
Deploying Hash Tables on Die-Stacked High
Bandwidth Memory

Xuntao Cheng∗
xuntao.cxt@alibaba-inc.com

Alibaba Group

Bingsheng He
hebs@comp.nus.edu.sg

National University of Singapore

Eric Lo
ericlo@cse.cuhk.edu.hk

The Chinese University of Hong
Kong

Wei Wang
wangwei@comp.nus.edu.sg

National University of Singapore

Shengliang Lu
lusl@nus.edu.sg

National University of Singapore

Xinyu Chen
xinyuc@comp.nus.edu.sg

National University of Singapore

Abstract
Die-stacked High Bandwidth Memory (HBM) is an emerging
memory architecture that achieves much higher memory
bandwidth with similar or lower memory access latency and
smaller capacity, compared with main memories. Memory-
intensive database algorithms may potentially benefit from
these new features. Due to the small capacity of such die-
stackedHBM, a hybridmemory architecture comprising both
main memories and HBMs is promising for main-memory
databases. As a starting point, we study a key data structure,
hash tables, in such a hybrid memory architecture. In a large
hash table distributed among multiple NUMA (non-uniform
memory accesses) nodes and accessed by multiple CPU sock-
ets, the data placement and memory access scheduling for
workload balance are challenging due to the randommemory
accesses involved that are difficult to predict. In this work,
we propose a deployment algorithm that first estimates the
memory access cost and then places data in a way that ex-
ploits the hybrid memory architecture in a balanced manner.
Evaluation results show that the proposed deployment is able
to achieve up to three times performance improvement over
the state-of-the-art NUMA-aware scheduling algorithms for
hash joins in relational databases on present and simulated
future hybrid memory architectures.

∗Work done at Nanyang Technological University, Singapore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3358015

ACM Reference Format:
Xuntao Cheng, Bingsheng He, Eric Lo, Wei Wang, Shengliang Lu,
and Xinyu Chen. 2019. Deploying Hash Tables on Die-Stacked High
Bandwidth Memory. In The 28th ACM International Conference on
Information and Knowledge Management (CIKM ’19), November 3–7,
2019, Beijing, China. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3357384.3358015

1 Introduction
The die-stacked HBM is an emerging memory architecture
that integrates multiple DRAM layers with processing units
on the same die, achieving a much higher bandwidth than
that of the main memory. For example, the 2nd and 3rd gen-
eration of HBM can achieve 256 GB/s and 512 GB/s peak
memory bandwidth, respectively [11, 12]. This level of high
memory bandwidth is beneficial for improving the perfor-
mance of memory-intensive database algorithms such as
building and probing hash tables. However, the memory ca-
pacity of a HBM is limited by the die area, which are much
smaller than that of the main memory [20]. On the other
hand, HBMs have smaller or similar memory access laten-
cies compared with the main memory [6, 25]. Thus, a hybrid
memory architecture comprising both main memories and
HBMs is promising for large databases. To exploit both types
of memories in such architectures, we optimize the data
placement and memory access scheduling in this paper.

We could benefit more from the added HBMs in the hybrid
memory architecture if we are able to schedule more sequen-
tial memory accesses to them, because random memory ac-
cesses on HBMs can be almost as expensive as those on main
memories, despite HBMs’ high peak memory bandwidth. On
the other hand, withHBMs exposed as NUMAnodes together
with main memories, unevenly placed random memory ac-
cesses among this increased number of NUMA nodes may
cause workload imbalances and increase the total memory
access cost significantly. To resolve these issues, we need to
break the commonly accepted assumption that there is only
one type of DRAM in the main memory and factor in such

https://doi.org/10.1145/3357384.3358015
https://doi.org/10.1145/3357384.3358015
https://doi.org/10.1145/3357384.3358015

memory differences into system designs. Existing studies
such as the round-robin scheduling policy used in the state-
of-the-art NUMA-aware optimization [27] for hash tables is
not sufficient due to its unawareness of such differences.
Database performance on such hybrid memory architec-

ture is still an open area. In this paper, we start with a study
on hash tables, which are among the most performance-
critical data structures in main-memory databases [8, 28].
Many hardware-aware optimizations have been applied to
reduce the memory access costs in building and probing
hash tables, such as prefetching, various conflict resolving
techniques, vectorizations, and thread-level parallelism [2, 6,
23, 27]. Despite of many previous studies on hash joins, there
is little work on exploiting the hybrid memory architecture
with HBMs.

In this paper, we propose a new deployment algorithm for
hash tables aiming at reducing the memory access cost of
building and probing the hash table by exploiting both the
HBMs and the main memory. To facilitate such deployment,
we design the hash table in a way that it can be partitioned
into multiple subsets and efficiently distributed to multiple
NUMA nodes with different memory types. We formulate
the deployment of the hash table as a partition problem [15],
where each partition has its estimated memory access cost
and should be placed to NUMA nodes properly for work-
load balancing. To estimate the memory access costs, we
convert the cost estimation problem to a classic problem
of cost estimation of hash joins in query optimizations. We
extend the state-of-the-art sampling-based method for such
estimation [5], which was originally proposed for join size
estimations. With proper estimations, we further introduce
hardware-aware heuristics to solve the partition problem on
the hybrid memory architecture. To cope with data misplace-
ment at runtime due to inaccurate estimations, we design
an online migration and replication method to adjust the
placement on the fly in order to further reduce workload
imbalance.
HBMs have been integrated with CPUs on processors

like the Intel Xeon Phi processor of the Knights Landing
architecture (KNL). Still, it is a hot research topic on how
to integrate HBMs into the future processors [20]. In this
study, we make our exploration along this direction using
two complementary test beds for our evaluations: the real
system implementation on Intel KNL processor which has
HBMs on-chip, and simulations to study the impact of future
HBMs. We adopt a state-of-the-art memory simulator named
Ramulator [14] to simulate HBMs with different specifica-
tions on which we can evaluate our proposed algorithm and
study the impact of potential features of the HBMs.
Experimental results on KNL show that the proposed de-

ployment algorithm can improve the performance of hash

HBM

HBM

HBM

HBM

HBM

HBM

HBM

HBM

Processing Units
(e.g., CPUs, GPUs, FPGAs.)

Channel

Channel

Channel

Channel

Channel

Channel

Channel

Channel

Main
memory

Package of the processor NUMA node

Figure 1: An emerging memory architecture with die-
stacked HBMs.

joins by up to three times compared with the fastest base-
line [2, 6, 23]. Further simulation results show that hash join
algorithms can benefit from future HBMs significantly. And,
our algorithm adapts to changes in the NUMA topology and
different latencies of the HBMs.

Overall, a hybrid memory architecture of HBM and main
memory makes an interesting case for hash tables. Our paper
has explored different HBM integration, as well as different
memory architectures (including memory latencies, NUMA
and memory types). With those various features, we demon-
strate that cost-based adaption is essential for the perfor-
mance of this hybrid memory architecture, which can shed
light on the design of in-memory data structures on such a
hybrid memory architecture.

2 Background and Related Work
In this section, we will introduce the background on die-
stacked HBM and the related work to this study. More related
work can be found in our technical report [7].

2.1 Die-stacked High Bandwidth Memory
Recently, there have been many advancements in the area
of die-stacked HBMs. The idea is to stack one or multiple
DRAM layers and then place them either by the side (i.e.,
2.5D interposing) of the processor or on top of the processor
(i.e., 3D stacking). This integration allows processor cores
to access memories faster, compared with accessing the off-
package main memory.
Figure 1 illustrates a hybrid memory architecture with

both die-stacked HBMs and the main memory. Multiple
DRAM layers are stacked together to form HBM modules
placed next to CPUs in the same package, and can be ex-
posed as a NUMA node with no CPU cores. The number
of DRAM layers within each HBM stack is constrained by
physical limitations such as heat and area constraints [20],
which in turn constraints the total memory bandwidth and
capacity. The second generation of the HBM (HBM2) speci-
fies up to eight DRAM layers per stack. Both Intel and AMD
have similar designs for processors with HBMs [10, 18, 20].
The bus width of the HBM on Intel KNL is 128-byte, which

is 16 times as wide as the main memory. Thus, it is helpful
to design the data layout and access patterns for the HBM
to avoid memory accesses of small sizes to exploit the wide
memory bus. In the meantime, balancing memory accesses
to such increased number of NUMA nodes is important to
reduce the makespan of all memory accesses. The capacity
of die-stacked memory is usually in the range of several GBs,
which is much smaller than main memory. A hybrid memory
architecture comprising both types of memories is promising
to take advantage of the best of both worlds.

2.2 Related Work on Hash Tables
Hash tables are crucial as complex data structures in main
memory databases, especially in hash joins [26]. Many soft-
ware optimizations proposed for hash joins focus on optimiz-
ing memory accesses to hash tables [2, 3, 13, 23, 27]. Poly-
chroniou et al. optimized a wide range of hash table designs
such as linear probing, double hashing, and cuckoo hash-
ing using SIMD instruction sets [23]. Barber et al. proposed
the Concise Hash Table that reduces the memory footprint
of hash tables significantly [4]. Barber et al. [3] develops
a compact hash table design. These optimizations can be
helpful in improving the performance of hash tables on the
hybrid memory system of die-stacked HBM. Makreshanski
et al. [19] studied the performance of shared hash joins from
many queries (named MQJoin) on KNL. Their study demon-
strated very promising results when the join fits into HBM,
which is consistent to our experiments. In contrast, they
have not studied the data management between DRAM and
HBM, which is the focus of this paper. This paper focuses
on deploying hash tables in a single machine with a hybrid
memory system. Paul et al. [21] has demonstrated the ben-
efits and optimizations of HBM of the GPU on hash joins.

3 Overview
In this section, we first present the problem statement and
then give an overview of our solution.

3.1 Problem Statement
We consider the performance of both building and probing
hash tables, given input relations. Through data placements
and scheduling memory accesses in the hybrid memory ar-
chitecture, we improve the performance of build and probe
by minimizing the memory access costs involved. This prob-
lem has two pillars. One is to utilize all HBM stacks and the
main memory (exposed as NUMA nodes) to maximize the
benefits of both types of memories. The other is to reduce
workload imbalance among NUMA nodes.

There are several issues making this problem challenging
to solve. Firstly, both build and probe of hash tables involve

random memory accesses that are difficult to predict. With-
out accurate estimations of such memory accesses, especially
their memory accesses costs, it is difficult to balance the dis-
tribution of memory accesses to avoid workload imbalance
among different NUMA nodes, which in turn leads to per-
formance degradation.
Secondly, existing NUMA-aware optimizations assume

memories of the same socket (including multiple cores of
a single CPU) has the same latency and bandwidth [9, 24].
Thus, they tend to interleave data across multiple NUMA
nodes, expecting that the workload is balanced as long as
each NUMA node has an equal share of all types of memory
accesses. However, with die-stacked HBMs, this assumption
is no longer true, so that we cannot rely on balancing data
sizes for workload balance.

3.2 Overview of The Solution
Our solution comprises two major components on deploying
the hash table in the hybrid memory architecture. Firstly,
we estimate the memory access cost for either build or
probe of the hash table. To address the random memory
access estimation, we formulate the cost estimation to a
classic problem of estimating the cost of hash joins. We adopt
the state-of-the-art sampling-based estimation method from
Chen et al. [5], and extend it to estimate the memory access
cost.
Secondly, we take advantage of the estimated costs to

deploy the hash table across all the NUMA nodes for the
build. For the probe, we introduce online migration and
replication to adapt the placement of the hash table to the
runtime. These online techniques are necessary if inaccurate
estimations have led to an unbalanced distribution of the
workload that undermines the performance significantly.

4 Design of Hash Table

4.1 Design Requirements
With the different characteristics of the HBMs and the main
memory in mind, we have the following design requirements
for the efficiency of hash tables.

• Avoidingmemory fragmentation.Because theHBMs
have much smaller memory capacity than the main
memory, we should avoid wasting available memory
spaces of the HBMs. Due to the potential memory allo-
cations in the build operation of the hash table, mem-
ory fragmentation is amajor problem to be avoided. On
the other hand, excessive memory fragmentation also
leads to small and random memory accesses, which
may fail to exploit the high memory bandwidth of
HBM.

• Utilizing thehigh sequentialmemory bandwidth.
The design of the hash table needs to be able to uti-
lize the most important feature of the HBMs, its high
sequential memory bandwidth.

• NUMA-aware. Because the HBMs introduce multiple
NUMA nodes, the hash table needs to be scaled out
and allocated to multiple NUMA nodes.

We evaluate existing hash table designs (such as [4, 17, 29])
to see whether they can satisfy these requirements. Table
1 summarizes five common hash table designs, including
the state-of-the-art ones optimized for memory usages [4].
We have the following observations. Overall, we find that
the previous studies fail to satisfy at least one design re-
quirements for an efficient hash table on the hybrid memory
architecture.

• Memory fragmentation is a major problem of sepa-
rate hashing and its variants because all buckets are
allocated in separate locations as nodes in a linked
list [2].

• Although coalesced hashing can improve the memory
efficiency, records of the same hash bucket may be
scattered in the memory, making it not an array of
buckets and its usage of the memory bandwidth poor.

• Cuckoo hashing can help to reduce the impacts of
memory fragmentation, but it uses multiple hash func-
tions, which scatter records of the same hash bucket
in the array.

• Concise hash table is the state-of-the-art memory-
efficient design that satisfies all requirements, except
that it is not designed to be aware of NUMA [4].
Table 1: Summary of hash table designs

Hash table design Avoid memory
fragmentation

Bandwidth
utilization

NUMA-
aware

Separate chaining ✗ ✗ ✓
Coalesced hashing [29] ✓ ✗ ✓
Open addressing ✓ ✓ ✗
Cuckoo hashing [17] ✓ ✓ ✗
Concise hash table [4] ✓ ✓ ✗
Our design ✓ ✓ ✓

4.2 Our proposed data structure
To overcome limitations in existing designs, we propose our
own design in this study. Inspired by the previous study
on compact hash table [3], we enhance the hash table de-
sign with linear probing (a form of open addressing) [22] to
support the NUMA-aware placement. Our design can sat-
isfy all the design requirements. In linear probing, the high
bandwidth of the HBM can be utilized while probing a large
hash table. Linear probing can be implemented in arrays
and resolve collisions by placing the new key into the clos-
est following empty cell. Thus, it minimizes the memory
fragmentation.

Hash table
partition in

NUMA node 1

hs

Key: 100

…...

ht

Key: 100

Hash table
partition in

NUMA node 0

Hash table
partition in

NUMA node P-1

Bitmap

Figure 2: The proposed hash table design. hs and ht are
two hash functions used to hash a record to its corre-
sponding partition of the hash table and slots in the
hash table, respectively.

In a NUMA architecture consisting of P nodes, we choose
to build P separate hash tables, with one table assigned to one
node. We introduce a hash function (denoted as hs hereafter)
with a fan out of P to hash keys into its corresponding hash
table in the NUMA architecture.

Figure 2 shows the overview of the design. We imagine a
global hash table using linear probing where a hash function
hs is applied to hash keys to hash buckets in a partition. We
split the global hash table into P partitions logically, with
each partition assigned to a NUMA node. We use a bitmap
to record which NUMA node the record is hashed to. Each
partition has ⌈log2 P⌉ bits in this bitmap. We use another
function ht to determine the offset of a record in a partition
on its corresponding NUMA node. We apply a sampling-
based method (Section 5) to estimate the cardinality of each
hash table, allowing us to develop ht in a way that reduces
hash collisions during the build. In case we want to migrate
a bucket to a different NUMA node, we can update its asso-
ciated value in the bitmap. In Figure 2, we show an example
where a record with a key value of ’100’ is first hashed to
the partition of the hash table in NUMA node 1, and then
hashed to its matches within that partition.

5 Cost Estimation
In this section, we first model memory access costs for build
and probe. We then extend a sampling-based method for
join size estimation to our formulated memory access cost
estimation, and implement it in a lightweight manner.

5.1 Modeling memory access costs
We model the memory access cost at the granularity of hash
buckets. In our model, records with the same hash value asso-
ciate with the same hash bucket. The memory access cost of
the build is modeled in Equation 1, wherebx refers to a single
hash bucket set with a size of |bx | records, and BW refers to
the memory bandwidth of the underlying NUMA node. This
models the process of reading records from the memory and

writing them to their corresponding hash bucket set in the
memory.

Tbuild (bx) =
2|bx |
BW

(1)

The memory access cost of a probe is modeled in Equation
2, where rx , and wx refer to records that are hashed to bx
from the input relation R and matched results found after
comparing rx with bx , respectively. During the probe, all
records from the probe relation R are hashed to their corre-
sponding hash buckets. rx is a set of such records hashed to
the same bucket bx in the hash table. For each record in rx , it
is compared with records in bx for matches. Thus, the total
number of comparisons for bx and rx is |rx | × |bx |. For each
comparison, there are two read operations, and at most one
write operations.

Tprobe (rx) =
2|rx | |bx | + |wx |

BW
(2)

5.2 A sampling-based optimization
It is costly to scan the entire input relations for the calcu-
lation of Equation 1 and 2. In the following, we formulate
the estimation problem of the probe and adopt the state-of-
the-art sampling-based estimation method to address it. This
solution is extended to the build later.

The estimation problem in our case is similar to join size
estimation, which counts a match between two records if
their keys have the same value. The estimated join size is∑

|Rv | |Sv |, where Rv and Sv refer to keys with the key value
v from the relation R and S . This can be converted to our esti-
mation modeled in Equation 2, because |Rv | |Sv | and |rx | |bx |
have the same structure, and their values are close to each
other if the keyv is hashed to the bucket x with few hashing
conflicts.

Join size estimation is a classical problem in databases. We
adopt the state-of-the-art sampling-based join estimation
method from Chen et al. [5] to estimate the cost in our case.
This method first samples records from input relations of a
join and then calculate the number of matches using their
join size estimation model. In our case, the sampling process
for relations S and R are slightly different. For both relations,
each thread processes an equal-sized chunk of records and
sample within its own local chunk. For S , because its hash
table is the target of memory accesses during probe, the
sampled records of each thread are merged together. For R,
there is no need to merge sampled records from different
threads because each thread processes its own chunk in the
probe phase. After we apply the sampling technique, keys
are sampled into a set of buckets for both relations. We then
replace the estimation model [5] with Equation 1 and 2 for
build and probe, respectively. This method also estimates the
cardinality of each hash table partition.

6 Hash Table Placement

Withmemory access costs estimated, we determine the place-
ment of hash buckets across all NUMA nodes. Given N hash
buckets and P NUMA nodes, there are PN different place-
ment decisions for these buckets in total. P is determined
by the undelrying hardware. N is configurable by tuning
the hash function. If the hash function has larger fan-outs
(i.e., larger N), we have more opportunities to schedule hash
buckets for a balanced workload distribution. However, it
also leads to a big solution space. We formulate this place-
ment problem as an NP-hard partition problem and propose
a heuristic-based solution as follows. The problem is to par-
tition all the hash buckets to P subsets (P is the number of
NUMA nodes in the hybrid memory architecture).

The hash buckets of subset i is stored in the NUMA node i .
For a set of buckets, B = {b0,b1,b2, ...,bN−1}. Partition it to P
subsets, B0,B1,B2, ...,BP−1, so that

∑ |B0 |
j w0, j =

∑ |B1 |
j w1, j =

... =
∑ |BP−1 |

j wP−1, j , where wi, j is the estimated memory
access cost of bucket bj in the subset Bi .

For each hash bucket to be placed, we first apply the HBM-
aware heuristic to determine whether it is suitable for the
HBM or the main memory. Next, we further determine which
NUMA node the hash bucket should be placed to within the
scope of the determined memory type. Because errors in
the memory access cost estimation may lead to sub-optimal
hash table placement that hurts the performance, we also pro-
pose online migration and replication of buckets to further
improve the placement.

6.1 HBM-aware Heuristic

Because of the differences between the main memory and
the HBM, we first use a hardware-aware heuristic to decide
whether a bucket should be placed to the HBM or the main
memory while building a hash table. There are two major dif-
ferences that influence our decision here. Firstly, HBMs have
wider memory buses and higher bandwidth for sequential
memory accesses. Thus, accessing a dense array of buck-
ets sequentially (a region in the hash table while most slots
are occupied) can utilize more of the high bandwidth of the
HBM. Secondly, the HBM is much smaller than the main
memory capacity, and both of them have similar memory
access latency.
Thus, we develop an HBM-aware heuristic. We sort all

buckets (bx) by their estimated cost (wx) and then assign a
bucket to the HBM if the accumulated cost of buckets in the
HBM is within the α (workload dividing ratio) percentage
of the total cost, in a descending order of estimated costs.
The buckets assigned to HBM should not exceed the size of
HBM. The rest buckets are assigned to the main memory.
Thus, our cost model considers the size limitation of HBM

as well as the difference in performance between HBM and
main memory.
We formulate the value of α as the minima of the cost

function of the build and probe, with which the total cost is
minimized. Assuming that the relation S is initially in the
mainmemory, the costs of build and probe are shown in Equa-
tion 3 and 4, respectively. |B | is the total size of hash buckets
to be visited. BW build

D (BW probe
D) and BW build

H (BW probe
H) are

the measured memory bandwidth while building (probing)
a hash table on the main memory alone, and the HBM alone,
respectively. |Out | is the size of all results. The α value shall
be the critical point of minimizing the value of the corre-
sponding cost function. Equation 3 calculates the larger one
of the two costs on the main memory and the HBM, since
they can work simultaneously. Equation 4 also includes the
cost of outputting the results. For a simple hash join, its cost
function fjoin equals to fbuild + fprobe .

fbuild =max{
1 − α

BW build
D

,
α

BW build
H

}|S | (3)

fprobe =max{
1 − α

BW
probe
D

,
α

BW
probe
H

}(|R | + |B | + |Out |) (4)

6.2 NUMA-aware Heuristic
After we decide the suitable type of memory for buckets us-
ing the HBM-aware heuristics, we consider several heuristic
algorithms to further decide the destination NUMA node
for each hash bucket including dynamic programming and
many approximation algorithms [16].We find that the greedy
algorithm delivers the best result in a similar time budget
compared with other algorithms. Thus, we choose it as the
NUMA-aware heuristic algorithm in this solution, as intro-
duced in Algorithm 1. It first sorts all buckets by their as-
sociated workload, and then assign buckets to the subset
with the lowest total workload in the descending order. The
total workload of node j is maintained in Sumj . This heuris-
tic tends to separate large buckets and place them across
different nodes at the beginning. Then, we allocate the hash
buckets to NUMA nodes so that NUMA nodes have a bal-
anced distribution. Particularly, we constantly add smaller
buckets to the node with the lowest sum until it is full. This
algorithm can be easily applied on a NUMA architecture
with more than two nodes.

6.3 Online Replication and Migration
Because of potential inaccurate memory cost estimations,
there are possibilities that a bucket that should be placed to
the HBM are mistakenly placed to the main memory. Such
placements may lead to an imbalanced distribution of mem-
ory access costs. After building the hash table, we know
the exact size of each hash bucket. We further propose to

input :P NUMA nodes.U S , the set containing all
buckets from relation S .W S , the set containing
the estimated memory access cost of each
bucket from relation S .

initialize Sumj of node j to 0.
sort buckets inU S by their costs inW S .
foreach bucket i inU S in the descending order of their
estimated cost do

choose node x with the smallest Sumx .
Sumx = Sumx +wi .
place bucket i to node x .

end
Algorithm 1: NUMA-aware placement algorithm

Buckets
mistakenly placed

to the main
memory?

Replicate ‘orange’
buckets to the HBM

HBM has
enough free

space?

Migrate ‘blue’
buckets to the main

memory

Y

Y

N

Replicate ‘orange’
buckets to the HBM

Select buckets
mistakenly placed to

the HBM

Run the deployment
algorithm using the actual

sizes of buckets

Figure 3: The online process of replications andmigra-
tions

replicate or migrate hash buckets between the main memory
and the HBM in the runtime in order to fully utilize their
bandwidth.
Figure 3 illustrates the decision-making process for on-

line migrations and replications. We start with running the
deployment algorithm again using the actual sizes of all
buckets. Then, we check whether there are buckets that are
mistakenly placed to the main memory, which are labeled
as orange buckets in the figure. For such buckets, if there is
enough free space in the HBM, we decide to replicate them to
the HBM. In case the HBM does not have enough space, we
select those buckets that are mistakenly placed to the HBM
first, which must exist because the deployment algorithm
determines that there is one mistakenly placed bucket in the
HBM for one mistakenly placed bucket in the main memory.
Such buckets are labeled as the blue ones in the figure. We
then migrate these blue buckets to the main memory and
then replicate orange buckets to the HBM.

For all migrations from the HBM to the main memory, we
execute them before the probe in a hash join. For replication,
when a bucket marked to be replicated is probed for the first
time, we place it to the hash table in the NUMA node of the

Table 2: List of hash join variants

Variant HBMmode Sources
Simple hash joins

SHJ (DDR) DDR only [2, 6, 23]
SHJ (Cache) HBM configured as a cache [2, 6, 23]
SHJ (Int.) Data interleaved across NUMA nodes [2, 6, 23]
HSHJ All nodes managed by the proposed opti-

mizations
This paper

Partitioned hash joins
PHJ (DDR) DDR only [2, 6, 23]
PHJ (Cache) HBM configured as a cache [2, 6, 23]
PHJ (Int.) Data interleaved across NUMA nodes [2, 6, 23]
HPHJ All nodes managed by the proposed opti-

mization
This paper

HBM with the smallest sum of the workload in the greedy
fashion. We then update the bitmap (as shown in Figure 2)
accordingly and insert its records to the hash table using the
same hash function ht , so that further probes can find these
buckets in the HBM.

7 Evaluation
In this section, we evaluate the details of our proposal and
its overall performance with different workloads. Due to
space limitations, please refer to our technical report for
more evaluations including all the simulation results as well
as impact of individual techniques [7].

7.1 Experimental Setup
Testbeds. Die-stacked memory has been implemented on
some emerging processors such as Intel KNL, and will be
more common in future processors, such as AMD Ryzen
APU. Still, it is a hot research topic on how to integrate die-
stacked memory into the future processors [20]. Therefore,
in this study, we use two complementary test beds for our
evaluations: the real system implementation on Intel KNL
processor which has die-stacked memory on-chip, and sim-
ulations to study the impact of future die-stacked memory
enabled memory systems. Please refer to our technical report
for results on simulations.
The KNL CPU is Xeon Phi 7210, with 64 cores running

at 1.30 GHz (256 threads) and 16GB HBM. The system has
96GB DRAM. On KNL, there are eight NUMA nodes, where
nodes 0-3 and 4-7 represent the main memory and the HBM,
respectively. All the cores are evenly distributed in nodes
0-3, while nodes 4-7 contain the HBMs only.

Implementation details. We apply the deployment al-
gorithm to the state-of-the-art simple hash join (SHJ) and
partitioned hash joins (PHJ), and compare them with other
state-of-the-art hash join implementations. All hash join
variants considered in this paper are listed in Table 2. We
have used the latest version of the code available in the previ-
ous studies. For all implementations, existing software opti-
mizations such as prefetching, software-managed buffers,
multi-pass partitioning have been applied and tuned for

their best performance, following the previous studies [1, 6].
All algorithms are vectorized using AVX-512 SIMD instruc-
tion set [6, 23]. For example, SIMD arithmetic instructions
calculate the hash values of 16 keys altogether, and SIMD
gather/scatter instructions are applied to resolve hashing
conflicts [23].
For both SHJ and PHJ, we execute them using three dif-

ferent HBM modes: (1) the DDR only mode in which only
the main memory is used, (2) the cache mode in which the
HBMs are configured as an LLC, which is transparent to the
software, and (3) the flat mode where the HBMs are exposed
as NUMA nodes as part of the memory space and managed
by the GNU NUMA utility numactl. This utility is able to
interleave data across all NUMA nodes attempting to balance
the workload. Finally, we apply our proposed optimizations
on SHJ and PHJ, resulting in two variants: HSHJ and HPHJ.
We take a focus on evaluating simple hash joins, especially
on the simulated platform, which involve remote random
memory accesses.
To reduce the sampling overhead, we vectorize the sam-

pling algorithm using AVX-512 SIMD intrinsics and par-
allelize in multiple threads. The parallelization of the sam-
pling algorithm is straightforward. Each thread takes a chunk
from input relations, executes the sampling algorithm on
this chunk, and finally estimates the memory access costs.

The deployment algorithm consists of two heuristics. The
HBM-aware heuristic needs to tune the parameter α to mini-
mize the cost modeled by relevant cost functions. The NUMA-
aware heuristic requires sorting all buckets and a single pass
over sorted ones. We adopt the state-of-the-art SIMD sorting
implementation here to realize the sort operation [23].
In partitioned hash joins, hash tables are built for each

cache-resident partition, thus they do not need to be placed
across NUMA nodes. However, we can apply the same de-
ployment algorithm to partitions instead of hash buckets.
This is meaningful because partitions are also subject to
skewness in input relations. In this paper, we estimate the
memory access cost of each partition and place them accord-
ing to the deployment algorithm in the same way used for
hash buckets.

Workloads. In all experiments, input relations reside in
the main memory. We perform equi-join queries on relations
R and S (in the form of “SELECT R.key, R.payload, S.payload
FROM R, S WHERE R.key == S.key”), which is the same with
previous studies [13, 23, 27]. Matched results are materialized
in the main memory. Both keys and payloads are random
32-bit integers. We use four types of workload as shown in
Table 3 according to the needs of each evaluation, on which
we vary the sizes of relations and the distribution of keys.
The small-sized, medium-sized and large-sized workload are
smaller than, equal to, and larger than the HBM capacity,
respectively. We set the workload size in this way to evaluate

Table 3: Workload characteristics

Size (106 records) Key Distribution
Small |R | = |S | =128 Uniform
Medium |R | = |S | =1024 Uniform
Large |R | = |S | =1536 Uniform
Skewed |R | = |S | =128 Zipf distribution in relation R

how hash join variants perform with different memory space
constraints from the perspective of the HBM capacity. For
the skewed workload, we vary the zipf factor to evaluate
how hash join variants cope with skewness and how our
proposed optimizations improve workload balance given
skewed keys.

Result Outline. In this paper, we mainly present the re-
sults on real platforms, and leave the results on simulations
to the supplementary files. Overall, the simulation results
show that our design can significantly improve hash join
performance on different hybrid memory architectures.

7.2 Evaluation of Cost Estimation

Wenow evaluate the accuracy of the cost estimation. Because
the cost estimation provides inputs for other optimizations,
its accuracy has a direct impact on how well the hash table
deployment can perform and how often we need online
migration and replication for hash entries. Overall, our cost
estimation is sufficiently accurate and effective in guiding
the hash table deployment. We use HSHJ as an example in
this evaluation.

Figure 4 shows the histograms of estimation errors for two
extreme cases where keys are either uniformly distributed
(zipf factor=0) or highly skewed (zipf factor=2). Here, we
define estimation error ex for a sampled bucket as in Equation
5, where N is the total number of sampled buckets,wx and
w ′
x refer to the estimated and the actual memory access costs

of a sampled bucket x (x=0, 1, âĂę, N − 1), respectively. We
choose to use the relative difference because optimizing the
workload balance is sufficient for our problem.

ex =
wx∑N
x wx

−
w ′
x∑N

x w ′
x

(5)

In Figure 4, more than 70% and 60% estimations have al-
most zero in these two cases, respectively. Most other es-
timations have very low errors. Similar results have been
achieved when varying the zipf factor, which we omit here.
We find that the adopted two-level sampling-based estima-
tion method is largely accurate while estimating the costs in
our case for the purpose of balancing the memory accesses.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
Error of estimations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
en

si
ty

 h
is

to
gr

am

(a) zipf factor=0

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
Error of estimations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
en

si
ty

 h
is

to
gr

am

(b) zipf factor=2
Figure 4: Histogram of estimation errors in HSHJ
while processing the skewed workload

SHJ
(DDR)

SHJ
(Cache)

SHJ
(Int.)

HSHJ PHJ
(DDR)

PHJ
(Cache)

PHJ
(Int.)

HPHJ
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
xe

cu
tio

n
tim

e
(s

)

Figure 5: Execution time of hash join variants process-
ing the small-size workload.

7.3 Overall Comparison
We first present an overall performance comparison between
the state-of-the-art hash join implementations and our opti-
mized hash joins in Figure 5.

We make the following remarks on the results.
Firstly, SHJ and PHJ behave differently in the flat mode

using the NUMA utility. SHJ and PHJ become about 80%
slower, and 16% faster than the cache mode, respectively.
This shows that the partitioning phase helps to improve the
performance by dividing the relations into equal-size parti-
tions, which balances the workload across so many NUMA
nodes. However, the NUMA utility is not able to distribute
the workload of accessing a global hash table of the SHJ
across NUMA nodes, resulting in a poor performance.

Secondly, regarding of our proposed optimizations, HPHJ
and HSHJ are about 20% and 3 times faster than their fastest
state-of-the-art algorithms, respectively. Although the pro-
posed optimizations reduce the execution time for both al-
gorithms, it is more impactful on non-partitioned simple
hash joins. This is because our proposed optimizations help
to balance the workload like the partitioning phase in the
partitioned hash join, and all threads access local nodes after
the partitioning phase.

Bandwidth utilization.We compare the average band-
width of SHJ and HSHJ per NUMA node in Figure 6. Please
note that NUMA nodes 0 to 3 and nodes 4 to 7 consist of the
main memory and the HBM, respectively. SHJ only utilizes
about 10 GB/s and 11 GB/s bandwidth on the main memory
and the HBM, respectively. HSHJ increases the bandwidth
per node to about 15 GB/s and 27 GB/s for both memories,

0 1 2 3 4 5 6 7
NUMA nodes

0

10

20

30

40

50

B
an

dw
id

th
 (G

B
/s

)

SHJ
HSHJ

Figure 6: Average bandwidth utilization of HSHJ.

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
Zipf factors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
xe

cu
tio

n
tim

e
(s

)

SHJ
PHJ

HPHJ
HSHJ

Figure 7: Execution time of hash join variants on
skewed workloads

respectively. These results demonstrate that it is indeed help-
ful to place the data and threads carefully in the HBM and
the many-core processor.

Impact of skewness.We show the impact of skewness
on the overall performance in Figure 7. Skewness in input
relations influences cost estimations and hash table place-
ment. Here, we consider the fastest baselines from SHJ and
PHJ as found out in Figure 5, and compare them with our
optimized hash join variants. Keys in the input relation R
follow the zipf distribution. We vary the zipf factor from 0
(no skewness) to 2 (high skewness).

As relations become more skewed, SHJ generally becomes
faster and PHJ becomes slower. This is caused by the in-
creasing data locality of skewed hot keys. Overall, HPHJ is
the fastest when the zipf factor is smaller than 0.75. HSHJ
outperforms HPHJ and becomes the best among all the four
algorithms when the zipf factor is larger than 0.75. Also we
have two more observations. First, comparing PHJ and HSHJ,
HSHJ is more resilient to skewness and is about 40% faster
than PHJ when the zipf factor is 2. Second, comparing SHJ
and HSHJ, HSHJ is at least 2 times faster for all cases.

Impact of workload sizes. In Figure 8, we show the exe-
cution time of simple hash join variants processing the three
classes of workload introduced in Table 3. We omit results
from partitioned hash joins because our proposed algorithms
are not impactful for them with uniformly distributed keys
as explained above. HSHJ is 2.39, 3.60, and 4.60 times faster
than the SHJ for the three classes of workload, respectively.
This ascending trend of speedups shows that HSHJ scales bet-
ter than SHJ when the size increases. Meanwhile, compared
with PHJ, HSHJ performs 29% and 34% faster for medium-

Small Medium Large
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

E
xe

cu
tio

n
tim

e
(s

)

SHJ
PHJ
HSHJ

Figure 8: Execution time of different hash join vari-
ants processing the small-size, medium-size and large-
size workload.

Small Medium Large
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

C
PI

SHJ

PHJ

HSHJ

SHJ

PHJ

HSHJ

SHJ

PHJ

HSHJ

Figure 9: Distribution of CPI per core while executing
different hash join variants.

and large-size workload, respectively. While the partitioning
overhead increases with the input sizes, our optimized HSHJ
can gradually outperform PHJ.
In Figure 9, we show the box plots of CPI (cycles per

instruction) per core measured while executing hash join
variants processing the three classes of workload, respec-
tively. The box plot is able to tell whether the memory access
costs are uniform across different cores. Compared with SHJ,
HSHJ manages to reduce the CPI per core by 11%, 18%, and
25% in these three classes, respectively. Meanwhile, CPIs
of all the cores in HSHJ are much closer to their average,
demonstrating the impact of the proposed optimizations on
improving workload balance.

For simple hash joins, CPIs generally rises with the work-
load size. It is not surprising that partitioned hash joins have
lower CPIs than simple hash joins, due to sequential mem-
ory accesses in the partitioning phase and data locality in
the build and probe phases. Different to simple hash joins,
CPIs of partitioned hash joins only increases significantly
when the workload size exceeds the HBM’s capacity. This is
because the HBM is incapable to store enough partitions in
order to get a share of the workload that is proportional to
its high bandwidth.

8 Conclusions
The emerging die-stacked HBMs have introduced significant
opportunities given their much higher memory bandwidth
compared with the main memory. A hybrid memory archi-
tecture comprising both memory types is promising with

challenges on improving database performance. As a start-
ing point, we study building and probing hash tables, which
are particularly challenging to exploit because of expensive
random memory accesses that are difficult to predict and
different types of memories in a single system. Specifically,
we propose a new deployment algorithm for hash tables
on this hybrid memory architecture of die-stacked HBMs
and apply it to hash joins. Our evaluations on both a real
hardware platform and a simulated platform demonstrate
the performance improvements by our approach.

Acknowledgments
This work is supported by a MoE AcRF Tier 1 grant (T1
251RES1824), Tier 2 grant (MOE2017-T2-1-122) and the Na-
tional Research Foundation under its IDM Futures Funding
Initiative in Singapore. Dr. Eric Lo’s work is supported by
Hong Kong General Research Fund (14200817, 15200715,
15204116), Hong Kong AoE/P-404/18, Innovation and Tech-
nology Fund ITS/310/18. We thank Intel for hardware ac-
cesses and donations.

References
[1] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M Tamer Özsu.

2013. Multi-core, main-memory joins: Sort vs. hash revisited. Proceed-
ings of the VLDB Endowment 7, 1 (2013), 85–96.

[2] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Özsu.
2013. Main-memory hash joins on multi-core CPUs: Tuning to the
underlying hardware. In 2013 IEEE 29th International Conference on
Data Engineering (ICDE). IEEE, 362–373.

[3] Ronald Barber, Guy Lohman, Ippokratis Pandis, Vijayshankar Raman,
Richard Sidle, G Attaluri, Naresh Chainani, Sam Lightstone, and David
Sharpe. 2014. Memory-efficient hash joins. Proceedings of the VLDB
Endowment 8, 4 (2014), 353–364.

[4] Ronald Barber, Guy Lohman, Ippokratis Pandis, Vijayshankar Raman,
Richard Sidle, G Attaluri, Naresh Chainani, Sam Lightstone, and David
Sharpe. 2014. Memory-efficient hash joins. Proceedings of the VLDB
Endowment 8, 4 (2014), 353–364.

[5] Yu Chen and Ke Yi. 2017. Two-Level Sampling for Join Size Estimation.
In Proceedings of the 2017 ACM International Conference onManagement
of Data. ACM, 759–774.

[6] Xuntao Cheng, Bingsheng He, Xiaoli Du, and Chiew Tong Lau. 2017.
A study of main-memory hash joins on many-core processor: A case
with intel knights landing architecture. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management. ACM, 657–
666.

[7] Xuntao Cheng, Bingsheng He, Eric Lo, Wei Wang, Shengliang Lu, and
Chen Xinyu. [n.d.]. Deploying Hash Tables on Die-Stacked High-
Bandwidth Memory. https://github.com/Xtra-Computing/HashJoin_
HMA/blob/master/CIKM_TR.pdf.

[8] Biplob Debnath, Alireza Haghdoost, AsimKadav,MohammedGKhatib,
and Cristian Ungureanu. 2016. Revisiting hash table design for phase
change memory. ACM SIGOPS Operating Systems Review 49, 2 (2016),
18–26.

[9] Jana Giceva, Gustavo Alonso, Timothy Roscoe, and Tim Harris. 2014.
Deployment of query plans on multicores. Proceedings of the VLDB
Endowment 8, 3 (2014), 233–244.

[10] Mike P. (Intel). 2016. An Intro to MCDRAM (High Bandwidth Memory)
on Knights Landing .

[11] "JEDEC Solid State Technology Association". 2014. WIDE I/O SIN-
GLE DATA RATE (WIDE I/O SDR), JESD229. https://www.jedec.org/
system/files/docs/JESD229.pdf.

[12] "JEDEC Solid State Technology Association". 2015. HIGH BAND-
WIDTH MEMORY (HBM) DRAM, JESD235A. https://www.jedec.org/
system/files/docs/JESD235A.pdf.

[13] Saurabh Jha, Bingsheng He, Mian Lu, Xuntao Cheng, and
Huynh Phung Huynh. 2015. Improving main memory hash joins
on intel xeon phi processors: An experimental approach. Proceedings
of the VLDB Endowment 8, 6 (2015), 642–653.

[14] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A fast
and extensible DRAM simulator. IEEE Computer architecture letters 15,
1 (2016), 45–49.

[15] Richard E. Korf. 1998. A complete anytime algorithm for number
partitioning. ARTIFICIAL INTELLIGENCE 106 (1998), 181–203.

[16] Richard E Korf. 2009. Multi-Way Number Partitioning.. In IJCAI. 538–
543.

[17] Reinhard Kutzelnigg. 2006. Bipartite random graphs and cuckoo hash-
ing. In Discrete Mathematics and Theoretical Computer Science. Discrete
Mathematics and Theoretical Computer Science, 403–406.

[18] J. Macri. 2015. AMD’s next generation GPU and high bandwidth
memory architecture: FURY. In 2015 IEEE Hot Chips 27 Symposium
(HCS). 1–26. https://doi.org/10.1109/HOTCHIPS.2015.7477461

[19] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Don-
ald Kossmann. 2018. Many-query join: efficient shared execution
of relational joins on modern hardware. The VLDB JournalâĂŤThe
International Journal on Very Large Data Bases 27, 5 (2018), 669–692.

[20] Mitesh R Meswani, Sergey Blagodurov, David Roberts, John Slice,
Mike Ignatowski, and Gabriel H Loh. 2015. Heterogeneous memory
architectures: A HW/SW approach for mixing die-stacked and off-
package memories. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 126–136.

[21] J. Paul, B. He, S. Lu, and C. T. Lau. 2019. Revisiting Hash Join on
Graphics Processors: A Decade Later. In 2019 IEEE 35th International
Conference on Data Engineering Workshops (ICDEW). 294–299. https:
//doi.org/10.1109/ICDEW.2019.00008

[22] W Wesley Peterson. 1957. Addressing for random-access storage. IBM
journal of Research and Development 1, 2 (1957), 130–146.

[23] Orestis Polychroniou, Arun Raghavan, and Kenneth A Ross. 2015. Re-
thinking SIMD vectorization for in-memory databases. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of
Data. ACM, 1493–1508.

[24] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami,
and Anastasia Ailamaki. 2015. Scaling up concurrent main-memory
column-store scans: towards adaptive NUMA-aware data and task
placement. Proceedings of the VLDB Endowment 8, 12 (2015), 1442–
1453.

[25] S. Ramos and T. Hoefler. 2017. Capability Models for Manycore Mem-
ory Systems: A Case-Study with Xeon Phi KNL. In IPDPS. 297–306.
https://doi.org/10.1109/IPDPS.2017.30

[26] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-
dimensional Analysis of Hashing Methods and Its Implications on
Query Processing. Proc. VLDB Endow. (2015).

[27] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An experimental
comparison of thirteen relational equi-joins in main memory. In Pro-
ceedings of the 2016 International Conference on Management of Data.
ACM, 1961–1976.

[28] Anil Shetty, Josephine Suganthi, and Prakash Khemani. 2014. Systems
and methods for distributed hash table in a multi-core system.

[29] Jeffrey Scott Vitter. 1983. Analysis of the search performance of coa-
lesced hashing. Journal of the ACM (JACM) 30, 2 (1983), 231–258.

https://github.com/Xtra-Computing/HashJoin_HMA/blob/master/CIKM_TR.pdf
https://github.com/Xtra-Computing/HashJoin_HMA/blob/master/CIKM_TR.pdf
https://www.jedec.org/system/files/docs/JESD229.pdf
https://www.jedec.org/system/files/docs/JESD229.pdf
https://www.jedec.org/system/files/docs/JESD235A.pdf
https://www.jedec.org/system/files/docs/JESD235A.pdf
https://doi.org/10.1109/HOTCHIPS.2015.7477461
https://doi.org/10.1109/ICDEW.2019.00008
https://doi.org/10.1109/ICDEW.2019.00008
https://doi.org/10.1109/IPDPS.2017.30

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Die-stacked High Bandwidth Memory
	2.2 Related Work on Hash Tables

	3 Overview
	3.1 Problem Statement
	3.2 Overview of The Solution

	4 Design of Hash Table
	4.1 Design Requirements
	4.2 Our proposed data structure

	5 Cost Estimation
	5.1 Modeling memory access costs
	5.2 A sampling-based optimization

	6 Hash Table Placement
	6.1 HBM-aware Heuristic
	6.2 NUMA-aware Heuristic
	6.3 Online Replication and Migration

	7 Evaluation
	7.1 Experimental Setup
	7.2 Evaluation of Cost Estimation
	7.3 Overall Comparison

	8 Conclusions
	Acknowledgments
	References

