are
assigned to the cheapest instance type. The standard errors
of the average execution time of ToF, Auto-scaling and
Greedy are 0.01-0.05, 0.02-0.06 and 0.04-0.07 respectively on
the tested workloads. The standard errors of the total cost of
ToF, Auto-scaling and Greedy are 0.01-0.06, 0.01-0.05 and
0.03-0.08 respectively. On all the three workloads, ToF
obtains the best average execution time in all workflow
structures. Specifically, it reduces the average execution
time over Baseline, Auto-scaling and Greedy by 20-21, 16-21
and 8-18 percent, respectively. This result demonstrates the
effectiveness of the extended ToF on optimizing execution
time and hence validates the extensibility of our framework.

7 CONCLUSION

Performance and monetary cost optimizations for running
workflows from different applications in the cloud have
become a hot and important research topic. However, most
existing studies fail to offer general optimizations to capture
optimization opportunities in different user requirements,
cloud offerings and workflows. To bridge this gap, we pro-
pose a workflow transformation-based optimization frame-
work namely ToF. We formulate the performance and cost
optimizations of workflows in the cloud as transformation
and optimization. The two components are designed to be
extensible for user requirements on performance and cost,
cloud offerings and workflows. Particularly, we formulate

six basic transformation operations. We further develop a
cost model guided planner to efficiently and effectively find
the suitable transformation sequence for the given perfor-
mance and cost goal. We evaluate our framework using
real-world scientific workflow applications and compare
with other state-of-the-art scheduling algorithms. Results
show our framework outperforms the state-of-the-art Auto-
scaling algorithm by 30 percent for monetary cost optimiza-
tion, and by 21 percent for the execution time optimization.
Moreover, the planner is lightweight for online optimization
in the cloud environments. As for future work, we consider
ToF on multiple clouds. Still, there are many practical and
challenging issues for current multi-cloud environments
[41]. Those issues include relatively limited cross-cloud net-
work bandwidth and lacking of cloud standards among
cloud providers.
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