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ABSTRACT
Recently, FPGA vendors such as Altera and Xilinx have
released OpenCL SDK for programming FPGAs. However,
the architecture of FPGA is significantly different from that
of CPU/GPU, for which OpenCL is originally designed.
Tuning the OpenCL code for good performance on FPGAs
is still an open problem, since the existing OpenCL tools
and models designed for CPUs/GPUs are not directly appli-
cable to FPGAs. In the paper, we present an FPGA-based
performance analysis framework that can shed light on the
performance bottleneck and thus guide the code tuning for
OpenCL applications on FPGAs. Particularly, we leverage
static and dynamic analysis to develop an analytical per-
formance model, which has captured the key architectural
features of FPGA abstractions under OpenCL. Then, we
provide four programmer-interpretable metrics to quantify
the performance potentials of the OpenCL program with in-
put optimization combination for the next optimization step.
We evaluate our framework with a number of user cases,
and demonstrate that 1) our analytical performance model
can accurately predict the performance of OpenCL programs
with different optimization combinations on FPGAs, and 2)
our tool can be used to effectively guide the code tuning on
alleviating the performance bottleneck.

1. INTRODUCTION
FPGAs have been used as accelerators for a wide range

of applications such as high performance computing [19],
databases [23], bioinformatics [28] and “big-data". Mi-
crosoft has adopted the FPGAs to accelerate the Bing web
search engine [26] and Baidu is using Altera FPGAs to
accelerate convolutional neural network (CNN) algorithm-
s for deep learning applications. Compared with other
accelerators like GPUs, FPGAs usually have much better
energy efficiency, and can deliver superb performance for
some applications [8]. Despite the energy efficiency and
performance advantages, programmability has been a major
issue of FPGAs. High-level synthesis (HLS) on FPGAs
has attracted decades of efforts to automate the design
process: interpreting an algorithmic description in high-
level language and then implementing that program on
FPGAs [5]. Recently, FPGA vendors such as Altera and
Xilinx provide OpenCL SDK as a series of HLS tools to
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allow users to write OpenCL programs for FPGAs. Altera
OpenCL SDK provides the pipeline parallelism technology
to simultaneously process data in a massively multithreaded
fashion on FPGAs. This is a significant leap on the FPGA
programmability, in comparison with low-level program-
ming with hardware description languages (HDL) [1, 8, 13].
Although this paper focuses on Altera OpenCL SDK, our
study can be applicable to other vendors like Xilinx, with
minor modifications to our analysis framework.

Even with Altera OpenCL SDK, users are still facing the
challenge of programming FPGAs with OpenCL efficiently.
Although OpenCL has offered a multi-threaded abstraction
to programmers, the architecture of FPGA is fundamentally
different from that of CPU/GPU. For example, each instruc-
tion has its own custom circuit on FPGAs, while instructions
share the common pipeline of CPUs/GPUs. Therefore,
optimizing OpenCL code on FPGAs requires the awareness
of FPGA architecture. On the one hand, there are a series
of FPGA-centric optimizations and their combinations. On
the other hand, programmers should consider the FPGA
resource constraints since different combination consume
different amounts of FPGA resources.

If the code tuning on FPGAs was done properly, the
performance could be boosted significantly. Consider an
example of Matrix multiplication (MM). We implement
MM in OpenCL with four different optimizations (namely
SM, CU, SIMD and UL). The exact meanings of these
four optimizations are not important here, and we present
more details about our implementation in Section 6.3. The
normalized performance speedup after applying the opti-
mizations and their combinations over baseline on FPGA is
shown in Figure 1. The leftmost one is the baseline. The
next four show the performance of the kernels with only
one optimization. The remaining ones show the speedup
of some example optimization combinations (i.e., when one
more optimization is applied). The important observation
here is, with careful tuning and optimization combinations,
the optimized implementation can be over two orders of
magnitude faster than the baseline implementation. It shows
the importance of understanding to what extent each opti-
mization affects the OpenCL program on FPGA, as well
as guiding programmers to choose the optimal optimization
combination under the limited resource budget of FPGA.

Existing performance models [3, 20, 29] and code tuning
tools [4, 29, 33] are specifically designed and developed
for CPU/GPU. They cannot be directly applicable to FPGA.
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Figure 1: Matrix multiplication (MM) performance speedup
over baseline with different optimization combinations
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Figure 2: Overview of Performance analysis framework on
FPGA

Though there are a few performance models [12, 14] for
FPGAs, they are not designed for both performance analysis
model and code tuning for OpenCL programs on FPGAs.

In this paper, we propose a performance analysis frame-
work to assist programmers to optimize the OpenCL pro-
gram on FPGAs. We assume that programmers adopt
iterative and incremental development model [22] to tune
and optimize their OpenCL programs. At the beginning of
each iteration of the software development, our framework
quantitatively estimates the performance potentials of the
FPGA application via four metrics: global memory potential
(Bmem), computing potential (Bcomp), pipeline balance po-
tential (Bbalance), and inter-thread pipeline potential (Bit pp).
These four metrics suggest the potential performance bot-
tleneck, and then programmers can decide what types of
optimizations that should be selected next for further per-
formance optimization.

The performance analysis framework on FPGAs has three
components: a frontend data collector, an analytical model,
and a performance potential advisor, as shown in Figure
2. First, the frontend data collector takes an OpenCL
application as an input and then performs the static s-
tatistical collection on the corresponding LLVM IR code
as well as dynamic profiling of the OpenCL application
execution on GPU. The static and dynamic statistics are
fed into our analytical performance model. Second, the
analytical model predicts the performance of OpenCL kernel
by carefully analyzing and modeling the massive parallel
execution mechanism of FPGAs. Third, the performance
advisor digests the model information and provides the four
potential metrics to understand the performance bottleneck.
Thus, programmers are able to use the four potential metrics
to diagnose the main performance bottleneck, and then apply
the corresponding optimization to the OpenCL kernel.

To evaluate the proposed framework, we apply it to a
few OpenCL programs from existing benchmarks [6] or
source code from authors [9, 10]. The results show that our
framework is able to differentiate the performance impact
of individual optimizations and their combinations as well
as successfully provide programmers with understandable
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Figure 3: Architectural view of Altera OpenCL SDK
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Figure 4: FPGA pipeline of VecAdd (C=A+B)

metrics to identify the performance bottleneck of the Open-
CL kernel. Moreover, the optimization guided by our
performance framework significantly outperforms that from
Altera’s resource driven optimization [2].

In summary, this paper makes the following two key
contributions. First, we propose a FPGA-centric perfor-
mance analysis framework that is able to predict the OpenCL
kernel performance on FPGA with different optimization
combinations. Second, we propose four FPGA-centric
metrics to show the performance potentials and then guide
the programmer to pinpoint the bottlenecks for OpenCL
kernel on FPGAs. To the best of our knowledge, this study
is the first of its kind in performance analysis and diagnosis
for OpenCL programs on FPGAs.

The remainder of this paper is organized as follows. We
give the background and preliminaries in Section 2. We
present the details on our data collector in Section 3. In
Section 4, we present the design detail of the FPGA-centric
performance analysis model. In Section 5, we present the
four potential performance metrics. In Section 6, we present
our experimental results. Section 7 describes the related
work. Finally, we conclude this paper in Section 8.

2. PRELIMINARIES AND BACKGROUND
In this section, we present OpenCL architecture for FPGA

and OpenCL execution model on FPGA, followed by an
overview of our proposed framework.

2.1 OpenCL Architecture for FPGAs
Altera provides the OpenCL SDK [1] to abstract away

the hardware complexities from the FPGA implementation.
Figure 3 illustrates the architecture for Altera OpenCL
SDK, and their interconnects with global memory and local
memory. Different from viewing FPGAs as pure hardware
resources such as LUTs, DSP blocks and memory blocks,
the OpenCL SDK views the FPGA as a massive parallel
architecture. An OpenCL kernel can contain multiple kernel
pipelines, i.e., Compute Units (CUs). Each CU implements
a massive pipelined execution for the OpenCL program.
Figure 4 shows the pipelined execution of a simplified vector
addition (C = A+B). Memory and computation operations
can overlap with each other for efficiency.

From the perspective of OpenCL, the memory component
of FPGA computing system contains three layers. First, the



global memory resides in DDRs of the FPGA board. The
accesses to global memory have long latency, and its band-
width is shared by all the CUs on the FPGA. Second, the
local memory is a low-latency and high-bandwidth scratch-
pad memory, and it has four banks for each CU. Third,
the private memory, storing variables or small arrays for
each work item (i.e., the basic execution unit in OpenCL), is
implemented using completely-parallel registers. Compared
to CPU/GPU, the private memory is rather plentiful in
FPGA.

Each CU has its own local memory interconnect while
all the pipelines share the global memory interconnect. In
particular, load/store operations to local memory access
from each CU can be combined together to arbitrate for the
local memory. In contrast, load/store operations to global
memory access from all CUs compete for the on-board glob-
al memory bandwidth [1]. The absence of dedicated cache
hierarchy further makes the global memory transactions of
FPGAs significantly less efficient than those of CPUs/GPUs.

The OpenCL SDK exposes a number of key hardware and
software features to programmers so that they are able to
perform performance optimizations on the OpenCL kernel.

Local Memory (SM): To alleviate the stalls on the global
memory, the local memory can be used to reduce the number
of global memory accesses.

Memory Coalescing (MC): To reduce the number of
global memory transactions, MC is used to refine the global
memory access pattern so that global memory operations
from consecutive work items can be coalesced into a single
wide memory transaction.

Loop Unrolling (UL): If a large number of loop itera-
tions exist in the kernel pipeline, the loop iterations could
potentially be the critical path of the kernel pipeline. UL
can increase the pipeline throughput by allocating more
hardware resources to the loop. Also, UL might have a side-
product benefit on FPGAs. The load/store operations can be
coalesced so that the number of global memory transactions
is reduced.

Kernel Vectorization (SIMD): To achieve higher through-
put of OpenCL kernel execution, SIMD can be applied to
translate multiple scalar arithmetic operations to a single
vector arithmetic operation. With SIMD, the number of total
work items (#WI) can be reduced, given the same amount of
workloads per work item.

Kernel pipeline replication (CU): If the hardware re-
source is sufficient on the FPGA, the kernel pipeline can
be replicated to generate multiple CUs to achieve higher
throughput. The inner hardware scheduler automatically dis-
patches the work groups among CUs. Since CUs consumes
more hardware resources, the operating frequency of FPGA
tends to be lower than that of one CU. That means, two CUs
cannot always double the performance. Another issue is
that the global memory load/store operations from multiple
CUs compete for the global memory bandwidth and the total
number of global memory operations stays the same.
2.2 OpenCL Execution Model on FPGA

The Altera’s compilation framework [13] is based on the
LLVM framework. It first translates the OpenCL kernel (.cl
file) into the intermediate representation (LLVM IR) via its
specific C-Language parser, and then converts the LLVM IR

Algorithm 1: AN EXAMPLE WITH PIPELINE IMBAL-
ANCE PROBLEM

1 gid← get_global_id(0);
2 for ( j← 0 to 127) do
3 A[(gid� 7)+ j]← B[(gid� 7)+ j]+C[(gid� 7)+ j];
4 end
5 for (k← 0 to 15) do
6 D[(gid� 4)+ k]← E[(gid� 4)+ k]+F [(gid� 4)+ k];
7 end

OpenCL 
Kernel

Entry: 

 %1 = call i32 @get_global_id(0) 
 %2 = shl i32 %1, 7 
 %3 = shl i32 %1, 4
  br label %128_loop

128_loop 16_loop
End:             

 ret void

…
  %7 = load i32 addrspace(1)* %6
  %9 = load i32 addrspace(1)* %8
  %10 = add nsw i32 %9, %7
  store i32 %10, i32 addrspace(1)* %11
  %12 = add nsw i32 %j.02, 1
  %exitcond3 = icmp eq i32 %12, 128
  br i1 %exitcond3, %16_loop, %128_loop

…
  %16 = load i32 addrspace(1)* %15,  
  %18 = load i32 addrspace(1)* %17
  %19 = add nsw i32 %18, %16
  store i32 %19, i32 addrspace(1)* %20
  %21 = add nsw i32 %k.01, 1
  %exitcond = icmp eq i32 %21, 16
  br i1 %exitcond, %end, %16_loop

128_loop:                                      

   %7 = load i32 addrspace(1)* %6
  %9 = load i32 addrspace(1)* %8
  %10 = add nsw i32 %9, %7
  store i32 %10, i32 addrspace(1)* %11
  %12 = add nsw i32 %j.02, 1
  %exitcond3 = icmp eq i32 %12, 128
  br i1 %exitcond3, %16_loop, %128_loop

16_loop:                                     
  %16 = load i32 addrspace(1)* %15,  
  %18 = load i32 addrspace(1)* %17
  %19 = add nsw i32 %18, %16
  store i32 %19, i32 addrspace(1)* %20
  %21 = add nsw i32 %k.01, 1
  %exitcond = icmp eq i32 %21, 16
  br i1 %exitcond, %end, %16_loop

Entry: 
 %1 = tail call i32 @get_global_id(i32 0)
 %2 = shl i32 %1, 7;  %3 = shl i32 %1, 4
  br label %128_loop

End:              
ret void

1
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1
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(a) Control flow graph (b) LLVM hierarchy

Figure 5: Control flow graph and LLVM hierarchy of
Algorithm 1

into the Verilog HDL for the OpenCL kernel.
The LLVM IR of the corresponding OpenCL kernel can

be represented as a hierarchy named control flow graph
(CFG). The CFG consists of basic blocks connected by
control-flow edges [13]. The basic block consists of a group
of instructions in a contiguous sequence. The control flow
(e.g., loops and if-else branches) among basic blocks form
a CFG. Each edge is associated with a trip count, indicating
the number of times that the execution of the basic block
is along this control flow. An example OpenCL program
with two loops is shown in Algorithm 1, whose LLVM IR is
illustrated in Figure 5. In this example, there are four basic
blocks (e.g., 128_loop and 16_loop) in the CFG. The first
loop (basic block: 128_loop) at Lines 2-3 has a trip count of
128 for each work item (gid). The second loop (basic block:
16_loop) at Lines 5-6 has a trip count of 16.

Based on the specific properties of OpenCL implementa-
tion on FPGA, each instruction in a basic block is imple-
mented with its own dedicated circuit. Thus, each basic
block is implemented with the dedicated pipeline, and all
the basic blocks in an OpenCL kernel can execute simul-
taneously when there is sufficient parallelism (in terms of
work items) in the whole OpenCL pipeline. In other words,
each basic block behaves like the execution of a separate
core. That is, the performance of an OpenCL kernel is
determined by the performance of the slowest core (basic
block). Therefore, for the programmer, it is critical to keep
the load balanced among basic blocks of the OpenCL kernel.
In the example CFG of Figure 5, the four basic blocks can
execute concurrently. For load balancing among the basic
blocks, we should put more resources (via UL) in optimizing
the first loop, since the performance is determined by the
slowest part (the first loop: 128_loop).

When developing the performance analysis framework,



we have considered three compilation levels for analysis:
OpenCL source code, LLVM IR and Verilog HDL. To the
end, we choose LLVM IR as the targeted level for the fol-
lowing reasons. First, LLVM IR has the fixed number of IR
instructions, with a rich set of static analysis tools available.
Second, LLVM IR allows us to pinpoint the bottleneck of the
source code for further analysis. In comparison, the analysis
of OpenCL source code is very difficult since the pattern
of high-level language is flexible. On the other hand, the
Verilog HDL level analysis is too low-level, because even the
basic operations (e.g. floating point addition) are converted
into the large-size Verilog code. Together with the automatic
generated control logic, it is very tedious and programmer-
unfriendly to map the Verilog code back to the OpenCL
code, indicating that it is hard to pinpoint the performance
bottleneck to programmers by analyzing the Verilog code.

2.3 Overview of Our Framework
The OpenCL SDK can resolve the FPGA programmabili-

ty to a large extent. However, it is still a rather open problem
on developing performance models and tuning tools to
optimize the performance of OpenCL programs on FPGAs.
As shown in Introduction, such FPGA-specific optimiza-
tions are essential for high performance OpenCL programs
on FPGAs. That motivates us to develop a performance
analyses framework for optimizing OpenCL applications on
FPGAs, as shown in Figure 2. Our framework has combined
static and dynamic analysis to offer performance predictions
and optimization guides.

The basic idea behind the proposed performance frame-
work is on iterative and incremental development in soft-
ware engineering [22]. In this software development, pro-
grammers develop an OpenCL application through repeated
cycles on a number of phases including planning, im-
plementation, testing and evaluation. For optimizing the
performance of an OpenCL application, programmers are
facing many optimization choices, ranging from algorithmic
design to architecture-specific optimizations. Most impor-
tantly, programmers need to know where the performance
bottleneck is in their source code, and whether the applied
optimization has already efficiently utilized the hardware
resources of FPGA. Therefore, the proposed performance
analysis framework facilitates programmers with under-
standable metrics to identify the performance bottleneck of
the OpenCL kernel, and advises them with four potential
metrics for further optimizations. That means, our frame-
work mainly focuses on two phases in the iterative and
incremental development cycle: the former for evaluation,
and the latter for planning. Also, the framework does not
pose any restriction on the other two phases: implementation
and testing. For example, in order to resolve the memory
bottleneck, programmers can implement a completely new
memory-efficient algorithm. When programmers adopt
architecture-specific optimizations (examples listed in Sec-
tion 2.1), our framework can guide to select the suitable
optimization combination and the parameter setting for each
optimization in the combination.

3. INPUT DATA COLLECTORS
From this section on, we present the details of the compo-

nents in our performance analysis framework. This section

presents the details on input data collector, followed by
the analytical model and performance potential advisor in
Sections 4 and 5, respectively.

The analytical model on OpenCL-based FPGA requires
several types of statistics to roughly predict the performance
of the input OpenCL kernel and to identify the performance
potentials. The data sources include standard inputs (e.g.,
according to vendor specification or from the programmer),
static and dynamic analysis. Their notations are summarized
in Table 1. For static and dynamic analysis, we have
developed two data collectors: static statistical collector and
run-time statistical collector accordingly.

3.1 Standard Inputs
The standard inputs include parameters that can be ob-

tained from calibrations, vendor specification, compilation
report and host code.

IL, IM and ID represent the initial resource availability
of logic blocks, memory blocks and DSP blocks in FPGA,
respectively. Note, some resources are initially used by DDR
and PCI-e controller. In our test FPGA, we calibrate the
FPGA and obtain IL, IM and ID to be 83%, 89% and 100%
respectively.

From the Altera compilation report, we collect the fre-
quency #Freq and resource utilizations (#Ulogic, #Umem and
#Udsp) of logic blocks, memory blocks, and DSP blocks,
respectively. The resource utilizations are used to estimate
the computation potential.

From the hardware specification, we obtain the values for
#Banks and #Mem_trans_width. Their values are 2 and 64
bytes, respectively.

The number of work items (#WI) is obtained from the
function call of kernel invocation in the host code.

3.2 Static Statistical Collector
Since Altera OpenCL SDK, which generates the inter-

mediate representation (LLVM IR) file, is not open-source,
our static statistical collector is implemented mainly on the
open-source LLVM 3.4 [11] and Clang.

In the pipelined execution model, all basic blocks can
be executed simultaneously. We therefore develop a data
structure called LLVM hierarchy to capture the pipelined
execution model. Given the CFG, we can construct the
LLVM hierarchy in a recursive manner. The entry node of
the CFG forms the root node of the LLVM hierarchy. Next,
we find all the child nodes for the root node. We traverse the
CFG by distinguishing node types, and add the child node
to the root node from the left to right. For a basic block,
we simply add it as a leaf child to the root node. Otherwise,
we add an non-leaf child to the root node, and associate it
with the relevant information such as trip count. The non-
leaf node is further expanded in the later recursion steps.
An example of LLVM hierarchy is shown on the right of
Figure 5. A leaf node in the LLVM hierarchy corresponds to
a basic block in the CFG. Thus, we also call the leaf node of
LLVM hierarchy a basic block. In the following, we mainly
use the LLVM hierarchy for our analytical model.

We design a built-in pass (based on the existing llvm ::
BasicBlock class) obtained from the LLVM tool to analyze
the static information (including #Mem_instsi, #Mem_bytesi,
#Mem_bursti and #Cyclei) of the basic block i. Program-



Table 1: Summary of parameters
Model Parameter Definition Source

#WI # of global work items Standard input
#Mem_trans_width # of maximum memory transaction width in bytes Standard input

#Banks # of number of memory banks Standard input
#Freq # of frequency of the OpenCL kernel. Standard input

#Ulogic, #Umem, #Udsp # utilization of logic blocks, memory blocks and DSP blocks. Standard input
IL, IM , ID The initial resource availability of logic blocks, memory blocks and DSP blocks Standard input

#CU # of compute units Static Analysis
#SIMD # of vectorization factor Static Analysis
#ULi # of unrolling factor of the LLVM node i Static Analysis
#NB # of number of basic blocks Static Analysis

#Mem_instsi # of memory instructions of the LLVM node i Static Analysis
#Cyclei # of cycles of the LLVM node i Static Analysis

#Mem_bytesi # of average memory bytes of of the LLVM node i Static Analysis
#Mem_bursti # of average memory burst length of the LLVM node i Static Analysis

#Tripi # of loop trip count of the LLVM node i Dynamic Analysis

mers can enable these two optimizations (SIMD and UL) via
annotation in the OpenCL source code. For the entire kernel,
programmer can specify the degree of SIMD (#SIMD). For
the loop of the basic block, programmer can specify the
unrolling factor #ULi. Since both SIMD and UL affect the
number of memory and computation instructions of the basic
block and each instruction has its own custom circuit, we
extend the LLVM tool to handle those two attributes. In
particular, we define a combined scale factor f = #ULi×
#SIMD for the basic block i to reflect their combined effect.

#Mem_instsi. It represents the total number of global
memory instructions in the basic block i, as shown in
Eq. 1. For each global memory operation j (with load/store
bytes: ls_bytes j

i ), the calculation is based on the combined
scale factor f . If f = 1, the number of global memory
operations (ls_num j

i ) is 1. Otherwise, ls_num j
i is given

in Eq. 2. Again, for this case, we consider whether the
memory accesses are coalesced or not (i.e., whether their
memory addresses are consecutive or not). If so, memory
operations can be coalesced into wide memory transaction
(up to #Mem_trans_width bits per transaction). There-
fore, ls_num j

i can be reduced significantly by a factor of
#Mem_trans_width. Otherwise, the number is f , since each
instruction after UL or SIMD issues f memory transactions.

#Mem_instsi = ∑
j

ls_num j
i (1)

ls_num j
i =

{
1+

ls_bytes j
i × ( f −1)

#Mem_trans_width
, Coalesced

f , Uncoalesced
(2)

#Mem_bytesi. It denotes the average number of bytes
of the global memory instructions in the basic block i, as
given in Eq. 3, where f ×∑

j
ls_bytes j

i represents the total

size of data accessed by all the memory instructions after
considering the combined effect from SIMD and UL.

#Mem_bytesi =

f ×∑
j

ls_bytes j
i

#Mem_instsi
(3)

#Mem_bursti. We collect the burst length #Mem_burst j
i

of each global memory instruction j in the basic block i
by analyzing its memory access pattern. It is larger than
1 when the address of global memory access increases with
work item and #Mem_trans_width is larger than ls_bytes j

i ×
f . That is, memory access order is sequential. A few
memory transactions can be merged into a single wide

Table 2: Latency (cycles) of computation instruction
fp_sqrt fp_mul fp_add local memory instruction fp_div

28 5 7 7 14
int_mul int_div branch int_add/bitwise

3 32 1 1

memory transaction [2], as shown in Eq. 4. So, in order to
achieve better performance, the sequential memory access
is recommended, not the random memory access. Then,
#Mem_bursti is computed as the average burst length of the
global memory operations, as shown in Eq. 5.

#Mem_burst j
i =

{
#Mem_trans_width

ls_bytes j
i × f

, Coalesced

1, Uncoalesced
(4)

#Mem_bursti =
∑
j

#Mem_burst j
i

#Mem_instsi
(5)

#Cyclei. It denotes the total number of cycles of the
critical path in the basic block i, including all the com-
putation instructions, where the local memory load/store
instructions are considered to be computation instructions
since they only access the on-chip buffers, not the global
memory. We employ dynamic programming approach to
compute the critical path [21]. The cycles for the basic kind
of instructions are summarized as shown in Table 2. We have
obtained the unit costs from profiling the FPGA IP cores of
the Altera OpenCL SDK.
3.3 Run-time Statistical Collector

In this subsection, we determine the run-time statistics
from dynamic profiling, such as #Tripi.

We design another LLVM built-in pass (based on l-
lvm::LoopPass class) to determine the structure of each node
in the LLVM hierarchy. Then, we log down the trip count for
each LLVM node (#Tripi) when running the same OpenCL
kernel with the same input parameters on GPU, since the trip
count can vary with the input data. For a loop, when loop
unrolling #ULi is applied, the number of trip counts #Tripi
is reduced by #ULi times, since the dedicated pipeline is
replicated by #ULi times.

In summary, with static and dynamic analysis, we have
constructed the LLVM hierarchy (as illustrated in Figure 5)
and generated the corresponding static and dynamic statis-
tics. Then, these statistics are fed into the analytical model
which determines the execution time of the OpenCL kernel
and the corresponding four potential metrics.
4. ANALYTICAL MODEL



In this section, we firstly present the overall estimation
of the input OpenCL kernel, secondly the performance
estimation of each leaf node (basic block) of the input
OpenCL kernel, and thirdly the number of active work items
residing on each basic block.
4.1 Overall Estimation

The estimated time of executing the input OpenCL kernel
is given in Eq. 6, where CS is the estimated number of cycles,
and S denotes the root node (i.e., the entrance node) of the
CFG of the OpenCL kernel.

TS =
CS

#Freq
(6)

According to the structure of the LLVM hierarchy, the
performance estimation of CS is done in a recursive manner.

Sequential type. If S consists of multiple child nodes,
denoted as Si (i is from 1 to NS). Thus, according to the
pipelined execution model of the FPGA, we define CS as the
largest number of cycles among child nodes, as shown in
Eq. 7.

CS = Max(CS1 ,CS2 , ...,CSNS
) (7)

If S is a basic block, we estimate its execution cycles
according to the computation and memory instructions.
Then, the recursion finishes. The detailed estimation of a
basic block are provided in subsection 4.2.

If-else type. It is estimated to be the larger number of
cycles between its IF child node and ELSE child node of S,
as shown in Eq. 8. Then, the recursion continues.

CS = Max(CSIF ,CSELSE ) (8)

where SIF and SELSE denotes the child nodes of S for IF and
ELSE branches, respectively. The SWITCH clause can be
handled similarly.

For-loop type. The estimated number of cycles is shown
in Eq. 9. S contains NS child nodes, with each child node
executing #TripS times.

CS =

NSi

∑
j=1

CS j +(#TripS−1)× max
1≤t≤NS

(CSt ) (9)

The first part of Eq. 9 is the total number of cycles for all
child nodes of S, and the second part is the elapsed cycles
when executing the slowest child node for #TripS times,
according to the pipelined execution model among the child
nodes. From this estimation, it is important to optimize
the slowest node within the for loop, especially when the
number of iterations is high.
4.2 Estimation for a Basic Block

If k is a basic block, we estimate the cost of executing k to
be the larger one of the computation and the memory cycles,
considering that computation and memory instructions can
overlap with each other. Ck represents the estimated number
of cycles for executing basic block k, as shown in Eq. 10.

Ck = Max(Compk,Memk) (10)

where Compk and Memk represent the estimated number
of cycles for executing the computation and memory in-
structions, respectively. In the following, we present their
detailed estimations.

4.2.1 Estimating Compk

When estimating Compk, we need to consider whether
there are sufficient active work items residing on the basic
block k, #WIk (the details of its estimation are presented
later in subsection 4.2.3). Particularly, we check if the
number of active work items in this basic block is larger than
#CU × #Cyclek, where #CU (multiple CUs) means the ker-
nel pipeline is replicated by #CU times and then the number
of work items saturating kernel pipelines is also increased
by #CU times. If so, we estimate Compk to be Compmin

k
(as shown in Eq. 11), where k̂ indicates the LLVM node
index for the basic block k. In this case, the pipeline of the
basic block is fully utilized with sufficient work items. Then,
data dependencies from one work item can be hidden due
to massive thread parallelism within the OpenCL execution
model and the corresponding performance actually depends
on the throughput of the kernel pipelines. Otherwise,
it is estimated to multiply Compmin

k by a delay factor p

(p =
#CU×#Cyclek

#WIk
), because of insufficient work items

existing on the basic block k.

Compmin
k =

#WI×#Tripk̂
#CU

+#Cyclek−1 (11)

In summary, Compk is estimated in Eq. 12.

Compk =Max(Compmin
k ,Compmin

k ×
#CU×#Cyclek

#WIk
) (12)

4.2.2 Estimating Memk

Memk is calculated to be the estimated number (Mem_transk)
of global memory transactions divided by the estimated
number (MT P_lsuk) of memory transactions from the basic
block k served per cycle, as shown in Eq. 13.

Memk =
Mem_transk

MT P_lsuk
(13)

We now present the details on the estimation of Mem_transk
and MT P_lsuk.

Evaluating Mem_transk. It is the estimated number
of global memory transactions generated from the basic
block k, where each work item will generate #Mem_instsk
global memory operations, as shown in Eq. 14. However,
the number of global memory transactions with sequential
memory access pattern can be significantly reduced since
they can be coalesced (#Mem_burstk > 1).

Mem_transk =
#Mem_instsk×#WI

#Mem_burstk
(14)

Multiple CUs (#CU >1) do not affect the number of global
memory transactions for each basic block, since all CUs
share the global memory bandwidth, as shown in Figure 3.

Evaluating MT P_lsuk. Our estimation considers the
number of work items on the memory subsystem (#WImem).
The estimation of #WImem is presented later in subsec-
tion 4.2.3. If there are sufficient work items existing on
the memory subsystem. We calculate the peak number
of simultaneous memory transactions to global memory,
MT P_lsu_peak, to be the number #Banks of global memory
banks, as shown in Eq. 15. That is, one global memory



transaction can be served per cycle for each memory bank.

MT P_lsu_peak = #Banks (15)

Otherwise, if there are insufficient work items exist-
ing on the memory subsystem, #WImem is smaller than
#DRAM_lat ×MT P_lsu_peak, the global memory band-
width can be under-utilized. The actual peak number of
memory transactions served per cycle MT P_lsu is estimated
to be the smaller value of the two numbers (MT P_lsu_peak

and
#WImem

#DRAM_lat
), as shown in Eq. 16.

MT P_lsu = min(MT P_lsu_peak,
#WImem

#DRAM_lat
) (16)

Third, since all the basic blocks of the input Open-
CL kernel share the global memory bandwidth, we es-
timate the number of global memory transactions from
the basic block k served per cycle MT P_lsuk, as shown

in Eq. 17, where
Mem_cycles_totalk
Mem_cycles_total

means the memory

bandwidth occupation ratio of the basic block k to the
entire OpenCL kernel, and the corresponding estimations
of Mem_cycles_totalk and Mem_cycles_total are presented
later in subsection 4.2.3.

MT P_lsuk = MT P_lsu× Mem_cycles_totalk
Mem_cycles_total

(17)

4.2.3 Estimating #WIk and #WImem

In this part, we estimate the number of active work items
#WIk (or #WImem) on the computation part of basic block k
(or on the memory subsystem of the OpenCL kernel). The
total number of work items for all the basic blocks is #WI at
any time of the execution.

To simplify the estimation, we assume that the work
items are distributed to the computation/memory parts of
all basic blocks based on their total numbers of compu-
tation/memory cycles. We can obtain the total number
(Comp_cycles_totalk) of computation cycles for the basic
block k according to the LLVM hierarchy. In particu-
lar, we perform the calculation from the bottom up along
the path from the basic block k to the root. Initially,
Comp_cycles_totalk is set to #Cyclek. Along the path, if we
meet a loop-type node s, we multiply Comp_cycles_totalk
by a factor of #Trips. The total number (Mem_cycles_totalk)
of memory cycles for each basic block k can be calculated
similar to Comp_cycles_totalk.

With the total cycles for each basic block, we sum them
up and obtain Comp_cycles_total and Mem_cycles_total to
be the total number of cycles for computation and mem-
ory parts of the entire kernel, respectively. We calculate
Cycles_total =Comp_cycles_total+Mem_cycles_total for
the OpenCL kernel.

Therefore, we estimate #WIk and #WImem in Eqs. 18– 19.

#WIk =
Comp_cycles_totalk

Cycles_total
×#WI (18)

#WImem =
Mem_cycles_total

Cycles_total
×#WI (19)

5. PERFORMANCE ADVISOR
Recall that one of the key purposes of the proposed frame-

work is to assist programmers to identify the performance
bottleneck of their OpenCL programs, as in the evaluation
phase of iterative and incremental software development.
Therefore, we propose to quantify the performance poten-
tials for further optimizations in programmer understandable
metrics. With these metrics, programmers are able to
understand the root cause of the performance bottleneck, and
to choose to implement which type of optimizations next. If
all the metrics are very small, the OpenCL program tends to
work fairly well on FPGAs.

Specifically, we propose the following four metrics to
quantify the performance potentials according to the archi-
tectural features of FPGA, including Bcomp, Bmem, Bbalance
and Bit pp. They represent the extent that the bottleneck
comes from computation, memory, load balance among
different basic blocks and inter-thread parallelism respec-
tively. In practice, programmers can choose the one with
the highest potential for the optimization of next step. In the
following, we elaborate more details for each of the potential
metrics, as well as the FPGA-centric optimizations to reduce
those metrics.

Bcomp represents the performance potential from more
resource utilization on FPGA. We estimate Bcomp according
to the resource utilization in three major resource types
of FPGA including logic blocks, memory blocks and DSP
blocks. Bcomp is calculated as the bottleneck resource type
in Eq. 20, compared with the initial resource availability
of each resource type. If Bcomp is high, programmers
may consider increasing resource utilization by using the
optimizations CU, UL and SIMD.

Bcomp = min(
1−#Ulogic

IL
,

1−#Umem

IM
,

1−#Udsp

ID
) (20)

Bmem represents the performance potential from more
global memory bandwidth utilization. Since the FPGA
does not have a cache hierarchy, each load/store instruc-
tion directly goes to the global memory. We estimate
Bmem to be the available bandwidth in comparison with
the peak global memory bandwidth, as shown in Eq. 21.
∑

#NB
i=1 (#Mem_bytesi ·#Mem_instsi ·#Mem_bursti) represents

the real memory bandwidth, and (∑
#NB
i=1 #Mem_instsi) ×

#Mem_trans_width calculates the total memory bandwidth
by the kernel if all transactions uses the peak transaction
width. If Bmem is high, programmer can apply MC, UL and
SM to improve the memory bandwidth utilization.

Bmem = 1− ∑
#NB
i=1 #Mem_bytesi ·#Mem_instsi ·#Mem_bursti
#Mem_trans_width× (∑

#NB
i=1 #Mem_instsi)

(21)
Bbalance indicates the performance potential from more

load balancing among the basic blocks. Due to the pipelined
execution model of FPGA, the execution time of an OpenCL
kernel is determined by the slowest basic block. To offer
a simple and understandable hint, we compute Bbalance as
the performance difference between the slowest basic block
(ŝ) and second-slowest basic block (t̂), as shown in Eq. 22,
where Cŝ and Ct̂ are the execution cycles of the basic blocks



Table 3: Application and datasets used in our experiments
Application Dataset Size
Vector Add, (VecAdd) 32M integers for each vector size
Matrix Multiplication (MM) 2048*2048 matrices
K-means, K=128, 8 features (KM) 32M points
Word Count (WC) 1500MB text file
Similarity Scope (SS) 8000 files each with 8000 features

ŝ and t̂, estimated at subsection 4.2. If Bbalance is high, the
programmer can unroll the most critical basic block with the
optimization method UL (if the resource budget allows).

Bbalance =
Cŝ−Ct̂

Cŝ
(22)

Bit pp represents the performance potential from more
inter-thread pipeline parallelism. If there are insufficient
alive work items to feed the OpenCL kernel pipeline, the
performance degrades. We compute Bit pp, as shown in
Eq. 23.

Bit pp = max
1≤t≤#NB

(max(
Ct −Compmin

t

Ct
,
Ct −Memmin

t

Ct
)) (23)

We have defined Compmin
t in Eq. 11. For the basic block i,

Memmin
i is defined to be the estimated number of memory

cycles when there are sufficient work items residing on the
OpenCL kernel, as shown in Eq. 24.

Memmin
i =

Mem_transi

MT P_lsu_peak
× Mem_cycles_total

Mem_cycles_totalk
(24)

If Bit pp is high, programmers need to increase the number
of work items for better pipeline parallelism of the kernel
execution.

6. EXPERIMENTAL EVALUATION
6.1 Experimental Setup

Our experiments were conducted on Terasic’s DE5-Net
board with Altera OpenCL SDK 14.0, which includes 2-
bank 4GB DDR3 device memory (operating in roughly
hundreds of MHz), and an Altera Stratix V GX FPGA
(5SGXEA7N2F45C2). The FPGA includes 622K logic
elements, 2560 M20K memory blocks (50Mbit) and 256
DSP blocks. The FPGA board is connected to the host via
an X8 PCI-e 2.0 interface.

Applications. We have chosen some OpenCL programs
with different application areas as use cases. We start with
two relatively simple case studies: vector add (VecAdd)
from Altera OpenCL SDK and a simple implementation
of matrix multiplication (MM). We further choose more
complicated examples: K-means (KM) from Rodinia [6] and
MapReduce [9, 10]. The details on the applications and their
data sets are summarized in Table 3.

Methodology. Our evaluations cover two major aspects
of the proposed framework. Firstly, we evaluate the accuracy
of our analytical model for predicting the performance of
an OpenCL kernel with various FPGA-centric optimiza-
tions. Thus, we compare our performance analysis model
in capturing the performance gain brought by individual
optimizations and their combination. Secondly, we evaluate
the effectiveness of the performance potential metrics in
helping software development. As in iterative and incre-
mental software development, we mimic the process by
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Figure 6: Performance and Bit pp with different numbers of
work items

considering different FPGA-centric optimizations step by
step. We demonstrate that the proposed framework can give
hints to programmers which FPGA-centric optimization to
choose and determine the suitable value for its parameter.
6.2 Micro Benchmark: VecAdd

We use a microbenchmark (VecAdd) to evaluate the im-
pact of active work items (Bit pp) to the kernel performance,
as shown in Figure 6. Our performance model is able to
accurately predict the performance in real executions. When
the number of active work items is small, the pipeline is
severely under-utilized due to the shortage of work items
and Bit pp is large. Thus, the programmer should provide
sufficient work items (thread pipeline parallelism) to fully
utilize the kernel pipeline. When the number of work
items is larger than 128, the performance keeps stable.
Our performance model can capture the performance trend
with different numbers of active work items. Also, in our
estimation, all other three potentials are low.

In the following case studies, we have already set a
large number of work items so that Bit pp is minimized.
Therefore, we focus on other three performance potential
metrics afterwards.
6.3 Case Study with Matrix Multiplication

We apply our performance model to the matrix multipli-
cation (MM), which is classical application in the area of
HPC. MM’s baseline pseudo code is shown in Algorithm
2. The baseline represents a very preliminary and simple
implementation.

Algorithm 2: MM ALGORITHM: C=A×B
1 for (i← 0 to A_height−1) do
2 for ( j← 0 to B_width−1) do
3 f loat sum = 0.0;
4 for (k← 0 to A_width−1) do
5 sum+= A[i][k]×B[k][ j];
6 end
7 C[i][ j] = sum;
8 end
9 end

The data parallelism in MM is straightforward: all the
elements of matrix C are calculated in parallel, represented
as two nested loops in Lines 1–2. In this naive implementa-
tion, all matrices are stored in the row order. Each element
C[i][ j] at Line 7 requires A_width floating point multiply-
add operations and A_width×2 global memory loads. Such
repetitive memory accesses cause significant performance
degradation.
6.3.1 Optimizations for MM

We study the following optimizations to MM one by one.
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Figure 7: MM speedup with 18 optimization combinations

Local Memory (SM): We use the optimization SM to
store two small blocks of matrices A and B to implement
the tiling technique [31].

Loop Unrolling (UL):The innermost for-loop at Line 4
can be first unrolled to increase the throughput of this
for-loop. It also reduces the number of global memory
transactions. In particular, A[i][k] at Line 5 can be coalesced,
while B[k][ j] cannot, since the for loop at Line 4 iterates
with the value of k. According to #Mem_trans_width (512-
bit width) of DDR controller on FPGA, at most 16 32-
bit memory operations of A[i][k] can be coalesced. That
reduces the number of total memory accesses, which may
further improves the overall performance. We denote the
optimization of the loop unrolling with a factor of g to be
ULg.

Kernel Vectorization (SIMD): The floating-point mul-
tiplication addition operations at Lines 5 and 7 can be
vectorized. We denote the optimization of combining v
scalar arithmetic operations into a vector operation to be
SIMDv.

Kernel pipeline replication (CU): Multiple compute
units (CUs) are generated to execute MM algorithm together.
We denote the optimization of c CUs to be CUc.

6.3.2 Performance Model Evaluation for MM
Figure 7 shows the speedup over the baseline of the actual

execution and our prediction. Some part of the results have
been reported in Figure 1 in Introduction. The x-axis show
18 optimizations (including individual optimizations and
their combinations). The result shows that our prediction
can capture the performance gain of different optimizations.

Another thing should be mentioned is that the optimiza-
tion combination (SM+UL64+SIMD4) is 362 times faster
than the baseline implementation. Thus, it is necessary to
provide the FPGA programmer with the performance poten-
tials to efficiently utilize the FPGA computing resource.

6.3.3 Optimization Steps for MM
We now demonstrate how the proposed framework can

guide the code tuning, starting from the baseline of MM, in
three steps, as shown in Figure 8. Overall, during the code
tuning process of MM, our framework clearly pin-points the
performance bottleneck for each step, and provides insights
for the corresponding optimization.

Step 1: baseline → SM. For the baseline kernel, Bmem
is very large, indicating that we should explore the opti-
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Figure 8: Potential metrics and optimization steps for MM

mization methods to reduce memory bottleneck. Therefore,
the optimization method SM is applied, Bmem is reduced
significantly since the pattern of global memory access
becomes suitable for dynamic memory coalescing.

Step 2: SM → SM_UL. For the SM kernel, both Bcomp
and Bbalance are high, indicating that we should explore the
optimization methods to reduce unbalance and computation
bottlenecks. Therefore, the optimization method UL is
applied to the SM kernel since it can reduce both Bbalance
and Bcomp. As a consequence, the kernel performance is
significantly improved (63X speedup over the SM kernel).

Step 3: SM_UL → SM_UL_SIMD. For SM_UL kernel,
Bcomp is still high, indicating that we should explore the
optimization methods to reduce computation bottleneck. At
the same time, Bcomp is relatively high. Therefore, the
optimization method SIMD is applied, and then both Bcomp
and Bmem are reduced. We may stop the optimization
progress here, since Bcomp has become zero (e.g. 100%
utilization of DSP blocks in the FPGA). The SM_UL_SIMD
kernel achieves the optimum performance for MM on our
FPGA platform.

6.4 Case Study with K-means
KM is a clustering algorithm used extensively in data-

mining. The current OpenCL implementation (baseline) is
from Rodina [6] and it is originally designed for GPU. So,
its performance is far from optimum on FPGAs.

6.4.1 Optimizations for KM
We examine the impact of the following optimizations:

SM, UL, MC and CU. Since optimizations are quite similar
to those in MM, we briefly describe some details about
them. SM is to load the data (cluster center) into the
local memory of FPGA, since they are reused for each data
object. When applying UL, the optimization is to unroll the
destination computation process, since there is significant
load imbalance in the kernel. There are two candidate
loops to apply this optimization method, including inner
loop and outer loop in the main body of the source code
(we omit the source code, and refer readers to the Rodinia
benchmark [6]). We denote ULx_ULy for the case where
the inner loop’s unroll factor is x and the outer loop’s unroll
factor is y. MC is to refine the global memory access pattern
so that the address of memory instruction increases with the
number of work items.

6.4.2 Performance Model Evaluation for KM
Figure 9 shows the speedup over the baseline kernel of
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Figure 9: KM speedup with 19 optimization combinations
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Figure 10: Potential metrics and optimization steps for KM

the actual execution. The result shows that our prediction
can capture the trend of different optimization combinations.
When the optimization method MC is applied, the perfor-
mance improves significantly since the global memory ac-
cess pattern has good locality on FPGAs. It indicates that the
performance is very sensitive to the memory access pattern.
Interestingly, with MC, the computation turns out to be the
bottleneck, and then UL and CU can boost the performance.
Without MC, the bottleneck of the kernel implementation is
the under-utilized global memory bandwidth (indicated by
large Bmem in our estimation).

About the optimization UL, the inner loop is more critical
than the outer loop. Guided by the performance model, we
should first put the FPGA resource to the inner loop. When
it is fully unrolled, the outer loop can be further unrolled if
there is still available resource in FPGA. This code tuning
strategy has very sensitive performance gain. Our tool can
assist this decision making. For example, the kernel with
UL2_UL16 (137s) is much slower than UL8_UL2 (64.5s).

6.4.3 Optimization Steps for KM
We now demonstrate how the proposed framework can

guide the code tuning of KM in four steps, as shown in
Figure 10.

Step 1: baseline → SM. For the baseline kernel, Bmem is
very large, indicating that the memory performance is the
main bottleneck. Therefore, the optimization method SM is
applied, Bmem is reduced since the pattern of global memory
access becomes suitable for dynamic memory coalescing.

Step 2: SM → SM_UL. For the SM kernel, both Bbalance
and Bcomp are relatively high, indicating that we should
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Figure 11: Potential metrics and optimization steps for WC

explore the optimization methods to reduce unbalance and
computation bottlenecks. Therefore, the optimization method
UL is applied since it can reduce both Bbalance and Bcomp.

Step 3: SM_UL→ SM_UL_MC. For the SM_UL kernel,
Bmem is still high, indicating that we should explore the
optimization methods to reduce memory bottleneck. There-
fore, when the optimization method MC is applied, Bmem
is significantly reduced since the optimized memory access
pattern is suitable for the optimization method UL. And the
performance is improved significantly (11.6X speedup over
SM_UL kernel). Interestingly, Bcomp becomes larger since
the MC can reduce the number of global memory access
instructions, compared with the SM_UL kernel.

Step 4: SM_UL_MC→ SM_UL_MC_CU. Since there are
FPGA resources available for the further optimization, the
optimization CU is applied, then Bcomp is reduced. We may
stop the optimization progress here, since three metrics are
relatively small.
6.5 Case Study with MapReduce

MapReduce has been widely studied on parallel architec-
tures such as GPUs [16, 9, 10]. According to previous paper-
s [9, 10], MapReduce applications mainly have two kinds:
reduction-intensive and map-computation-intensive. We
choose Word Count (WC) and Similarity Scope (SS) as the
representatives for reduction-intensive and map-computation-
intensive applications, respectively. WC is to count the
number of occurrences of words in a set of text files, and SS
is to calculate the similarity score among documents, which
is widely used as basic routines in web search.
6.5.1 Optimizations for MapReduce

In MapReduce applications, we consider SM, UL and CU,
which are similar to the above applications. Additionally, we
discuss more details on the following two optimizations.

Private Memory (PM). The private memory is imple-
mented using completely-parallel registers (logics), which
are plentiful resources in FPGAs. Then, the private memory
is useful for storing temporary variables or small arrays in
the OpenCL kernel [2]. The kernel can access private mem-
ory completely in parallel, and no arbitration is required for
access permission. Since MapReduce applications contain
a lot of global memory accesses, we should use private
memory, instead of global memory, whenever possible.

Vector Type (VT). The programmer should employ built-
in vector type, e.g.uint4, to combine several small-sized
global memory accesses, e.g. uint. Then, the number of
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Figure 12: Potential metrics and optimization steps for SS

global memory transactions is reduced.
6.5.2 Optimization Steps for MapReduce

Figures 11 and 12 show how the proposed framework
can effectively guide the code tunings for both WC and SS.
The optimizations are applied to the user-defined map and
reduce functions in those two applications. The optimum
implementation is over 11 (or 9) times faster than the
baseline of WC (or SS).

WC has four tuning steps by applying SM, PM, VT and
CU accordingly. SS has two tuning steps by applying VT
and UL accordingly. Due to the space limitation, we omit
the discussion on code tuning, and point out the different
findings compared with the above experiments on MM and
KM. After tuning, WC and SS still have some potential
metric with a high value. For WC, Bmem is always high
for each step. This is due to the inherent random memory
accesses due to the random insertions into the hash table for
the intermediate data. For SS, Bbalance is high for the VT_UL
kernel. The proposed framework cannot suggest any further
optimization due to the resource constraint of FPGA. That
also explains the relatively low speedup on MapReduce than
on MM and KM. For further performance improvement,
programmers need to develop more efficient algorithms or
employ more powerful FPGAs (rather than pure FPGA-
centric optimizations studied in this experiment).

Table 4: Speedup of our framework and “-O3 approach" in
Altera OpenCL SDK over baseline

MM KM WC SS
-O3 approach 0.7 4.4 0.93 1

Our framework 362.4 293.4 11.4 9.4

6.6 Comparison with Altera SDK
We compare the performance of the OpenCL program

1) with the optimization guided by our framework, and
2) with the Altera SDK resource driven optimizations (“-
O3 approach", “aoc -O3" command, with default maxi-
mum_logic_utilization=85%) [2]. In particular, we apply
these two optimization frameworks to the four baseline
implementations (MM, KM, WC and SS). The experiment
result shows that the implementations optimized by our
framework over the baselines can achieve significantly high-
er speedups than the Altera SDK resource driven optimiza-
tions, as shown in Table 4. Compared with the baseline,
the “-O3 approach" even slows down the performance for
some cases such as MM and WC. We further analyze “-O3

approach" on MM. The “-O3 approach" suggests (#SIMD=2
and #CU=4), which requires twice on the number of RAM
blocks and four times on the number of DSP blocks of the
baseline. However, its performance is even slower than the
baseline approach. The major reason is that setting #CU=4
does not reduce the number of global memory transaction-
s (major bottleneck), while the frequency is significantly
dropped due to more resource requirement. In fact, our
performance model can capture this effect.
7. RELATED WORK

OpenCL has become a popular programming framework
for heterogeneous computing, including high performance
computing [30] and databases [17, 18]. Most of those studies
are performed on CPU/GPU. Evaluations with OpenCL
implementations for computationally intensive applications
have been conducted on CPUs, GPUs and FPGAs [7, 13].
Generally, FPGAs achieve much better energy efficiency
than CPUs/GPUs. With the introduction of OpenCL SDK
on FPGAs, the programmability of FPGAs has been eased,
and more applications can be deployed and ran on FPGAs.

There have been a number of performance models for
FPGAs (e.g., [12, 14, 15, 24, 32]). Curreri et al. [12]’s
model is mainly for Impulse C. Silva et al. [14] developed a
Roofline model for high-level synthesis tools. Park et al. [25]
developed a cost model targeting at loop transformations.
Papadimitriou et al. [24] developed the cost model to assess
partial reconfiguration of FPGAs. Quite different from the
previous studies with a focus on individual applications or
on HDL, this study focuses on the emerging OpenCL SDK.
We develop performance analysis and diagnosis tool for
OpenCL programs on FPGAs.

Performance model and analysis is a hot research topic on
CPUs/GPUs. Due to the architectural differences between
FPGAs and CPUs/GPUs, previous studies on CPUs/GPUs
(e.g., [3, 20, 27, 29, 33]) cannot be directly to FPGAs. Since
GPUs are emerging in recent years, we briefly review a
number of studies on GPUs. Ryoo et al. [27] summarized
a number of optimization principles for CUDA programs.
Baghsorkhi et al. [3] presented a cycle-accurate analytical
model on GPU to predict the performance of GPU appli-
cations. Zhang et al. [33] developed a throughput model
by modeling three major components, including instruction
pipeline, shared memory access, and global memory ac-
cess. Kim et al. [20] proposed the warp-aware performance
analysis model to estimate the performance of GPGPU
application. Further, Sim et al. [29] developed a novel
performance analysis model to exactly identify the main
cause of performance bottlenecks of GPGPU applications.
Sharing the same spirit as the framework and tools on GPUs
(e.g., [29, 33]), our study develops a performance model
and analysis framework for OpenCL programs on FPGAs.
By capturing the performance behavior on OpenCL-based
FPGAs, the proposed performance model is significantly
different from those in the previous studies for CPUs/GPUs.
8. CONCLUSIONS AND FUTURE WORK

This paper proposes a performance model that captures
the key architectural features of the new FPGA abstraction
under OpenCL, predicts the performance with different
optimization combination and identifies the bottlenecks of
OpenCL kernel code. We demonstrate the efficiency of our



model with several user cases, by considering dozens of op-
timization combinations. The results show that our proposed
model is highly accurate in predicting the performance
speedup of individual optimization and their combinations,
and that careful tuning can achieve up to two orders of
magnitude speedup over the baseline implementation. Also,
our tools can offer programmer understandable metrics, and
guide the code tuning on resolving performance bottlenecks
step by step. As for future work, we plan to automate the
performance analysis framework for FPGAs using OpenCL.
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