
GPU-Accelerated Graph Label Propagation for
Real-Time Fraud Detection

Chang Ye, Yuchen Li, Bingsheng He, Zhao Li, Jianling Sun
∗

Singapore Management University, National University of Singapore, Alibaba Group, Zhejiang University

changye.2020@phdcs.smu.edu.sg,yuchenli@smu.edu.sg

hebs@comp.nus.edu.sg,lizhao.lz@alibaba-inc.com,sunjl@zju.edu.cn

ABSTRACT
Fraud detection is a pressing challenge for most financial and com-

mercial platforms. In this paper, we study the processing pipeline of

fraud detection in a large e-commerce platform of TaoBao. Graph
label propagation (LP) is a core component in this pipeline to de-

tect suspicious clusters from the user-interaction graph. Further-

more, the run-time of the LP component occupies 75% overhead of

TaoBao’s automated detection pipeline. To enable real-time fraud

detection, we propose a GPU-based framework, called GLP, to sup-

port large-scale LPworkloads in enterprises. We have identified two

key challenges when integrating GPU acceleration into TaoBao’s
data processing pipeline: (1) programmability for evolving fraud

detection logics; (2) demand for real-time performance. Motivated

by these challenges, we offer a set of expressive APIs that data

engineers can customize and deploy efficient LP algorithms on

GPUs with ease. We propose novel GPU-centric optimizations by

leveraging the community as well as power-law properties of large

graphs. Extensive experiments have confirmed the effectiveness

of our proposed optimizations. With a single GPU, GLP supports a

real billion-scale graph workload from the fraud detection pipeline

of TaoBao and achieves 8.2x speedup to the current in-house dis-

tributed solution running on high-end multicore machines.

ACM Reference Format:
Chang Ye, Yuchen Li, Bingsheng He, Zhao Li, Jianling Sun. 2021. GPU-

Accelerated Graph Label Propagation for Real-Time Fraud Detection. In

Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21), June 18–27, 2021, Virtual Event, China. ACM, New York, NY,

USA, 9 pages. https://doi.org/10.1145/3448016.3452774

1 INTRODUCTION
Large-scale graph data is pervasive as people and things are dig-

itally connected today. The information embedded in graph data

brings opportunities to discover valuable insights that continuously

power the development of data-driven economy. Graph analytics

have been very popular in fraud detection in financial and com-

mercial platforms [6, 24]. The timeliness of detecting frauds is an

important factor for fraud detection systems. Meanwhile, the size

∗
Zhao Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 18–27, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3452774

xxx

(a) Transaction logs

(b) Pool of black-listed IDs
(c) Detect suspicious clusters
by label propagation

(d) Detect suspects by
graph neural nets

Preprocess data Fraudulent transaction detection process

Figure 1: TaoBao’s data pipeline for fraud detection

and complexity of large graphs pose great challenges to many

online platforms for deploying real-time analytics. A common prac-

tice is to employ graph clustering that divides a large graph into

smaller partitions for downstream analytics tasks such as those

in fraud detection. Among existing graph clustering approaches,

Label Propagation (LP) is one of the most effective and efficient

algorithms [36]. Furthermore, many LP variants have been pro-

posed to address graph problems in different applications, such as

community detection [41], graph compression [7], and many oth-

ers [34, 35]. Despite having a linear complexity theoretically [28],

the overhead of executing LP on large graphs is still a major bottle-

neck for time-critical applications.

Fraud Detection Pipeline in TaoBao (Figure 1). On TaoBao’s e-
commerce platform, the LP algorithm and its variants are used as a

core component for analyzing the user-product network to detect

fraudulent transactions. Sliding windows of recent purchases/clicks

form transaction networks, which are first processed by LP to iden-

tify suspicious clusters from known black-listed users. Subsequently,

the identified clusters are then analyzed by more sophisticated al-

gorithms, e.g., graph neural nets [9], to discover new frauds. It is

worth-noting that the LP component occupies 75% overhead of

TaoBao’s automated detection pipeline. Real-time fraud detection is

a pressing challenge today as 21.4% of traffic to e-commerce portals

are malicious bots in 2018 [1]. Hence, speeding up the LP compo-

nent will drastically improve the detection latency and enable more

responsive measures to stop financial losses.

GPU-accelerated Graph Processing. Recently, there are rapid

growing interests in employing GPUs to accelerate a variety of

graph processing workloads, e.g., graph traversal [21, 23], pager-

ank [13, 30] and network motif detection [12, 20]. These existing

works leverage the associative property of their targeted graph

applications to efficiently distribute workloads. For instance, one

can assign a thread to visit each individual neighbor of a vertex

in graph traversal applications [29], or assign a thread to indepen-

dently extend a candidate motif by adding one neighborhood vertex

in network motif detection [20]. In contrast, for each iteration of

https://doi.org/10.1145/3448016.3452774
https://doi.org/10.1145/3448016.3452774

the LP algorithms, every vertex u scans all its neighbors for their

label values and selects the most frequent label (MFL) to update the

label value of u itself. Note that computing MFLs is not an associa-

tive workload for each neighbor list, which renders most existing

studies infeasible for accelerating LP efficiently. The research gap

and practical impact motivate us to propose an efficient parallel

solution for optimizing the LP algorithm on GPUs.

Although there have been some pioneer studies on paralleliz-

ing LP on GPUs [17, 33], we identify two major drawbacks when

developing GPU-based LP for TaoBao:

• Existing works only optimize the classical LP algorithm [28]

on GPUs. However, many variants of LP are used by data

engineers in TaoBao to develop strategies to detect evolving

fraud patterns. Implementing a correct and efficient GPU

programs is challenging in general, and even more difficult

for graph applications like LP. Hence, it is not practical to
train every data engineers with the knowledge of tedious

programming and performance optimizations on GPUs.

• Existing works simply leverage the raw computing power

and high memory bandwidth of GPUs to accelerate MFL

computation. As the workload is not associative, existing

methods rely on parallel segmented sort of the entire neigh-

bor lists to order the labels for label frequency evaluation,

and then select the MFL [17, 33]. It requires repeated scans

of the labels, which bottlenecks the MFL computation. The

performance gets worse when a neighbor list does not fit

into the fast shared memory, in which existing methods must

resort to the slow GPU global memory for processing the

neighbor list. On the other hand, for vertices with fewer than

32 neighbors, it also wastes resources to employ a warp of

32 threads for processing vertices with tiny neighbor sets.

In this paper, we propose a GPU-based framework to support

large scale LP processing, called GLP. To ease the development of

different LP variants, we offer a set of user-defined APIs. These

APIs provide expressive and bulk-synchronize abstractions for data

engineers to quickly deploy LP variants tailored for their targeted

applications, e.g., develop various fraud detection algorithms to en-

hance the system capability of detecting new frauds in e-commerce

platforms, without domain knowledge of GPUs. Furthermore, the

design of GLP can seamlessly support massive graphs that do not

fit into the GPU memory entirely, and GLP handles such scenarios

with a CPU-GPU hybrid execution mode.

Built upon the GLP framework, we propose two novel optimiza-

tions for the MFL computation. Our optimizations take advantages

of the characteristics of LP algorithms, which are overlooked by

the existing works.

First, we optimize memory performance even if a neighbor set

does not fit into the shared memory. Existing works have to ac-

cess the slow global memory to compute the MFL for high-degree

vertices as their neighbors cannot fit into the shared memory. We

leverage an important observation: two neighbors of a vertex of-

ten share the same label as they have a high chance to be in the

same community [39]. To maximize shared memory processing, we

combine two shared memory resident data structures: count-min

sketch (CMS) and hash table (HT). CMS is used to effectively prune

labels with low frequencies and HT is deployed to store potential

MFL without accessing the global memory. We theoretically show

that the global memory access only occurs with small probabilities.

Second, we optimize the MFL computation for vertices with low-

degree. For most large graphs, the number of low-degree vertices

are massive due to the power-law principle. The existing works

either use a warp of 32 threads or a single thread to handle one low-

degree vertex but both approaches suffer from low GPU resource

utilization. As GPUs are very sensitive to imbalanced workloads

caused by low-degree vertices, we optimize the MFL computation

by employing GPU warp-centric intrinsics for grouping threads

and updating the labels of multiple vertices concurrently in a warp.

We thereby summarize our contributions as follows:

• We propose GLP, a GPU-based framework that allows data-

engineers to deploy user-defined, efficient and scalable LP
algorithms on GPUs for different application requirement

on the data science pipeline. To the best of our knowledge,

this is the first GPU framework that can support a range of

LP algorithms. (Section 3)

• We devise a novel structure that combines CMS and HT to

maximize shared-memory usage for MFL computation. We

introduce a warp scheduling approach that handles multiple

low-degree vertices concurrently. (Section 4)

• Extensive experiments confirm: (1) GLP achieves significant

speedups over existing CPU and GPU approaches for LP;
(2) GLP processes TaoBao’s fraud detection workloads on a

graph of over 10 billion edges with a single GPU, while offers

8.2x speedup to the current in-house solution running on

high-end multicore machines. We show that GLP can be an

efficient and cost-effective solution towards real-time fraud

detection pipelines. (Section 5)

2 PRELIMINARIES
2.1 Label Propagation (LP)
Fraud detection is critical in e-commerce platforms with a lot of

efforts devoted to this area (see survey [27]). Graph analytics have

recently been used to support fraud detection [6, 24]. In the follow-

ing, we introduce the notations used in LP algorithms.

Given a graphG = (V ,E), whereV represents the vertex set and

E represents the edge set. The incoming neighbor set of a vertex v
is denoted as N (v) and the outgoing neighbor set of v is denoted as

N ′(v). When the context is clear, we refer to neighbors of a vertex as

the incoming neighbors. We present the classical LP [28] as a brief

introduction to LP algorithms. Every vertex vi is first initialized
with a unique label Li representing its community ID. Subsequently,

each vertex takes themost frequent label (MFL) among its neighbors

for updating its own label. Specifically, it invokes two stages for

updating the labels: (1) retrieving the labels of neighbors for all

vertices; (2) count the labels and extract the MFL. This process

iterates until a termination condition is met. Vertices with the same

label are assigned to the same community. T

We note that many variants of LP are proposed [5, 7, 34, 40, 41].

Nevertheless, they follow the same pattern which a vertex first loads

the label value of neighbors and then use the MFL to aggregate the

labels of neighbors. We hence design the GLP framework anchored

on this pattern for enabling customization of different LP variants.

2.2 Related Studies
We discuss three related areas: (1) GPU-based label propagation;

(2) Optimizing workload balance for GPU graph processing; and

(3) Optimizing memory access for GPU graph processing.

GPU-based label propagation Existing works leverage the high

memory bandwidth of GPUs to load the labels of neighbors for

each vertex [17, 33]. Subsequently, a GPU-optimized segmented-

sort kernel is executed to order the neighbor labels. Lastly, a count

kernel scans the ordered neighbor labels to extract MFL and then

updates the vertices in parallel. There are two major performance

issues when the aforementioned approach is executed iteratively

for LP: (1) the label values are repeatedly loaded but only a subset

of them have their labels updated, which leads to unnecessary non-

coalesced global memory accesses; (2) the segmented-sort kernel

executed on the entire graph is an overkill for obtaining MFL and

thus incurs redundant workloads. GLP addresses these issues with

a novel hash table-based design.

Optimizing workload balance for GPU graph processing: Ac-
celerating graph workloads on GPUs incurs unbalanced work dis-

tribution as the neighbor lists in large graphs follow the power-law

distribution. The most common workload that is being extensively

studied is graph traversal. Hong et al.[14] propose a virtual warp-

centric BFS algorithm that divides an entire warp into small virtual

groups to active more threads within a warp. This technique is later

adopted by Medusa [42]. Merrill et al. [25] devise a block-based

thread scheduling where a block/kernel is assigned to handle a high

degree vertex, which is the same strategy adopted by Gunrock [37].

Liu et al. [22] introduce iBFS for processing concurrent BFS where

a warp voting technique is used to balance the workloads. Sha et

al. [29] propose a GPU graph traverse approach on compressed

graphs, they propose two-phase traversal and task stealing for

better thread scheduling. Many scheduling approaches have been

proposed for other graph applications, see [31] for a comprehensive

survey. However, there is an important assumption made in these

existing works: the workloads are associative in every neighbor

lists, which does not hold for the LP algorithm. Our proposed so-

lution introduces a number of novel optimizations to handle the

non-associativity: (1) combine HT and CMS for handling large degree
vertices that do not fit into the shared memory and reduce work-

loads; (2) group small vertices for computing their label frequencies

in a warp.

Optimizingmemory access onGPU graph processing: Recent
works on GPU-based graph processing propose solutions for ad-

dressing irregular memory accesses. Cusha [16] eliminates random

memory access by reordering edges into G-shards, but at the cost

of producing block/warp divergence. Furthermore, the window

representation proposed in Cusha is designed for associative work-

loads [26]. However, the task of extracting MFL in LP is naturally
non-associative, which renders the infeasibility of adopting Cusha

for LP. Khorasani et al.[15] introduce warp segmentation (WS) for

graph processing. Instead of reducing non-coalesced memory ac-

cesses directly, they hide the latency of memory transfer by feeding

GPUs with compute-intensive tasks. Nevertheless, this strategy is

not suitable for I/O intensive algorithms such as LP.

Struct Graph{
/*CSR structure*/
VertexId* N; /*neighbor list*/
SizeT* Offsets; /*offsets of the

neighbor list*/
Attributes* Attr; /*pointer of

attributes structure*/
/*user-defined structures*/
double* V_weight; /*vertex weight*/
double* E_weight; /*edge weight*/

}
Struct Attributes{

LabelT* L; /*label of each vertex in
the current iteration*/

LabelT* Lnext; /*label of each vertex
in the next iteration*/

/*user-defined attributes*/
double* Globalfreq;/*frequency of

labels in L*/
}

PickLabel

For multiple iterations

SaveResult

Run()

LabelPropagation

UpdateVectex

LoadGraph

Figure 2: Overview of GLP

3 THE GLP FRAMEWORK
In this section, we first present the overview of our proposed system

GLP and sample APIs. Subsequently, we demonstrate some examples

on how to implement different LP algorithms with GLP.

3.1 Overview of GLP and APIs
We follow two design goals to make our system a useful framework.

• Programmability. We provide a set of user-defined APIs for data

engineers to develop various LP variants on GPUs with ease.

• Efficiency. The designed processing workflow and APIs allow

efficient and scalable GPU implementations in order to satisfy

the real-time requirements from fraud detection..

Figure 2 shows the data structures and processing workflow

of GLP. We use two structures, Graph and Attributes, to represent

the underlying graph and its attributes/labels. The compressed

sparse row (CSR) format is used to store the graph structure. The

users of GLP can include additional user-defined data structures for

customization, but are advised to follow the structure of arrays (SoA)

layout for coalesced memory accesses on GPUs. The workflow of

GLP is iterative and each iteration contains three main components:

• PickLabel. This component is responsible for deciding a label

for each vertex according to a user-defined strategy.

• LabelPropagation. Each vertexwill pick the label which achieves
the highest score value among its neighboring vertices. The

users can customize the score functions of labels. We illustrate

the implementation details in Section 4.

• UpdateVertex. Given a vertex and a label picked from Label-
Propagation, this component is responsible for updating the

status of the vertex with a user-defined strategy.

Note that the aforementioned workflow can be naturally imple-

mented on a CPU-GPU heterogeneous environment. In the case

of large graphs that cannot fit into the GPU memory, the CPUs

can coordinate the CPU-GPU graph data movement as well as han-

dle PickLabel and UpdateVertex. The heavy lifting of processing

LabelPropagation is then handled by one or multiple GPUs.

Table 1: Sample User-defined APIs in GLP

APIs/Parameters Descriptions
PickLabel(VertexId vid) Given a vertex vid , it decides vid ’s label and write the label to the current label array L.
LoadNeighbor(VertexId vid, VertexId did) Given an edge (vid , did), it returns the label and the frequency for did as a neighbor of vid .
LabelScore(VertexId vid, LabelT l, double freq) Given a vertex vid , a label l and l ’s frequency among vid ’s neighbors, it returns a score of l for vid .
UpdateVertex(VertexId vid, LabelT l, double score) Given a vertex vid , update the status of vertex vid with label l and score .

APIs. We provide APIs for developers to customize and deploy

their LP algorithms on GPUs for different application requirement

on the data science pipeline. We show some sample APIs in Table

1. Users can directly customize PickLabel and UpdateLabel. For
LabelPropagation, we expose two APIs, namely LoadNeighbor
and LabelScore, to balance between ease of customization and ef-

ficient GPU optimizations. The LabelPropagation kernel running
on GPUs will invoke LoadNeighbor and LabelScore to select the

MFL for each vertex. The configurations for GPU kernel functions

are automatically set up, there is no requirement for users to deal

with any GPU optimizations.

Examples. To showcase the ease of implementing various LP al-

gorithms for data engineers to deploy different strategies against

evolving fraud patterns, we present three commonly used LP vari-
ants under the GLP framework.

• Classic LP. The classic LP algorithm introduced in Section 2.1

• LLP (The layered LP algorithm [7]). The classic LP tends to

provide undesirably large communities. In contrast, LLP updates
its label by the following formula. For each label l currently
appearing on the neighbors of a vertex, LLP computes val =
k−γ ∗(v−k). k is the number of neighbors having the same label

with l and v is the overall number of vertices having the same

label with l . The classic LP choose l maximizing k , whereas LLP
chooses the label maximizing val .

• SLP (The speaker-listener LP algorithm [38]). Both classical LP
and LLP can only assign a vertex to one community. SLP is

designed for identifying overlapping communities. Each vertex

may have multiple labels. In each iteration one label among the

candidates is chosen to be the current label of a vertex. Each

vertex then selects the MFL from its neighbors like the classical

LP, and the MFL is used to update the candidate labels for each

vertex. At the end of each iteration, labels whose frequency are

less than a threshold will be removed from the candidates.

4 OPTIMIZE MFL COMPUTATION
In this section, we present our optimizations for implementing

labelPropogation on computing MFL under the GLP framework.

We focus on two types of vertices, namely high and low degree

vertices, as they are the major issues for memory access overhead

and workload imbalance respectively.

4.1 Handling High Degree Vertices
Existing works either use segmented sort or global hash tables

for counting the frequencies of labels. However, the existing ap-

proaches have trouble in handling high degree vertices. Imple-

mentations based on segmented sort have to gather labels into an

addition array in the GPU global memory, i.e., the neighbor label

array NL, and impose expensive memory overheads on GPUs as

the size of NL is proportional to the total number of edges. Ad-

ditionally, segmented sort degenerates to plain parallel sort for

high degree vertices. In this approach, multiple scans on NL are

required. Thus, the segmented sort approach incurs unnecessary

workloads for obtaining the MFL. The other possible approach is to

allocate a hash table for each vertex u with memory size equivalent

to u’s neighbors in the GPU global memory for counting the label

frequencies. The hash table approach relies on the built-in caching

mechanism of GPUs to reduce global memory accesses. However,

when the number of neighbors exceeds the cache size, the hash

table cannot avoid random accesses in the global memory.

In this work, we propose a shared memory approach that handles

high degree vertices even when the neighbors of a vertex exceed

the shared-memory size. This is possible due to the important obser-

vation that, as more iterations are executed, neighbors of a vertex

often share similar labels since they are likely to be assigned in the

same community. Hence, the number of distinct labels among a

vertex v’s neighbors could be drastically smaller than the degree

of v . The observation enables opportunities for handling the fre-

quency calculation in the shared-memory alone. Nevertheless, the

number of unique labels cannot be determined before accessing

all neighbors of a vertex. To avoid unnecessary global memory

accesses, we combine a Count-Min Sketch (CMS) and a Hash Table

(HT) in the shared memory for estimating the label frequencies of a

high degree vertex. CMS [10] is an effective approach for estimating

frequencies in the data stream scenario. For each arriving label l ,
CMS hashes l to d independent hash functions and increment the

counts in the corresponding buckets. CMS only overestimates the

frequency of a label and has a probabilistic guarantee on the upper

bound of the frequency value.

Our approach takes only one scan of the neighbor labels for

any vertex v . One thread block is assigned to v and each thread

is assigned to handle one neighbor u for v and its label l . A CMS
and a HT are allocated in the shared memory. When scanning, we

insert l into HT and increment the label frequency HT(l) in the hash

table if the insertion is successful. Otherwise the hash table is full,

we add l to CMS, followed by computing a score based on the label

and its frequency. After processing all neighbors, the thread block

synchronizes to find the maximum score in HT as s(HT) and the

maximum score estimated by CMS as s(CMS). If s(HT) ≥ s(CMS), we
can safely update the vertex by using the MFL in HT. The approach
maximizes the chances for shared memory processing.

We present the aforementioned approach in Procedure Shared-

MemBigNodes. One thread with ID tid loads the label of one neigh-

bor u of v to l as well as l ’s weight (Line 2). For the ease of presen-
tation, a thread only processes one neighbor of v but one thread

will process multiple labels in the actual implementation. We try to

insert the label to the shared memory structures HT and CMS with
the atomicAdd primitives (Lines 5-7). The variables ht_score and

Procedure SharedMemBigNodes

input : threadid tid , vertex v , shared memory structures

HT,CMS, global memory hash table GHT, neighbor
array N , o f f set[v] indicates the starting index of
neighbor list for v in N .

output :updated label array Lnext[]
1 u := N [o f f sets [v] + tid]

2 (l ,weiдht) := LoadNeighbor (v,u)

3 ht_score := INT_MIN

4 cm_score := INT_MIN

5 f req := atomicAdd (HT, l ,weiдht)

6 if unsuccessful insertion then
7 f req := atomicAdd (CMS, l ,weiдht)

8 cm_score := LabelScore(v, l , f req)

9 else
10 ht_score := LabelScore(v, l , f req)

11 s(HT) := BlockReduce (ht_score,max ())

12 s(CMS) := BlockReduce (cm_score,max ())

13 if s(HT) ≥ s(CMS) then
14 if s(HT) == ht_score then
15 Lnext [v] := l

16 else
17 if l < HT then
18 f req := GlobalInsert(GHT, l ,weiдht)

19 дt_score := LabelScore(v, l , f req)

20 else
21 дt_score := ht_score

22 s(GHT) := BlockReduce (дt_score,max ())

23 if s(GHT) == дt_score then
24 Lnext [v] := l

cm_score store the scores of label l in HT and CMS after the inser-

tion, respectively. Upon insertions are complete, two BlockReduce
primitives

1
are invoked to get the maximum scores in HT and CMS

from all threads in the block. We can safely update Lnext[v] with
the MFL in HT if s(HT) ≥ s(CMS) (Lines 13-15). Otherwise, we insert
l into the global hash table GHT and retrieve the MFL from both GHT
and HT to update Lnext[v] (Lines 16-24).

Special Note: The proposed approach for combining CMS and HT
is not an approximated solution for MFL computation. Instead, it is

a pruning strategy that takes advantages of the label distribution

in the neighborhood. In the worst case, we still need to access the

global memory to count label frequencies. In the following, we

show that this strategy can effectively reduce the global memory

accesses with a high probability.

Theoretical Analysis: The intuition behind this approach is that

high degree vertices may not have a large number of distinct labels

after some iterations, thus a sufficiently large capacity of HT is

enough to capture theMFL. We discuss the theoretical guarantee for

our proposed shared memory approach. In particular, we study the

probability that global memory accesses are needed for processing

1BlockReduce is a GPU block-wise reduction that uses a binarymax operator to compute

a single aggregate from a list of input elements.

any given vertexv in a classic LP algorithm. Letm be the number of

distinct labels in N (v), h be the number of buckets in the HT, d and

w be the number of independent hash functions and the number of

buckets for each hash function in the CMS, respectively. For any label
l , f (l) denotes the frequency count in N (v) and fmin ≤ f (l) ≤ fmax.
We first show the following lemma to study the probability that

the label with the maximum frequency in N (v) is not in the HT
after inserting all labels into the HT and the CMS in a random order.

To simplify the analysis, we assume that all labels except the MFL

appear only once in the neighbor list.

Lemma 1. Let l∗ be the label where f (l∗) = fmax. Then P[l∗ <
HT] ≤ (1 − h

m+k)
2k where k = fmax−1

2
.

Proof. We only discuss the case wherem > h since all unique

labels will be presented in HT if m ≤ h. We study the following

random process: all distinct labels except l∗ are randomly permuted

as a sequence s and we insert l∗ into s for fmax times at random

positions. Hence, l∗ < HT if and only if l∗ does not appear in the

first h positions of s . It then follows that:

P[l∗ < HT] =
m − h

m
·
m + 1 − h

m + 1
· . . . ·

m + fmax − 1 − h

m + fmax − 1

≤

(m + (fmax − 1)/2 − h

m + (fmax − 1)/2

)(fmax−1)
The ith factor of the equation presents the probability that the MFL

is captured by the HT in the ith position. Further, the inequality

holds since
m+i−h
m+i · m+n−i−hm+n−i ≤ (

m+n/2−h
m+n/2)2 ∀i ∈ [0,n]. Substitute

k =
fmax−1

2
derives the lemma. □

From Lemma 1, we can infer that l∗ has a low probability not

present in the HT when dealing with practical scenarios. Suppose

m ≤ k (i.e., the number of unique values is small compared with the

maximum frequency count in N (v)), P[l∗ < HT] → e−h for large

fmax, where the probability decreases exponentially with h.
Next, we analyze the scenario where the maximum frequency

estimated by CMS is larger than the maximum frequency in HTwhen
l∗ ∈ HT. Such a scenario implies global random accesses are needed.

To establish the theoretical result, we denote f (HT) as the sum of

frequency counts of labels inserted into the HT and д(l) to denote
the frequency count estimated by the CMS for label l .

Lemma 2. P[maxl д(l) > fmax] ≤ mδ where δ = 2
−d .

Proof. As the hash table stores f (HT) counts, the number of

insertions to the CMS is s = (|N (v)| − f (HT)). Furthermore, as all

frequency counts are integers, we have the followings:

P[д(L) > fmax] = P[д(L) ≥ f (L∗) + 1] ≤ P[д(L) ≥ f (L) + 1]

≤ P[д(L) ≥ f (L) +
1

s
· s] = 2

−d
(1)

Equation 1 holds due to the properties of the CMS [10] when w is

set to 2s . Hence, P[maxL д(L) ≥ fmax] ≤ mδ by the union bound of

m distinct labels. □

Now we are ready to estimate the probability of having global

memory accesses.

Theorem 1. The probability of globalmemory accesses is bounded
by (mδ + e−h) for any vertex v as fmax → ∞ andm ≤

fmax−1
2

.

1 1 2 2 2 3 3 3 3 4 4 4 4 5 5 6 6 6 7 7 8 8

B B A B A A B A B B B B F B A A F F F F F F

V 1 1 2 2 2 3 3 3 3 0

NL B B A B A A B A B 0

4 4 4 4 5 5 6 6 6 0

B B B F B A A F F 0

7 7 8 8 0 0 0 0 0 0

F F F F 0 0 0 0 0 0

Warp 1Warp 0 Warp 2

vmask 00000
00011

00000
00011

00000
11100

00000
11100

00000
11100

01111
00000

01111
00000

01111
00000

01111
00000

0

vmask =__match_any_sync (activemask, V[tid])

lmask = __match_any_sync (vmask , NL[tid])

count = __popc (lmask)

lmask 00000
00011

00000
00011

00000
10100

00000
01000

00000
10100

00101
00000

01010
00000

00101
00000

01010
00000

0

count 2 2 2 1 2 2 2 2 2 0

active
-mask

01111
11111

01111
11111

01111
11111

01111
11111

01111
11111

01111
11111

01111
11111

01111
11111

01111
11111

01111
11111

activemask =__ballot_sync (V[tid])

(1)

(2)

(3)

(4)

tid 0 1 2 3 4 5 6 7 8 9

Figure 3: An example of the warp-centric approach. Each
number in V represents a node ID v and the number in NL
below v represents a label from a neighbor of v. Different
colors represent different vertices handled by the threads in
warp 0 respectively. The bit mask for thread tid represents
all threads in warp 0 having the same workload as tid .

The proof naturally follows by combing Lemma 1 and Lemma 2.

In practice, the maximum frequency fmax becomes large and the

number of distinct labelm becomes small after a few iterations of

LP for high degree vertices since communities form when labels

are merged. Hence, (mδ + e−h) is small and it renders our proposed

approach effective in reducing global memory accesses.

4.2 Handling Low Degree Vertices
Existing works either assign a single thread or one warp of 32

threads to handle one low-degree vertex. Both strategies are far

from optimal. One-thread-one-vertex strategy has the workload

imbalance issue when two threads are assigned to two vertices with

different number of neighbors. Further, the threads in a warp access

different neighbor lists concurrently, and have frequent uncoalesced

memory accesses for the warp. One-warp-one-vertex strategy han-

dles a vertex with 32 threads and all threads in the warp access the

same neighbor list to avoid imbalance workload and uncoalesced

memory accesses. However, vertices with less than 16 neighbors are

common in power-law graphs [4]. One-warp-one-vertex strategy

will result in many idle threads and under-utilize the computing

resources of GPUs.

Motivated by the above drawbacks, we propose to employ a warp

of 32 threads to compute the label frequencies for multiple low-

degree vertices concurrently, i.e., one-warp-multi-vertices approach.

In this way, we make full utilization of GPU threads compared

with the one-warp-one-thread approach. As the threads in a warp

execute the instructions in a lock-step manner, the major challenge

is how to efficiently identify the set of peer threads in the warp

working on (1) the same neighbor list; (2) the same label from the

same neighbor list. To this end, we combine a number of warp-

centric intrinsics to quickly identify peer threads.

In the following, we give an illustrative example for the classic

LP algorithm and demonstrate how to handle multiple low-degree

vertices concurrently in a warp. For ease of presentation, we assume

the size of a warp is 10 and warp 0 handles vertices 1, 2 and 3. The

execution sketch is illustrated in Figure 3.

(1) We select those active threads having a valid label in the warp.

by calling the __ballot_sync intrinsic 2. The returnedactivemask
tracks which threads are assigned with a valid label to work on.

For warp 0, all threads have the same activemask and the most

significant digit is 0 indicating that thread 9 will be idle as no

valid label is assigned.

(2) We group the active threads according to their assigned vertex

by calling the __match_any_sync intrinsic
3
. The returned

vmask for each thread t indicates the set of peer threads as-

signed with the same vertex as t . In our example, both thread 0

and thread 1 are assigned with vertex 1, thus the position 0 and

1 of vmask are set to 1 by __match_any_sync.
(3) We employ __match_any_sync again for grouping threads

to compute the label frequency. The returned lmask for each

thread tid indicates the set of peer threads assigned with the

same label of the same vertex. In our example, thread 2 holds

labelA from vertex 2. Among all three threads that are assigned

to vertex 2, only thread 4 is assigned with label A, thus both
threads 2 and 4 hold the same lmask where the corresponding

positions are set to 1.

(4) The count of label frequency is the number of ones in lmask,
which are computed by calling the __popc intrinsic 4

.

It is noted that our approach handles multiple vertices for updat-

ing the labels with warp-level intrinsics. As warp-level intrinsics

are extensively optimized in the throughput-oriented architectures,

the approach can efficiently process low degree vertices. The atomic

operations are replaced by efficient bit manipulation with the help

of intrinsics. Each intrinsic operation can be executed much more

efficiently within a few clock cycles on GPUs.

5 EXPERIMENTAL EVALUATION
This section evaluates the performance of our system through ex-

periments against state-of-the art solutions and the current system

in TaoBao. Section 5.1 describes the experimental setup. We present

experimental results to answer the following questions:

• What is the overall performance improvement of our pro-

posed solution GLP against state-of-the-art solutions on multi-

core CPUs and GPUs (Section 5.2)?

• Is each of the proposed optimizations effective (Section 5.3)?

• What are the advantages of GLP against the current system
in TaoBao (Section 5.4)?

5.1 Experimental Setup
Datasets. dblp, roadNet, youtube, and ljournal were obtained

from Stanford Network Dataset Collection [19], twitter, uk-2002,

2__ballot_sync returns the bit mask of all active threads where the input parameter

is non-zero.

3__match_any_sync returns the bit mask of all active threads (indicated by the

activemask) that have the same value of the input parameter.

4__popc counts the number of bits that are set to 1 of the input parameter.

Table 2: Datasets.

Dataset V E Ave-Degree

dblp 317,080 1,049,866 6.6

roadNet 1,965,206 2,766,607 2.8

youtube 1,134,890 2,987,624 5.2

aligraph 14,933 29,804,566 3991.8

ljournal 3,997,962 34,681,189 17.3

uk-2002 18,520,486 298,113,762 16.1

wiki-en 15,150,976 378,142,420 24.9

twitter 41,652,230 1,468,365,182 35.3

wiki-en were obtained from Kobkenz Network Collection [18],

uk-2002 was obtained from Laboratory for Web Algorithmics [8],

and aligraph was an open dataset provided at Tianchi [11].

LP algorithms.We evaluate three common LP algorithms. For clas-

sic LP, we run 20 iterations. For LLP, we set γ = 2
i
, i = 0, 1, 2, . . . , 9,

and run 20 iterations for each γ . For SLP, set the maximum number

of labels of each vertex to 5, and run 20 iterations.

Compared Approaches. We compare our proposed approaches

with the state-of-the-art GPU-based solutions.

• TG is an implementation of the classic LP algorithm provided

in TigerGraph framework [3] on multi-core CPUs.

• Ligra represents the implementations of the LP algorithms

based on the Ligra framework [32] on multi-core CPUs.

• OMP represents the LP implementations using OpenMP.

• G-Sort [17] is the state-of-the-art GPU solution for the classic

LP with the segmented sort approach.

• G-Hash [2] is an extended version of G-Sort by employing

shared memory hash table for label counting.

• GLP is the approach proposed in this work.

We adopt the above baseline implementations from their inventors.

Note that TG only supports the classic LP, we thus omit its results for

LLP and SLP. The original implementations of G-Sort and G-Hash
also support the classic LP only. We hence extend their codes to

support LLP and SLP.

Environment. We conduct two sets of experiments. All codes are

compiled by GCC-7.4 and CUDA 10.0 with optimization -O3. The

first set (Sections 5.2-5.3) is conducted on a single machine with

Intel(R) Xeon(R) W-2133 CPUs, 64GB RAM and one NVIDIA Titan

V GPU. The second set (Section 5.4) compared GLP running on the

above single machine setup with the current in-house distributed

solution used in TaoBao running on a cluster of 32 machines, where

each machine is equipped with 4 Intel(R) Xeon(R) Platinum 8168

CPUs and 512GB RAM.

5.2 Comparison with the State of the Art
In this section we evaluate the overall performance of our proposed

approaches OMP and GLP with the CPU and GPU LP solutions over

the LP algorithms. We benchmark the solutions by comparing their

speedup ratios over OMP. The results are demonstrated in Figure 4,

Figure 5 and Figure 7 respectively.

For classic LP comparisons, OMP and Ligra show similar per-

formance on most of the datasets, and both approaches are more

efficient than TG. For smaller datasets, G-Sort outperforms G-Hash.
As the datasets get larger, i.e, twitter and wiki-en, G-Hash shows

 0.01

 0.1

 1

 10

 100

 1000

dblp roadnet youtube aligraph livej uk-2002 wiki-en twitter

S
p

e
e
d

u
p

Tigergraph Ligra G-Hash G-Sort GLP

Figure 4: Speedup of all compared approaches over the OMP
baseline for classic LP

 0.1

 1

 10

 100

 1000

dblp roadnet youtube aligraph livej uk-2002 wiki-en twitter

S
p

e
e
d

u
p

Ligra G-Hash G-Sort GLP

Figure 5: Speedup of all compared approaches over the OMP
baseline for LLP

 0.1

 1

 10

 100

 1000

dblp roadnet youtube aligraph livej uk-2002 wiki-en twitter

S
p

e
e
d

u
p

Ligra G-Hash G-Sort GLP

Figure 6: Speedup of all compared approaches over the OMP
baseline for SLP

the same or even better performance than G-Sort. This is because
G-Sort employs an efficient segmented sort kernel from CUB

5
.

The segmented sort achieves the best performance when the size

of each segment is small. As the neighbors of a vertex correspond

to a segment, G-Sort demonstrates good performance for small

neighborhoods. Furthermore, both G-Sort and G-Hash require ad-

ditional global memory equivalent to the graph size to process the

neighborhood labels. Compared with the baselines, GLP achieves
the best performance and does not impose a large memory over-

head due to our proposed optimizations in Section 4. In particular,

GLP achieves 4.5x and 7x speedup over G-Sort and G-Hash on av-

erage, respectively. For LLP and SLP, the results are consistent with
those of classic LP. In summary, the results have demonstrated

that GLP significantly outperforms the state-of-the-art solutions on

both CPUs and GPUs. Furthermore, the APIs provided in GLP allow
data engineers to quickly deploy customized LP algorithms without

domain knowledge of GPU optimizations.

5.3 Effectiveness of the optimizations
To demonstrate the effectiveness of our proposed optimizations,

we compare the following approaches for computing the MFL in

the classic LP algorithm on GPUs:

• global. A hash table in the global memory is employed for each

vertex to count the neighborhood label frequency with the help

of GPU caching mechanism, which is used in G-Hash [2].

• smem. Our proposed approach of combing CMS and HT (Sec-

tion 4.1) to minimize workloads for counting label frequencies

of high degree vertices. We set the high degree vertices as those

with degree larger than 128.

• smem+warp. The optimization proposed in Section 4.2 to handle

multiple low degree vertices with one warp. We set the low

5
https://nvlabs.github.io

Table 3: Effectiveness of the purposed optimizations.

Dataset dblp roadNet youtube aligraph

smem 1.4x 1.2x 1.6x 7.4x

smem+warp 6.1x 13.2x 8.6x 10.1x

Dataset ljournal uk-2002 wiki-en twitter

smem 1.7x 3.4x 2.2x 4.1x

smem+warp 3.6x 5.6x 3.3x 5.6x

degree vertices as those with degree less than 32. It is activated

together with smem to show the additional improvement.

We activate our optimizations one by one and report the speedup

over global in Table 3. The smem strategy shows significant speedup

compared with global, which uses global hash table for label count-

ing. smem provides higher speedup in larger datasets, i.e., 3.4x in

uk-2002, 2.2x in twitter and 4.1x in wiki-en. This is because there
are more high degree vertices in larger datasets, which can benefit

more from the smem optimization and gain significant speedup.

There is a special case in aligraph, where smem achieves 7.4x

speedup over global which is much higher than other datasets. The

reason is that the aligraph dataset has the largest average degree

across all datasets as shown in Table 2, where most of the vertices

can benefit from smem.

Thewarp strategy adds on top of smem and optimizes the process

of finding the MFL for low degree vertices. It provides superior

speedup on small graphs. Especially in roadNet, warp offers an

additional 11x speedup. This is due to the fact that roadNet is a

road network and thus each vertex has a small constant degree,

which leads to heavy workload imbalance for global. On average,

combining smem and warp achieves a speedup of 6.9x over the one

without the optimizations.

5.4 Large-scale Fraud Detection Processing
We study a real-world data science pipeline to further demonstrate

the superiority of GLP.

Fraud Detection Pipeline in TaoBao. The overview of the detec-

tion pipeline has been presented in Figure 1. The pipeline maintains

sliding windows containing the transactions in the past 10-100 days.

A graph is constructed for each sliding window connecting the enti-

ties in the transactions. The graph sizes of different sliding window

configurations are presented in Table 4. Subsequently, a LP algo-

rithm is invoked with the stored seeds to discover small susceptible

clusters. We note that the efficiency bottleneck lies in the LP stage,

which takes up a heavy 75% processing overhead of the automated

detection pipeline.

Table 4: Sliding WindowWorkloads in TaoBao.

Dataset 10days 20days 30days 40days 50days
V (millions) 460 630 700 770 820

E(billions) 1.7 3 4.3 5.5 6.7

Dataset 60days 70days 80days 90days 100days
V (millions) 880 920 970 990 1010

E(billions) 7.9 9 10.1 11 11.6

We compare our proposed GLP with the current in-house dis-

tributed solution used in TaoBao. For GLP, we use the same envi-

ronment as described in Section 5.1. The performance comparison

 0.1

 1

 10

 100

10 20 30 40 50 60 70 80 90 100

E
la

p
se

d
 t

im
e
(s

)

Days

Two-GPU GLP One-GPU GLP TaoBao

Figure 7: The elapsed time of using GLP vs. the current in-
house solution of TaoBao for one iteration of LP.

between GLP and the current in-house distributed solution is pre-

sented in Figure 7. We execute the LP algorithm for 20 iterations

on the real graph workloads reported in Table 4 and report the

average elapsed time for one iteration. The experiment shows that

GLP achieves 8.2x speedup on average against the current in-house

distributed approach used in TaoBao. We also note that, as the

graph size exceeds the GPU memory, GLP switches to the CPU-

GPU heterogeneous mode but the memory transfer overhead is less

than 10% of the overhead running time (included in the elapsed

time). In addition to performance improvement, the monetary of

deploying GLP is also significantly lower than the in-house solu-

tion. The CPUs used in each machine of the in-house solution cost

5890(CPU) ∗ 4 = 23560 dollars, whereas the CPU-GPU setup used

in GLP costs 617(CPU) + 2999(GPU) = 3616 dollars, according to

official prices from Intel and NVIDIA. Hence, GLP can also pro-

vide substantial monetary savings with one machine to handle the

current detention workload efficiently. To verify the efficiency of

GLP on a multi-GPU environment, we add one more NVIDIA Titan

V GPU to the same single-machine setting. With two GPUs, GLP
further achieves 1.8x speedup on average, as shown in Figure 7.

6 CONCLUSION
From the study of fraud detection pipelines in TaoBao, we identify
two key issues towards real-time fraud detection: programmability

and efficiency. Programmability is for data engineers to develop

strategies against evolving frauds in the e-commerce platform, and

efficiency is for the real-time requirement of fraud detection appli-

cations. We also observe that LP algorithms are commonly used

algorithms but also a time-consuming stage in the fraud detection

pipeline. In this paper, we propose a lightweight yet efficient GPU

framework for LP algorithms. We design flexible APIs to help users

deploy LP algorithms on GPUs with ease. Our GLP outperforms

other approaches by fewer global memory accesses and fine-grain

workload scheduling. Experiments on real world datasets have vali-

dated the effectiveness of our proposed techniques over variants of

LP algorithms, and have demonstrated that the combined optimiza-

tion achieves significant speedup over the state-of-the-art CPU-

and GPU-based LP solutions. Furthermore, we study a real-world

fraudulent detection pipeline of a large e-commerce platform to

showcase the advantages of GLP over a current enterprise solution

in terms of time and monetary efficiency.

Acknowledgment. This work was supported by Alibaba-Zhejiang
University Joint Research Institute of Frontier Technologies. Yuchen

Li is partially supported by the Ministry of Education, Singapore,

under its Academic Research Fund Tier 2 (Award No.: MOE2019-

T2-2-065).

REFERENCES
[1] 2019. Distil Networks: The 2019 Bad Bot Report. https://www.bluecubesecurity.

com/wp-content/uploads/bad-bot-report-2019LR.pdf

[2] 2020. Ghash. https://github.com/ykzw/galp. Accessed: 2020-07-07.

[3] 2020. Tigergraph. https://www.tigergraph.com/.

[4] Lada A Adamic and Bernardo A Huberman. 2000. Power-law distribution of the

world wide web. science 287, 5461 (2000), 2115–2115.
[5] Michael J Barber and John W Clark. 2009. Detecting network communities by

propagating labels under constraints. Physical Review E 80, 2 (2009), 026129.

[6] Alex Beutel, Leman Akoglu, and Christos Faloutsos. 2015. Fraud detection

through graph-based user behavior modeling. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, 1696–1697.

[7] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered

label propagation: A multiresolution coordinate-free ordering for compressing

social networks. In Proceedings of the 20th international conference on World wide
web. 587–596.

[8] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A large time-aware

web graph. In ACM SIGIR Forum, Vol. 42. ACM, 33–38.

[9] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-

prehensive survey of graph embedding: Problems, techniques, and applications.

IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

[10] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream

summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[11] Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019.

Sequential Scenario-Specific Meta Learner for Online Recommendation. arXiv
preprint arXiv:1906.00391 (2019).

[12] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and Kian-Lee

Tan. 2020. GPU-accelerated subgraph enumeration on partitioned graphs. In

Proceedings of the 2020 International Conference on Management of Data. 1067–
1082.

[13] Wentian Guo, Yuchen Li, Mo Sha, and Kian-Lee Tan. 2017. Parallel personalized

pagerank on dynamic graphs. Proceedings of the VLDB Endowment 11, 1 (2017),
93–106.

[14] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. 2011.

Accelerating CUDA graph algorithms at maximum warp. In Acm Sigplan Notices,
Vol. 46. ACM, 267–276.

[15] Farzad Khorasani, Rajiv Gupta, and Laxmi N Bhuyan. 2015. Scalable simd-efficient

graph processing on gpus. In 2015 International Conference on Parallel Architecture
and Compilation (PACT). IEEE, 39–50.

[16] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. 2014. CuSha:

vertex-centric graph processing on GPUs. In Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing. ACM, 239–

252.

[17] Yusuke Kozawa, Toshiyuki Amagasa, and Hiroyuki Kitagawa. 2017. GPU-

Accelerated Graph Clustering via Parallel Label Propagation. In Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management. ACM,

567–576.

[18] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd International Conference on World Wide Web. ACM, 1343–1350.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large network

dataset collection.

[20] Wenqing Lin, Xiaokui Xiao, Xing Xie, and Xiao-Li Li. 2016. Network motif

discovery: A GPU approach. IEEE transactions on knowledge and data engineering
29, 3 (2016), 513–528.

[21] Hang Liu and H Howie Huang. 2015. Enterprise: breadth-first graph traversal

on GPUs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–12.

[22] Hang Liu, H Howie Huang, and Yang Hu. 2016. ibfs: Concurrent breadth-first

search on gpus. In Proceedings of the 2016 International Conference on Management
of Data. ACM, 403–416.

[23] Shengliang Lu, Bingsheng He, Yuchen Li, and Hao Fu. 2020. Accelerating exact

constrained shortest paths on GPUs. Proceedings of the VLDB Endowment 14, 4
(2020), 547–559.

[24] Renxin Mao, Zhao Li, and Jinhua Fu. 2015. Fraud transaction recognition: A

money flow network approach. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. 1871–1874.

[25] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU

graph traversal. In Acm Sigplan Notices, Vol. 47. ACM, 117–128.

[26] Themistoklis Palpanas, Richard Sidle, Roberta Cochrane, and Hamid Pirahesh.

2002. Incremental maintenance for non-distributive aggregate functions. In

Proceedings of the 28th international conference on Very Large Data Bases. VLDB
Endowment, 802–813.

[27] Clifton Phua, Vincent Lee, Kate Smith, and Ross Gayler. 2010. A compre-

hensive survey of data mining-based fraud detection research. arXiv preprint
arXiv:1009.6119 (2010).

[28] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near linear

time algorithm to detect community structures in large-scale networks. Physical
review E 76, 3 (2007), 036106.

[29] Mo Sha, Yuchen Li, and Kian-Lee Tan. 2019. GPU-based Graph Traversal on

Compressed Graphs. In Proceedings of the 2019 International Conference on Man-
agement of Data. ACM, 775–792.

[30] Jieming Shi, Renchi Yang, Tianyuan Jin, Xiaokui Xiao, and Yin Yang. 2019. Real-

time top-k personalized pagerank over large graphs on GPUs. Proceedings of the
VLDB Endowment 13, 1 (2019), 15–28.

[31] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and

Qiang-Sheng Hua. 2018. Graph processing on GPUs: A survey. ACM Computing
Surveys (CSUR) 50, 6 (2018), 81.

[32] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing

framework for shared memory. In Proceedings of the 18th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming. 135–146.

[33] Jyothish Soman and Ankur Narang. 2011. Fast community detection algorithm

with gpus and multicore architectures. In 2011 IEEE International Parallel &
Distributed Processing Symposium. IEEE, 568–579.

[34] Johan Ugander and Lars Backstrom. 2013. Balanced label propagation for parti-

tioning massive graphs. In Proceedings of the sixth ACM international conference
on Web search and data mining. ACM, 507–516.

[35] Lu Wang, Yanghua Xiao, Bin Shao, and Haixun Wang. 2014. How to partition a

billion-node graph. In 2014 IEEE 30th International Conference on Data Engineering.
IEEE, 568–579.

[36] Meng Wang, Chaokun Wang, Jeffrey Xu Yu, and Jun Zhang. 2015. Community

detection in social networks: an in-depth benchmarking study with a procedure-

oriented framework. Proceedings of the VLDB Endowment 8, 10 (2015), 998–1009.
[37] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and

John D Owens. 2016. Gunrock: A high-performance graph processing library on

the GPU. In ACM SIGPLAN Notices, Vol. 51. ACM, 11.

[38] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. 2013. Overlapping com-

munity detection in networks: The state-of-the-art and comparative study. Acm
computing surveys (csur) 45, 4 (2013), 1–35.

[39] Jierui Xie and Boleslaw K Szymanski. 2011. Community detection using a neigh-

borhood strength driven label propagation algorithm. In 2011 IEEE Network
Science Workshop. IEEE, 188–195.

[40] Jierui Xie and Boleslaw K Szymanski. 2013. Labelrank: A stabilized label propa-

gation algorithm for community detection in networks. In 2013 IEEE 2nd Network
Science Workshop (NSW). IEEE, 138–143.

[41] Jierui Xie, Boleslaw K Szymanski, and Xiaoming Liu. 2011. Slpa: Uncovering

overlapping communities in social networks via a speaker-listener interaction dy-

namic process. In 2011 ieee 11th international conference on data mining workshops.
IEEE, 344–349.

[42] Jianlong Zhong and Bingsheng He. 2013. Medusa: Simplified graph processing

on GPUs. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2013),

1543–1552.

https://www.bluecubesecurity.com/wp-content/uploads/bad-bot-report-2019LR.pdf
https://www.bluecubesecurity.com/wp-content/uploads/bad-bot-report-2019LR.pdf
https://github.com/ykzw/galp
https://www.tigergraph.com/

	Abstract
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Label Propagation (LP)
	2.2 Related Studies

	3 The GLP Framework
	3.1 Overview of GLP and APIs

	4 Optimize MFL COMPUTATION
	4.1 Handling High Degree Vertices
	4.2 Handling Low Degree Vertices

	5 EXPERIMENTAL EVALUATION
	5.1 Experimental Setup
	5.2 Comparison with the State of the Art
	5.3 Effectiveness of the optimizations
	5.4 Large-scale Fraud Detection Processing

	6 Conclusion
	References

