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ABSTRACT
Resource provisioning for scientific workflows in Infrastructure-as-
a-service (IaaS) clouds is an important and complicated problem
for budget and performance optimizations of workflows. Scientists
are facing the complexities resulting from severe cloud perfor-
mance dynamics and various user requirements on performance
and cost. To address those complexity issues, we propose a
declarative optimization engine named Deco for resource provi-
sioning of scientific workflows in IaaS clouds. Deco allows users
to specify their workflow optimization goals and constraints of
specific problems with an extended declarative language. We pro-
pose a novel probabilistic optimization approach for evaluating the
declarative optimization goals and constraints in dynamic clouds.
To accelerate the solution finding, Deco leverages the available
power of GPUs to find the solution in a fast and timely manner.
We evaluate Deco with several common provisioning problems.
We integrate Deco into a popular workflow management system
(Pegasus) and show that Deco can achieve more effective perfor-
mance/cost optimizations than the state-of-the-art approaches.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems
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1. INTRODUCTION
Workflow models have been widely used by scientists to manage

and analyze large-scale scientific applications in many research
fields. For example, Montage workflow [28] is an example in
astronomical study for generating sky mosaics. Workflow man-
agement systems (WMSes) are often used to support the execution
of scientific workflows, for example, deciding which task runs on
which resource. Such resource orchestration is a major component
of WMSes and is important to the performance of workflows. Most
of the WMSes, such as Pegasus [13] and Kepler [23], are originally
designed for grid and local cluster environments. Their resource
orchestration components (or schedulers) are mainly designed for
performance optimizations.
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Due to the pay-as-you-go benefits, many scientific workflow ap-
plications are recently deployed and executed on the infrastructure-
as-a-service (IaaS) clouds [4, 40]. “Science clouds" become an
emerging and promising platform for next-generation scientific
computing [39, 29, 19]. New resource orchestration methods have
been proposed to decide which task runs on which instance (or
virtual machine, VM) in order to optimize the execution time,
monetary cost or both. Since an IaaS cloud provider offers different
types of instances and pricing models, existing WMSes have to
be redesigned for the cloud environment. Particularly, they did
not well address the following features in the cloud: various user
requirements and cloud dynamics.

User requirements: In the cloud environment, scientists can have
different or evolving requirements on the budget/performance goals
and constraints. A user may want to minimize the execution time
of a workflow on a cloud C1 with a pre-defined budget. In another
scenario, she may consider running the workflow on multiple
clouds besides C1. At this point, the optimal solution depends on
the offerings of the multiple clouds and the network performance
across clouds. For different problems, custom-designed approaches
with problem-specific heuristics are proposed to find a suitable
solution [25, 26]. For example, Mao et al. [25] use a series
of heuristics for minimizing the monetary cost while satisfying
the performance requirement of individual workflows (denoted
as Autoscaling). Later, they have proposed a very different set
of heuristics to optimize the performance with the budget con-
straint [26]. New algorithms for workflow optimizations are still
emerging as clouds and applications evolve.

Different resource provisioning schemes result in significant
monetary cost and performance variations. Figure 1 shows the
normalized average cost of running Montage workflow with dead-
line constraint using different instance configurations on Amazon
EC2. More details about experimental setup can be found in
Section 6. We consider seven scenarios: the workflow is executed
on a single instance type only (m1.small, m1.medium, m1.large
and m1.xlarge), on randomly chosen instance types, and using the
instance configurations decided by Autoscaling [25] and by this
paper (denoted as Deco). Although the configurations m1.small
and m1.medium obtain low average cost, they can not satisfy the
performance constraint of the workflow. Among the configurations
satisfying the deadline constraint, Deco obtains the lowest mon-
etary cost. The cost obtained by Deco is only 40% of the cost
obtained by the most expensive configuration (i.e., m1.xlarge).

Cloud dynamics: As a shared infrastructure, the performance
dynamics of the cloud have made the problem much complicated.
Most resource provisioning approaches for scientific workflows in
IaaS clouds [24, 7, 14] assume that the execution time of each
task in the workflow is static on a given VM type. However, this



Figure 1: Average cost of running Montage workflows under
different instance configurations on Amazon EC2.

Figure 2: Execution time variances of running Montage workflows
on Amazon EC2.
assumption does not hold in the cloud, due to the performance
dynamics in the cloud mainly caused by I/O and network inter-
ferences [33]. Figure 2 shows the quantiles of the normalized ex-
ecution time of the Montage workflows in different scales running
on Amazon EC2 for 100 times each. The instance configurations
of each workflow are optimized by Deco. The execution time of
the three workflows varies significantly. The variances are mainly
from the interferences from disk and network I/O. In fact, scientific
workflows may process input data of a large size. For example, an
Epigenomics workflow typically processes input data of dozens of
GB, and Montage and Ligo on hundreds of GB [18]. Due to the
significant performance variance of scientific workflows in IaaS
clouds, the deterministic notions of performance/cost constraints
are not suitable, and a more rigorous notion is required.

In this paper, we address the above two problems in WMSes.
Specifically, we propose a declarative optimization engine called
Deco, which can automatically generate resource provisioning plan
for scientific workflows in the cloud, considering the cloud per-
formance dynamics. Many WMSes, such as Pegasus and Kepler,
allow users to define their own resource scheduling policies. In
this study, Deco works as an alternative to the user-defined callouts
inside the WMS. With Deco, users only need to declaratively
specify their performance/monetary cost goals and constraints and
leave the rest to the optimization engine. Particularly, Deco
uses a declarative language WLog which extends ProLog and
supports a novel probabilistic notion of performance/monetary cost
constraints to capture cloud dynamics. For example, a user can
specify a probabilistic deadline requirement of p% so that the p-
th percentile of the workflow execution time distribution in the
target IaaS cloud is no longer than the pre-defined deadline. Similar
probabilistic definitions have been used in computer networks and
real-time systems [1]. Given a WLog program, Deco formulates
the problem of finding a good solution as a search problem or
even an A⋆ search problem for better efficiency (if users offer some
application specific heuristics to prune optimization space).

Considering the features of our problem as well as the hardware
features of modern accelerators, Deco leverages the power of the
GPU to find the solution in a fast and timely manner. We implement
Deco into a popular WMS (Pegasus [13]), although the design of
this engine can be generally applied to other WMS.

We have applied Deco to three representative workflow opti-
mization problems, which allow us to showcase the key features
of Deco: 1) the workflow scheduling problem [25], 2) the work-
flow ensemble problem [24] and 3) the follow-the-cost problem
across multiple clouds [36]. Our experiments show that, 1) Deco
can significantly reduce the complexity of developing the three
resource provisioning algorithms in the cloud; 2) Deco can achieve
more effective performance/cost optimizations than state-of-the-art
approaches; 3) The GPU-based acceleration improves the response
time of getting the solution. As a result, the optimization overhead
of Deco takes 4.3-63.17 ms per task for a workflow with 20-1000
tasks. That means, our optimization engine is practical for timely
resource provisioning of workflows.

We summarize the main contributions of this paper as follows:

• Declarative optimization engine. Deco supports a novel
declarative language for scientific workflow optimization
problems in IaaS clouds, which combines special constructs
of workflows and dynamics of cloud environment. Our
engine supports both probabilistic and deterministic opti-
mizations, while the existing approaches only support deter-
ministic optimizations.

• WMS integration. We have developed a memory- and
performance-optimized GPU-based implementation for Deco
and integrated it into a popular WMS.

• Use cases. We have applied Deco to three representative use
cases and the evaluation results have shown the effectiveness
of Deco on these workflow optimization problems. Beyond
these three use cases, we envision Deco has the potential to
solve a wide class of workflow optimization problems.

The rest of this paper is organized as follows. Section 2 presents
the overview of our system. We present three motivating examples
in Section 3. Sections 4 and 5 present the major components
of our system, including the declarative language and the GPU-
accelerated solver. We evaluate the proposed optimization engine
in Section 6 and review the related work in Section 7. We finally
conclude this paper in Section 8.

2. SYSTEM OVERVIEW
WMSes [13, 23, 35] are often used by scientists to execute

and manage scientific workflows. Those workflow management
systems often have dependent software tools such as Condor and
DAGMan [11], and require specific skills to implement the specific
optimization algorithms in the cloud. All those software packages
are interplayed with the resource provisioning problem in the cloud.
It is desirable to abstract these complexities from users and shorten
the development cycle. In this paper, we develop a declarative
resource provisioning engine named Deco and integrate it into a
popular WMS named Pegasus for executing scientific workflows
in IaaS clouds. Figure 3 presents a system overview of Deco and
its integration in the Pegasus WMS.

When using Pegasus to manage and execute workflows in the
cloud, users submit workflows to Pegasus with DAX files, which
describe workflows in the XML format. An example DAX file
in Figure 4 describes a pipeline workflow. A job1 XML element
describes a task in the workflow, including its executable file (e.g.,
“process1” for task “ID01”), input and output files (e.g., “f.a” and
“f.b1” respectively for task “ID01”). ⟨child⟩ and ⟨parent⟩ elements
show the dependency between tasks. For example, in the pipeline
workflow, task “ID02” takes the output of task “ID01” (i.e., file

1The term “job" is slightly misleading in the DAX file. This paper
uses “task" to describe the minimum execution unit in a workflow,
instead of “job" .



Figure 3: System Overview of Deco with integration in Pegasus

Figure 4: An example DAX file.

“f.b1”) as its input and thus is the child task of task “ID01”.
The mapper component of Pegasus takes the DAX file as input to
generate executable workflows. An executable workflow contains
information such as where to find the executable file of a task and
which site the task should execute on. The execution engine of
Pegasus distributes executable workflows to the cloud resources for
execution.

In order to schedule the workflows in the cloud, users can
alternatively choose from several traditional schedulers provided
by Pegasus and our proposed Deco. For example, Pegasus pro-
vides a Random scheduler by default, which randomly selects the
instance to execute for each task in the workflow. With Deco,
we model the resource provisioning problem as a constrained
optimization problem. Users can specify various optimization
goals and constraints with WLog programs. WLog is a declarative
language extended from ProLog, with special designs for scientific
workflows and the dynamic clouds. Deco allows users to use
probabilistic notions to specify their optimization requirements in
the dynamic clouds. We model the dynamic cloud performance
with probabilistic distributions, which is transparent to users. Deco
automatically translates a WLog program submitted by users to
probabilistic intermediate representation (IR) and interpret it using
the WLog interpreter. We traverse the solution space to find a good
solution for the optimization problem. For each searched solution,
we evaluate it with the probabilistic IR, which requires a lot of
computation [12]. To effectively and efficiently search for a good
solution in a reasonable time, we implement a GPU-accelerated
parallel solver to leverage the massive parallelism of the GPU.
After the optimization process, Deco returns the found resource
provisioning plan (indicating the selected execution site for each
task in the workflow) to Pegasus for generating the executable
workflow.

3. USE CASES
We present three use cases of resource provisioning problems

for workflows in IaaS clouds, and demonstrate their common

components to motivate our design of Deco. Those three use cases
cover different aspects of typical workflow optimization problems.
The first case addresses the resource provisioning for a single
workflow, and the second case is for workflow ensembles (multiple
workflows as a group). Both the first and the second cases can be
performed in an offline setting. In the third case, we consider a
dynamic workflow optimization problem, which makes workflow
migration decisions across multiple clouds at runtime. Different
from the former two cases, it assesses the efficiency of Deco. For
each use case, we formally formulate the optimization goal and
constraints of the problem. We present the declarative language
specifications and detailed WLog programs of the use cases in later
sections.
3.1 Workflow Scheduling Problem

In IaaS clouds, users rent instances to run workflows and pay
for the instance hours accordingly. Since the cloud provides
many types of instances with different capabilities and prices, the
workflow scheduling problem is to select a good instance type
for each task of the workflows, satisfying users’ optimization
requirements. While existing scheduling approaches use custom-
designed heuristics for specific user requirements [25, 26], they
are unlikely to work well upon changing optimization goals and
constraints.

Different from the existing approaches, Deco takes the user
requirements (i.e., optimization goals and constraints) as input and
can adaptively work for a range of optimization problems. An
example optimization goal is to minimize the average monetary
cost of a workflow while satisfying its deadline requirement. Due
to the cloud performance dynamics, we adopt the probabilistic
deadline requirement notion for this problem. The probabilistic
deadline requires that the p-th percentile of the workflow execution
time distribution is no longer than D.

We assume the workflow has N tasks with IDs 0,1, . . . ,N −
1, and the cloud provider offers K types of instances with IDs
0,1, . . . ,K − 1. The optimization variable of this problem is vmij,
which means assigning task i to instance type j. The value of vmi j
is 1 (i.e., task i is assigned to instance type j) or 0 (otherwise).
Note, for each task i (i = 0,1, . . . ,N −1), only one of the variables
vmi j ( j = 0,1, . . . ,K − 1) can be 1. We denote the execution
time distribution of task i on instance type j as Ti j(t), which
means Ti j(t) = P(ti j = t). That is, the probability that task i has
execution time t on instance type j is Ti j(t). The unit price of
instance type j is Uj. We calculate the overall monetary cost of
the workflow by summing up the average monetary cost of each
task in the workflow, where the average monetary cost of a task is
calculated using its mean execution time (Mi j) and the unit price of
its assigned instance (see Equation (1)). We calculate the overall
execution time of the workflow by summing up the execution time
of all tasks on the critical path (denoted as CP) of the workflow (see
Equation (3)). Formally, we express the problem as below:

min∑i ∑ j(Mi j ×Uj × vmi j) (1)

Mi j = ∑D
t=0(Ti j(t)× t) (2)

subject to:

P(tw ≤ D)≥ p, where tw = ∑i∈CP ∑ j(ti j × vmi j) (3)

3.2 Workflow Ensemble
Many scientific workflow applications have a group of work-

flows with similar structure but different parameters (e.g., input
data, number of tasks). These groups of workflows are called
workflow ensembles [24], in which each workflow is associated



with a priority to indicate its importance in the group and has a
pre-defined deadline constraint. There is also an overall budget
constraint for executing the entire ensemble. Such a resource pro-
visioning problem aims to execute as many high-priority workflows
as possible using limited resources. Given the budget and deadline
constraints, the optimization goal is to maximize the total score of
completed workflows in an ensemble e (see Equation (4)). The
score of a workflow is proportional to its priority. We denote
the priority of a workfow w as Priority(w) (the highest-priority
workflow has Priority(w) = 0, the next highest workflow has
Priority(w) = 1, and so on). We use CMP(e) to represent the
set of completed workflows in the assemble e. Each workflow
w in the ensemble has a probabilistic deadline constraint, which
requires that the pw-th percentile of the workflow execution time
distribution is no longer than Dw (see Equation (6)). The budget
constraint is set for the entire ensemble, which requires that the
overall monetary cost of all workflows in ensemble e is smaller
than the pre-defined budget B (see Equation (5)). We can formulate
this problem as below:

max∑w∈CMP(e) 2−Priority(w) (4)

subject to:
∑i∈w,w∈e ∑j(Mij ×Uj × vmij)≤ B (5)

∀w ∈ CMP(e), P(tw ≤ Dw)≥ pw (6)

3.3 Follow-the-Cost
Our third use case is a dynamic workflow migration problem

called follow-the-cost. We consider migrating multiple workflows
among multiple cloud platforms to optimize the cost. We consider
a task as the smallest migration unit. Different clouds may have
different pricing schemes. Even within the same cloud provider,
the pricing in multiple data centers may be different. For example,
in Amazon EC2, prices of instances in the Singapore region are
higher than those of the same type in the US East region. Migrating
a partially executed workflow to another more cost-efficient cloud
can reduce the monetary cost. However, the migrations induce
extra cost on transferring intermediate data between clouds. We
denote the monetary cost on the execution and migration of a
task i as ECi and MCi, respectively. If a task is migrated from
one cloud to another, the migration cost is the networking cost
spent on transferring necessary data for executing the task. The
goal of this problem is to minimize the overall monetary cost
of all workflows while satisfying the deadline constraint of each
individual workflow.

Due to cloud performance dynamics, the migration decisions
have to be made at runtime for the trade-off between the monetary
cost on execution and migration. Because of the light-weight
characteristic of Deco, our engine is able to effectively handle
this type of dynamic optimization problems. To assess runtime
optimization, we use the traditional static deadline notion for
this problem, which is that the expected execution time of each
workflow w is no longer than a pre-defined deadline Dw. We denote
the runtime execution time of a task i on instance type j as ti j .
Unfinished(sw) denotes all unfinished tasks in the set of workflows
sw. The optimization parameter of this problem is Gmn

i , meaning
migrating a task i from a cloud m to another cloud n (n ̸= m). We
denote the transferred data size for task i as datai, the network
bandwidth between the original and migrated clouds as Bandmn
and the networking price between the two clouds as Kmn. Given
the above variables, we formulate the problem as follows:

min∑i∈Unfinished(sw)(ECi +MCi) (7)

ECi = ∑j(tij ×Uj × vmij) (8)

MCi = ∑n(datai ×Kmn ×Gmn
i ) (9)

subject to:

∀w ∈ sw,∑i∈CP(w)(∑j tij × vmij +∑n
datai

Bandmn
×Gmn

i )≤ D (10)

Observations on Use Cases. We have the following observa-
tions. First, there are some common optimization requirements
in the workflow optimization problems, such as the deadline and
budget constraints. Second, the workflow structures and the data
dependencies between tasks make the optimization problem much
complex. Third, the variate cloud offerings and dynamic cloud
performance add another dimension for the resource provisioning
problems. Thus, it is feasible and also desirable to attempt
common constructs for different resource provisioning problems
of workflows in IaaS clouds

4. PROBABILISTIC SPECIFICATION LAN-
GUAGE

WLog is designed as a declarative language for resource provi-
sioning of scientific workflows in IaaS clouds. The major goal is
to ease the programming effort of users. WLog is extended from
ProLog [22]. ProLog is a powerful declarative language that allows
users to define their constraint logics in a very convenient manner.
We can leverage efficient techniques in ProLog such as ordering
and cut pruning [30] to efficiently solve optimization problems.
Users can also declare their own predicates to improve the search
efficiency. For example, in Deco, we allow users to offer hints
to our solver so that Deco can leverage the efficient A⋆ search.
We model the cloud dynamics with probabilistic distributions and
offer probabilistic notions for users to specify their optimization
requirements. Some extensions of ProLog, such as the probabilistic
extension [12], can be very useful for specifying the workflow
optimization problems in dynamic clouds.

In the remainder of this section, we present the details on WLog
language, by using a concrete example on the workflow scheduling
problem. Additional examples on the workflow ensemble and
follow-the-cost problems are presented in the appendix of our
technical report [47].
4.1 ProLog Conventions

Following the conventions in ProLog, a WLog program consists
of a set of declarative rules. Each rule has the form of h :- c1,

c2, ..., cn., which means that “clauses c1 and c2 and . . . and cn

implies h”. Here, commas connecting the clauses represent logical
“AND”. h is the head of the rule and c1, c2, ..., cn constitutes
the body of the rule. A rule with empty body is called a fact. Rules
can refer to one another recursively until a fact is reached. The
order of the rules appearing in a program as well as the order of the
predicates in a rule are not semantically meaningful, but affect the
efficiency of interpreting a program. Conventionally, the names of
variables begin with upper-case letters while constant names start
with lower-case letters.

Prolog offers many built-in predicates, such as the ones for
arithmetic operations (e.g., is, max and sum) and the ones for list-
based operations (e.g., setof, findall). These built-in predicates
help users to write neat and concise WLog programs. We highlight
the Prolog built-in predicates in blue color to differentiate from
other terms. For example, one may write a rule in Example 1 (see
Section 4.3):

cost(Tid,Vid,C) :- price(Vid,Up), exetime(Tid,Vid,T),

configs(Tid,Vid,Con), C is T*Up*Con.



Table 1: Workflow and cloud specific built-in functions and
keywords in WLog.

Function/Keyword Remark
goal Optimization goal defined by the user.
cons Problem constraint defined by the user.
var Problem variable to be optimized.

import(daxfile)
Import the workflow-related facts generated
from a DAX file.

import(cloud)
Import the cloud-related facts from the
cloud metadata.

budget(p, b)

A probabilistic budget requirement that the
p-th percentile of workflow monetary cost
distribution is no larger than b.

deadline(p, d)

A probabilistic deadline requirement that
the p-th percentile of workflow execution
time distribution is no longer than d.

enabled(astar)
The A⋆ heuristic is enabled for efficiently
finding solutions.

where price(Vid,Up) stores the unit price of instance Vid into the
unit price variable Up, configs(Tid,Vid,Con) indicates that task
Tid runs on instance of type Vid and exetime(Tid,Vid,T) stores the
execution time of task Tid on instance Vid into the execution time
variable T. This rule calculates the monetary cost (C) of executing
task Tid on instance Vid.
4.2 WLog Extensions

We extend ProLog in two major aspects to custom it for solving
resource provisioning problems of scientific workflows. The first
kind is to extend ProLog for workflow processing and IaaS clouds
(i.e., cloud offerings and dynamic cloud performance). Given the
dynamic cloud performance, WLog offers the probabilistic notion
of specifying performance and budget goals. The second kind
is to balance the design intentions on the expressive power and
simplicity. For instance, WLog offers high-level workflow specific
built-ins like budget and deadline to simplify the expressions.

WLog provides keywords for users to specify their optimization
problems, as shown in Table 1. The goal keyword indicates the
optimization goal. The cons keyword indicates the optimization
constraints. The var keyword indicates the variables to be opti-
mized. WLog also provides several workflow-specific and cloud-
specific built-in functions and keywords.

Workflow- and cloud-specific facts. We allow users to “import"
two kinds of facts from external workflow abstraction files (DAX
files in this study), or by specifying which cloud to use. This
functionality saves users a lot of time on writing the tedious
facts related to workflows and clouds, and also makes the WLog
programs neat and easy to read/maintain.

From the DAX file, Deco imports the common facts of the
workflow, including workflow structure, input/output data of each
task in the workflow, and the executable file of the task. For
example, from the DAX file shown in Figure 4, a workflow
structural fact child(ID01, ID02) (representing task “ID02” is the
child task of task “ID01”) can be imported.

The built-in predicate import(cloud) covers the cloud-related
facts, such as the cloud provided instance types, the pricing for
each type of instances and their capabilities. For example, we can
construct a fact for an Amazon EC2 instance type, m1.small: ⟨
key=“id1”, cloud=“ec2”, instype=“m1.small”, price=“0.044”,

cpu=“1”, mem=“1.7”, ...⟩. Some properties such as price and
storage are constants, and other properties such as I/O and network
performance can be modeled with some probabilistic distribu-
tions [48]. For example, the random I/O performance of the
m1.medium instance type of Amazon EC2 can be modeled with
a normal distribution (see Section 6 for details on the distributions
and the way of obtaining them). For each dynamic performance

component (i.e., network and I/O), we discretize the probabilistic
performance distributions as histograms, and store the histograms
in the metadata store. We have developed some micro-benchmarks
and periodically perform calibrations on the target cloud, which is
totally transparent to users.

Constraint built-ins. We find that budget and deadline are
the two most common constraints in workflow optimizations on
IaaS clouds [25, 26, 24]. WLog supports built-in functions
budget and deadline with probabilistic notions. For example, a
user can submit a probabilistic deadline requirement that the 95-
th percentile of the workflow execution time distribution is no
longer than 10 hours. This requirement can be easily expressed
as deadline(95%, 10h) in WLog.

We also support the enabled built-in function, which enables
more efficient A⋆ search algorithm when searching for a good
solution. We explain the usage and benefit of this function in
Section 5.

4.3 A Concrete Example
In Example 1, the WLog program implements a workflow

scheduling problem (described in Section 3.1) that aims at mini-
mizing the total monetary cost of executing a Montage workflow in
Amazon EC2 cloud while satisfying user’s probabilistic deadline
requirement deadline(95%, 10h).

Example 1. WLog program for workflow scheduling.

goal
cons

var

r1

r2

r3

r4

r5

import(amazonec2).
import(montage).
minimize Ct in totalcost(Ct).
T in maxtime(Path,T) satisfies deadline(95%,
10h).
configs(Tid,Vid,Con) forall task(Tid) and
vm(Vid).

/*calculate the time on the edge from X to Y*/
path(X,Y,Y,Tp) :- edge(X,Y), exetime(X,Vid,T),
configs(X,Vid,Con), Con==1, Tp is T.
/*calculate the time on the path from X to Y,
with Z as the next hop for X*/
path(X,Y,Z,Tp) :- edge(X,Z), Z\==Y,
path(Z,Y,Z2,T1), exetime(X,Vid,T),
configs(X,Vid,Con), Con==1,Tp is T+T1.
/*calculate the time on the critical path from
root to tail*/
maxtime(Path,T) :- setof([Z,T1],
path(root,tail,Z,T1), Set), max(Set, [Path,T]).
/*calculate the cost of Tid executing on Vid,
where T includes the instance up time for data
transfer*/
cost(Tid,Vid,C) :- price(Vid,Up),
exetime(Tid,Vid,T), configs(Tid,Vid,Con), C is
T*Up*Con.
/*calculate the total cost of all tasks*/
totalcost(Ct) :- findall(C, cost(Tid,Vid,C),
Bag), sum(Bag, Ct).

Program description. The program takes task(Tid), vm(Vid),
edge(X,Y), exetime(X,Vid,T) and price(Vid,Up) as input, which
are imported from the workflow DAX file and the cloud meta-
data. The first two lines of import clauses specify the cloud-
and workflow-related facts. import(amazonec2) indicates that the
workflow is executed in the Amazon EC2 cloud, and the Amazon
EC2 related facts are imported. For example, the vm entry stores the
unique identifier of a VM type Vid. The price entry stores the unit
price Up of instance Vid. import(montage) imports the workflow-
related facts from the Montage DAX file, such as task and edge.
Each task entry stores the unique identifier of a task Tid. The
edge entry stores pairs of connected tasks X and Y (i.e., task X is
the parent of task Y). exetime stores the execution time T of a task
X on a VM Vid. Given these input entries, the program expresses
the following. The WLog program is essentially equivalent to the
optimization problem that we have formulated in Section 3.1.



• Optimization goal: Minimize the monetary cost Ct of
executing a workflow in totalcost.

• Constraints: Satisfy the probabilistic deadline constraint
that the 95-th percentile of the workflow execution time
distribution is no longer than 10 hours.

• Variables: configs(Tid,Vid,Con) means configuring task
Tid to instance type Vid. The value of Con is 1 if Tid is
assigned to Vid and 0 otherwise. A solution to the workflow
scheduling problem is a list of instance configurations for
each task in the workflow.

• Derivation rules: Rule r1 to r3 calculate the overall exe-
cution time (or makespan) of a workflow. path(X, Y, Z,

Tp) calculates the execution time (Tp) from task X to task
Y, with task Z as the next hop of X. maxtime(Path,T) stores
the execution time on the critical path of the workflow, i.e.,
the makespan of the workflow, in T (as in Equation (3) in
Section 3.1). Note, we add task root and tail as two
virtual tasks to represent the start and end of the workflow,
respectively. Rules r4 and r5 calculate the overall monetary
cost by summing up the monetary cost of all the tasks (as in
Equation (1) in Section 3.1).

5. PROVISIONING PLAN GENERATION
This section describes the process of generating resource provi-

sioning plan from WLog programs. A WLog program represents a
constrained optimization problem for the resource provisioning of
scientific workflows. When a WLog program is submitted, Deco
first translates it into a probabilistic intermediate representation
(IR) to capture the dynamics of the IaaS clouds. A WLog
interpreter and a solver are implemented, where the interpreter
is used to evaluate each solution searched by the solver with the
probabilistic IR. Each searched solution is a potential resource
provisioning plan for the optimization problem and the best found
solution is returned as the output.

The interpretation of the probabilistic IR can induce high runtime
overhead due to the large solution space in the workflow resource
provisioning problem. In order to balance the overhead and the
solution optimality, we implement the interpreter and solver with
massive parallel implementations to search for a good provisioning
plan efficiently. Particularly, the solver performs generic search
by default and more efficient A⋆ search if users have specified
search heuristics in the WLog program. Despite the previous
studies on formulating constrained optimization problem as a
search problem [3, 21], Deco has the following unique features.

First, the generic search in Deco is specifically designed for
workflows and IaaS cloud features. The state transition in the
solution space is driven by some common workflow transformation
operations [46]. Second, the evaluation of each solution is based
on the probabilistic IR of WLog programs to capture the dynamic
cloud performance. We also leverage the available GPU power to
accelerate the probabilistic evaluations. Note, the previous engines
(e.g., [13]) can only support deterministic optimizations.

5.1 Probabilistic IR Translation
Due to cloud dynamics, we adopt probabilistic notion for the

optimization goals and constraints. To accurately evaluate the
probabilistic goals and constraints, given a WLog program, we first
translate it into a probabilistic IR.

In order to generate the probabilistic IR, we first obtain the
performance dynamics of the target cloud from the metadata store.
We collect the task-related profiles from the specified DAX file
to estimate the execution time of each task in the workflow. In
Deco, we use an existing task execution time estimation approach
for workflows [43]. The basic idea is that, given the input data size,

the CPU execution time (we can define a scaling factor to scale the
CPU time in multi-core system [31]) and the output data size of a
task, the overall execution time of the task on a cloud instance can
be estimated with the sum of the CPU, I/O and network time of
running the task on this instance. Note, since the I/O and network
performance of the cloud are dynamic, the estimated task execution
time is also a probabilistic distribution.

With the obtained cloud performance dynamics, we generate
the probabilistic IR by translating each rule in the WLog program
following the syntax in ProbLog [12]. Each rule in the probabilistic
representation of a WLog program is in the form p : h :- c1,

c2, ..., cn., where p states the probability of the rule being true.
For example, with the cloud performance histogram metadata, the
execution time of task Tid on instance type Vid is represented by pj

: exetime(Tid,Vid,Tj), where j = 1, . . . , n and n is determined
by the number of bins in the performance histogram. Consequently,
the rule shown in Section 4.1 can be translated to the probabilistic
representation as below:

pj : cost(Tid,Vid,Cj) :- price(Vid,Up), exetime(Tid,Vid,Tj),

configs(Tid,Vid,Con), Cj is Tj*Up*Con.

Support for deterministic goals and contraints. Deco uses
a WLog interpreter to evaluate each searched solution using the
translated probabilistic IR, as we shall see later in this section.
On the other hand, Deco also supports deterministic optimization
goals and constraints, which are common in dynamic optimization
problems such as Follow-the-cost. In order to provide a uniformed
interface, we translate WLog programs with deterministic opti-
mization requirements as follows: we obtain the runtime cloud
performance from the metadata store and translate each WLog rule
with probability of 1.0 in the same way as mentioned above.
5.2 Probabilistic IR Evaluation

The WLog interpreter answers the queries submitted by the
solver to evaluate the quality of each solution found by the solver.
There are two kinds of WLog queries, i.e., the ones on optimization
goals (querying the value of the goals) and the ones on optimization
constraints (querying whether a constraint is satisfied). Each WLog
query is evaluated with the probabilistic IR, by calculating the
probability that the query succeeds.

The probabilistic IR of WLog inherits many features from
ProbLog [12], and we interpret the probabilistic IR in the way
similar to the interpretation of ProbLog. Specifically, all rules
in the probabilistic IR are denoted with an array Rule[1,. . . ,n],
where n is the number of rules in the program. The unification
technique of ProLog [30] is adopted in the interpreter to find
a series of proofs with certain succeeding probability for each
submitted query. Exact inference for a query in ProbLog is quite
complex or even impossible for large programs, as the number of
proofs to be checked for the inference grows exponentially [20].
ProbLog provides several approximation methods [20] to reduce
the inference time complexity and we adopt the Monte Carlo
approximation which can benefit from the massive parallelism of
GPU computations.

Given the probabilistic IR, Algorithm 1 describes the general
process of answering a query q with WLog interpreter. In Line 1-4,
we recursively look for the proofs of query q, using the unification
policies defined in ProLog. Specifically, the match function uses
the unification policies to find a match between the head of query
q and the head of the rules in the probabilistic IR. If a match is
found (Line 3), we generate a new query with the body of the
matched rule and the body of q remaining to be matched. We
recursively look for a match for the generated query. The function
append(X,Y) concatenates two terms X and Y. When the newly
generated query is nil, it means all terms of q have been answered.



In this way, we find a proof to query q. Given the found proofs
and the probability pi of each rule Rule[i], in Line 7-15, we use the
Monte Carlo method [34] to calculate the approximate inference
of the query. Specifically, Max_iter realizations are sampled from
the found proofs. For each sample, we calculate the probability of
the proof being true using the probabilities of the rules forming the
proof. If query q is a query on constraint, we return the average
probability of the constraint being true in the Max_iter samples.
Otherwise, we return the mean value of the optimization goal as
the answer to q.

GPU-accelerated evaluation implementation. GPUs can sup-
port a large number of threads running in parallel, but a single
thread is not as powerful as a conventional CPU thread. GPU
threads are grouped in thread blocks, where threads in the same
block can cooperate via shared memory. Threads from different
blocks communicate via the global memory and the data access
bandwidth degrades a lot compared to the shared memory. We
follow the following principles during the GPU implementation:
1) the work assigned to each thread should be light-weight; 2)
threads in the same block should cooperate to reduce redundant
computations; 3) communications across thread blocks should be
avoided. Overall, our implementation features the GPU hardware
features.

We adopt Monte Carlo approximation for the probabilistic IR
evaluation. Since the work in one Monte Carlo iteration is light-
weight, we use one GPU thread for each Monte Carlo iteration. We
store the temporary results of each thread into the shared memory
for fast synchronization.

Algorithm 1 Query evaluation function WLogInterp(q).
Require:

Probabilistic IR with goal g, variable var;
n rules: pi : Rule[i]. where i = 1, . . . ,n;
m probabilistic constraints: Cons(1, . . . ,m);
Query request: q.

1: if q is not nil then
2: for i = 1 to n do
3: if match(head(Rule[i]),head(q)) then
4: WLogInterp(append(body(Rule[i]),body(q)));
5: else
6: EvalResult = 0;
7: for each Monte Carlo iteration in Max_iter iterations do
8: Randomly generate a realization from the found proofs and calculate the

probability of the realization being true as α;
9: if q is a probabilistic constraint of the program and the inference of q from

the sampled realization is true then
10: EvalResult += α;
11: else
12: if q is a query on the optimization goal then
13: Infer the result r of the query from the sampled realization;
14: EvalResult += r×α;
15: EvalResult /= Max_iter;
16: return EvalResult;

5.3 Parallel Solver Design
Generic Search. The key challenge of designing a generic

search is how to have a generic representation on the state as well
as state transitions. Each state is a solution to the optimization
problem. We evaluate each state using the probabilistic IR and
formulate the search as a traversal of the search tree from the
initial state. In Example 1, a state in the search tree is an
instance configuration plan, where configs(Tid, Vid, Con) stores
the instance configuration of each task Tid in the workflow.

We need a systematic and generic approach to define the transi-
tion between states in order to explore all the feasible states. As
a start, we adopt the transformation operations [46] as transitions
to traverse the search tree. In our previous work, we propose six
general transformation operations for workflows, including Move,

(a) Promote operation. (b) Children of the initial state.

Figure 5: Examples of using transformation operations in the
generic search.

Merge, Promote, Demote, Split and Co-Scheduling. Suppose each
task has an initial instance configuration (there are several ways to
determine the initial configurations, see [46]). The transformation
defines the change of instance configuration and the starting execu-
tion time of each task. We briefly describe the six transformation
operations, and illustrate how we use them with an example.

The Move operation delays the execution of a task to a later time.
The Merge operation merges two tasks with the same configuration
onto the same instance to fully utilize the instance partial hour. The
Promote/Demote operation changes the configuration of a task to
a more/less powerful instance type. The Split operation suspends
a running task and resumes its execution at a later time. The Co-
scheduling operation assigns multiple tasks with the same instance
configuration to the same instance. Figure 5a is an example of the
Promote operation in the workflow scheduling problem. Consider a
simple workflow with only two tasks. The deadline of the workflow
is one hour and the execution time of the workflow under its initial
instance configuration violates the deadline requirement. With the
Promote operation, we can reduce the execution time of task 1 and
satisfy the deadline constraint. Figure 5b shows the child states of
the initial state generated by Promote. For example, the initial state
configures each task with the cheapest instance type 0 (denoted
as “0→0”) and each child state configures one task with a better
instance type 1 (denoted as “0→1” and “1→0”). Child state 2 is
equivalent to the execution illustrated in Figure 5a.

Algorithm 2 General search process from initial state S to goal
state D.
Require:

WLog program P with user specified objective goal and constraints cons;

1: CurBest = S;
2: Create a FIFO queue Q and push the initial state into Q;
3: for each state current in Q do
4: Assign the instance configurations in current to variables in P;
5: Query feasibility = WLogInterp(cons) and cur_cost = WLogInterp(goal) from

P, as in Algorithm 1;
6: if feasibility is true then
7: if cur_cost < CurBest.cost then
8: CurBest = current;
9: CurBest.cost = cur_cost;
10: Generate all child states of current that have not been visited;
11: Add them into Q;
12: return D = CurBest;

Algorithm 2 shows the search process of the generic search.
Deco evaluates each traversed state to check whether the target state
is found. For evaluating a state, we first assign the values specified
by the state to the variables in the WLog program and then submit
queries regarding the goal and constraints (Line 5). The detailed
algorithm of evaluating queries is shown in Algorithm 1.

We consider the balance between exploration and exploitation
during the generic search. By exploitation, the depth first search is
performed and the good partial solutions found are prioritized. By
exploration, the breadth first search is performed and the threads



traverse the search tree individually. A good partial solution
does not guarantee global optimality. On the other hand, the
parallelism of exploration offers a good opportunity to leverage the
power of the GPU and accelerate the search process. Due to the
above reasons, for the generic search, we choose exploration over
exploitation for parallelism.

A⋆ Search. Deco allows users to define heuristic predicates on
the good partial solutions. By calling enabled(astar) (as shown
in Table 1), Deco utilizes A⋆ search to benefit from its pruning
capability for better search performance. Particularly, users can
specify two predicates cal_g_score(s) and est_h_score(s), which
calculate the g score of state s and estimates the h score of state s,
respectively. The g(s) score and h(s) score are the actual distance
from the initial state to the state s and the estimated distance from
the state s to the goal state, respectively. With the two heuristics,
we can efficiently prune the solution space by not placing the states
with high g and h scores into the candidate list.

Consider the workflow scheduling problem in Example 1, in
order to enable A⋆ search, the user simply needs to add the
following lines in her WLog program.

enabled(astar).

cal_g_score(C) :- totalcost(C).

est_h_score(C) :- totalcost(C).

In Example 1, both the g score and h score of a state s are the
estimated monetary cost of state s. Since the optimization goal is
to minimize monetary cost, if the monetary cost of a state is higher
than the best found solution, all its child states can be pruned. Child
states configure tasks with better instance types and thus always
generate higher cost than their parent state, assuming the initial
state to be all tasks on the cheapest instance type.

GPU-accelerated search implementation. According to our
GPU implementation principles mentioned in Section 5.2, we use
one thread block to handle each searched state since there is few
data communication between two different states. We use N thread
blocks to search the solution space at the same time, where N is the
number of multiprocessors in the GPU. When evaluating a searched
state, threads in the same block use the Monte Carlo method (see
Algorithm 1) to verify the feasibility and calculate the optimization
result of the state. Assume there are K threads in one block, ideally
we can expect K ×N times speedup comparing the parallel solver
implementation to a single thread implementation. Note that, the
GPU acceleration is transparent to users, which takes advantage of
the available GPU computation power.

6. EVALUATION
We evaluate the performance dynamics observed on real clouds

and then evaluate the effectiveness and efficiency of Deco.
6.1 Experimental Setup

We run Deco on a machine with 24GB DRAM, an NVIDIA K40
GPU and a 6-core Intel Xeon CPU. Workflows are executed on
Amazon EC2 or a cloud simulator.

Clouds. We calibrate the cloud performance dynamics on
Amazon EC2. The measurement results are used to model the
probabilistic distributions of I/O and network performance, which
are stored in the metadata store and used in import(cloud).
Specifically, we measure the performance of CPU, I/O and network
for four frequently used instance types of Amazon EC2, namely
m1.small, m1.medium, m1.large and m1.xlarge. We find that CPU
performance is rather stable in the cloud, which is consistent with
the previous studies [33]. In this paper, we focus on the calibration
for I/O and network performance. We measure both sequential
and random I/O performance for local disks. The sequential I/O
reads performance is measured with hdparm. The random I/O

performance is measured by generating random I/O reads of 512
bytes each. Reads and writes have similar performance results, and
we do not distinguish them in this study. We measure the network
bandwidth between any two types of instances with Iperf [17].
In particular, we repeat the performance measurement under each
setting once a minute, and each experiment lasts for 7 days (in total
10,000 times). When an instance has been acquired for a full hour,
it is released and a new instance of the same type is created to
continue the measurement.

Workflows. There have been some studies on characterizing the
performance behaviors of scientific workflows [18]. In this paper,
we consider three common workflow structures, namely Ligo,
Montage and Epigenomics. The three workflows have different
structures and parallelism.

We create three instances of Montage workflows with differ-
ent sizes using Montage source code. Their input data are the
2MASS J-band images covering 1-degree by 1-degree, 4-degree
by 4-degree and 8-degree by 8-degree areas retrieved from the
Montage archive [27]. We denote them as Montage-1, Montage-
4, and Montage-8 accordingly. Initially, the input data are stored
in Amazon S3 storage. All intermediate data during workflow
executions are stored on local disks and the final output data are
stored in S3 for persistence.

Since Ligo and Epigenomics are not open-sourced, we construct
synthetic Ligo and Epigenomics workflows using the workflow
generator provided by Pegasus [41].

Implementation details. We conduct our experiments on both
real clouds and simulator. These two approaches are comple-
mentary, because some scientific workflows (such as Ligo and
Epigenomics) are not publically available. Specifically, when the
workflows (including the input data and executables, etc.) are
publically available, we run them on public clouds. Otherwise, we
simulate the execution with synthetic workflows according to the
workflow characteristics from existing studies [18].

On Amazon EC2, we create an AMI (Amazon Machine Image)
installed with Pegasus and its prerequisites such as Condor. We
acquire the four measured types of instances using the created AMI.
We modify the Pegasus (release 4.3.2) scheduler to integrate Deco,
such as scheduling the tasks onto instances of selected types. A
script written with Amazon EC2 API is developed for acquiring
and releasing instances at runtime.

We develop a simulator based on CloudSim [8]. We mainly
present our new extensions, and more details on cloud simulations
can be found in the original paper [8]. The simulator includes
three major components, namely Cloud, Instance and Workflow.
The Cloud component maintains a pool of resources which sup-
ports acquisition and release of Instance components. It also
maintains the I/O and network performance histograms measured
from Amazon EC2 to simulate cloud dynamics. The Instance
component simulates cloud instances, with cloud dynamics from
the calibration. We simulate the cloud dynamics in the granularity
of seconds, which means the average I/O and network perfor-
mance per second conform the distributions from calibration. The
Workflow component manages the workflow structures and the
scheduling of tasks onto the simulated instances.

We implemented three existing algorithms for the three use cases
as state-of-the-art comparisons with Deco. Comparing the imple-
mentation of the existing algorithms and the WLog programs for
the use cases, WLog significantly simplifies the programming for
users to solve the workflow optimization problems, and brings the
desirable features such as easy maintenance and code readability.

Workflow scheduling problem: We implement Autoscaling [25]
as the comparison algorithm for this problem. This approach



utilizes a series of heuristics such as deadline assignment to ensure
the deadline while reducing the monetary cost.

Workflow ensemble: SPSS [24] is a state-of-the-art algorithm for
scheduling workflow ensembles. SPSS is an offline provisioning
and scheduling algorithm with heuristics to reduce resource waste
on workflows that cannot be completed.

Follow-the-cost: Due to the large optimization overhead, most
existing offline heuristics [21] can hardly solve this dynamic
optimization problem at runtime. To make the workflow migration
decisions, we design a simple and light-weight approach (denoted
as Heuristic). At the offline stage, we consider the price differences
among cloud data centers and determine the plan of migrating the
workflows from their initial deployed data center to the more cost-
efficient one. At runtime, we monitor the task execution time and
make migration adjustments when the monitored execution time
differs from the estimation by a threshold.

Parameter setting. We present the implementations in Deco
and detailed experimental settings for each use case as follows.

Workflow scheduling problem: We study the average monetary
cost and elapsed time for executing a workflow on Amazon EC2.
Given the probabilistic deadline requirement, we run the compared
algorithms for 100 times and record their monetary cost and
execution time. For a fair comparison, we set the deadline of
Autoscaling according to the QoS setting in Deco. For example,
if user requires 90% of probabilistic deadline, the deadline setting
for Autoscaling is the 90-th percentile of workflow execution time
distribution. In the experiment, we consider the impact of different
probabilistic deadline requirements of 90%, 92%, 94%, 96%, 98%
to 99.9% (96% by default) on the optimization results. All the
results are normalized to those of Autoscaling [25].

The deadline of workflows is an important factor for the can-
didate space of determining the instance configuration. We study
the effectiveness of Deco under different deadline requirements.
There are two deadline settings with particular interests: Dmin and
Dmax, the expected execution time of all the tasks in the critical
path of the workflow all on the m1.small and m1.xlarge instances,
respectively. In the experiments, we vary the deadline parameter
from 1.5×Dmin (denoted as tight deadline), Dmin+Dmax

2 (denoted as
medium deadline and used as the default setting) to 0.75×Dmax
(denoted as loose deadline) to study its impact on the optimization
results. All results are normalized to those of Autoscaling under the
tight deadline.

Workflow ensemble: In Deco, a state in the search space is im-
plemented as an array of boolean values, where each dimension of
the array indicates whether to execute a workflow in the ensemble.
We enable the A⋆ search by specifying the g and h score of a search
state s as the Score metric of s. Initially, all dimensions are set
to false, meaning that none of the workflows in the ensemble is
executed. For state transitions, we consider executing each of the
uncompleted workflows in the ensemble to generate child states.

For a fair comparison, we follow the experimental setup in
the previous study [24]. Like the previous study [24], we use
simulation to perform the comparison studies. We generate in
total 180 synthetic workflows with Ligo, Montage and Epige-
nomics application types, each type with 3 different workflow sizes
from 20, 100 to 1000 tasks and 20 different workflow instances
for each different setting. We construct five different ensemble
types: constant, uniform sorted, uniform unsorted, Pareto sorted
and Pareto unsorted. Each ensemble is composed of 30 to 50
workflows. We generate different deadline and budget parameters.
We first identify the smallest budget and amount of time required to
execute one/all of the workflows in the ensemble and denote them
as MinBudget/MaxBudget and MinDeadline/MaxDeadline. We

generate 5 different budgets (denoted as Bgt1 to Bgt5, accordingly)
and 5 different deadlines (denoted as D1 to D5, accordingly)
equally distributed between the range [MinBudget, MaxBudget]
and [MinDeadline, MaxDeadline], respectively. The default budget
and deadline constraints are fixed at Bgt3 and Dl3, respectively. We
perform sensitivity study on the probabilistic deadline requirement
by varying it from 90% to 99.9% (96% by default). As for
metrics, we compare the average monetary cost of workflows in the
ensemble and the total score of completed workflows in ensembles.
All the metrics are normalized to those of SPSS. Given each budget
and deadline pair, we run the compared algorithms for 100 times.

Follow-the-Cost: In Deco, a state in the search space is im-
plemented as an array of integers, where each dimension stands
for a migration decision for a workflow. An integer in the array
maintains the ID of the data center where the corresponding
workflow will be migrated to. Generic search is used in the search
engine of Deco. We make the migration decision periodically at
runtime.

We consider two regions of the Amazon EC2, namely the US
East Region and the Asia Pacific (Singapore) Region. These two
regions have different instance prices. For example, the price
difference of the m1.small instances is 33%. The number of
workflows in each data center is randomly generated between 10
to 50. The threshold parameter for the runtime adjustment is set
as 50% by default. We vary the threshold from 10%, 30%, 50%,
70% to 90% to show the trade-off between optimization results and
overhead using Montage-8 workflows. As for metrics, we compare
the overall monetary cost for workflow executions, including the
operational cost spent on instance hours and the networking cost for
transferring data across data centers. All the metrics are normalized
to those of Heuristic.

6.2 Cloud Dynamics
We have observed performance dynamics on both I/O and

network performances in the Amazon EC2 cloud. Figure 6a shows
the network performance variance of m1.medium instances. The
performance varies significantly, where the maximum variance can
reach up to 50%.

Another important finding is that, we can model the performance
dynamics with probabilistic distributions. Figure 6b shows the
measurements of network performance of m1.medium instances.
We verify the network performance with null hypothesis and find it
can be modeled with a normal distribution.

We have also verified the performance of other instance types.
Figure 7 shows the network performance between two m1.large
instances and a m1.medium and a m1.large instance of Amazon
EC2. The network performance dynamics of m1.medium instance
type is much larger than that of m1.large instance type. Users
can achieve better cloud performance by purchasing better types
of instances.

On Amazon EC2, the sequential I/O performance of the four
evaluated instance types follow Gamma distribution and the ran-
dom I/O performance of the instance types follow Normal distribu-
tion. Table 2 presents the parameters of the distributions, which
show that the I/O performance of the same instance type varies
significantly, especially for m1.small and m1.medium instances.
This can be observed from the θ parameter of Gamma distributions
or the σ parameter of Normal distributions in Tables 2.

6.3 Evaluations on Use Cases
6.3.1 Workflow Scheduling Problem

We present the average monetary cost and execution time under
different probabilistic deadline requirements in Figure 8. Note, the



Table 2: Parameters of I/O performance distributions on Amazon
EC2.

Instance type Sequential I/O (Gamma) Random I/O (Normal)
m1.small k = 129.3,θ = 0.79 µ = 150.3,σ = 50.0

m1.medium k = 127.1,θ = 0.80 µ = 128.9,σ = 8.4
m1.large k = 376.6,θ = 0.28 µ = 172.9,σ = 34.8
m1.xlarge k = 408.1,θ = 0.26 µ = 1034.0,σ = 146.4

(a) Network performance vari-
ance

(b) The histogram and proba-
bilistic distribution

Figure 6: Network performance dynamics of m1.medium instances
in Amazon EC2 US East region.
optimization goal is to minimize the monetary cost. Deco obtains
better cost optimization results than Autoscaling [25] under all
cases, with the monetary cost reduction by 30%–50%. We have
several major observations.

First, Deco reduces more monetary cost than Autoscaling on
Montage workflows with larger sizes. The heuristics adopted in
Autoscaling, such as deadline assignment, are not able to find the
best instance configurations for tasks. On the other hand, our
GPU-accelerated search engine can explore and exploit a large
area of the search space in a reasonable time and thus is able to
find better configurations. Second, when the probabilistic deadline
requirement gets loose, Deco is able to save more cost compared
to Autoscaling. This is because Autoscaling is static and thus
cannot adjust the instance configurations accordingly. Although
the average execution time optimized by Deco is larger than
Autoscaling, all results can guarantee (be equal to or larger than)
the probabilistic deadline requirement.

The optimization time of Deco is ignorable compared to the
workflow execution time. Also, this use case is more for off-
line process. For comparison, we implement the CPU-based
parallel algorithm in OpenMP, with a similar algorithm to the GPU
algorithm. Nevertheless, Deco’s GPU-based searches achieves
12X, 10X and 20X speed-up over CPU-based searches on six cores
for the Montage-1, Montage-4 and Montage-8 degree workflows
respectively. This demonstrates the efficiency of GPU accelera-
tions.

Figure 11 shows the monetary cost and average execution time
of Montage-8 workflow under different deadline settings. Deco
obtains smaller monetary cost than Autoscaling under all settings.
As the deadline gets loose, the monetary cost decreases and the
average execution time increases. This is because more cheap
instances are selected for tasks when the deadline gets loose.

(a) m1.large instances (b) m1.large instance to
m1.medium instance

Figure 7: Network performance histograms of different instance
types of Amazon EC2.

6.3.2 Workflow Ensemble
Overall, for all ensemble settings, Deco obtains better than or the

same scores as SPSS [24]. Figure 9 shows the scores with different
ensembles of Ligo, with the deadline D3 and budget Bgt1 to Bgt5.
Under budget Bgt1 and Bgt5, SPSS and Deco always obtain the
same scores because they can only make the same decision, that
is, to execute one smallest workflow and all the workflows in the
ensemble, respectively. Under budget Bgt2, Bgt3 and Bgt4, Deco
obtains better scores than SPSS. This is because the workflow
transformation operations in Deco can highly reduce the monetary
cost of a workflow, and allow more workflows to be executed within
the budget and deadline constraints. The average monetary cost of
a workflow optimized by the SPSS algorithm is 1.4 times as high
as that optimized by Deco.

When the probabilistic deadline requirement increases from 90%
to 99.9%, Deco always obtains higher score than SPSS. The
number of completed workflows in Deco is up to 60% higher than
that in SPSS.

To evaluate the influence of memory access, we compared the
performance of GPU-based search engine with different sizes of
workflows. The average speedup of Deco over the CPU-based
counterpart on the six cores is 36X, 22X, and 18X for 20-task, 100-
task and 1000-task workflow ensembles respectively. As a result,
the optimization overhead of Deco takes 4.3-63.17 ms per task for
a workflow with 20-1000 tasks.

6.3.3 Follow-the-Cost
Figure 10a shows the normalized monetary cost obtained by

Deco under different workflow sizes. Deco obtains the lowest
monetary cost under all workflow sizes. As the workflow size
increases, the cost reduced by Deco compared to the heuristic
increases. The cost reduction by Deco mainly comes from two
aspects. First, Deco dynamically changes the selected data center
for the workflows to exploit the price difference between the two
Amazon EC2 regions. The workflows deployed in the Singapore
region are eventually migrated to the US East region due to the
relatively low price in this region. Second, the cloud performance
is dynamic and re-optimization at runtime generates more accurate
configuration and migration solutions than offline optimizations.
For example, when a task finishes earlier than its scheduled time,
Deco chooses more cost effective and usually cheaper instance
types for its child tasks after the re-optimization. Another case
is, when the network performance between two clouds degrades
at runtime, Deco changes the migration decision after the re-
optimization. This is because the migration may increase the
execution time of tasks and also increase the overall monetary cost.

Figure 10b shows the monetary cost results with different thresh-
old settings. Deco obtains a smaller total cost under all threshold
values. As the threshold decreases, the cost optimization result
of the heuristic algorithm decreases. This is because the heuristic
method performs more re-optimization operations under a smaller
threshold. However, the optimization takes a long time, which
cannot catch up with the workflow executions. In contrast, with the
GPU power, Deco is still able to reduce the cost when the threshold
is smaller than 10%.

7. RELATED WORK
There are a lot of works related to our study, and we focus on

the most relevant ones on workflow optimizations on IaaS clouds,
generalized optimization engines and GPU-based search strategies.

Workflow optimizations. Workflow management systems (WM-
Ses) are a fruitful research area in the cluster and grid environ-
ments [13, 23, 42, 9, 2]. Compared with grid and cluster environ-



Figure 8: The average monetary cost and execution time of compared algorithms on Montage workflows.
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Figure 9: Scores of SPSS and Deco with different ensemble types under budget Bgt1 to Bgt5. Workflow type is Ligo and the deadline
constraint is D3.

Montage-1 Montage-4 Montage-8
0.0

0.4

0.8

1.2

N
or

m
al

iz
ed

 C
os

t

 Heuristic
 Deco

(a) Study on workflow size

10% 30% 50% 70% 90%
0.0

0.4

0.8

1.2

1.6

N
or

m
al

iz
ed

 C
os

t

Threshold

 Heuristic
 Deco

(b) Study on threshold
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Figure 11: Sensitivity study on the deadline parameter using
Montage-8 workflow.

ments, IaaS clouds have their own unique features in many system
and economic aspects [15]. Many WMSes (such as Pegasus [13]
and Kepler [23]), originally designed for grid and local clusters, are
redesigned to cloud environments [18, 38].

There have been a lot of studies working on various optimization
problems for scientific workflows in the cloud (e.g., [25, 26, 24,
14, 6, 45]). However, most of them target at specific goals
or constraints for performance and monetary cost optimizations
for workflow. In contrast, we propose a declarative and flexible
workflow optimization engine which can be applied to a wider
range of workflow optimization problems. Also, we demonstrate
that GPU accelerations are viable for workflow optimizations,
whereas none of above-mentioned related work has attempted GPU
accelerations.

Previous works have demonstrated significant variances on the
cloud performance [33, 16]. Machine learning techniques are
used to adapt various applications in the changing execution en-
vironment [10]. In this paper, our declarative engine exposes

the probabilistic performance distributions to users and abstracts
the dynamic performance details from users with a declarative
interface.

Generalized optimization engines. There have been some gen-
eral optimization frameworks proposed to solve domain-specific
optimization problems in the cloud. Alvaro et al. [3] propose
to use a declarative language called Overlog to reduce the com-
plexity of distributed programming in the cloud. Cologne [21] is
another declarative system to solve a wide range of constrained
optimization problems in distributed systems. They model the
optimization problems in the form of Datalog with extensions for
constraints and goals. Inspired by their design, this paper has
the similar spirit in extending ProLog to hide the internal system
details from users. Differently, this paper further makes a series
of extensions that go beyond the previous studies [3, 21]. The
significant ones include 1) formulate probabilistic extensions of
cloud dynamics to ProbLog, 2) workflow specific constructs for
reducing the complexity of developing workflow applications, and
3) a GPU-accelerated parallel solver for workflow optimizations.

There are some other studies on resource provisioning. Zhang
et al. [44] proposed to formulate the mapping of users resource
requirement to cloud resources with SQL queries. ClouDiA pro-
vides instance deployment solutions for users [49]. Rai et al. [32]
proposed a novel bin-ball abstraction for the resource allocation
problems. Different from bin-ball abstractions, workflows have
more complicated structures. Moreover, bin-ball abstractions are
static, which cannot capture cloud performance dynamics.

GPU-based search strategies. There have been a number of
previous studies [5, 37, 32] that use the GPU to accelerate the
performance of local search algorithms by means of exploring
multiple neighbors in parallel. Different from those studies, our
GPU-based implementation are specially designed for general
workflow transformation-based optimizations.

8. CONCLUSION
In this paper, we have developed a declarative optimization

engine Deco for WMSes to address the resource provisioning
problem of scientific workflows in IaaS clouds. Deco works
as an effective alternative to the existing schedulers of WMSes.
With Deco, users can implement their workflow optimizations in a
declarative manner, without involving the tedious and complicated
details on dynamic cloud features and workflow processing. The
declarative engine provides a series of practical constructs as
building blocks to facilitate users to develop resource provision-



ing mechanisms for workflows. Moreover, a novel approach of
probabilistic optimizations on goals and constraints is developed to
address cloud dynamics. Deco also takes advantage of the available
GPU power to accelerate the probabilistic evaluations. We integrate
Deco into Pegasus (a popular workflow management system) and
evaluate Deco with real scientific workflows on both Amazon EC2
and simulator, in comparison with the state-of-the-art heuristics
based approaches. Our experiments show that 1) Deco can achieve
more effective performance/cost optimizations than the state-of-
the-art approaches, with the monetary cost reduction by 30-50%. 2)
The optimization overhead of Deco takes 4.3-63.17 ms per task for
a workflow with 20-1000 tasks. We have made Deco open-sourced
at http://goo.gl/jZatcF.
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