
DiGraph: An Efficient Path-based Iterative
Directed Graph Processing System on

Multiple GPUs

Yu Zhang
Huazhong University of Science

and Technology, China*

zhyu@hust.edu.cn

Xiaofei Liao
Huazhong University of Science

and Technology, China*

xfliao@hust.edu.cn

Hai Jin
Huazhong University of Science

and Technology, China*

hjin@hust.edu.cn

Bingsheng He
National University of Singapore,

Singapore
hebs@comp.nus.edu.sg

Haikun Liu
Huazhong University of Science

and Technology, China*

hkliu@hust.edu.cn

Lin Gu
Huazhong University of Science

and Technology, China*

lingu@hust.edu.cn

Abstract
Many systems are recently proposed for large-scale iter-
ative graph analytics on a single machine with GPU ac-
celerators. Despite of many research efforts, for iterative
directed graph processing over GPUs, existing solutions
suffer from slow convergence speed and high data access
cost, because many vertices are ineffectively reprocessed
for lots of rounds so as to update their states according
to other active vertices regardless of their dependencies.
In this paper, we propose a novel and efficient iterative
directed graph processing system on a machine with
the support of multiple GPUs. Compared with existing
systems, the unique feature of our system is that it takes
advantage of the dependencies between vertices in three
novel ways. First, it represents a directed graph into a set
of disjoint hot/cold directed paths and takes the path as
the basic parallel processing unit, so as to help efficient
vertex state propagation along the paths over GPUs for
faster convergence speed and higher utilization ratio of
the loaded data. Second, it tries to dispatch the paths to

* Yu Zhang, Xiaofei Liao (Corresponding author), Hai Jin, Haikun
Liu, and Lin Gu are with National Engineering Research Center for

Big Data Technology and System, Services Computing Technology

and System Lab, Cluster and Grid Computing Lab, School of
Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan, 430074, China.

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304029

GPUs for parallel processing according to the topologi-
cal order of the dependency graph of them. Many paths
then converge along such an order after processing them
for exactly once, getting lower reprocessing overhead.
Third, a path scheduling strategy is further developed
on each streaming multiprocessor to enable the privi-
leged execution of the paths (e.g., the hot paths) with
greater impacts on vertex state propagation for shorter
convergence time according to vertex dependency. Ex-
perimental results show that our approach speeds up
iterative directed graph processing by up to 3.54 times
in comparison with the state-of-the-art systems.

CCS Concepts • Computer systems organiza-
tion → Parallel architectures; • Computing method-
ologies → Parallel computing methodologies.

Keywords Iterative directed graph processing; GPU;
convergence speed; data access cost; warp scheduling

ACM Reference Format:
Yu Zhang, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun Liu,
and Lin Gu. 2019. DiGraph: An Efficient Path-based Itera-
tive Directed Graph Processing System on Multiple GPUs.
In 2019 Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’19), April 13–17, 2019,
Providence, RI, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3297858.3304029

1 Introduction
Many iterative algorithms have been recently proposed
to analyze directed graphs (e.g., protein interaction net-
works, social networks, and citation networks) for various
applications [3, 12, 14, 22, 29, 31, 44, 56], because direct-
ed graphs are prevalent in the real world. It is usually
time-consuming for them to handle the large-scale direct-
ed graph round by round until the states of the vertices
are stable. Therefore, it is expected to reduce the execu-
tion time of these iterative directed graph algorithms to
provide real-time results for the related applications.

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

601

With the recent advances in GPU accelerators, there
is a growing interest to offload graph analytics to GPUs
for real-time performance, due to its higher computing
power and memory bandwidth than the CPU. Many
systems, such as Medusa [54], CuSha [16], GraphRe-
duce [36], Garaph [25], Gunrock [30, 46], and Groute [4],
have been recently designed to handle large-scale graph
by exploiting the powerful capacity of GPUs on a single
PC for high cost-effectiveness. They support efficient
iterative graph processing on GPUs through hiding com-
munication cost, ensuring balanced load, improving data
locality, and ensuring high GPU utilization ratio.
Despite of research efforts in the previous studies,

there is a major challenge for iterative directed graph
processing on the GPUs. Because existing GPU-based
systems [4, 16, 25, 30, 36, 46, 54] take vertex/edge as the
basic parallel processing unit over GPU cores, the ver-
tices of each directed path may be concurrently handled
by many GPU threads and update their states based on
their precursors’ stale states within each round of graph
processing. As a result, the new state of each active ver-
tex needs many rounds to work on its successors for the
unawareness of update dependency1 between vertices,
and its stale state is used by many GPU threads to
iteratively compute the states for other vertices, which
are distributed over many or all graph partitions. Such
a slow propagation of new vertex state finally induces
frequent reprocessing of many partitions for existing
GPU-based systems to repeatedly update their vertices’
states, although few vertices may be active within the
latter rounds. It not only wastes a long time to repeated-
ly handle the same vertices, but also incurs high cost to
load them. It motivates us to design more efficient GPU-
based system for faster convergence speed and lower
data access cost of iterative directed graph processing.
We analyse the characteristics of vertex update de-

pendency in iterative directed graph processing over
GPUs, and observe that, a vertex can quickly propa-
gate its recent state to the others along a directed path
when the vertices of this path are sequentially and asyn-
chronously handled along this path within each round.
Based on this observation, we present DiGraph, a GPU-
accelerated iterative directed graph processing system
by using our path-based asynchronous execution model,
which is fundamentally different from existing solutions.
In particular, it represents a directed graph into a set
of disjoint hot/cold paths, so as to provide an oppor-
tunity to efficient vertex state propagation and higher
utilization ratio of the loaded data. The directed path is
then taken as the basic parallel processing unit, where

1Each directed edge <𝑣𝑖, 𝑣𝑗> induces an update dependency

between 𝑣𝑖 and 𝑣𝑗 , indicating that 𝑣𝑗 updates its own state based

on the state of 𝑣𝑖.

different paths are concurrently handled by GPU threads
and the vertices of each path are sequentially handled
by a single GPU thread along their order on this path
within each round in an asynchronous way. In this way,
vertex state propagation is able to be quickly done along
the directed paths, getting faster convergence speed.

For lower reprocessing cost, a topological order is tried
to be generated for the paths according to their depen-
dencies and the paths are tried to be dispatched to GPUs
for parallel processing according to such an order. Then,
many paths never need to be reprocessed once they have
been handled, due to no new vertex state from the oth-
er paths. On each Streaming Multiprocessor (SMX), an
efficient path scheduling strategy is further designed to
judiciously assign the processing order of its paths for less
redundant work according to their importance on vertex
state propagation. Compared with Gunrock [30, 46] and
Groute [4], two cutting-edge GPU-based graph process-
ing systems, experimental results show that DiGraph
offers improvements of 2.25–7.39 and 1.59–3.54 times
for iterative directed graph processing on four GPUs, re-
spectively. Besides, when the number of GPUs increases
from one to four, the graph processing time of DiGraph
is reduced by 62.9%, more than 46.3% of Gunrock and
56.5% of Groute, indicating better scalability than them.
The paper has the following important contributions

on GPU-based graph processing:
∙ It proposes a path-based asynchronous execution
model to exploit our observed characteristics of
update dependency to accelerate iterative directed
graph processing on multiple GPUs.
∙ It also tackles several fundamental challenges for
directed graph processing on multiple GPUs. Our
techniques include: 1) a path-based directed graph
partitioning method to provide an opportunity to
faster state propagation and higher utilization ra-
tio of GPUs (Section 3.2.1); 2) a storage scheme of
directed graph for coalesced accesses and lower stor-
age cost on GPUs (Section 3.2.1); 3) a dependency-
aware path dispatching for multi-GPUs for less
redundant work and higher utilization ratio of G-
PUs (Section 3.2.2); 4) a path processing method
for faster convergence speed, higher parallelism of
GPU threads, and lower communication cost (Sec-
tion 3.2.2); and 5) a path scheduling scheme on
SMX for faster state propagation (Section 3.2.3).
∙ It gives an evaluation to demonstrate the efficiency
of DiGraph on a platform with multiple GPUs.

The remainder is organized as follows: Section 2 de-
scribes the challenges of existing GPU-based solutions
and our motivations. Section 3 presents our approach
and the details of DiGraph, followed by an evaluation
in Section 4. Section 5 gives a survey of related work.
Finally, we conclude this paper in Section 6.

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

602

B1 B3B2

B4 B5 B6

v3

v4
BBB

v5
2

v7
B

v2

BBB
v1

v6 v8
BB3

v9

BB
v0

v10 v11 v12v13v14

v15 v16 v17 v18

v19 v20 v21 v22 v23

Figure 1. An example to illustrate the inefficiency of
existing GPU-based execution models for iterative directed
graph processing, where the directed graph is divided into
six partitions, i.e., 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, and 𝐵6.

2 Challenges and Motivation
Recently, a single PC is usually equipped with multiple
GPUs (each contains multiple SMXs) and these GPUs
are connected through PCI-Express or NVLink. A GPU
program has host code and device code (GPU kernel).
Each GPU kernel is Single Instruction Multiple Threads
(SIMT) program. The data is dispatched from the host
to the global memory of GPU for its threads to handle.
The GPU threads are grouped into warps. A SMX holds
a certain number of warps and its warp scheduler assigns
their processing order in a round-robin order by default.
The threads on each SMX communicate with each other
through its on-chip shared memory.

Inefficiency of Existing Solutions. For iterative
directed graph algorithms, each vertex needs to repeat-
edly update its state according to its precursors’ states
until convergence. However, when it is executed over
GPUs, most vertices and their precursors are concur-
rently handled by GPU threads and may update their
states according to their precursors’ stale states in each
round of graph processing. As a result, the new states
of active vertices are slowly propagated to others along
the directed paths, and many vertices have iteratively
calculated their states based on stale states of these ver-
tices and need reprocessing, although using existing syn-
chronous/asynchronous GPU-based solutions [4, 30, 46].
Much time is wasted to repeatedly handle the same
vertices and high cost is also generated to load them.

Take Figure 1 as an example and assume that one
active vertex, e.g., 𝑣2, exists in the current iteration.
With existing synchronous GPU-based methods [30, 46],
after one round of graph processing, the new state of 𝑣2
can only be propagated to its direct neighbors, because
each new vertex state cannot be used by other vertices
in the same round. In order to propagate the new state
of 𝑣2 to 𝑣5, three rounds of graph processing are needed.
With existing asynchronous GPU-based solutions [4],
although the latest state of each vertex is allowed to
be immediately used by its neighbors, the vertices of a
directed path may be concurrently handled by different
GPU threads within each round. Because the states of
already-processed vertices can only be updated in the
next round, it also suffers from slow state propagation.

(a) Average number of each partition's processing

times for different algorithms over four GPUs
(b) Ratio of useless updates against the total

number of updates for SSSP

(c) Average ratio of active vertices in each non-

convergent partition for SSSP over four GPUs

(d) Normalized number of updates of the sequential

way against that of Groute over four GPUs

1 2 3 4
0

20

40

60

80

100

R
at

io
 o

f
 u

se
le

ss
 u

p
d

at
es

 (
%

)

Number of GPUs

 dblp cnr ljournal

 webbase it04 twitter

pagerank adsorption SSSP k-core
0

20

40

60

80

100

R
at

io
 o

f
u
p
d
at

es
 (

%
)

Benchmarks

 dblp cnr ljournal

 webbase it04 twitter

db
lp cn

r

ljo
ur

na
l

w
eb

ba
se

it0
4

tw
itt

er
0

10

20

30

40

50

A
v
er

ag
e

n
u

m
b

er
 o

f
 t

im
es

Data sets

 pagerank adsorption

 SSSP k-core

0 50 100 150 200 250 300
0

20

40

60

80

100

A
v

er
ag

e
ra

ti
o

 (
%

)

Execution time (ms)

 dblp cnr

 ljournal webbase

 it04 twitter

Figure 2. Evaluation of Groute over GPUs
For example, when asynchronously executing SSSP

(𝑣1 is the source vertex) over GPUs, the vertices in 𝐵1

of Figure 1 may be concurrently processed by different
GPU threads of a warp. Then, 𝑣5, 𝑣4, and 𝑣3 have been
handled before receiving the new state (the shortest dis-
tance from 𝑣1 to 𝑣2) of 𝑣2 within the current round. 𝑣5,
𝑣4, and 𝑣3 have to be reprocessed in the next several
rounds to update their states according to the new s-
tate of 𝑣2. Because there are three hops for the state
propagation from 𝑣2 to 𝑣5, the partition 𝐵1 needs three
rounds of processing for convergence. Furthermore, after
the processing of 𝐵1, the partitions 𝐵2, 𝐵3, and 𝐵6 need
to be reprocessed to update their vertex states according
to the received new vertex states from 𝐵1, although they
have been handled. It exacerbates the above challenge.

To demonstrate it, Groute [4] is evaluated over a plat-
form with four GPUs. The details of the hardware platfor-
m and the benchmarks are the same as those described in
Section 4. From Figure 2(a) and Figure 2(b), we observe
that many partitions of Groute need frequent reprocess-
ing, because each vertex usually reads stale states of
its neighbors for useless update before updating these
stale states in the same round. It is more serious on the
platform with more GPUs. Besides, as depicted in Fig-
ure 2(c), only a few vertices of non-convergent partitions
are active, indicating low GPU utilization ratio as well,
where all vertices are initially set active.

Our Observations. Figure 2(d) experimentally shows
the number of vertex updates required by the sequential
execution of iterative directed graph algorithm, where all
vertices are tried to be sequentially and asynchronously
handled by a thread according to the topological order
of the directed graph. In the experiments, we have the
following two observations in iterative directed graph
processing. They motivate our design to fully exploit up-
date dependency between vertices for faster convergence
and much lower reprocessing overhead on GPUs.

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

603

Observation 1: A vertex’s new state is able to work on
the other ones within a single round if they are handled
sequentially along their order on a directed path in an
asynchronous way within the round. For example, let
the vertices of 𝐵1 (see Figure 1) be sequentially and
asynchronously handled in the order of 𝑣2, 𝑣3, 𝑣4, and
𝑣5 for one round. Then, the new state of 𝑣2 can be
propagated to 𝑣3. In addition, it also can be aggregated
by 𝑣3 and works on 𝑣3, when 𝑣3 is handled within the
same round. Similarly, the newly generated state of 𝑣3,
calculated based on the new state of 𝑣2, is also able
to sequentially work on 𝑣4 and 𝑣5, when 𝑣4 and 𝑣5 are
processed in the same round. That is to say, the new
state from 𝑣2 can reach 𝑣3, 𝑣4, and 𝑣5 using a single
round instead of three rounds, and 𝐵1 needs much fewer
vertex state updates to converge.

Observation 2: Lots of directed edges do not consti-
tute a cycle2, which allow to further reduce redundant
processing. For example, 𝑣8 should be handled after the
convergence of 𝑣7. By such means, 𝑣8 will never receive
new vertex state from the other vertices, because the
directed edge from 𝑣7 to 𝑣8 is not in any cycle. It also
indicates that the partition 𝐵3 never needs to be re-
processed again, if it is handled after the convergence
of the partition 𝐵2. Thus, in Figure 2(d), for different
iterative graph algorithms, 18.1%-23.3%, 31.8%-37.4%,
9.5%-13.9%, 27.2%-36.5%, 17.6%-22.8%, and 8.2%-13.3%
of all vertices only need one update to converge over
dblp, cnr, ljournal, webbase, it04, and twitter, respec-
tively, because the directed edges on the paths between
two vertices of different Strongly Connected Components
(SCCs) do not constitute cycle, although the vertices
of the giant SCC occupy 69.4%, 34.4%, 78.0%, 45.6%,
72.3%, and 80.3% of all vertices for the graphs, respec-
tively. Note that all vertices of directed acyclic graph
only need one update when they are handled along their
topological order, because all edges are not in any cycle.

3 Overview of DiGraph
Based on the observations, we propose an efficient GPU-
based iterative directed graph processing system, called
DiGraph. It represents a directed graph into a set of
disjoint directed paths and takes the path as the basic
parallel processing unit. This is fundamentally differ-
ent from existing solutions, which take vertex/edge as
the basic parallel processing unit. In DiGraph, different
paths are concurrently handled by GPU threads. The
vertices of each path are sequentially handled by a single
GPU thread along their order on this path within each
round and each vertex’s new state is asynchronously
sent to its successors for the updating of their states

2A cycle, e.g., 𝑣6 − 𝑣7 − 𝑣13 − 𝑣14 − 𝑣6 of Figure 1, is an ordered

sequence of connected directed edges such that any vertex on it is
able to reach itself.

(a)

(b)

p5

p1

p2

p3

p6

p4

(c)

GPU Thread T1:

GPU Thread T2:

GPU Thread T3:

GPU Thread T4:

GPU Thread T5:

GPU Thread T6:

v2 v4v1 v3 v5

v6 v8v3 v7 v9

v8

v6v7

v1

(b)
v1

v0

p1

p2

p4 p3

p6

p5

v23v22v21v20v19

v10 v11 v12

v13 v14

v15 v16 v17 v18

v3

p11
v4

p4p4p
v5

v7v2

v1

v6 v8

3

v9

v0

v10 v11 v12v13v14

v15 v16 v17 v18

v19 v20 v21 v22 v23

Figure 3. An example to show how to divide the directed
graph into directed paths and get the dependency graph
for them: (a) the directed graph is divided into six paths;
(b) the update dependencies between the paths which are
concurrently processed by different GPU threads; (c) the
generated dependency graph of the paths, which indicates
that the processing order of the paths is expected to be
𝑝1, 𝑝2, 𝑝4, 𝑝5, 𝑝6, and 𝑝3.

within the same round, getting faster vertex state propa-
gation. There, the high-degree vertices, i.e., hot-vertices,
are tried to be put together into hot paths, aiming to
enable efficient vertex state propagation and higher uti-
lization ratio of the loaded data. To reduce the overhead
of repeated processing of the paths, it constructs a Di-
rected Acyclic Graph (DAG) for the paths based on their
dependencies, and tries to assign them to GPUs for par-
allel processing according to the topological order of the
DAG, where each node of the DAG sketch represents a
subset of paths. A path scheduling strategy is further
used on each SMX to arrange the processing order of its
paths based on their importance on state propagation,
enabling the privileged execution of the most important
paths (e.g., hot paths) for less redundant work.

3.1 Path-based Asynchronous Execution

Let𝐺=(𝑉 , 𝐸) denote a directed graph, where 𝑉={𝑣𝑙| 0 ≤
𝑙 < 𝑛} is a set of vertices, 𝐸={<𝑣𝑙, 𝑣𝑚> | 𝑣𝑙 ∈ 𝑉 ∧𝑣𝑚 ∈
𝑉 } is a set of directed edges, and 𝑛 is the number of ver-
tices. According to our observation, the vertices of each
directed path can quickly propagate their new states
to others only when they are asynchronously handled
along their order on this path within each round in
a sequential way, due to the update dependencies of
them. In order to exploit such a characteristic of update
dependency for faster convergence, in our model, the
graph 𝐺 is represented by a set of disjoint directed paths
(no intersected edge), i.e., 𝐺=𝑃=∪(𝑥∈𝑉 ∧𝑦∈𝑉)𝑃𝑎𝑡ℎ(𝑥, 𝑦),
where 𝑃𝑎𝑡ℎ(𝑥, 𝑦) is an ordered sequence of connected

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

604

directed edges from the vertex 𝑥 to 𝑦. There, it is ex-
pected that ∀ 𝑃𝑎𝑡ℎ(𝑥, 𝑦) ∈ 𝑃∧ ∀𝑃𝑎𝑡ℎ(𝑥′, 𝑦′) ∈ 𝑃 s.t.
𝑃𝑎𝑡ℎ(𝑥, 𝑦) ∩ 𝑃𝑎𝑡ℎ(𝑥′, 𝑦′) ⊆ {𝑥, 𝑦, 𝑥′, 𝑦′}, making sure
that more paths are not dependent on each other for less
reprocessing cost. An example is given in Figure 3(a).
Otherwise, for any two paths with intersected vertices,
they are dependent on each other and need reprocessing.

After that, it takes the directed path as the basic par-
allel processing unit and the GPU threads concurrently
deal with different paths. The vertices of each directed
path are sequentially handled by a single GPU thread
along their order on this path (e.g., 𝑣0, 𝑣1, · · · , 𝑣5 for
the path 𝑝1 which is handled by the GPU thread 𝑇1 of
Figure 3(b)) within each round in an asynchronous way,
where the vertices are also stored along such an order
for coalesced accesses. The new state of each vertex (e.g.,
𝑣1) is immediately used to update the state of its direct
successor (e.g., 𝑣2) on the same path in the same round.
By such means, the states of the vertices on each direct-
ed path can reach the others along this path within one
round, no matter how long the path is. The maximum
number of graph processing rounds for one vertex state
propagation to another equals to the number of paths
traversed by this propagation, which is usually much
fewer than that of existing solutions, i.e, the diameter of
the graph. For example, as described in Figure 3(b), our
approach uses three rounds to propagate the new state
of 𝑣0 to 𝑣12 along three paths, i.e., 𝑝1, 𝑝2, and 𝑝3, indi-
cating faster convergence speed than existing solutions.
Note that the state propagation between paths is done
through state synchronization of vertex replicas (e.g.,
three replicas of the vertex 𝑣1), where it takes partition
as the synchronization unit and is conducted in batches
for low overhead (Section 3.2.2).

However, some directed paths are dependent on others
and may face reprocessing when they are concurrently
handled by different GPU threads (Figure 3(b)), because
the states of their vertices may be updated based on
stale vertex states of the other paths. To avoid the re-
peated processing of some paths, it generates an effective
dependency graph 𝐺′ for the paths, i.e., 𝐺′=(𝑉 ′, 𝐸′),
where 𝑉 ′={𝑝𝑖| 𝑝𝑖 ∈ 𝑃} and 𝐸′={<𝑝𝑖, 𝑝𝑗>| ∃ 𝑝𝑖 ∈ 𝑃
∧ ∃ 𝑝𝑗 ∈ 𝑃 s.t. 𝑣𝑙 ∈ (𝑝𝑖 ∩ 𝑝𝑗) ∧ <𝑣𝑛, 𝑣𝑙>∈ 𝑝𝑖∧ <𝑣𝑙,
𝑣𝑚>∈ 𝑝𝑗}. Figure 3(c) illustrates how to get the depen-
dency graph for the paths of a directed graph. After that,
it can get a DAG sketch 𝐺′′ of 𝐺′ by contracting SCCs
of this dependency graph into nodes, i.e., 𝐺′′=(𝑉 ′′, 𝐸′′),
where 𝑉 ′′={𝑆𝐶𝐶𝑚| 𝑆𝐶𝐶𝑚 ⊆ 𝐺′ ∧ 0 ≤ 𝑚 < |𝑆|}, |𝑆|
is the number of SCCs in the graph 𝐺′, 𝐸′′={<𝑆𝐶𝐶𝑥,
𝑆𝐶𝐶𝑦> | ∃ 𝑝𝑖 ∈ 𝑆𝐶𝐶𝑥 ∧ ∃ 𝑝𝑗 ∈ 𝑆𝐶𝐶𝑦 s.t. 𝑝𝑖 → 𝑝𝑗},
and 𝑝𝑖 → 𝑝𝑗 denotes that 𝑝𝑖 is able to reach 𝑝𝑗 through
a directed path of 𝐺′.

Each vertex, i.e., 𝑆𝐶𝐶𝑚, or called SCC-vertex, of the
DAG represents a set of paths and each edge in the

DAG describes the update dependency between two
SCC-vertices, which allows the paths to be handled
according to the topological order of this DAG sketch.
The set of paths represented by each SCC-vertex are tried
to be asynchronously dispatched to GPUs for parallel
processing, when the precursors of this SCC-vertex are
inactive. Then, due to no new vertex state from the
other ones, many paths never need to be handled again,
sparing redundant reprocessing. Note that, if there are
idle SMXs (e.g., the number of schedulable paths is
less than that of the idle GPU cores), the successive
paths represented by the active SCC-vertex with the
least number of active precursors are also allowed to be
handled in advance to get vertex states nearer to the
final ones by fully exploiting high parallelism of GPUs.

3.2 Parallel Processing over Multiple GPUs

We firstly show the details of parallel preprocessing of
directed graph on the CPU, then show how to concur-
rently handle it on multiple GPUs. Note that we also
use the NCCL library3 to create a ring topology over the
bus for efficient multi-GPU collective communication
as Groute [4], and the communication between multiple
GPUs is done through the host memory. Graph algo-
rithms on DiGraph are implemented by the APIs of the
popular Gather-Apply-Scatter programming model [8].

3.2.1 Graph Representation and Storage

We firstly describe how to efficiently represent and store
the directed graph.

Path-based Graph Partitioning. A few high-degree
vertices, i.e., hot-vertices, need more rounds of processing
to converge, because most vertices’ states pass through
them to reach others for power-law property [8] of real-
world graph. Thus, when dividing a graph into paths,
hot-vertices are expected to be put together into several
hot paths (e.g., 𝑝2 in Figure 3(a)), while the others are
put into cold paths. It brings two advantages. First, it
enables the privileged execution of hot path, which serves
as fast track for most state propagations. Second, few-
er easily convergent vertices (e.g., 𝑣9) are loaded along
with the frequently processed hot-vertices (e.g., 𝑣6) as
the vertices on the same path, sparing the consumption
of memory bandwidth and shared memory of SMX.

We employ a parallel method to decompose the direct-
ed graph. In detail, it firstly divides the graph into several
subgraphs and evenly assigns them to CPU threads to
divide them into paths. As shown in Algorithm 1, each
CPU thread repeatedly takes the vertex (i.e., 𝑣𝑟𝑜𝑜𝑡) with
unvisited local edges as the root, and travels the edges of
its subgraph in a depth-first order to divide this subgraph
into paths, until all edges are visited, where 𝑑=0 for each

3http://www.github.com/NVIDIA/nccl/.

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

605

Algorithm 1 Path-based Graph Partitioning on CPU

1: procedure GraphP(𝑣𝑟𝑜𝑜𝑡, 𝑝, 𝑑)
2: Set the vertex 𝑣𝑟𝑜𝑜𝑡 as visited
3: if It has unvisited local edges ∧ 𝑑<𝐷𝑀𝐴𝑋 then
4: /*Get 𝑣𝑟𝑜𝑜𝑡’s successors in local subgraph*/

𝑆𝑠𝑢𝑐 ← GetLocalSuccessors(𝑣𝑟𝑜𝑜𝑡)
5: Sort(𝑆𝑠𝑢𝑐) /*Sort them based on degrees*/
6: for each 𝑣 ∈ 𝑆𝑠𝑢𝑐 do
7: if <𝑣𝑟𝑜𝑜𝑡, 𝑣> is unvisited then
8: Set the edge <𝑣𝑟𝑜𝑜𝑡, 𝑣> as visited
9: /*Insert into the queue pointed by 𝑝*/

Insert(𝑝, <𝑣𝑟𝑜𝑜𝑡, 𝑣>)
10: if 𝑣 is unvisited then
11: GRAPHP(𝑣, 𝑝, 𝑑+1)
12: else
13: Set the vertex 𝑣 as an inner one
14: NewPath(𝑝)
15: end if
16: end if
17: end for
18: else
19: NewPath(𝑝)
20: end if
21: end procedure

traversal. Note that the depth, i.e., 𝑑, (its maximum val-
ue is 𝐷𝑀𝐴𝑋=16 by default) of traversal is bounded (see
line 3) to make the lengths of generated paths not too
skewed. When there is a set of neighbors to be visited,
the one with the highest degree is first chosen aiming to
divide the edges between high-degree vertices together
into a hot path (see lines 5 to 17). The recursively visited
edges of each traversal by a CPU thread are successively
added into the same edge queue (pointed by a pointer 𝑝)
to constitute paths (see lines 9 and 11). Note that the
edge queue is shared by its each traversal and also has
an auxiliary array to indicate the range of its each path
by recording the offset of the first vertex of its each path
in the queue. When a new path will be generated (see
lines 14 and 19), it only needs to record the edge queue’s
offset to store this path’s first vertex. In this way, the
edges are divided into a set of disjoint hot/cold paths.
The vertices are also stored following their original order
on the path, ensuring efficient state propagation along
the path and high locality of vertex processing. Note
that each thread only divides its local subgraph (see
line 4), incurring no communication cost. The generated
paths are ensured to satisfy the constraint defined in
Section 3.1 for less reprocessing cost (see line 14).

During the above stage, some short paths may be gen-
erated by different CPU threads. However, the average
length of the paths is obviously expected to be maxi-
mized for faster convergence speed. Thus, after that, the

p1 p2 p3 p4

EIdx

Sval

Eval

Vval

PTable

v0 v6v14v13v7v12v11v10 Øv8v9v8v7v6v3v5v4v2 v3

15

Ø

Ø1160

1 2 3 4 5 3 6 7 8 9 8 10 11 12 7 13 14 6

e(1,2) e(14,6)e(13,14)e(7,13)e(11,12)e(10,11)e(8,10)e(8,9)e(7,8)e(6,7)e(3,6)e(4,5)e(3,4)e(2,3)

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

…

…

…

…

…

0

v1

e(0,1)

v0

Figure 4. Representation of directed graph on GPUs

paths are rechecked to merge the short ones in a head-
to-tail way for larger average length. To still maintain
the constraint for them, for two paths, if both in-degree
and out-degree of their intersected vertex are more than
one, they are merged only when their intersected vertex
is not an inner vertex (which is not the head/tail vertex
of a path and is identified as line 13) of the other paths.

For less reprocessing cost of paths, a dependency graph
is also created for them when dividing the graph at the
above stage. A DAG sketch is then generated for these
paths via parallelly contracting each SCC of this depen-
dency graph to SCC-vertex. In detail, the dependency
graph is divided into subgraphs and each CPU thread
uses tarjan algorithm [40] to find local SCCs of each
subgraph to generate local DAG via contracting its local
SCCs to SCC-vertices. This step only needs to travel the
dependency graph of paths for exactly once [40]. Then,
tarjan algorithm is used again to further contract the
graph consisting of local DAG sketches into the global
DAG sketch, where each local SCC is taken as a vertex.
The paths are then selectively assigned to partitions.

The highly-connected paths (especially the paths be-
longing to the same SCC-vertex or highly-connected
SCC-vertices which can be concurrently handled) are
tried to be assigned to the same partition for higher
utilization ratio of the loaded data and fewer idle GPU
threads, according to the dependency graph of them.
Note that the short paths with the replicas of the same
high in-degree vertex are also tried to be put together
to be executed over the same GPU thread or fewer ones,
so as to reduce the impacts of write contention among
GPU threads. In addition, the hot paths are also tried
to be put together for higher utilization ratio of GPU
resource, while the remaining cold paths are inserted
into the other partitions. Otherwise, more paths of a par-
tition may be inactive when this partition is handled on
a SMX, because the cold paths may need fewer rounds
to converge than the hot ones.

Storage of Directed Paths. To efficiently store di-
rected graph over GPUs, four arrays are employed. 𝐸𝐼𝑑𝑥

is used to sequentially store the indexes of source vertices
for the directed edges of each directed path along their
order on this path, where each directed edge can be rep-
resented by two successive items of 𝐸𝐼𝑑𝑥. It also means
that less space is required by our approach to store the di-
rected edges than shard-based approach [16, 25], which

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

606

is demonstrated to be the best graph representation
method. The values of the source vertices and the edges
are stored in 𝑆𝑣𝑎𝑙 and 𝐸𝑣𝑎𝑙, respectively. Besides, we also
maintain a separate array named 𝑉𝑣𝑎𝑙 for quick access
to the most recent state value of each vertex. PTable
is also established to describe the information of paths
and contains a field to store the index of each path’s
first vertex. Note that the paths of a partition are stored
in successive items of PTable and 𝐸𝐼𝑑𝑥. Two successive
items of PTable indicate the range of a path. Figure 4
illustrates how to store the directed graph described in
Figure 3(a). In this way, the threads of a warp (assigned
with a partition) can read consecutive data residing in
the global memory, ensuring coalesced accesses to them.

3.2.2 Dependency-aware Path Processing

For some directed graphs, the parallel execution of the
paths may suffer from poor performance on GPUs. First,
some SCC-vertices (or called hub SCC-vertices) have
much more out-edges than the others. The delayed pro-
cessing of their paths may induce under-utilization of
many GPU cores, because many paths are dependent on
them and need to access their results. In addition, the
hub SCC-vertex may be a giant one, which occupies a
major proportion of all graph paths. It needs much longer
time than the other SCC-vertices to repeatedly process
many highly-connected paths for much more rounds in
an iterative way, exacerbating the above problem. Sec-
ond, when processing the paths, the GPU threads may
face low parallelism and high communication cost, due
to the skewed lengths of the generated paths and high
synchronization cost (e.g., heavy write contention and
interleaved communication). In the following part, we
show how to tackle these challenges.

Dependency-aware Path Dispatching for Multi-
GPUs. For efficient parallel processing, it firstly divides
the DAG sketch into layers and assigns each SCC-vertex
with a layer number, where the SCC-vertices at each
layer only depend on the SCC-vertices at the lower layer.
After that, the paths are tried to be asynchronously
dispatched to GPUs for parallel processing layer by lay-
er. In detail, when some SMXs become idle, the paths
represented by the active SCC-vertex with the smallest
layer number are first dispatched from the host to the
idle SMXs for parallel processing. The paths represented
by some SCC-vertices (e.g., the giant SCC-vertex) may
be concurrently executed over SMXs of multiple GPUs,
while the paths represented by several small SCC-vertices
may be executed over a SMX. For higher parallelism, the
processing order of the SCC-vertices at the same layer
is arranged in descending order according to the total
number of paths in their successive active SCC-vertices.
Then, more successive paths are able to be handled when
some SMXs become idle.

Core 1

Thread

T1

Shared Memory

Path 1

Core 2

Thread

T2

Path 2 Path 3

… …

Path 4

SMX

Figure 5. Concurrent path processing over each SMX

The above path dispatching from the host memory
to the GPU memory is done in batches for low traffic.
To overlap memory copy and kernel execution, multiple
streams are created for the transfer of paths using Hyper-
Q of GPU. The number of streams is expected to be
𝑁𝑚=𝑀𝐺

𝑆𝑏
, where 𝑀𝐺 is the global memory size of a GPU

and 𝑆𝑏 is the size of each batch. Besides, for the running
paths, their successive paths are also transferred to the
related GPU in advance. By such means, GPU kernels
can be immediately launched to handle these successors
on SMXs without the delay to fetch them from the host
memory, when the running paths are inactive.

For lower communication cost, the results of each path
for its successors are tried to be buffered in the global
memory of the related GPU. The paths represented by
each active SCC-vertex are always tried to be dispatched
to the GPU with the most number of its direct precur-
sors. By such means, the processing of its paths needs
less communication cost to access the results of those
precursors. When the global memory of a GPU is not
enough to buffer the results, some need to be transferred
to the other GPUs or the host memory. In order to max-
imize the performance, the buffered results of the paths
represented by a SCC-vertex are swapped out of a GPU
when this SCC-vertex has the least number of active
direct successors on this GPU. Note that the results
of the paths represented by a SCC-vertex may never
need to be accessed and can be written back to the host
memory, when all of its direct successors are inactive.

Work Stealing for Balanced Load between S-
MXs. Some SMXs may be released by early convergent
paths at runtime. Thus, the paths of the overloaded
SMXs should be dynamically stolen to the free SMXs
so as to ensure load balancing between SMXs. In detail,
the set of suspended paths (e.g., the ones represented
by the giant SCC-vertex) are allowed to be evenly di-
vided into several subsets. After that, these subsets are
asynchronously stolen to the free SMXs to assist their
processing, where the paths are always tried to be first
stolen to the free SMX on the local GPU. Then, the sus-
pended paths can quickly converge and their successive
paths can be handled as early as possible, due to more
parallelism and higher locality.

Asynchronous Path Processing on SMX. After
that, the GPU threads on each SMX concurrently handle
its paths. However, the lengths of the generated paths
may be skewed. Because the GPU threads of a warp

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

607

execute the same instruction in lock-step fashion, when
different-sized paths are assigned to be handled by GPU
threads on the same SMX, it eventually leads to under-
utilization of this SMX for the imbalanced load among
these GPU threads, although it can get balanced load
between different SMXs of different GPUs as the above
discussed. Thus, the paths on each SMX are tried to be
evenly assigned to its GPU threads to ensure that the
number of the edges handled by its each GPU thread is
almost equal. It also means that some GPU threads will
be assigned with several short paths when a thread of the
same SMX is assigned with a long path for processing.
Figure 5 gives an example to illustrate it. Note that the
thread assigned with the hot path does not have a heavier
burden than the other ones, although more propagations
are conducted on hot paths, because vertex states are
aggregated on hot-vertices before their propagations.
The number of edges determines each path’s load.

The vertices of each directed path are sequentially
handled by a GPU thread along their order on this path
in each round. The newly calculated state of each vertex
is allowed to be immediately used to update the states
of its successors in the same round. Note that a vertex
may have multiple replicas, which are distributed over
paths. One of the replicas is nominated as the master
(see 𝑉𝑣𝑎𝑙 of Figure 4), while the others are regarded as
the mirrors (see 𝑆𝑣𝑎𝑙 of Figure 4). Each mirror always
sends its new state to its master for state synchronization.
Other mirrors are able to pull the most recent state from
the master for the state updates of their local successors.
However, heavy write contention may still exist be-

tween GPU threads due to many atomic updates of the
state of the same master. Thus, it creates a proxy vertex
in the shared memory of each related SMX for each
vertex with high in-degree, to accumulate the pushed
new states of its local mirrors on the same SMX. The
accumulated results on the proxy vertex are allowed
to be used by these local mirrors to update their suc-
cessors in the same round, and are sent to the master
when the partition assigned to this SMX has been han-
dled. When synchronizing states between vertex replicas,
some partitions need to be repeatedly accessed and high
communication cost is generated, because the messages
(containing the pushed new vertex states) to the vertex
replicas on the same partition may be interleaved with
the messages to the ones on the other partitions. For
lower overhead, after the processing of each partition,
the messages generated on the related SMX are arranged
according to the IDs of the destination partitions before
pushing them, and the ones to the same partition are
propagated together in batches. Then, fewer partitions
are loaded and less communication cost is required for
the state updates of the replicas, because many updates
become successive accesses to the same partition.

3.2.3 Path Scheduling over SMX

On each SMX, the paths are assigned to be handled by
the warp scheduler in a round-robin order by default.
However, different paths have various impacts on state
propagation and incur different volume of useless work,
because of the skewed power-law degree distributions of
the real-world directed graphs. First, more vertex state
propagations are done through the path (e.g. the hot
path) with higher average vertex degree. Second, the
number of active vertices are also skewed on different
paths. Thus, inefficient processing order of paths on a
SMX leads to more redundant work and the vertices
are activated more times to update themselves based on
their neighbors’ stale states, due to slow propagations
of more active vertices’ recent states. Efficient soft path
scheduling strategy is needed for SMX to assign the pro-
cessing order of its paths based on their importance on
state propagation, so as to reduce redundant processing.
It gives each path 𝑝 a soft priority 𝑃𝑟𝑖(𝑝)=𝛼 ·𝐷(𝑝) ·

𝑁(𝑝)−𝐿(𝑝), where 𝐷(𝑝), 𝑁(𝑝), and 𝐿(𝑝) are the average
vertex degree, the number of active vertices, and the layer
number of 𝑝, respectively. 𝛼 = 1

𝐷𝑚𝑎𝑥·𝑁𝑚𝑎𝑥
is the scaling

factor set by the runtime system at graph preprocessing
time to ensure that the path with the smallest value
of 𝐿(𝑝) is given the highest priority, where 𝐷𝑚𝑎𝑥 and
𝑁𝑚𝑎𝑥 are the maximum average vertex degree and the
maximum number of vertices of any path, respectively.
The values of 𝐿(𝑝),𝐷(𝑝), and the initial value of𝑁(𝑝) are
gotten at preprocessing time, while 𝑁(𝑝) is incrementally
updated at the execution time. When a SMX becomes
idle, the set of paths with the largest values of 𝑃𝑟𝑖(𝑝)
are first processed on it and the low-priority paths are
deferred to a later stage, so as to shorten the total
execution time by reducing the amount of redundant
work. Otherwise, the processing of low-priority paths
iteratively activates more useless updates, which will
contend with the high-priority paths for GPU resource.

4 Experimental Evaluation
The hardware platform used in our experiments is a
system with four GPUs. Each of them is NVIDIA TESLA
K80, which totally has 26 SMXs (4992 cores) and 24
GB on-board memory. On the host side, there are 64
GB main memory and four 8-core 2.60 GHz Intel Xeon
E5-2670 CPUs, where each CPU has two 8 GT/s QPI
link and PCI Express 3.0 lanes operates at 16x speed.
The program is compiled by GCC 4.9 and CUDA 8.0
with the -O3 flag. In our experiments, four iterative
directed graph algorithms are employed as benchmarks:
(1) pagerank [29]; (2) adsorption [3]; (3) SSSP [28]; (4) 𝑘-
core [14]. All graph algorithms execute until convergence.
Six real-world directed graphs [1], i.e., dblp-2010, cnr-
2000, ljournal-2008, webbase-2001, it-2004, and twitter-
2010 are used. Table 1 summarizes their characteristics.

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

608

Figure 6. Graph processing time of
DiGraph against DiGraph-t

Figure 7. Graph processing time of
DiGraph against DiGraph-w

Figure 8. Normalized graph prepro-
cessing time of different systems

Table 1. Data Sets Properties
(𝐴𝐷𝑒𝑔 and 𝐴𝐷𝑖𝑠 denote the average degree of all vertices and
the average distance between any two vertices, respectively.)

Data sets #𝑉 𝑒𝑟𝑡𝑖𝑐𝑒𝑠 #𝐸𝑑𝑔𝑒𝑠 𝐴𝐷𝑒𝑔 𝐴𝐷𝑖𝑠

dblp 326,186 1,615,400 4.952 7.35
cnr 325,557 3,216,152 9.879 17.45
ljournal 5,363,260 79,023,142 14.734 5.99
webbase 118,142,155 1,019,903,190 8.633 17.19
it04 41,291,594 1,150,725,436 27.868 15.04
twitter 41,652,230 1,468,365,182 35.253 4.46

To understand the advantages of DiGraph, two other
versions of DiGraph are also implemented and evaluated.
DiGraph-t employs the traditional asynchronous execu-
tion model [4] instead of our path-based asynchronous
execution model. DiGraph-w uses our asynchronous ex-
ecution model yet without using our path scheduling
strategy. Besides, DiGraph is further compared with Gun-
rock (version 0.4) [30, 46] and Groute (version 1.0) [4],
which are the cutting-edge graph processing systems
on multiple GPUs using synchronous and asynchronous
model, respectively. Note that, for fairness, the perfor-
mance of both Gunrock and Groute is tuned to be the
best. All experiments (except Figure 8, Figure 16, and
Figure 17) are evaluated over four GPUs.

4.1 Performance of DiGraph

We firstly show the superiority of our path-based asyn-
chronous graph processing model. Figure 6 gives the
normalized graph processing time of DiGraph compared
with DiGraph-t. We can find that DiGraph always gets
a better performance than DiGraph-t. Take pagerank as
an example. DiGraph reduces graph processing time of
DiGraph-t by about 65.3% over cnr. We find that the
higher convergence speed of DiGraph mainly comes from
much fewer vertex state updates. It is because that, in
the traditional asynchronous model, the stale vertex s-
tates are usually used by multiple GPUs to compute new
states for many vertices. Exceptionally high redundant
work is generated to recalculate the new states for all
these vertices when the stale states are overwritten. In
our path-based asynchronous model, vertex state can be
more quickly propagated along directed paths and each
vertex is also tried to be handled after the convergence
of all its precursors. Consequently, it is able to spare
many redundant vertex updates.

(a) pagerank (b) SSSP

db
lp

0

2

4

6

8

10

12

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Data sets

 Graph processing

 Preprocessing

cn
r

ljo
ur

na
l

G
u
n
ro

c
k

D
iG

ra
p
h

G
ro

u
te

w
eb

ba
se

it0
4

tw
itt
er

G
u
n
ro

c
k

D
iG

ra
p
h

G
ro

u
te

G
u
n
ro

c
k

D
iG

ra
p
h

G
ro

u
te

G
u
n
ro

c
k

D
iG

ra
p
h

G
ro

u
te

G
u
n
ro

c
k

D
iG

ra
p
h

G
ro

u
te

G
u
n
ro

c
k

D
iG

ra
p
h

G
ro

u
te

db
lp

0

1

2

3

4

5

6

G
u
n
ro

c
kE
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Data sets

 Graph processing

 Preprocessing

G
u
n
ro

c
k

D
iG

ra
p
h

G
ro

u
te

G
u
n
ro

c
k

D
iG

ra
p
h

G
ro

u
te

G
u
n
ro

c
k

D
iG

ra
p
h

G
ro

u
te

G
u
n
ro

c
k

D
iG

ra
p
hG
ro

u
te

G
u
n
ro

c
k

D
iG

ra
p
h

G
ro

u
te

cn
r

ljo
ur

na
l

D
iG

ra
p
h

G
ro

u
te

w
eb

ba
se

it0
4

tw

itt
er

Figure 9. Execution time breakdown of different systems

Figure 7 depicts the normalized graph processing time
of DiGraph against DiGraph-w so as to evaluate the per-
formance of our path scheduling strategy. As seen in the
figure, our scheduling scheme is able to effectively reduce
the graph processing time. For example, in comparison
with DiGraph-w, DiGraph reduces graph processing time
of pagerank by 33.5% over it04. The main reason is that
our path scheduling strategy enables much fewer redun-
dant vertex updates by first handling the paths which
are important to vertex state propagations.
4.2 Comparison on Multiple GPUs

Existing systems need much cost to preprocess graph on
CPU for less total execution time by ensuring balanced
load and lower communication cost between multiple
GPUs. We firstly evaluate the preprocessing time of
Gunrock, Groute, and DiGraph against that of Gunrock.
From Figure 8, we observe that DiGraph needs slightly
more preprocessing time than the other solutions, where
the preprocessing time of Gunrock is 0.015, 0.032, 0.049,
0.561, 0.762, and 0.809 seconds for dblp, cnr, ljournal,
webbase, it04, and twitter, respectively. It is because
additional overhead is required by DiGraph to concur-
rently divide subgraphs into directed paths by traversing
the original graph for exactly once and to construct the
DAG sketch for these paths by traversing the depen-
dency graph once, where the number of vertices of the
dependency graph is about 3.4%-9.1% of the original
graph. For example, for dblp, the overhead of DiGraph
is about 13% and 8.6% more than Gunrock and Groute,
respectively. Note that DiGraph needs more preprocess-
ing time for it04 and twitter because the ratio of the
dependency graph against the original graph is higher.

However, as shown in Figure 9, for DiGraph, it brings
significant benefits from two aspects as we will see in
later experiments. First, it spares much more rounds

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

609

(a) pagerank (b) adsorption (c) SSSP (d) k-core

db
lp cn

r

ljo
ur

na
l

w
eb

ba
se it0

4

tw
itt
er

0

1

2

3

4

5

6

7

8

9

S
p
e
e
d
u
p

Data sets

 Gunrock Groute DiGraph

db
lp cn

r

ljo
ur

na
l

w
eb

ba
se it0

4

tw
itt
er

0

1

2

3

4

5

6

7

8

9

S
p
e
e
d
u
p

Data sets

 Gunrock Groute DiGraph

db
lp cn

r

ljo
ur

na
l

w
eb

ba
se it0

4

tw
itt
er

0

1

2

3

4

5

6

7

8

9

S
p
e
e
d
u
p

Data sets

 Gunrock Groute DiGraph

db
lp cn

r

ljo
ur

na
l

w
eb

ba
se it0

4

tw
itt
er

0

1

2

3

4

5

6

7

8

9

S
p
e
e
d
u
p

Data sets

 Gunrock Groute DiGraph

Figure 10. Speedup of different systems against Gunrock over four GPUs

(a) pagerank (b) adsorption (c) SSSP (d) k-core

db
lp cn

r

ljo
ur

na
l

w
eb

ba
se it0

4

tw
itt
er

0.0

0.2

0.4

0.6

0.8

1.0

1.2

...

N
o
rm

a
liz

e
d
 n

u
m

b
e
r

o
f
u
p
d
a
te

s

Data sets

 Gunrock Groute DiGraph

db
lp cn

r

ljo
ur

na
l

w
eb

ba
se it0

4

tw
itt
er

0.0

0.2

0.4

0.6

0.8

1.0

1.2

...

N
o

rm
a
liz

e
d

n
u
m

b
e
r

o
f

u
p
d
a
te

s

Data sets

 Gunrock Groute DiGraph

db
lp cn

r

ljo
ur

na
l

w
eb

ba
se it0

4

tw
itt
er

0.0

0.2

0.4

0.6

0.8

1.0

1.2

...

N
o
rm

a
liz

e
d

n
u
m

b
e
r

o
f
u
p
d
a
te

s

Data sets

 Gunrock Groute DiGraph

db
lp cn

r

ljo
ur

na
l

w
eb

ba
se it0

4

tw
itt
er

0.0

0.2

0.4

0.6

0.8

1.0

1.2

...

N
o
rm

a
liz

e
d
 n

u
m

b
e
r

o
f
u
p
d
a
te

s

Data sets

 Gunrock Groute DiGraph

Figure 11. Normalized number of updates of different systems against Gunrock over four GPUs

(i.e., much more vertex updates) for iterative directed
graph algorithms, which usually traverse and handle the
original graph for hundreds of rounds for convergence.
Second, it ensures lower communication cost due to fewer
updates and higher utilization ratio of the loaded data.
After that, the graph processing time of Gunrock,

Groute, and DiGraph is evaluated. Figure 10 describes
their speedups against that of Gunrock. As shown in the
figure, Groute gets a better performance than Gunrock
for much lower synchronization cost. For example, for
pagerank, Groute achieves a performance improvement
of 2.03 times in comparison with Gunrock over cnr. In
addition, we also observe that Groute performs better
over cnr than twitter. It indicates that the asynchronous
execution model is much more suitable to the graph with
longer diameter for no barrier between iterations. How-
ever, as observed in the experiments, Groute suffers from
serious overhead to repeatedly handle many partitions
and high communication cost to transfer much unnec-
essary data between GPUs, due to no consideration of
vertex update dependency. For example, the graph pro-
cessing time of adsorption on Groute is about 3.54 times
that of DiGraph over cnr. DiGraph is able to get perfor-
mance improvements of 2.25–7.39 and 1.59–3.54 times
in comparison with Gunrock and Groute, respectively.
To demonstrate the above discussions, the number

of updates for different graph algorithms to converge is
firstly evaluated over different systems. Figure 11 shows
the normalized number of vertex state updates of them
in comparison with that of Gunrock. In this figure, we
make two observations.
First, Groute needs to handle more vertex state up-

dates than DiGraph, although it needs fewer updates

than Gunrock to converge. Taking adsorption over it04
as an example, the number of updates of DiGraph is
only 35.7% of that of Groute. Such a few number of up-
dates of DiGraph mainly comes from faster vertex state
propagation along the directed paths and an efficient
processing order of paths by exploiting the update de-
pendencies of them. Note that most graphs can get great
benefits from the DAG-based optimization, because the
processing of each small SCC may repeatedly incur the
useless processing of the other SCCs (including the gi-
ant SCC) in existing solutions, although the giant SCC
(occupies 3.5%-89.0% of all paths for different graphs)
in the dependency graph may be large.

Second, from Figure 11, we also observe that DiGraph
gets much better performance on the directed graph with
longer average distance. For example, for PageRank, the
number of updates needed by DiGraph is only 36.9% of
Groute over cnr, while the ratio is 60.7% over twitter.
It is because that both Gunrock and Groute need much
more rounds to propagate vertex states for convergence
when the average distance between any two vertices
is longer. However, the number of rounds required by
DiGraph is determined by the average number of paths
traversed by its vertex state propagations. Its value is
usually much fewer than the number of rounds needed
by both Gunrock and Groute when the average distance
is longer. Assume two opposite extreme scenarios. If the
diameter of the graph is one, the performance of DiGraph
degenerates to that of DiGraph-t, i.e., its efficiency is the
same as the traditional one. If the graph only contains
one path, DiGraph only needs to handle the graph once,
while the number of rounds of both Gunrock and Groute
may be equal to the length of the path. Note that the

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

610

Figure 12. Normalized traffic vol-
ume of pagerank on four GPUs

db
lp cn

r

ljo
ur

na
l

w
eb

ba
se it0

4

tw
itt
er

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 r

a
ti
o

Data sets

 Gunrock Groute DiGraph

…………………………………………………………………

Figure 13. Normalized utilization
ratio of loaded data against Gunrock

40 50 60 70 80 90 100
0

2

4

6

8

G
ra

p
h
 p

ro
c
e
s
s
in

g
 t
im

e
 (

s
)

Ratios (%)

 Gunrock Groute DiGraph

.

Figure 14. Impacts of the ratio of
bi-directional edges

db
lp cn

r

ljo
ur

na
l

w
eb

ba
se it0

4

tw
itt
er

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
v
e

ra
g

e
 G

P
U

 u
ti
liz

a
ti
o

n
 r

a
ti
o

Data sets

 Gunrock Groute DiGraph

……………………………………………………………………………

Figure 15. GPU utilization ratio of pagerank

(a) pagerank (b) SSSP

1 2 3 4
0

2

4

6

8

10

G
ra

p
h

 p
ro

c
e
s
s
in

g
 t

im
e

 (
s
)

Number of GPUs

 Gunrock

 Groute

 DiGraph

1 2 3 4
0

1

2

3

4

G
ra

p
h
 p

ro
c
e
s
s
in

g
 t
im

e
 (

s
)

Number of GPUs

 Gunrock

 Groute

 DiGraph

Figure 16. Comparison of scalability over webbase

average lengths of the generated paths in DiGraph are
4.2, 10.9, 3.8, 9.7, 9.4, and 3.5 for dblp, cnr, ljournal,
webbase, it04, and twitter, respectively.

Figure 12 gives the traffic volume (including the vol-
ume of data transferred between GPUs and the volume
of data loaded into GPU core) of pagerank. Obviously,
under any circumstances, the traffic volume of DiGraph
is less than both Gunrock and Groute. There are two
main reasons. First, DiGraph needs much fewer vertex
updates to converge than the other systems and also
only needs to access a few paths for exactly once when
processing a path. Second, DiGraph ensures higher uti-
lization ratio of the loaded data than them. Figure 13
describes the ratio of the total number of used times
of all vertices to the total number of loaded vertices
for pagerank over Gunrock, Groute, and DiGraph, re-
spectively. We can observe that the ratio of DiGraph
is higher due to efficient graph partitioning and path-
based processing/scheduling. It indicates that less time
is wasted on the loading of useless data.

Finally, Figure 14 also depicts the impacts of the ratio
of bi-directional edges on pagerank over different sys-
tems via adding directed edges on webbase. We observe
that pagerank still gets benefits from our approach, al-
though all edges are bi-directional ones. Note that only

8C
+1

G

16
C
+2

G

24
C
+3

G

32
C
+4

G

2

4

6

8

10

12

E
x
e

c
u
ti
o

n
 t

im
e

 (
s
)

Number of CPU threads and GPUs

 Gunrock

 Groute

 DiGraph

.

Figure 17. Total execution time of pagerank on webbase

dependency-aware path dispatching scheme is infeasible
under such condition.
4.3 Scalability over Multiple GPUs

We firstly evaluate the average GPU utilization ratios of
different systems. As depicted in Figure 15, the ratios of
both Groute and DiGraph are higher than Gunrock. For
example, for each round of pagerank over cnr, the ratio
of Gunrock is only 75.8% and 63.4% of those of Groute
and DiGraph, respectively. As observed, the main reason
is that Gunrock suffers from skewed load distribution
of active vertices and the barriers between iterations.
However, both Groute and DiGraph use the asynchro-
nous graph processing way and have no barrier between
iterations, which contributes to the higher utilization
ratio of GPU. Besides, DiGraph usually enables higher
utilization ratio than Groute for less data access cost.

It also means better scalability of them than Gunrock
as shown in Figure 16, which gives the graph process-
ing time of pagerank and SSSP over Gunrock, Groute,
and DiGraph. For example, when the number of GPUs
increases from one to four, graph processing time of
pagerank is only reduced from 8.2 to 4.4 seconds over
Gunrock, while its speedups over DiGraph and Groute
are up to 2.7 times and 2.3 times, respectively. It al-
so shows that the scalability of Groute is poorer than
DiGraph, because Groute needs to handle much more
vertex updates (more communication cost is also gener-
ated) when the number of GPUs is larger. Figure 17 also
shows the total execution time of pagerank on webbase
under different number of CPU threads to preprocess
graph and different number of GPUs to concurrently
handle graph. The results show that the preprocessing
step of DiGraph also has good scalability as the others,
and DiGraph still gets better performance.

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

611

5 Related Work
CPU-based Graph Processing Systems. Pregel [27],
as the earliest one of typical distributed systems [9,
21, 24, 35, 38, 41, 55], expresses iterative graph algo-
rithm as multiple iterations for simple programming.
GraphLab [23], FBSGraph [52], and CoRAL [42] asyn-
chronously execute graph algorithm without the global
barrier, getting faster convergence speed and lower syn-
chronization cost than the synchronous model used in
Pregel. PowerGraph [8] evenly divides graph edges into
partitions and uses a Gather-Apply-Scatter (GAS) model
to handle vertex-programs over edges for balanced load.
Lazygraph [45] proposes a lazy data coherency for repli-
cas for lower synchronization cost. PowerSwitch [48] uses
a hybrid execution mode the optimal performance. Tur-
boGraph++ [18] uses the nested windowed streaming
model for distributed graph processing with no compro-
mising of scalability or efficiency.
Meanwhile, disk-based systems [2, 5, 10, 19, 32, 43]

are also designed to support graph processing on PC for
cost effectiveness. GraphChi [20] uses a parallel sliding
windows method to reduce random I/O accesses. X-
Stream [33] employs an edge-centric model for low data
access cost via sequential access of edges. GridGraph [57],
PathGraph [49], and NXgraph [6] propose two-level hi-
erarchical partitioning scheme, tree-based partitioning
scheme, and destination-sorted subshard structure for
high locality, respectively. Gorder [47] tries to place ver-
tices with common in-neighbors closer in the memory
for better spatial locality. HotGraph [51] and Wonder-
land [50] constructs backbone structure to serve as a
fast track for cross-partition state propagation for faster
convergence speed. DGraph [53] is a system dedicated
to disk-based directed graph processing by reducing I/O
overhead, however, also suffers from ineffective vertex
state propagation along directed paths and high runtime
overhead. GraphGrind [39] try to reduce the impacts of
graph partitioning on NUMA platform. Mosaic [26] uses
Hilbert-ordered tiles to represent graph and a hybrid
execution model to utilize CPU and coprocessors.

GPU-based Graph Processing Systems. Recent-
ly, several systems [7, 11, 15, 17] are proposed to exploit
powerful ability of the GPU for graph processing. As one
of the earliest GPU-based systems, Medusa [54] demon-
strates the potential of graph processing on GPUs. For
coalesced memory access and high GPU utilization ratio,
CuSha [16] proposes two novel graph representations, i.e.,
G-shards and concatenated windows. Tigr [34] tries to
translate an irregular graph into a regular representation
way for efficient processing on GPU. GraphReduce [36] ef-
ficiently integrate the heterogeneous parallelism of CPU
and GPU for efficient graph processing by adopting a
hybrid GAS model. Garaph [25] ensures balanced vertex
replication for low write contention.

On the other hand, some systems are designed for
graph processing on the platform with multiple GPUs.
Lux [13] utilizes the aggregate memory bandwidth across
a multi-GPU cluster for efficient graph processing. GP-
MA+ [37] tries to efficiently support dynamic graph
processing on GPUs by maximizing coalesced memory
access. Gunrock [30, 46] uses a bulk-synchronous data-
centric frontier-focused abstraction to naturally map
graph processing to GPU. It is also extended to sup-
port efficient graph processing on multiple GPUs by
using direction optimizing traversal and a just-enough
memory allocation scheme. However, these synchronous
methods suffer from slow vertex state propagation, im-
balanced load, and under-utilization of multiple GPUs
for strict synchronization between iterations. Therefore,
Groute [4] is designed to use asynchronous execution
model, where the computation and communication of
each GPU thread can be done without waiting for oth-
er GPU threads to reach global barriers. However, it
faces exceptionally high cost to repeatedly handle many
vertices and also to transfer much unnecessary data.

6 Conclusion
This paper observes important characteristics of vertex
update dependency in iterative directed graph process-
ing, which enable faster convergence speed and much
lower redundant data access overhead over GPUs. A
path-based asynchronous execution model is proposed
and several fundamental challenges are then tackled to
take advantage of the observations, so as to improve the
performance of GPU-accelerated iterative directed graph
processing. Experimental results show that our method
outperforms the state-of-the-art solutions for iterative
directed graph algorithms over multiple GPUs. In the fu-
ture, we will research how to reduce the communication
cost between GPUs for our system via using NVLink,
how to extend our approach to efficiently support the
analysis of evolving directed graph on GPUs, and also ex-
tend it so as to efficiently exploit the parallelism of both
CPU and GPUs for large-scale directed graph processing.
In addition, we will also use our observations to guide
the design of ASIC accelerator (e.g., ReRAM-based ac-
celerator) for directed graph processing for much better
performance yet with much lower energy consumption.

Acknowledgments
We would like to thank our shepherd Madan Musu-
vathi and all anonymous reviewers for their construc-
tive comments and suggestions. This paper is supported
by National Key Research and Development Program
of China under grant No. 2018YFB1003500, Nation-
al Natural Science Foundation of China under grant
No. 61832006, 61825202, 61702202, and 61628204. Bing-
sheng’s work is in part supported by a MoE AcRF Tier
2 grant (MOE2017-T2-1-122).

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

612

References
[1] 2016. Laboratory for Web Algorithmics. Datasets. http:

//law.di.unimi.it/datasets.php.
[2] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai Qian,

Kang Chen, and Weimin Zheng. 2017. Squeezing out All

the Value of Loaded Data: An Out-of-core Graph Processing
System with Reduced Disk I/O. In Proceedings of the 2017

USENIX Annual Technical Conference. 125–137.

[3] Shumeet Baluja, Rohan Seth, D. Sivakumar, Yushi Jing, Jay
Yagnik, Shankar Kumar, Deepak Ravichandran, and Mo-

hamed Aly. 2008. Video Suggestion and Discovery for Y-
ouTube: Taking Random Walks Through the View Graph. In

Proceedings of the 17th International Conference on World

Wide Web. 895–904.
[4] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav

Pingali. 2017. Groute: An Asynchronous Multi-GPU Pro-

gramming Model for Irregular Computations. In Proceedings
of the 22nd ACM Sigplan Symposium on Principles and

Practice of Parallel Programming. 235–248.

[5] Jiefeng Cheng, Qin Liu, and Zhenguo Li. 2015. VENUS:
Vertex-centric streamlined graph computation on a single PC.
In Proceedings of the 2015 IEEE International Conference

on Data Engineering. 124–134.
[6] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang

Li, and Huazhong Yang. 2016. NXgraph: An efficient graph
processing system on a single machine. In Proceedings of the

2016 IEEE International Conference on Data Engineering.
409–420.

[7] Abdullah Gharaibeh, Lauro Beltro Costa, Elizeu Santos-Neto,

and Matei Ripeanu. 2012. A yoke of oxen and a thousand
chickens for heavy lifting graph processing. In Proceedings of
the 21th International Conference on Parallel Architectures

and Compilation Techniques. 345–354.

[8] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson,
and Carlos Guestrin. 2012. PowerGraph: Distributed Graph-

Parallel Computation on Natural Graphs. In Proceedings of
the 10th USENIX Symposium on Operating Systems Design

and Implementation. 17–30.

[9] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel
Crankshaw, Michael J. Franklin, and Ion Stoica. 2014.
GraphX: Graph processing in a distributed dataflow frame-

work. In Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation. 599–613.

[10] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018.

Making pull-based graph processing performant. In Proceed-
ings of the 23rd ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming. 246–260.
[11] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland.

2017. Graphie: Large-Scale Asynchronous Graph Traversals
on Just a GPU. In Proceedings of the 26th International Con-
ference on Parallel Architectures and Compilation Techniques.

233–245.

[12] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of
structural-context similarity. In Proceedings of the 8th ACM

SIGKDD international conference on Knowledge discovery
and data mining. 538–543.

[13] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat Mccormick,

Mattan Erez, and Alex Aiken. 2017. A Distributed Multi-

GPU System for Fast Graph Processing. Proceedings of the
VLDB Endowment 11, 3 (2017), 297–310.

[14] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and
Alex Thomo. 2015. K-core decomposition of large networks

on a single PC. Proceedings of the VLDB Endowment 9, 1

(2015), 13–23.

[15] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. 2015.
Scalable SIMD-Efficient Graph Processing on GPUs. In Pro-

ceedings of the 24th International Conference on Parallel

Architectures and Compilation Techniques. 39–50.
[16] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N.

Bhuyan. 2014. CuSha: vertex-centric graph processing on
GPUs. In Proceedings of the 23rd International Symposium

on High-performance Parallel and Distributed Computing.

239–252.
[17] Min Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok Seo,

and Jinwook Kim. 2016. GTS: A Fast and Scalable Graph

Processing Method based on Streaming Topology to GPUs.
In Proceedings of the 2016 ACM SIGMOD International

Conference on Management of Data. 447–461.

[18] Seongyun Ko and Wook Shin Han. 2018. TurboGraph++: A
Scalable and Fast Graph Analytics System. In Proceedings

of the 2018 ACM SIGMOD International Conference on

Management of Data. 395–410.
[19] Amlan Kusum, Keval Vora, Rajiv Gupta, and Iulian Neamtiu.

2016. Efficient Processing of Large Graphs via Input Reduc-
tion. In Proceedings of the 25th ACM International Sympo-

sium on High-Performance Parallel and Distributed Comput-
ing. 245–257.

[20] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012.

GraphChi: Large-Scale Graph Computation on Just a PC. In
Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation. 31–46.

[21] Xue Li, Mingxing Zhang, Kang Chen, and Yongwei Wu. 2018.
ReGraph: A Graph Processing Framework That Alternately
Shrinks and Repartitions the Graph. In Proceedings of the

2018 International Conference on Supercomputing. 172–183.
[22] David Liben-Nowell and Jon Kleinberg. 2007. The Link-

prediction Problem for Social Networks. Journal of the Amer-

ican Society for Information Science and Technology 58, 7
(2007), 1019–1031.

[23] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos

Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. 2012.
Distributed GraphLab: a framework for machine learning

and data mining in the cloud. Proceedings of the VLDB
Endowment 5, 8 (2012), 716–727.

[24] Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. 2014. Large-

scale distributed graph computing systems: An experimental

evaluation. Proceedings of the VLDB Endowment 8, 3 (2014),
281–292.

[25] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai.
2017. Garaph: Efficient GPU-accelerated Graph Processing on

a Single Machine with Balanced Replication. In Proceedings

of the 2017 USENIX Annual Technical Conference. 195–207.
[26] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak

Kang, Mohan Kumar, and Taesoo Kim. 2017. Mosaic: Process-
ing a trillion-edge graph on a single machine. In Proceedings
of the 12th European Conference on Computer Systems. 527–

543.

[27] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski. 2010. Pregel: A System for Large-scale Graph
Processing. In Proceedings of the 2010 ACM SIGMOD Inter-

national Conference on Management of Data. 135–146.

[28] Ulrich Meyer. 2001. Single-source shortest-paths on arbitrary
directed graphs in linear average-case time. In Proceedings of

the 12th Annual ACM-SIAM Symposium on Discrete Algo-

rithms. 797–806.
[29] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry

Winograd. 1998. The PageRank citation ranking: Bringing

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

613

order to the web. Technical Report. Stanford Digital Library
Technologies Project.

[30] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and

John D. Owens. 2017. Multi-GPU Graph Analytics. In Pro-
ceedings of the 31st IEEE International Parallel and Dis-

tributed Processing Symposium. 479–490.
[31] Bryan Perozzi and Leman Akoglu. 2014. Focused clustering

and outlier detection in large attributed graphs. In Proceedings

of the 2014 ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 1346–1355.

[32] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic,

and Willy Zwaenepoel. 2015. Chaos: Scale-out graph pro-
cessing from secondary storage. In Proceedings of the 25th

Symposium on Operating Systems Principles. 410–424.

[33] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013.
X-Stream: Edge-centric Graph Processing Using Streaming

Partitions. In Proceedings of the 24th ACM Symposium on

Operating Systems Principles. 472–488.
[34] Amir H. N. Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr:

Transforming Irregular Graphs for GPU-friendly Graph Pro-
cessing. In Proceedings of the 23rd International Conference

on Architectural Support for Programming Languages and
Operating Systems. 622–636.

[35] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Pat-

wary, Jiwon Seo, Jongsoo Park, M. Amber Hassaan, Shubho
Sengupta, Zhaoming Yin, and Pradeep Dubey. 2014. Navi-
gating the maze of graph analytics frameworks using massive

graph datasets. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data. 979–990.

[36] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal,

and Karsten Schwan. 2015. GraphReduce: processing large-
scale graphs on accelerator-based systems. In Proceedings

of the 2015 International Conference for High performance

Computing, Networking, Storage and Analysis. 28:1–28:12.
[37] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. 2017.

Accelerating Dynamic Graph Analytics on GPUs. Proceedings

of the VLDB Endowment 11, 1 (2017), 107–120.
[38] Shuang Song, Xu Liu, Qinzhe Wu, Andreas Gerstlauer, Tao

Li, and Lizy K. John. 2018. Start Late or Finish Early:

A Distributed Graph Processing System with Redundancy
Reduction. Proceedings of the VLDB Endowment 12, 2 (2018),

154–168.

[39] Jiawen Sun, Hans Vandierendonck, and Dimitrios S.
Nikolopoulos. 2017. GraphGrind: addressing load imbalance
of graph partitioning. In Proceedings of the 2017 International
Conference on Supercomputing. 16:1–16:10.

[40] Robert Tarjan. 1972. Depth-first search and linear graph

algorithms. SIAM J. Comput. 1, 2 (1972), 146–160.
[41] Shiv Verma, Luke M. Leslie, Yosub Shin, and Indranil Gupta.

2017. An experimental comparison of partitioning strategies
in distributed graph processing. Proceedings of the VLDB
Endowment 10, 5 (2017), 493–504.

[42] Keval Vora, Chen Tian, Rajiv Gupta, and Ziang Hu. 2017.

CoRAL: Confined Recovery in Distributed Asynchronous
Graph Processing. In Proceedings of the 22nd International

Conference on Architectural Support for Programming Lan-
guages and Operating Systems. 223–236.

[43] Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load

the Edges You Need: A Generic I/O Optimization for Disk-
based Graph Processing. In Proceedings of the 2016 USENIX

Annual Technical Conference. 507–522.

[44] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and
Ardalan Amiri Sani. 2017. Graspan: A single-machine disk-

based graph system for interprocedural static analyses of

large-scale systems code. In Proceedings of the 22nd Interna-
tional Conference on Architectural Support for Programming

Languages and Operating Systems. 389–404.

[45] Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui, Fang
Lv, Ying Liu, and Xiaobing Feng. 2018. Lazygraph: lazy data

coherency for replicas in distributed graph-parallel computa-
tion. In Proceedings of the 23rd ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming. 276–

289.
[46] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo

Wu, Andy Riffel, and John D. Owens. 2016. Gunrock: a

high-performance graph processing library on the GPU. In
Proceedings of the 21st ACM Sigplan Symposium on Princi-

ples and Practice of Parallel Programming. 11:1–11:12.

[47] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016.
Speedup Graph Processing by Graph Ordering. In Proceedings

of the 2016 ACM SIGMOD International Conference on

Management of Data. 1813–1828.
[48] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and

Haibo Chen. 2015. SYNC or ASYNC: time to fuse for dis-
tributed graph-parallel computation. In Proceedings of the

2015 ACM Sigplan Symposium on Principles and Practice of
Parallel Programming. 194–204.

[49] Pingpeng Yuan, Wenya Zhang, Changfeng Xie, Hai Jin, Ling

Liu, and Kisung Lee. 2014. Fast Iterative Graph Computa-

tion: A Path Centric Approach. In Proceedings of the 2014
International Conference for High Performance Computing,

Networking, Storage and Analysis. 401–412.

[50] Mingxing Zhang, Yongwei Wu, Youwei Zhuo, Xuehai Qian,
Chengying Huan, and Kang Chen. 2018. Wonderland: A Nov-

el Abstraction-Based Out-Of-Core Graph Processing System.
In Proceedings of the 23rd International Conference on Archi-

tectural Support for Programming Languages and Operating

Systems. 608–621.
[51] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Guang Tan, and

Bing Bing Zhou. 2017. HotGraph: Efficient Asynchronous

Processing for Real-world Graphs. IEEE Trans. Comput. 66,
5 (2017), 799–809.

[52] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, and Bing Bing Zhou.

2018. FBSGraph: Accelerating Asynchronous Graph Process-
ing via Forward and Backward Sweeping. IEEE Transactions

on Knowledge and Data Engineering 30, 5 (2018), 895–907.

[53] Yu Zhang, Xiaofei Liao, Xiang Shi, Hai Jin, and Bingsheng
He. 2018. Efficient Disk-based Directed Graph Processing:
A Strongly Connected Component Approach. IEEE Trans-
actions on Parallel and Distributed Systems 29, 4 (2018),

830–842.

[54] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified
Graph Processing on GPUs. IEEE Transactions on Parallel

and Distributed Systems 25, 6 (2014), 1543–1552.
[55] Amelie Chi Zhou, Shadi Ibrahim, and Bingsheng He. 2017.

On Achieving Efficient Data Transfer for Graph Processing

in Geo-Distributed Datacenters. In Proceedings of the 37th

IEEE International Conference on Distributed Computing
Systems. 1397–1407.

[56] Junfeng Zhou, Shijie Zhou, Jeffrey Xu Yu, Hao Wei, Ziyang
Chen, and Xian Tang. 2017. DAG Reduction: Fast Answer-

ing Reachability Queries. In Proceedings of the 2017 ACM

SIGMOD International Conference on Management of Data.
375–390.

[57] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. Grid-

Graph: Large scale graph processing on a single machine using
2-level hierarchical partitioning. In Proceedings of the 2015

USENIX Annual Technical Conference. 375–386.

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

614

	Abstract
	1 Introduction
	2 Challenges and Motivation
	3 Overview of DiGraph
	3.1 Path-based Asynchronous Execution
	3.2 Parallel Processing over Multiple GPUs

	4 Experimental Evaluation
	4.1 Performance of DiGraph
	4.2 Comparison on Multiple GPUs
	4.3 Scalability over Multiple GPUs

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

