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Abstract—Graph processing has attracted much attention re-
cently due to its popularity in many big data analytic applications.
With high performance and energy efficiency, FPGAs can be
an attractive architecture for graph processing. A number of
techniques such as caching using block RAMs (BRAMs) to reduce
random accesses of global memory and multiple processing
element (PE) instances for high throughput have been explored.
OpenCL-based FPGAs natively support a high-level program-
ming paradigm, providing good programmability to developers.
However, challenges remain because the run-time dependency
introduced by multiple PEs usually cannot be handled efficiently
by OpenCL’s high-level control granularity. In this paper, we
propose a novel on-the-fly parallel data shuffling technique that
can be implemented in OpenCL to solve this problem. We
have integrated our shuffling technique to an edge-centric graph
processing framework which achieves a throughput of more than
1,000 million traversed edges per second (MTEPS) on PageRank,
SpMV, BFS and SSSP applications and is even better than
existing RTL-based designs.

I. INTRODUCTION

Graph processing is widely used in data analytics, as it can
be applied to a variety of application domains such as social
networks, cybersecurity, and machine learning [1], [2]. A lot
of work is being done to scale and improve the performance
by exploiting the parallelism of underlying architectures such
as CPUs, GPUs, and FPGAs. The challenge is that graphs are
typically unstructured and irregular, making it difficult to ex-
tract parallelism [3], [4]. This also results in poor data locality
for computation and randomized data access patterns [3], [4].

With the capability of high performance and energy effi-
ciency, FPGAs have become an attractive platform for graph
processing [5], [6]. Moreover, high-level synthesis (HLS)-
based FPGA development decouples the low-level architecture
details for the design and provides easier programmability
at the application level [7]–[10]. With its good support for
heterogeneous systems and parallel computing, OpenCL has
become a popular programming language for HLS tools.

Some common techniques have been developed to solve
the poor locality and parallelism issues of graph processing
using FPGAs. In order to improve the data locality, Block
RAMs (BRAMs) are used to cache the properties of vertices
of the graph, as the accesses to BRAMs are of low latency
and high throughput [6], [8]–[15]. Vertices of a large graph
can be partitioned such that vertices of each partition fit into
the available BRAMs [13]. To further improve the paral-
lelism, multiple processing elements (PEs) are used to process
multiple data items in their local BRAM caches [11], [12],
[14]. Multiple unordered data words are read for processing
and the target PE is determined by data words at runtime.

This results in run-time data dependencies that can be either
handled efficiently with fine-grained control logic, or avoided
by pre-processing and rearranging the data. For the former, the
fine-grained control logic required can often only be realized
by hardware description languages (HDLs). HLS tools perform
static analysis of the high-level description of the algorithms at
compile time to generate hardware implementations, and are
unable to extract the parallelism with run-time data depen-
dency [16]. The alternative of pre-processing can have high
overheads, and may compromise flexibility. In order to solve
the problem of run-time data dependencies, this paper makes
the following contributions:
• We present a novel OpenCL-based on-the-fly parallel data

shuffling technique which handles the run-time data de-
pendencies caused by dispatching data to multiple PEs
efficiently.

• We implement an efficient pipelined edge-centric graph
processing framework that integrates the proposed shuffling
technique on OpenCL-based FPGAs. It has good scalability
and can be easily adapted to other graph processing algo-
rithms.

• Our design deliver a state-of-the-art performance in compre-
hensive evaluations. The framework achieves a throughput
at more than 1,000 million traversed edges per second
(MTEPS) on average, and up to 2.9× speedup over existing
RTL-based works.

II. BACKGROUND AND RELATED WORK

A. OpenCL for FPGA

Traditionally, HDLs like VHDL and Verilog have been
used to describe designs for FPGAs. However, this is a time-
consuming, error-prone and tedious process which requires in-
depth understanding of underlying hardware. To make FPGAs
easier to program, FPGA vendors and research communities
have been actively working on developing HLS tools, which
take a design description in high level languages (HLL) as
input and generate a synthesizable hardware implementation
for FPGAs [17]–[19]. OpenCL, by taking advantage of the
highly abstracted programming model, enables developers to
benefit from the efficiency of FPGAs without investing a lot
of time and effort into HDL programming, and also expedites
the development as well as design space exploration [20].

B. Graph Processing on FPGA

1) GAS model: The Gather-Apply-Scatter (GAS)
model [21], [22] is widely used for graph processing
frameworks [12]–[14], [23]. A simplified version of the GAS



model is proposed in [22]. It processes edges by propagating
from source vertex to destination vertex and the process is
broadly divided into three stages: scatter, gather, and apply.
In the scatter stage, for each input edge, an update tuple is
generated with the format of 〈destination, value〉. Then, all
the update tuples are processed by accumulating the value to
destination vertices in the gather stage. The final apply stage
executes an apply function on all the vertices. In our design,
we follow this GAS model.

2) Edge-centric and vertex-centric: Based on the access
pattern of the edges in a graph, the GAS model can be clas-
sified into two categories: edge-centric processing (ECP) [24]
and vertex-centric processing (VCP) [14]. For the VCP, edges
are randomly accessed through vertices [25]. On the contrary,
the ECP reads all edges sequentially, thus avoids costly
random memory accesses [26]. The ECP often outperforms the
VCP on FPGAs when the number of edges in a graph is much
larger than the vertices [24] since the run-time is dominated
by the portion of accessing edges from memory [12], [13]. We
focus on ECP in our proposed design.

3) Graph Partitioning: In order to improve the locality
of gather stage, BRAMs are used to cache the destination
vertices [6], [11]–[14]. However, the BRAMs are insufficient
to fit all the vertices of a graph. This requires partitioning
of vertices of a graph such that each partitioned set can fit
into the BRAM. Suppose a graph has vertex identifiers from
1 to V . If BRAMs available on the target FPGA device can
cache U vertices, the vertex set can be divided into dV/Ue
partitions. The ith partition has the vertex set with identifiers
ranging from (i− 1)U to iU .

4) Related work: A set of edge-centric graph processing
works [11]–[13] has been proposed by Shijie et al. Edges
are pre-sorted to minimize the row conflicts when accessing
global memory. Dai et al. proposed a vertex-centric graph
processing framework called ForeGraph [14] for multi-FPGA
architecture. However, in their framework, each PE caches
the same destination vertices, minimizing the partition size
and increasing the overall data replication factor. Yao et al.
proposed an accumulator to handle data conflict introduced
by updating vertices [27]. All these studies take fine-grained
control logic of HDLs or prepossessing to resolve the run-
time data dependencies or data conflicts. Kapre et al. used
network-on-chip (NoC) [28] as the communication scheme
among graph processing soft cores [29] and built a vertex-
based framework with a domain-specific language [23], [30].
However, we target OpenCL-based designs in which we would
like to have (a) PEs that run independently, and (b) no NoC
since even a light-weight NoC will result in unnecessary
overhead and complexity for our case.

III. MOTIVATIONS

In the GAS model, the gather stage consumes the update
tuples to update the vertices cached in BRAMs. Multiple
PEs are usually instanced to improve the throughput. Each
PE accesses a subset of cached vertices such that PEs run
independently and access data in parallel, consuming multiple
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Fig. 1: Access patterns of update tuples.

tuples per cycle and avoiding the conflicts. But it requires
extra logic to determine the corresponding PE for each update
tuple. Thus, run-time data dependency will be introduced
since the target PE of each update tuple is determined by its
destination vertex. This makes the access pattern of tuples
unpredictable at the compile time as it depends on inputs.
Fig. 1 shows three possible example patterns represented in
the same colored arrows for a configuration with four PEs.
Parallelism is hard to extract in this case and conservative
hardware implementations are usually implemented to ensure
the correctness [16], [31]. We found two solutions in the
literature to tackle this problem [32], [33]; however, they do
not solve the problem efficiently. Assume there are N tuples
read per cycle and N PEs for processing. The throughput is
determined by the efficiency of tuple assignment to PEs.
1) Polling. A naive solution is conventional polling [32].

Each PE iterates over update tuples one by one and only
processes the tuple when destination belongs to it. Thus,
the number of clock cycles required equals to the total
number of tuples, which is N and the parallelism factor
is limited to 1. It will introduce the “bubbles" since some
cycles are wasted on checking invalid tuples.

2) Convergence Kernel. A recent work in [33] presented a
convergence technique (named FPPA here). Each PE uses
multiple read engines to read tuples in parallel, and then
attempts to write only valid tuples to PE’s local buffer
in parallel. A global write address is used to sync next
available buffer location between read engines. When a
tuple is valid, the corresponding read engine writes the
tuple to current address and then increases the address by
1. Thus, data dependency raises since the write address
for each read engine cannot be determined at compile
time, resulting in unknown access patterns. This further
leads to a conservative hardware implementation, with
low parallelism. We experimentally demonstrate that the
performance of this method is even worse than the Polling
method in Section VI.

We present an OpenCL-based shuffling technique which
handles this run-time data dependency efficiently, thus en-
abling each gather PE to run efficiently and independently,
maximizing the parallelism. We also present a fully pipelined
edge-centric graph processing framework with the integration
of the proposed shuffling technique.

IV. SYSTEM OVERVIEW

We propose an edge-centric graph processing framework
with following key features: (1)improving the layout of the
partitioned data to minimize the global memory access and (2)
integrating with the proposed shuffling technique to achieve a
highly efficient pipeline.
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Fig. 2: Data layout of a partition consisting of V2 and V3.

A. Improved data layout

Suppose the graph has E edges. In current popular edge-
centric frameworks [13], [24], each partition maintains an edge
list and an update list. The edge list consists of all the edges
whose source vertex is in the partition’s vertex set while the
update list consists of all updates whose destination vertex is
in the partition’s vertex set. The scatter stage first processes all
the partitions and stores the update tuples to global memory,
which is then read by gather stage for further processing.
Since the number of update tuples equals to the number of
edges, it introduces at least 3E times global memory accesses.
However, this is not optimal for FPGAs which have limited
memory bandwidth to access external memory and cannot ben-
efit from deep pipeline execution of FPGAs. Instead of storing
both edge list and update list, we only store the modified edge
list which consists of all edges whose destination vertex is in
the partition’s vertex set, rather than the source vertex of them.
The corresponding changes for an example partition (Fig. 2a)
are shown in Fig. 2b. With this layout change, the update
tuples generated by scatter stage can be streamed to gather
stage for further processing, without transferring back to global
memory since the destination vertices of these tuples are in
the cached vertex set. Finally, the number of global memory
access is reduced by 3× (from 3E to E) by eliminating update
tuple retrieve to global memory.

B. Pipelined execution with shuffle

A high-level overview of our proposed system is shown in
Fig. 3. Thanks to our data layout change, the scatter, shuffle
and gather stages can be executed in a pipelined manner. For
the processing of each partition, a set of vertices is loaded
into local memory of PEs at the beginning and the scatter stage
reads the edge list from global memory and works as producer,
generating update tuples in parallel. Then it passes the tuples to
the shuffle stage, which dispatches the tuples in parallel to their
corresponding PEs in gather stage. The gather stage works as
consumer, processing the update tuples generated by scatter
stage. Taking advantage of implementing them in different
OpenCL kernels, the stages run in a pipelined manner. After
all the partitions are processed by the scatter and gather stages,
the apply stage will further update the property of each vertex
for the next iteration. The internal structure of this is discussed
in detail in Section V. The shuffle stage is the most critical
process for our proposed framework, as it connects the scatter
and gather stages and deals with the data dependencies. We
propose a decoder and filter based shuffling technique which
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Fig. 3: System Overview.
provides a high parallelism, connects the scatter and gather
stages efficiently, and satisfies the throughput requirement of
the other parts. The details are described in Section V.

V. IMPLEMENTATION DETAILS

We present the detailed design for all the stages of the
proposed framework in this section. The architecture with
functional components is shown in Fig. 4. Each individual
component is connected by OpenCL channels which has the
functionality as FIFOs.

A. Scatter

The inputs to the scatter stage are the edge lists from global
memory, and the outputs are update tuples which are calculated
by the specific functions of the algorithms. The scatter PE
(sPE) is instantiated N times, to read multiple edges and
generate N update tuples in parallel. We configure the suitable
value for N so that the memory bandwidth is fully utilized.

B. Shuffle

The shuffle stage dispatches the unordered update tuples
to corresponding gather PEs (gPEs). The shuffle stage is
constructed by five modules, PE Selection, Data Duplication,
Validation, Decoder and Filter. We define gPE together with
validation, decoder, and filter modules for the same set of input
data as a datapath, as shown in Fig. 4b.

1) PE Selection: The PE Selection unit determines which
gPE the update tuple will be sent to, based on the destination of
the update tuple. A radix-bit hash function is used for choosing
corresponding PE. The id of the gPE (idgPE) for the input
tuple is decided by the least significant bits of the destination
vertex identifier, log2(pe_number), where pe_number is the
total number of gPEs. The update tuples will go to the gPE
whose idgPE is equal to vid (mod (pe_number)), where vid
is the identifier of destination vertex of the update tuple. The
execution of the radix-bit hash function costs only 1 clock
cycle on FPGA. Also, idgPE for each tuple is computed in
parallel using N instances of the hash function and then is
appended to the update tuple for the next stage.

2) Data Duplication: In order to balance the update tuple
distribution, the Data Duplication module duplicates the input
tuples and the attached hash value from PE Selection module
to datapaths. This allows each Validation module to read data
from its own copy and operate on the tuples independently.
When a datapath has multiple valid tuples to read, data
duplication allows other datapaths to start processing the next
set of tuples, instead of waiting for the datapath to finish its
processing.



Validation0

Decoder0

Filter0

gPE0

Validation1

Decoder1

Filter1

gPE1

Validation2N-1

Decoder2N-1

Filter2N-1

gPE2N-1

Shuffle

Gather

N-way PE selection

(<D0,V0,H0>, …, <DN-1,VN-1,HN-1>)

DDR

(<D0,V0>, …, <DN,VN>)

Scatter

Data Duplication

DDR

aPE0 aPE1 aPEx-1

sPE0 sPE1 sPEN-1

MASK 

E. (01000100)

0; 000000008

1; 000000008

1; 000000018

7; 065432108

8; 765432108

Number; 

Positions

E. (2; 000000628) 

0; 000000008

1; 000000008

1; 000000018

7; 065432108

8; 765432108

Number; 

Positions

E. (2; 000000628) 

(2; 000000628)

Func0 Func2N-2

C0 C1 C2N-2 C2N-1

0 1 2N-2 2N-1

(2N*32-bit) / read
1 3

1 3

2

2

Datapath

Hash 

values

 hash_val == PE_ID? 1:0; 

0 1 0 0 0 1 0 0MASK

Tuples

7 6 5 4 3 2 1 0

Decoder

Num=2;

Pos=2,6;

Filter

Hash 

values

 hash_val == PE_ID? 1:0; 

0 1 0 0 0 1 0 0MASK

Tuples

7 6 5 4 3 2 1 0

Decoder

Num=2;

Pos=2,6;

Filter

Apply1 0 2 2 3 0 9 11

7 6 5 4 3 2 1 0Index

Tuples

Index

Func1 Func2N-1

Validate :
PE_ID = 0 for 

datapath 0

(a) Shuffle flow (b) Overall architecture

(c) Apply

(d) Decoder

(e) Gather
Fig. 4: Overall architecture with component details.

3) Validation: For the ith datapath with gPE id idgPEi
, a

Validation module is instantiated to achieve this by comparing
the hash value of incoming tuples with idgPEi

. If the hash
value of a tuple matches with idgPEi , the tuple is flagged as
valid (1, invalid is 0 on the contrary). This is done in parallel
for all the N input tuples using multiple instances of validation
logic. The results are saved in a N -bit internal register, named
as MASK, then attached with the tuples.

4) Decoder: The purpose of the Decoder is to determine
the number of valid tuples and their positions based on the
MASK value provided by the Validation module. We propose
a multiplexer based solution as shown in Fig. 4d. Since there
are N tuples read per cycle, a N -bit MASK code is generated
from the Validation module for each datapath, resulting in
2N combinations for the output. A 2N entries multiplexer
could select the desired output in a single clock cycle which
takes the MASK value as the select input of the multiplexer.
Position of each valid tuple is represented with a log2N bits
number, and all of them are concatenated into a N ∗ log2N
bits wide number. In order to minimize the resource utilization
of the multiplexer to support wider decoder and avoid the
routing problem during the implementation on FPGA, we
split the MASK value output from validation into multiple
partitions and use multiple decoders with a smaller size. We
use threshold N equivalent to 8 for splitting the decoder. An
example of decoder is shown in Fig. 4d. The outputs of the
decoder with the shown input are: number of valid tuples as
2 and the positions as 000000628.

5) Filter: Algorithm 1 shows the detailed operations of the
filter with one decoder handling 8 tuples. The loop count is
set as number of valid tuples. Given the positions, the filter
fetches one valid tuple per cycle to the corresponding datapath,
without wasting clock cycles on invalid tuples.

Algorithm 1 Filter Function

Require:
1: Input tuples, tuples[8];
2: Number of valid tuples, num, (unsigned char);
3: Valid tuples positions, positions, (unsigned integer);

Ensure: Write all valid tuples to PE kernel;
4: (num, positions) = read channel (decoder);
5: tuples = read channel (validation);
6: for i = 0 to num do
7: uchar position = (positions >> (i * 3)) & 0x7;
8: uint2 tuple = tuples[position];
9: write channel (gPE, tuple);

10: end for

6) Shuffle flow: All the modules of the shuffle stage are
pipelined. An example for a set of 8 tuples is shown in Fig. 4a.
The input to the datapath is a set of radix-bit hash values
and update tuples. The Validation module computes an 8-bit
MASK by comparing hash values with the id of the PE, which
is 0. Using the MASK values, the Decoder module indicates
that 2 tuples are valid for this datapath, and their positions
are 2 and 6. Finally, the Filter module writes the valid tuples
one-by-one to the gPE without “bubbles".

C. Gather

The gather stage processes the upcoming update tu-
ples. It is constructed with M gPEs running in parallel
and independently. Each of the gPE processes a specific
set of vertices. The ith gPE processes vertices for which
(vid (mod U)) (mod pe_number) is equal to i, where vid
is the vertex identifier and U is the total number of vertices
the BRAM can cache. Fig. 4e shows the internal structure and
dataflow of gPE. First, the vertex properties are loaded into
the local cache (Ci) of gPEs. The gather function (Funci)



TABLE I: Graph dataset.
Graphs |V | |E| Davg Dmax

rmat-19-32 (R19) [34] 524K 17M 32 90K
rmat-21-32 (R21) [34] 2M 67M 32 211K
mouse-gene (MG) [35] 43K 14.5M 670 8K
web-google (GG) [35] 875K 5.1M 11 6.4K
pokec (PK) [35] 1.6M 31M 37 20K
wiki-talk (WT) [35] 2M 5M 4 100K
live-journal (LJ) [35] 4.8M 69M 13 3K
twitter-2010 (TW) [35] 41M 1.4B 35 770K

block uses the value of update tuple to update vertex property
in cache. After all the update tuples are processed, the updated
vertices are stored back to global memory.

The function of the gPE depends on the algorithms. For each
update tuple, the destination vertex property is first read then
processed with the coming value, finally stored back. Then,
next update tuple starts. Due to the read after write operation,
the best achievable initiation interval (II) is 2 [17]. Thus, we
need twice gPEs as many as sPEs (M = 2N ), such that the
scatter and gather stages have the same throughput. To achieve
this, at the Data Duplication step of shuffle stage, tuples are
duplicated 2N times, resulting in 2N datapaths (Validation,
Decoder, Filter, and gPE modules).

D. Apply

The apply stage, as shown in Fig. 4c, updates all the vertex
properties using multiple aPEs. The vertex properties are read
and updated in parallel to fully utilize the memory bandwidth.
The operations executed in apply stage depend on the specific
graph processing algorithms.

VI. EVALUATION

A. Experimental Setup

Our experiments are conducted using Intel FPGA SDK 16.1
for OpenCL, on a Terasic DE5-Net board (named DE5) which
includes an Altera Stratix V GX FPGA and two indepen-
dent banks of DDR3. All the presented results are collected
from on-board implementations. The graph dataset used are
described in Table I which contains both synthetic [34] as well
as real-world graphs. We implement four common algorithms:
Page Rank (PR), Sparse Matrix-vector Multiplication (SpMV),
Single Source Shortest Path (SSSP), and Breadth-first Search
(BFS) and use fixed-point data type for calculations. The
number of million traversed edges per second (MTEPS) [14]
is used as the evaluation metric.

B. Shuffle Efficiency

We first evaluate the efficiency of our proposed shuffle
technique. In this experiment, the input of the shuffle is
directly connected to the memory interface and the output is
connected to different BRAM blocks independently. We use
Knuth shuffle [36] to create the uniformly distributed update
tuples with random destinations. We fix the frequency of the
implementation in this evaluation to 200Mhz to approximate
the impact when shuffle is used as an intermediate stage in
the real applications. The full memory bandwidth is utilized
to read the input data, which is a 512-bit data input per clock
cycle thus it is 12.5GB/s for reads. The larger the tuple size is,
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Fig. 5: Throughput and memory utilization of shuffle.

the fewer tuples need to be shuffled per cycle. The theoretical
throughput of number of tuples processed is calculated using
Equation 1.

throughput =
memory_bandwidth

tuple_size
(1)

We use a 28 entries multiplexer for the experiments with
tuple number of 1, 2, 4, and 8, and use two 28 entries
multiplexers to shuffle 16 tuples per cycle. As shown in
Figure 5, the measured throughput of different tuple sizes
is very close to the theoretical estimation. Our shuffle can
efficiently dispatch unordered tuples to multiple datapaths
regardless the data dependency.

C. Compare with Other Shuffling Solutions

We evaluate the solutions discussed in Section III with
different tuple sizes, shown in Figure 6. In polling [32], only
one tuple can be validated in each clock cycle. Hence, through-
put is determined by the clock frequency. The FPPA [33]
still retains the data dependency, thus, leads to a high II.
Our experimentally collected II for the FPPA is 284, 79,
9 and 1 cycles for shuffling 8, 4, 2 and 1 tuples to the
PEs, respectively. Our proposed solution resolves these issues
efficiently. Therefore, the II of the shuffle stage remains at 1
for all tuple sizes.
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Fig. 6: Performance comparison with other shuffling solutions.

D. Benefit of Shuffling Technique

Taking advantage of our efficient shuffle technique, the
run-time data dependency is handled efficiently and gPEs
run in a parallel and independent manner. We calculate the
performance for four algorithms on all graphs in the dataset
with 1, 2, 4, 8, and 16 PEs and present the results for Live-
journal graph in Figure 7. Similar trends were oberseved
for all other graphs. As shown in Figure 7, the throughput
improves significantly with increase in number of PEs for
all the evaluated algorithms. There is almost 20× speedup
with 16 PEs when compared to 1 PE. The additional speedup
comes from the frequency improvement with multiple PEs by
taking advantage of the smaller BRAM size for each of the
PE that leads to a better timing for the FPGA implementation.
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Fig. 7: Throughput with different number of PEs, normalized
to throughput of 1 PE.
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Fig. 8: Speedup of PageRank with 16 PEs on different
shuffling solutions.

With the shuffling technique, the proposed graph processing
framework demonstrates very good scalability as the number
of PEs increases. We also compare the end-to-end performance
of our proposed framework by using the FPPA and Polling
instead of the proposed shuffling technique. We observe the
same trend for all the four evaluated algorithms, and present
the results for PageRank in Figure 8. The speedup is up to
100× of FPPA, and 6× of Polling.
E. Overall Evaluation

The throughput per iteration of four algorithms with our
proposed framework, with 16 PEs, are shown in Table II. The
resource utilization for each of them are presented in Table III.
With 16 datapaths design, the shuffle stage uses 2.9% of total
BRAMs and 15.4% of total ALUT. Since highly imbalanced
graphs may influence the throughput of framework, we also
study the performance on synthetic graphs (generated using
Boost library [37]) with different power-law distribution factor,
α. Each graph has 500K vertices and 16 million edges. The
throughput for PageRank with the proposed framework by
varying the value of α from 0 to 3, in increments of 0.5,
is shown in Table IV. Based on results presented, we make
the following observations. First, our designs achieve a high
throughput of more than 1,000 MTEPS on average. Second,
PR and SpMV cost more BRAM and DSP resources when
compared to BFS and SSSP due to their more complex apply
functions. Third, all the algorithms are implemented with well
utilized BRAMs to provide on-chip data cache capacity for
the vertex set. Fourth, our framework is robust to power-law
distribution in graphs, i.e., it performs consistently well even
for highly imbalanced graphs.

TABLE II: Throughput of different algorithms.
Algo. R19 R21 MG PK GG WT LJ TW
PR 1136 1109 1223 1165 839 584 1111 1064
SpMV 1066 1042 1143 1085 803 551 1052 1002
BFS 1229 1219 1271 1152 878 579 1090 914
SSSP 1252 1250 1288 1178 908 619 1129 932

TABLE III: Resource utilization and frequency.
Algo. Freq.(Mhz) BRAM Logic DSP
PR 171.5 2,329 (91%) 125,811 (54%) 8 (3%)
SpMV 165.4 2,394 (94%) 125,854 (54%) 8 (3%)
BFS 172.6 2,030 (79%) 127,085 (54%) 0 (0%)
SSSP 170.6 1,926 (75%) 123,457 (53%) 0 (0%)

F. Comparison with State-of-the-art Designs

As a sanity check, we choose the state-of-the-art graph pro-
cessing frameworks implemented with RTL as our comparison
targets. Since the edge-centric processing model is memory
bounded, we compare with implementations which have sim-
ilar memory bandwidth with our platform. We compare with
state-of-the-art edge-centric designs for BFS and SSSP [24].
The proposed OpenCL based designs have throughput im-
provement of up to 2.9× compared to state-of-the-art designs,
demonstrating the efficiency of our proposed techniques, as
shown in Table V.

VII. CONCLUSION

In this paper, we have identified the run-time data de-
pendency introduced by dispatching data to multiple PEs as
the main obstacle to achieve high throughput on graph pro-
cessing problems using OpenCL-based FPGAs. We propose
a novel OpenCL-based data shuffling method to handle this
data dependency efficiently. With the proposed data shuffling
technique, we also present an edge-centric graph processing
framework with high pipeline execution efficiency. The exper-
imental studies show that our approach achieves throughput
that are comparable or even better than RTL-based design in
the previous studies.
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TABLE IV: Throughput of PageRank.
α 0 0.5 1 1.5 2 2.5 3
Throughput 1224 1226 1219 1221 1242 1238 1237

TABLE V: Comparison with state-of-the-art implementations.
Algo. Graph Others Throughput Ours Impro.

PR
LJ ForeGraph [14] 1193 1110 0.93×
WT [11] 279 584 2.09×
GG [11] 317 838 2.64×

SpMV WT GraphOps [38] 190 551 2.90×
SSSP WT [13] 657 618 0.94×

LJ [13] 872 1129 1.29×
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