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ABSTRACT

The intra-window join (IaW7), i.e., joining two input streams over
a single window;, is a core operation in modern stream processing
applications. This paper presents the first comprehensive study
on parallelizing the IaWJ on modern multicore architectures.
In particular, we classify IaW7F algorithms into lazy and eager
execution approaches. For each approach, there are further
design aspects to consider, including different join methods and
partitioning schemes, leading to a large design space. Our results
show that none of the algorithms always performs the best, and the
choice of the most performant algorithm depends on: (i) workload
characteristics, (ii) application requirements, and (iii) hardware
architectures. Based on the evaluation results, we propose a decision
tree that can guide the selection of an appropriate algorithm.
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1 INTRODUCTION

The join of multiple data streams is a common operation that is
relevant to many applications, such as online data mining and
interactive query processing [4, 21]. To handle infinite streams,
the join is typically performed over bounded, discrete subsets of
streams (i.e., windows). Such an operation is called a window
join and has been adopted in most modern stream processing
engines [9, 45]. A large body of prior works focus on joining
unbounded overlapping (i.e., sliding) windows, which we denoted
as inter-window join. For these works, the key concern is to enable
incremental computation through continuous window updates
while achieving efficient workload distribution [32, 40, 44]. In
contrast, the intra-window join (IaW7), also called online join [14]
and full-history join [27], has received less attention, despite that it
has many practical applications where users are only interested in
joining one particular subset of input streams [1, 4, 14, 16, 27]. For
example, at Pinterest [33], developers applied the IaW7J operation
of Flink (called IntervalJoin [1]) to join the activation record per
user for a single time window of three days [23].

Fully exploiting current and emerging hardware trends is a
notorious challenge [28, 34, 39, 42, 44, 54]. In particular, there
are three key challenges (C1~C3) to answer the question of
how to efficiently parallelize JaW7J on multicore architectures.
C1: a significant number of join algorithms have been proposed
and can be applied. We classify them into two fundamental
execution approaches: lazy and eager. The lazy approach first
buffers all input tuples of the concerned window from both input
streams, and then joins a complete set of tuples. In contrast, the
eager approach aggressively joins subsets of input tuples upon
the arrival. Furthermore, for each execution approach, there are
two further design aspects including join methods (i.e., hash-
or sort-based) and various partitioning schemes (e.g., with or
without physical replication), leading to a large design space.
C2: input workloads can vary significantly with different (i) key-
skewness, (ii) timestamp-skewness, (iii) tuple arrival rate, (iv)
window length, and (v) number of duplicates per key. Meanwhile,
applications may target different performance metrics such as
throughput [52], latency [22], and progressiveness [13]. These
metrics meet divergent requirements and can sometimes conflict
with each other. C3: modern hardware features such as advanced
vector extensions (AVX), multicore parallelism, and a complex cache
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Table 1: Notations used in this paper

Notations | Description

x = {t,k,v} | Aninput tuple x with three attributes

R,S Two input streams to join

skewgey Key skewness (unique or zipf)

skew;s Timestamp skewness (uniform or zipf)
dupe Average number of duplicates per key

v Input arrival rate (tuples/msec)

w Window length (msec)

memory subsystem further enlarge the design space. Due to the lack
of a thorough study, it is difficult for researchers and practitioners
to determine the optimal approach under different conditions.

To the best of our knowledge, this work presents the first
comprehensive experimental study on the effectiveness of IaW7J
algorithms on modern multicores. To this end, we extend an existing
benchmark framework [5] by reimplementing eight algorithms and
integrating them into the same codebase, eliminating the differences
caused by programming languages and compilers to address C1. We
propose four representative real-world workloads and one carefully
designed synthetic workload, as well as mechanisms to automate
the evaluation of three performance metrics to address C2. For C3,
we conduct our experiments on a recent multicore processor under
different configurations, including altering AVX instructions and
a varying number of CPU cores. All source code and data of our
benchmark as well as guidelines on how to reproduce our work are
publicly available [41].

2 BACKGROUND

We summarize the notations used throughout this paper in Table 1.
We define a tuple x as triple x = t, k, v, where ¢, k and v are the
timestamp, key, and payload of the tuple, respectively. We define the
input stream (denoted as R or S) as a list of tuples chronologically
arriving at the system (e.g., a query processor). We denote the
key skewness of one input stream (or a subset) as skewg, and
the timestamp skewness as skew;s. With a higher skew;s, more
input tuples are skewed toward the same timestamp. We use dupe
to denote the average number of duplicates per key in the input
stream. The input arrival rate (denoted as v) stands for the number
of tuples arriving per unit of time from one input stream and w
denotes the length of the concerned window to join.

By definition, joining over streams is performed over infinite
input tuples. In practice, users typically formulate queries that
compute joins over bounded subsets of streams, called windows [29].
We adopt a time-based window scheme defined as follows:
Definition 1 (Window). We define a window as an arbitrary time
range (t1 ~ tz) with a length of w, i.e., to — t; = w. For brevity, we
henceforth denote a window as w.

Most prior works [32, 40, 44] target the inter-window join, which
joins streams over infinite sliding (i.e., overlapping) windows.
For those works, the primary concern is to efficiently explore
incremental computation across windows. In contrast, we focus on
IaW7 that joins streams over a single window [14, 27] regardless of
the window type [46] (i.e., sliding, tumbling, or session). Designing
efficient inter-window join algorithms by taking IaW7 as a building
block is an exciting topic for further investigation that is beyond
the scope of this paper.

Table 2: Summary of studied join algorithms

Name Approach | Join Method | Partitioning Schemes

NPJ [8] Lazy Hash No physical partitioning

PRJ [25] Lazy Hash Cache size-aware replication

MWay [11] Lazy Sort Equisized range partitioning

MPass [5] Lazy Sort Equisized range partitioning

SHITM [49]+[14] Eager Hash Content-insensitive stream distribution
SHITB [49]+[27] Eager Hash Content-sensitive stream distribution
PMITM [13]+[14] Eager Sort Content-insensitive stream distribution
PMITB [13]+[27] Eager Sort Content-sensitive stream distribution

Definition 2 (intra-window join). Given input streams R and S and
a window w, the intra-window join joins a pair of subsets (i.e, R’,
S’) such that R’ » S’ = {(r U s)|r.key=s.key,r.ts € w,s.ts € w,r €
R,s € S}, where each result tuple (r U s) has a timestamp, key, and
value of max(r.ts, s.ts), r.key, and r.value || s.value, respectively.

3 STUDIED ALGORITHMS

An important dimension to classify join algorithms is the execution
approach, i.e., lazy or eager. First, relational join algorithms [5, 6]
widely used in conventional databases can be applied to implement
the lazy join approach. Essentially, they can simply wait for a period
of time equal to the window length and then start processing (e.g.,
constructing the hash table); Second, many specifically designed
stream join algorithms [13, 16, 26, 27, 30, 32, 43, 47] can be applied to
implement the eager join approach. They produce partial matches
early and continuously as soon as any input tuples from either
input stream arrive. In this work, we studied eight representative
join algorithms covering a large design space. We summarize them
in Table 2, where each column denotes an important design aspect.

3.1 Lazy Join Approach

In the following, we discuss two hash-based and two sort-based
relational join algorithms as the representative lazy algorithms.

No-Partitioning Join (NPJ). NPJ [8] is a parallel version of the
canonical hash join algorithm. Both input relations are divided into
equisized portions to be assigned to a number of threads. In the
build phase, all threads populate a shared hash table with all tuples
of R. After synchronization via a barrier, all threads enter the probe
phase, and concurrently find matching join tuples in their assigned
portions of S.

Parallel Radix Join (PRJ). PRJ [25] subdivides both input
relations based on the binary digits of keys (i.e., radix), and
physically assigns the resulting sub-relations into individual
threads, and thus avoids the hash table being shared among threads
in the case of NPJ. The goal of the physical relation partitioning is
to break at least the smaller input (i.e., tuples from R) into pieces
that fit into the caches. Thereafter, it can launch a cache-resident
hash join for each partition.

Multi-Way Sort Merge Join (MWay). MWay [11] is a parallel
version of the canonical sort join. The algorithm proceeds as follows:
First, the input relations R and S are physically partitioned by key
range and equally distributed across CPU sockets. Then, each local
partition is sorted using the AVX sorting instructions, and all local
partitions are sorted in parallel. Subsequently, multi-way merging
is applied to shuffle and merge data among different partitions
to obtain a globally sorted copy of R and S. Finally, each thread
concurrently evaluates each pair of tuples between NUMA-local
sorted subset of inputs using a single-pass merge join.
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Figure 1: Stream join algorithms.

Multi-Pass Sort Merge Join (MPass). The second variant of
the sort join is called MPass [5]. It differs from MWay only in the
shuffling and merging phases. MWay scales poorly with increasing
input size [31] due to the multi-way merge. Instead, MPass applies
successive two-way bitonic merging multiple iterations.

3.2 Eager Join Approach

The eager algorithm can be constructed by combining a stream
join algorithm and a stream distribution scheme. In the following,
we discuss two stream join algorithms (i.e., SHJ and PMJ) and two
stream distribution schemes (i.e., JM and JB), illustrated in Figure 1
and Figure 2, respectively.

3.2.1 Stream Join Algorithms. When designing stream join
algorithms, prior work [13, 16, 26, 30, 43, 47] has historically focused
on single-thread execution efficiency while resolving disk I/O issues
due to the limitation of hardware resources.

Symmetric Hash Join (SHJ). SHJ is considered to be the first
hash-based stream join algorithm [49]. The crux of this approach
is to interleave the build and probe processes. Its overall process
is illustrated in Figure la. It maintains two hash tables, one for
each input stream. When the algorithm receives a tuple from
R (or S), it inserts the tuple into the hash table of R (or S) and
immediately probe the hash table of the opposite stream S (or R).
This process continues until all tuples from both input streams have
been consumed. Due to its simplicity and its design goal of achieving
low processing latency, SHJ has been the default (and often the
only available) join algorithm used in many state-of-the-art stream
processing engines [36]. However, as we will demonstrate later,
there may be other join algorithms that are more suitable.

Progressive Merge Join (PMJ). Dittrich et al. [13] proposed
a generic technique called progressive merge join (PMJ) that
eliminates the blocking behavior of sort-based join algorithms. The
key idea of PMJ is to first read tuples from both input streams until
it hits the memory space constraint. The loaded subsets are then
sorted. The resulting sorted subsets (called runs) are immediately
joined with a simple sequential scan. Both runs are subsequently
stored on disk, and later revisited to merge and produce further
matches among different pairs of subsets. We slightly modify PMJ to
make it better fit for modern hardware. We illustrate the algorithm
in Figure 1b. The key modifications are that we use a parameter §
to control the number of input tuples to be accumulated at each
iteration (instead of hitting memory constraint), and all runs are
subsequently stored in the main memory instead of disk. Many
such runs may be generated and need to be merged later. Tuning
the parameter ¢ enables the trade-off between the delay of starting
the process and the number of runs generated. When § is set to the

main memory size, the algorithm falls back to the original PMJ.
3.2.2  Stream Distribution Schemes. To cope with the rapid growth

of data rates, researchers have recently proposed to parallelize
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Figure 2: Stream distribution schemes.

single-thread stream join algorithms [14, 27]. The key idea is
to dynamically distribute input streams among multiple threads.
At the same time, each thread launches a stream join algorithm
to process the assigned input tuples. Both the distribution and
processing are eagerly conducted continuously for every incoming
input tuple. In this work, we study two stream distribution schemes:
1) join-matrix (JM) [14] and 2) join-biclique (JB) [27], where the
former is content-insensitive, and the latter is content-sensitive.

Join-Matrix (JM). We illustrate JM in Figure 2a. It abstracts the
join process between two streams as a matrix, where each cell of
the matrix represents a join between a pair of tuples from two input
streams [14]. We can partition the matrix and assign a portion to
every thread. JM achieves a balanced workload distribution among
threads and is robust in the presence of skewness as the workload
partitioning is content-insensitive. However, as studied by Lin et
al. [27], JM has a major drawback of communication efficiency, as it
has to replicate a significant amount of input tuples. For example,
r1 and ry are duplicated among threads in Figure 2a.

Join-Biclique (JB). The JB scheme organizes the processing
units as a complete bipartite graph, where each side corresponds to
an input stream. We illustrate the overall process of JB in Figure 2b.
Multiple core groups are maintained by the system. Input streams
are first passed to a router that decides to which core group the
tuple is sent. Compared to JM, JB can be tuned towards workload
balance and efficiency by adjusting the routing strategy. We will
discuss the effect of the tuning parameters in Section 5.5.

4 METHODOLOGY

In this section, we first introduce the examined performance metrics.
Then, we present our benchmark suite implementation.

4.1 Performance Metrics

Throughout this study, we focus on three important performance
metrics of streaming applications. First, throughput represents
the overall processing efficiency. It is defined by the number of
input tuples processed per unit of time. Second, latency describes
the difference between the time when a match is generated and
its last corresponding input (R or S) arrives. Following previous
work [22], we measure quantile worst-case latency (e.g., 95th),
Lastly, progressiveness is a widely used performance metric to
examine how algorithms make progress [47, 49] in delivering partial
results (e.g., the top 50%). It is usually represented as the cumulative
percentile of matches as a function of elapsed time.

Optimizing algorithms for all three performance metrics is
difficult. On the one hand, these metrics are all useful in different
use cases but sometimes conflict with each other. On the other
hand, existing join algorithms are often designed to optimize
only one or two performance metrics. For example, relational join
algorithms [5] are primarily designed to optimize throughput. In
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Figure 3: Time distribution of Stock and Rovio. Other uniform arrival datasets are shown as horizontal lines and omitted.

contrast, stream join algorithms are typically designed to optimize
latency [21] and/or progressiveness [13, 49].

4.2 Benchmark Suite

In this section, we introduce our benchmark suite covering selected

workloads and implementations.
4.2.1 Benchmark Workloads. In the following, we describe each

workload including its application scenario and input setup. For
each workload, instead of considering the whole query, we only
execute and measure the join process.

Stock: One common stock analysis task is to get the turnover
rates of stocks by calculating the trade ratio of each stock every
period of time. The input data are a stream of quotes and a traded
stream that contains traded results of matched quotes. We use a
real-world stock exchange dataset [2] for this workload. The query
joins the traded stream (R) and the quotes stream (S) over the same
stock id within the same period of time (i.e., window).

Rovio: Rovio [37] continuously monitors the user actions of a
given game to ensure that their services work as expected [22]. One
use case is to correlate advertisements with their revenue, where
the input data can be a purchase stream that contains tuples of
purchased gem packs and an advertisement stream which contains
a stream of proposals of gem packs to users. We use the dataset
from Karimov et al. [22] for this workload. The query joins the
advertisements stream (R) and the purchase stream (S) over the
user id and advertisement id within the same window.

YSB: Yahoo Stream Benchmark (YSB) [12] describes a simple job
that identifies the campaigns of advertisement events and stores a
window count of relevant events per campaign. The input data is
a campaigns table that contains 1000 advertising campaigns and
an advertisement stream that contains a number of advertisements
for each campaign. We use the dataset generator from Chintapalli
et al. [12] for this workload. The query joins the campaigns table
(R) and the advertisements stream (S) over the campaign id.

DEBS: A common analytic query of social networks is to find
the number of posts and comments created by users. We use
the social network dataset published by the DEBS’2016 Grand
Challenge [15], which simulates posts and comments on a social
network application. The input data to the query are the posts
(R) and comments (S) created by users in the forum. Both inputs
are stored at rest and can be viewed as an input stream having a

window length of zero and arrival rates of infinite. The query joins
all tuples of the comments and the posts over the same user id.

We summarize the properties of the four real-world workloads [2,
12, 15, 22] in Table 3. Our selected datasets cover a wide range of
workload features. i) Stock and Rovio have relatively low arrival
rates (v); YSB has high arrival rates; DEBS represents data at rest
and the arrival rate is infinity. ii) Figure 3 shows the timestamp
distribution of Stock and Rovio. Stock contains obvious event
“spikes”, where many tuples arrive at the same time slot. On the
other hand, Rovio has a relatively stable event arrival pattern,
where the arriving tuple rate remains roughly the same at most
timestamps. Stream S of YSB has a uniform time distribution
(skew;s=0). Stream R of YSB and both input streams of DEBS are
stored at rest, i.e., all tuples arrive instantly. iii) Stock has a more
skewed workload (i.e., skewg,, is higher), while others are less
skewed. iv) Depending on the use cases, the latency requirement
for stream processing can vary from tens of milliseconds to a few
seconds [48]. To represent real-world use cases, we set the window
length (w) to 1 second for all datasets and study the impact of
different window lengths in Section 5.4. v) Rovio and DEBS have
relatively high key duplication in both streams; YSB has a low key
duplication in R but high in S; and Stock has relatively low key
duplication in both streams.

Synthetic Workload. The real-world dataset may not cover
all situations and and it is not possible to tune its workload
characteristics to observe the impacts. To comprehensively evaluate
the impact of varying workload properties, we further evaluate a
synthetic workload based on the work from Kim et al. [25]. To
differentiate with the other four real-world workloads, we refer to
this synthetic workload as Micro.

4.2.2  Implementations. We discuss three key components of our
benchmark suite implementation: the algorithm implementation,
the dataset structure design, and the profiling methods.
Algorithm Implementation. The source code of the lazy join
algorithms NPJ, PRJ, MWay, MPass are based on the benchmark from
Balkesen et al. [5, 6]. The eager algorithms SHIM™, sHITB, pMT™M,
PMJ'B are implemented based on the corresponding papers. We
reuse the available functions provided by the benchmark from
Balkesen et al. [5, 6] as much as possible. Specifically, we use the
original avxsort function used in MWay and MPass to implement



PMJ’s sort and the implementation of bucket chain hash table used
in PRJ to implement the hash table of SHJ. The original benchmark
suite [5, 6] is only to evaluate relational join algorithms on static
datasets. We modify it to support intra-window join on both static
and streaming datasets. We let the lazy algorithms accumulate
all input tuples to arrive before start processing. For the eager
algorithms, every thread maintains a timer to record its elapsed
time since it starts, and alternatively reads from its assigned subsets
of input streams (Section 3.2.2) during execution. When tuples from
one input (R or S) are not available (i.e., the tuple has a larger arrival
timestamp than the thread’s elapsed time), the thread attempts to
read from the other input stream. Hence, the eager algorithms may
still stall if they consume tuples faster than tuple arrival.

Dataset Structure. We follow the same dataset structure of
previous works [5, 6]. In particular, they all assume a column-
oriented storage model, and joins are assumed to be evaluated
over a narrow <key, payload> tuple configuration. To make use of
vectorized instructions, we assume that each tuple has a width of
64 bits; thus, key and payload are four bytes each. To eliminate
the impact of network transmission overhead, the input datasets
are first populated (synthetic datasets) or loaded (real datasets) in
memory. Then, we assign each tuple a timestamp (starting from 0)
to reflect its actual arrival time to the system, and tuples are time
ordered. The timestamp is stored as the payload of each tuple.

Profiling Methods. Note that there is additional overhead of
checking thread’s elapsed timestamp during execution for the eager
approach. To minimize this overhead, we use Read Time-Stamp
Counter (RDTSC) [18] instructions for time measurement, and we
observe that such overhead accounts for less than 5% of overall
execution time. During processing, every thread records the current
timestamp whenever a match is generated by it. When the program
finishes, we merge and sort timestamps of matches from all threads
to examine the overall progress of the algorithm. Throughput is
measured as the total number of inputs divided by the timestamp of
the last match. Latency is measured by subtracting the timestamp
of a match by the larger timestamp of its corresponding input
tuple. Besides performance metrics, we also use Intel PCM [20] and
Perf [35] to gather architectural statistics [19] of processors.

5 EVALUATION

The main objective of the experiments is to comprehend the
behaviour of different IaWJ algorithms on modern multicores.
Specifically, we seek answers to the following questions.

Q1: How do different join algorithms perform on joining real-
world workloads with both static and streaming inputs?

Q2: Are there any common performance issues among different
algorithms when running on modern multicore processors?

Q3: What are the impacts of workload characteristics on the
three performance metrics?

Q4: For each algorithm, how much do the algorithmic parameters
affect its performance, e.g., overall execution cost?

Q5: How different join algorithms interact with modern
hardware architectures?

Q6: How evaluation results change with or without utilizing
SIMD instructions in join algorithms? Do the algorithms scale
linearly on multicore processors?

Table 4: Specification of our evaluation platform

Component Description
Intel(R) Xeon(R) Gold 6126 CPU,
Processor (w/o HT) 2 (socket) * 12 * 2.6GHz
L3 cache size 19MB
Memory 64GB, DDR4 2666 MHz
OS & Compiler Linux 4.15.0, compile with g++ O3

In the following, we present a summary of our experimental
results in Section 5.1. In Section 5.2, we compare the performance
of all algorithms using four real-world workloads to answer Q1.
We provide a detailed execution time breakdown in Section 5.3
to answer Q2. In Section 5.4, we evaluate the impact of varying
workload configurations using the synthetic workload to answer
Q3. To answer Q4, we perform sensitivity studies on the algorithm
parameters in Section 5.5. Finally, we profile hardware counters
and evaluate all algorithms with altering AVX instructions and a
varying numbers of CPU cores in Section 5.6 to answer Q5 and Q6.

All experiments are carried out on a Intel Xeon Gold 6126
processor. Table 4 shows the detailed specification of the hardware
and software used in our experiments. To exclude the impact of
NUMA, we only use one socket in our experiment. Note that, MWay
and MPass require the number of threads to be a power of 2. For
fair comparison, we use 1 to 8 threads in all of our experiments.

5.1 Key Findings

e Our experimental results show that both lazy and eager
approaches are relevant. However, no one algorithm can
outperform others in all cases (Q1). Each algorithm can
outperform others in handling specific workloads in terms of one
or more performance metrics. Notably, contrary to the common
belief [27], our results indicate that relational join algorithms (i.e.,
lazy) outperform specifically designed stream join algorithms
(i.e., eager) on most workloads. Depending on the workload, they
achieve up to 5x higher throughput, 10x lower latency, and even
much better progressiveness (see Section 5.2).

e In Section 5.3.1, we show that the eager algorithms incur more
cache misses during partitioning and probe processes, resulting
in higher execution cost (Q2). Sort-based join algorithms reduce
cache misses in handling high key duplication workloads and
achieve better performance for both lazy and eager algorithms.
Surprisingly, compared to JM, the JB scheme involves higher
partitioning cost due to status maintenance (see Section 5.3.3).
The eager algorithms achieve better performance when one input
stream has a low arrival rate (Q3). In particular, SHJ™ is able to
deliver output quickly if the input rate of the data stream varies
with spikes (see Section 5.4). However, when both input streams
have high arrival rates, the lazy algorithms perform better in all
performance metrics.

The lazy algorithms are more sensitive to tuning parameters, as

we observe a significant difference of execution costs between

a good and bad configuration (see Section 5.5). In contrast,

large constant overhead makes eager algorithms less sensitive to

tuning parameters (Q4).

e In Section 5.6, we show that eager algorithms are more Core
Bound [19] (Q5). The frequent function calls to pulling data
from both input streams overloads the out-of-order execution
units. The eager algorithms are also more memory bounded
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The root node of the tree is the arrival rate node.

due to severe cache misses (in particular L1D-Cache miss).
Furthermore, they consume more memory spaces due to
additional intermediate results.

e All algorithms scale almost linearly with the number of
cores for intensive workloads as there are no major
synchronization barriers. AVX instruction set does bring
performance improvement over both lazy and eager algorithms,
but its improvement for eager algorithms is marginal (Q6).

We summarize the main findings of our analysis in a decision
tree to guide readers through our results and to aid practitioners
in selecting a suitable algorithm to parallelize IJaWJ on multicore
processors (Figure 4). Note that the qualitative remarks of high,
medium, and low are relative and the quantitative value depends
on actual hardware and workloads. First, we recommend the lazy
approach when arrival rates are high. When the key duplication
is also high, MPass and MWay are better options and MPass scales
better with a large core counts. When the key duplication is low,
NPJ and PRJ are more effective, and PRJ performs better when
the key distribution is low and the number of tuples to join is
large. Second, when the arrival rate is medium, PMJ B performs
best in terms of all three performance metrics for handling high
key duplication workload, while SHI™ achieves lower latency
and better progressiveness for handling workloads with low key
duplication. If throughput is the key target, we recommend the
lazy approach when the input arrival rate is medium and the key
duplication is low. Finally, we recommend SHI™™
input stream has low arrival rate, as it is able to eagerly utilize
hardware resources with low overhead.

whenever one

5.2 Performance Comparison

In this section, we compare algorithms on processing real-world
workloads in terms of throughput, latency, and progressiveness.
Each algorithm is tuned to its optimal configuration.
Throughput and Latency. The overall performance
comparison results are shown in Figure 5. There are two
major observations. First, despite the great differences among
workloads, the lazy algorithms always achieve better or at
least comparable throughput. The results clearly reflect their
better execution efficiency. As expected, the throughput is
especially higher on static datasets (i.e., DEBS), and the throughput
difference is up to 5x. More interestingly, they even achieve
higher throughput for joining data in motion, e.g., Rovio and
YSB. When the input arrival rate is low (e.g., Stock), hardware
resources are underutilized (ie., up to 6.6% CPU and 0.55%
memory bandwidth utilization), and all algorithms show a similar
throughput. In handling such workloads, users may optimize the
other two performance metrics by selecting appropriate algorithms
without sacrificing throughput. Second, the eager algorithms

achieve smaller processing latency for Stock and YSB, although
the throughput is similar or even worse compared to the lazy
algorithms. This matches the previous findings [21], as those
algorithms are specifically designed to achieve low processing
latency. However, the results also show that the lazy algorithms
achieve similar or even lower latency on other workloads, e.g.,
DEBS. This is because processing latency is also highly correlated
to execution efficiency. If input tuples are queuing up as the system
is not able to consume them instantly, processing latency increases
due to the increased waiting time [22]. Our results demonstrate
the better execution efficiency of the lazy algorithms and clearly
indicate a false claim that specific stream join algorithms are always
better suited when handling data streams [27]. Nevertheless, there
is no single winner among all algorithms. For example, sort-based
algorithms achieve higher throughput for handling Rovio and
DEBS, while hash-based ones are better suited for Stock and YSB.
Progressiveness. Figure 6 compares how different algorithms
make progress and the results show that which approach makes
faster progress depends heavily on the workloads. The eager
approach is able to generate matches without waiting for all
inputs. For example, SHI™ is able to deliver the first 50% matches
of handling Stock in 674ms, which is around 1.5x faster than
the fastest lazy alternative (i.e., 1014ms by NPJ). However, a lazy
algorithm can quickly finish the overall process and it can surpass
eager algorithms early. For example, MPass is able to output 50% of
total matches in 11699ms when handling Rovio, while the fastest
eager algorithm PMJ™ produces only 28% of total matches using
the same amount of time. The common wisdom [13, 27, 49] that
stream join algorithms always make faster progress for handling
streaming data is obviously misleading. Our results also indicate
an interesting future research area to explore how to orchestrate
both approaches to achieve optimal progressiveness at all time.

5.3 Execution Time Breakdown

In this section, we report how much time is spent in the processing
of each input among different algorithms. We divide it into six
phases: i) Wait is the time spent waiting for inputs to arrive. The
lazy algorithms wait until the very last tuple of the concerned
window arrives before the join starts. Thus, it’s wait equals window
length. The eager algorithms also wait if the system is underutilized
(i.e., input arrive rate is lower than the system processing rate). ii)
Partition is the time spent partitioning workloads among threads.
iii) Build/Sort is the time spent due to hash table construction
or tuple sorting in hash or sort-based algorithms, respectively. iv)
Merge is the time spent merging tuples, which is only present in
sort-based join algorithms. v) Probe is the time actually spent on
matching tuples. It refers to either the probe time in hash-based or
the match time in sort-based join algorithms. vi) Others refer to
all remaining overheads such as context switching.

5.3.1 Overall Comparison. The results of the time breakdown
are shown in Figure 7. There are two key observations when we
compare all algorithms. First, it confirms that all algorithms spend
most of the time on wait for processing Stock, which has a small
arrival rate, and all CPU cores are mostly idle. Second, if we exclude
the wait cost, we can see that the eager algorithms generally involve
higher cost per input tuple. In particular, execution time is mostly
spent on either probing or partitioning.
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Figure 7: Execution time breakdown.

We further take the YSB as an example to examine the
cache efficiency of different algorithms. Figure 8 shows that the
inefficiency of eager algorithms is caused by significant cache
misses. There are different cache access behaviours during different
phases. First, SHJ’® and PMJ'® experience higher cache miss at
L1 and L2 cache during the partitioning phase. This is mainly
caused by their content-sensitive partitioning scheme (i.e., JB).
Specifically, each thread accesses tuples according to their primary
keys resulting in random memory accesses, and the footprint
between consecutive access exceeds L2 cache but smaller than
L3 cache. Second, all eager algorithms experience significant L1
cache misses during the probe phase. This is due to their frequent
interleaving access, where each thread aggressively works on any

available tuples from either input stream resulting in cache trashing.
5.3.2  Lazy Approach Comparison. If we compare the lazy join

algorithms (i.e., NPJ, PRJ, MWay, and MPass), we can see that hash-
based algorithms involve much higher costs in probe when handling
Rovio and DEBS. We find that these datasets have many duplicate
keys in both streams (see Table 3). PRJ uses a bucket-chain design,
where tuples of the same key will be inserted into the same bucket

Figure 8: Cache efficiency profiling (YSB).

until the bucket is full and a new bucket is created and appended to
form a list. When handling high key duplication workloads, each
thread needs to walk through a long list to perform the match. NPJ
involves high cost for handling high key duplication workloads
because of the higher chance of access conflict when the same hash
bucket is concurrently visited by multiple threads. These issues
are not involved in sort-based algorithms. However, the execution
cost of sort-based algorithms is slightly higher than the hash-based
algorithms in handling YSB, where keys of tuples from R are unique
(see Table 3). Our results show that, in such case, there is still a
higher sort cost compared to build cost although AVX instruction
sets can accelerate the sorting process, which reaffirms the analysis

of prior work by Balkesen et al. [5].
5.3.3 Eager Approach Comparison. Finally, we compare the eager

algorithms (ie., SHIM™, sHI7B, PMIM and PMJJB). We have similar
observations of analysing the lazy approach that sort-based
algorithms outperform hash-based ones in handling Rovio and
DEBS (those with relatively high key duplications in both input
streams). If we compare the eager algorithms with different
partitioning schemes, we can see that algorithms with the JB
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Figure 11: Impacts of key duplication (v = 6400).

scheme surprisingly involve significant partitioning overhead. We

find that this is mainly due to the status maintenance overhead.

Specifically, after each tuple is dispatched, the system needs to
record the dispatch results for future reference. In the original
work by Lin et al. [27], this overhead is negligible because they use
Storm [45] as their target test platform, which is known to poorly
utilize modern multicore processors [53].

5.4 Workload Sensitivity Study
Workload characteristics of data streams being joined vary

significantly among applications. On the one hand, the input data
characteristic from the same input stream may vary depending on

which subsets of streams are joined and also on the window length.

On the other hand, even if data sources (e.g., sensors) may generate
data streams (almost) constantly, the actual deployment of stream
processing at various infrastructure layers [51] leads to different
workloads in the system. In the following, we evaluate the impact
of workload characteristics quantitatively. We use Micro in this
study due to its simplicity and flexibility. We tune the parameters
to change the features of the generated datasets.

Impact of Arrival Rate (v). Figure 9 illustrates the impact
of the arrival rate of both input streams, ranging from 1600 to
25600 tuples/msec. We fix the window length to 1 second and
generate the datasets with a unique key set and uniform arrival
distribution. There are two key observations: First, when the
arrival rate is low (e.g., v=1600), all join algorithms achieve similar
throughput as the CPUs are underutilized, but SHJ M delivers results

constantly faster and guarantees much lower processing latency.

Note that the progressive curve in Figure 9c reflects that SHJ™

can instantly process every input tuple once it arrives and can
deliver results almost immediately. This result matches the case of
handling the Stock workload as discussed previously. Second, with
an increasing arrival rate, the lazy algorithms can gradually improve
the throughput, while the eager algorithms deliver similar or even
worse throughput. When the arrival rate is medium (e.g., v=12800),
the eager algorithms achieve lower processing latency and better
progressiveness, although the throughput is lower compared to lazy
algorithms. Due to the lack of complete knowledge of the entire data
streams, the eager algorithms miss the opportunities to optimize
the processing in a holistic manner and thus will inevitably incur
performance penalty such as cache misses. As a result, when the
arrival rate is high (e.g., v=25600), the eager algorithms are not
able to consume input tuples immediately and perform worse in all
performance metrics.

Impact of Relative Arrival Rate (vg:vg). We also evaluate
the impact of varying relative arrival rates of two input streams.
In this experiment, we keep vy at 1600 tuples/msec and vary vg
from 1600 to 25600 tuples/msec. The evaluation results are shown
in Figure 10. We see that SHJ™ can constantly perform best in
all three performance metrics with different values of vg. This is
because, as one input stream arrives slowly, SHJ™™ continuously
reads input tuples from the other stream. This reduces the chance of
reading from two input streams interleaved and effectively reduces
random memory access. Processing latency remains constant in
most algorithms, as matches are mostly triggered by tuples from
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(v = 1600). 12800).

R, which arrive slowly. The latency of PMJ'8 and SHJ'® increases
significantly when they are not able to keep up with the increasing
aggregated arrival rates from both input streams.

Impact of Key Duplication (dupe). We now evaluate the
impact of duplicate keys in the input streams. We set the input
arrival rate of both input streams to 6400 tuples/msec and set
the window length to 1000 msec. We then vary the duplication
of each key from 1 to 100 times. Thus, the total number of matches
become 1 to 100 times larger. The results in Figure 11 show that
the sort-based join algorithms outperform hash-based ones in
terms of all three performance metrics for both eager and lazy
approaches when the dupe is greater than 10 and PMJ'8 outperforms
all other algorithms when the dupe is greater than 100. Our further
investigation reveals that performance improvement mainly come
from two aspects. First, when multiple tuples of the same key are
sorted, they are allocated sequentially and cache-aligned in memory.
This significantly increases memory bandwidth when they are later
revisited during the matching phase. Second, during matching, the
cache reuses increase in sort-based algorithms, as each input tuple
produces multiple matches due to key duplication. Those results
refresh the understanding of the applicability of those sort-based
join algorithms, which are not captured in prior work [5].

Impact of Arrival Skewness (skew;). To quantify the impacts
of the arrival skewness, we adopt a Zipf-distribution generator to
generate tuples. We set the arrival rate to 1600 tuples/msec and fix
the window length to 1000 msec for both input streams such that
the total number of input tuples remains the same. We examine
the case where more tuples bear the same timestamps as in the
early tuples of input streams with increasing skew;s. The results
are shown in Figure 12. We omit the results of processing latency as
it remains almost unchanged in all algorithms with varying arrival
distributions because of the low input arrival rates. Among all
algorithms, only SHJ™ is sensitive to varying arrival distributions.
In particular, the throughput gradually increases when skew;s
exceeds 1.2 and achieves the highest throughput at 1.6. The reason
is that it can utilize the hardware resources as early as possible. This
is reaffirmed by the progressive evaluation results in Figure 12b.

Figure 13: Impacts of key skewness (v =

Figure 14: Impacts of window length (v =
12800).

Impact of Key Skewness (skewy, ). We set input arrival rates
of both input streams to be 12800 tuples/msec, the window length
to be 1000 msec and a uniform arrival distribution. The results are
shown in Figure 13. We can see that only PRJ is less tolerant to key
skewness. PRJ relies on recursively repartitioning the input tuples
from R until a single partition can fit into the L1 cache. Subsequently,
only one thread will work on a single partition. Due to the high key
skewness, PRJ underutilizes the hardware resources as only a few
partitions are created, and few threads are concurrently running.
SHI™ becomes even better with skewed input due to the better
cache behaviour as the same key is repeatably revisited.

Impact of Window Length (w). The window length defines
the time range of each substream to join. We set the input arrival
rate of both input streams to 12800 tuples/msec and vary the
window length from 500 to 2500 msec. The throughput results
are shown in Figure 14a. We can see that the throughput of all
algorithms almost remains similar with increasing w indicating
that the amortized execution cost per input tuple is not impacted
significantly by w. As the throughput remains constant, the
increasing processing latency shown in Figure 14bb indicates that
more input tuples are queuing up with larger values of w. This also
explains the slight decrease in throughput of the eager algorithms.
When there are increasingly more input tuples arriving at the
system and being queued up, the footprint between invocation
of the same tuple also increases resulting in more cache misses.

5.5 Impact of Algorithm Configurations

In this section, we study the impact of tuning knobs including
(i) sorting step size 6, (ii) group size g of the JB scheme, (iii) the
impact of physical partitioning during workload distribution, and
(iv) number of radix bit #r. We use Micro to conduct this set of
experiments and assume that all tuples are instantly available to
be processed to eliminate the impact of wait. To facilitate the
comparisons with existing results [5], the total numbers of tuples
from R and S are set to 128 - 10> and 128 - 10, respectively.
Varying sorting step size (6). In PMJ, sorting step size controls
the portion of tuples to acquire before the system starts sorting (and
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subsequently joining). Figure 15 shows a nontrivial relationship
between overall processing cost and sorting step size. A small
6 allows the system to wait for a shorter period of time before
generating any matches but it may bring more overhead including
more context switching and more subsets to merge. In contrast,
a large J§ essentially defeats the purpose of eagerly processing
input streams. A suitable § (20% in our experiment) brings the
optimal performance of both generating preliminary results early
and achieving higher overall throughput. For the processing latency,
our experimental results show that it does not change on varying
§. This is because the processing latency in worst-case scenario
is only affected by matches that are generated mostly in the
merge phase. For simplicity, we omit further details of latency
and progressiveness evaluation of this experiment.

Varying group size (g). Group size is a key parameter of the
JB partitioning scheme. When g=1, JB scheme becomes a strictly
hash-partitioning scheme where input streams are hash partitioned
among threads by their primary keys. When g equals the number of
threads such that there is only a single core group, JB becomes the
JM scheme and we assume R is replicated while it still partitions S
among threads. Hence, the workload increases in each thread with
an increasing g. We evaluate the impact of varying g by using both
PMJ and SHJ. Figure 16 shows the evaluation results. The horizontal
line shows the performance when the JM scheme is applied instead.
The evaluation results confirm our analysis of the JB scheme where
increasing group size also increases workloads. However, the JM
scheme always achieves better performance due to the significant
partitioning overhead in JB scheme making the tuning of JB less
useful. Note that this contrasts with the observation made in
prior work [27] due to the significant difference in the testing
environment.

Impact of Physical Partitioning. During the workload
partitioning phase of the eager algorithms, we can either pass the
pointer or value of each tuple to threads. Passing pointers is faster,
but it may lead to potential overhead in subsequent phases. To
evaluate its performance impact, we use SHJ™™ as an example in
this experiment. Figure 17 shows a clear tradeoff among the cost of
different phases. On the one hand, it is expected that distributing
the value of tuple (w/ partitioning) incurs more partitioning cost.
On the other hand, physical partitioning results in better cache
behaviour during build and merge phases. In our experiment, we
observe that both configurations lead to similar overall performance
over our selected benchmark workloads. Hence, we simply apply
the configuration of passing pointers in all other experiments.
In future work, we plan to extend our study to include more
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workloads and hardware platforms to better comprehend when
physical partitioning should be applied in the eager algorithms.
Varying number of radix bits (#r). The number of radix bits is
the most important parameter of PRJ, which trades off partitioning
cost and probe cost [6]. We vary #r from 8 to 18 and the results
are shown in Figure 18. Our experimental results confirm the
observations made in previous work [6] and we experimentally
determine the suitable value of #r to be 10 for PRJ in our machine.

5.6 Impact of Modern Hardware

In this section, we first analysis how algorithms interact with
modern multicore processors. Then, we show how evaluation
results may change under various hardware configurations.
Micro-architectural Analysis. We take Rovio as an example
to show the breakdown of the execution time according to the
Intel Manual [19]. Figure 19a compares the time breakdown of
different join algorithms. We measure the hardware performance
counters during the algorithm execution, and compute the top-
down metrics [50]. We have three major observations. First, the
breakdown results reaffirm our previous analysis that sorting-based
join algorithms work more efficiently for Rovio because of its high
key duplication feature. In particular, MWay and MPass show high
instruction retiring rate and negligible Core Bound and Memory
Bound. NPJ is more memory bound than PRJ. The reasons are two
folds: i) NPJ involves high L1 and L2 cache miss overhead due
to the access conflict of the shared hash table; ii) the size of the
shared hash table in NPJ exceeds L3 size significantly; thus, resulting
in significant L3 miss overhead. Due to the same reason, a high



L3 cache miss issue is also observed in SHJ™ and SHJ’® when
handling the Rovio workload. Second, although PMJ is also a sort-
based algorithm, it shows a much higher Core Bound compared to
MWay and MPass. This is because of the frequent function calls as
PMJ repeatedly acquires new tuples from input streams to process
and thus overloads the out-of-order execution units. Such an eager
nature also leads to a higher Memory Bound in all eager algorithms
due to cache thrashing. Third, another interesting observation
is that the JB scheme leads to a higher Core Bound than JM. We
observe that this is due to the additional shuffle phase in the JB
scheme resulting in a more complex instruction flow involving
more dependencies.

Figure 19b illustrates memory consumption of all algorithms
over time. There are two major takeaways. First, we can see that
the eager algorithms consume more memory compared to lazy
ones. The reason is that although the input tuple may be consumed
immediately, it cannot be eliminated as it may be revisited later
due to the pointer-based passing mechanism (see Section 5.5).
Furthermore, all eager algorithms need to maintain additional
storage space for holding extra data structures. Specifically, SHJ
needs to maintain two hash tables for both input streams and PMJ
needs to keep sorted sublists during processing. Comparing PMJ’8
and PMJ™™, we can see that JMleads to higher memory consumption
than JB. This matches findings from previous work [27] as JB only
partially replicates the partition of S to a group of threads. However,
this difference is not obvious between SHI'® and SHI™ as the size of
the maintained hash table of one stream (e.g., R) already exceeds L3
cache size significantly. JB consumes even more memory initially
because of the additional status maintenance, while JM consumes
more memory later because of the growing size of the hash table of
S. Second, the lazy algorithms have similar memory consumption.
Sort-based ones (i.e., MPass and MWay) consume slightly more
memory as they require additional space for intermediate data
during shuffling and merging phases. NPJ consumes more memory
than PRJ as the size of the shared hash table significantly exceeds
the last level cache. This result reaffirms the previous analysis of
the drawback of NPJ [5].

Table 5 shows the hardware performance counters per input
tuple, which reaffirms our previous findings. For example, NPJ
shows high cache misses because of the size of the shared hash table
is larger than the cache size, almost every access to the hash table
results in a cache miss. Table 6 further shows the hardware resource
utilization among different algorithms. Except for NPJ, all lazy
algorithms generally show relatively lower CPU utilization because
they need to wait until all data arrive, resulting in a significant idle
time. The NPJ consumes a large portion of CPU cycles in dealing
with cache misses and hence show high CPU utilization. Due to their
aggressive process nature, the eager algorithms generally consume
more resources in terms of both CPU and memory bandwidth. This
indicates that increasing memory bandwidth and CPU power can
further improve their performance. We will confirm this in the
subsequent multicore scalability study.

Multicore Scalability. We now show the multicore scalability
in terms of throughput. Our experiments show that MPass has
slightly better scalability compared to MWay. Hence, we take MPass
and SHIJ™ as examples to represent the lazy and eager approach
here. The results are shown in Figure 20. As expected, both
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Figure 19: Micro-architectural Analysis on Rovio.

Table 5: Counters per input tuple (Rovio)

NPJ PRJ MWay MPass SHITM SHITB PMITM PMITB
TLBD Misses | 0.686 0.027 0.020 0.028 1312 2.144 0.764 0.172
TLBI Misses | 0.740 0.037 0.009 0.010 2.431 3361 0.450 0.436
L1I Misses 15.976 1.590 0.212 0.222 24.904 26.445 3.636 1.554
L1D Misses | 17529.971 | 541.168 | 2442.201 | 2438.575 | 17238.905 | 14540.641 | 1151.674 | 685.827
L2 Misses 6566.433 | 10.145 | 0.238 0310 5080.151 | 4445.801 | 63.268 27.975
L3 Misses 3028.627 | 0.038 0.020 0.052 3854.870 | 3691.542 | 0.249 0.446
Branch Misp. | 1.571 0515 1.008 0.873 5.257 3.994 1.000 1179
Instr. Exec. | 8876.563 | 8793.415 | 3202879 | 3205.110 | 17763.657 | 14809.760 | 17723.712 | 14649.200

Table 6: Resource utilization (Rovio)

NPJ PRJ Mway | MPass | SHI™™ [ sHI’B | pMzT™ [ pMj7B

Mem. BW.(%) | 19.093 | 0.144 | 0.302 | 0.480 | 23.978 | 20.306 | 1.444 | 0.473

CPU. Util.(%) | 98.456 | 24.606 | 55.346 | 59.163 | 99.045 | 80.431 | 97.287 | 90.752
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algorithms are not affected by varying hardware resources when
handling Stock and YSB as the system is underutilized. For Rovio
and DEBS, SHI™M scales slightly better. We observe that this is due
to its eager nature, which aggressively utilizes available hardware
resources whenever possible (i.e., as soon as any input tuples arrive).
In contrast, MPass can only start to utilize all resources when all
input tuples are ready.

Impact of SIMD. AVX utilizes CPU registers to perform a Single
Instruction on Multiple pieces of Data (SIMD) to accelerate data
processing. We now examine the effect of AVX instruction sets
used in MWay, MPass, PMJ™™ and PMJ'B. Note that, our benchmark
currently only utilize AVX-256 (inherited from the existing codebase
from previous work [5]), further supporting AVX-512 is expected
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to bring more performance improvement but left as future work.
We use Micro (static datasets) in this study. Figure 21 clearly
demonstrates the benefit of utilizing SIMD in reducing the cost
of sorting. It also reduces the cost of merging slightly in MPass
and MWay. The overall improvement varies from 1.2x to 2.5%,
which matches the observations from the existing study [5]. The
improvement from SIMD on PMJ™ and PMJ’B is less significant
(1.2x) as it is mainly memory bounded for handling this workload.
Thus, to further improve the performance of PMJ, one has to focus
more on improving its data access pattern.

6 RELATED WORK

In this section, we review related work and reveal the limitations
that motivate this work.

Stream Joins. For specific stream join algorithms, prior works
such as [32, 38, 44] have explored different ways to utilize multi-
core or many-core processors, but their primary concern is to
efficiently and incrementally process subsequent sliding windows.
For example, the handshake join [44] and Splitjoin [32] are
proposed to better utilize modern multicore architectures with
a dataflow model, where each join core has to constantly update its
internal state. The recently proposed IBW]J [40] accelerates inter-
window join by utilizing a shared index structure, which brings
performance gains during tuple matching but brings even higher
state maintenance costs as the shared index structure needs to
be constantly updated during processing. In contrast, we focus
on intra-window join (IaWJ), assuming there is no subsequent
windows at all. The inter- and intra-window joins have a very
different design goal and are hardly comparable. To validate our
analysis, we have implemented and evaluated the handshake
join [44] and observed that it leads to orders of magnitude lower
throughput than any of the eight algorithms that we have evaluated.
This is due to the additional overhead for maintaining window
updates. Early work of IaW7 historically focuses on its single-thread
execution efficiency [13, 49] and is no longer suitable on modern
multicore architectures. Recent studies [14, 27] have proposed
parallel IaW7 algorithms by wisely distributing input tuples of
the same window among parallel threads without considering
window updates. Different from them, our study is the first attempt
to systematically evaluate different approaches (including both
relational join algorithms and specific stream join algorithms) to
parallelize IaWJ on modern multicore processors.

Relational Joins. To optimize relational joins, past works have
explored the usage of SIMD instructions [25], cache- and TLB-
aware data replication [5, 6], memory-efficient hash table [7]
and NUMA-aware data placement strategies [3]. Extensive recent
efforts have also been devoted to accelerating join processing
by better utilizing specialized hardware architectures such as
GPU [28, 42], FPGA [10, 17] and high-bandwidth memory [34].

The common goal is to find a scheme that minimizes the overall
join processing time by wisely managing the balance between
computation and communication/partitioning cost among different
architectures. All those join algorithms are covered by our
concerned algorithm design aspects including eager/lazy, sort/hash,
and various partitioning schemes, but with novel implementations
such as specialized data partitioning schemes for novel hardware
architectures [28, 34, 42] and adaptive partitioning models [24].
All those works are highly valuable, but none of them has
comprehensively evaluated different approaches to parallelize IaW7¥
on modern multicores. Nevertheless, our open-sourced benchmark
enables the community to evaluate more workloads, join algorithms,
and hardware platforms in future. Schuh et al. [39] recently studied
13 relational join implementation variants, where PRJ and MWay
are treated as the state-of-the-art general purpose hash- or sort-
based relational join algorithms, respectively. Both PRJ and MWay
have been included into our benchmark as the representative lazy
algorithms. Schuh et al. [39] have further proposed two PRJ variants
(called PRLiS and PRAIS, respectively) and one novel algorithm
called Chunked Parallel Radix partition (CPRL). These algorithms
are especially optimized towards NUMA, and have demonstrated
excellent performance on multi-socket servers. In this paper, we
focus on single socket multicore processors and leave the evaluation
of NUMA optimization such as CPRL to future work.

7 CONCLUSION

In this paper, we present results from an extensive experimental
analysis of existing join algorithms across both relational join
algorithms (i.e., the lazy approach) and specific stream join
algorithms (i.e., the eager approach) for parallelizing the intra-
window join (IaWJ) operation on modern multicore processors.
With a comprehensive set of workloads, our experimental results
highlight many important insights that have not been discussed
in previous studies. In summary, we find that none of the existing
join algorithms performs best in all cases for parallelizing the
IaW7F operation. Workload characteristics, performance metrics,
and hardware architectures should be considered when applying
the right implementation. Based on our analysis, we have also
proposed a decision tree that can be used to guide the selection of
an appropriate algorithm.

This work highlights a number of directions for future work:
(i) there is a need for developing an adaptive IaW7 algorithm that
considers all the factors including workload, metrics and hardware,
(ii) it is important to further extend this study to include more
hardware architectures such as NUMA, HBM, GPUs, and FPGAs,
and (iii) our successful attempt of using relational join algorithms to
accelerate joining over data streams indicates the great potential of
joint efforts from different communities to better support modern
data intensive stream applications. This is a general problem with
lots of potential for which we lay the foundation with this paper.
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