
MG-Join: A Scalable Join for Massively Parallel Multi-GPU
Architectures

Johns Paul
National University of Singapore

Singapore

Shengliang Lu
National University of Singapore

Singapore

Bingsheng He
National University of Singapore

Singapore

Chiew Tong Lau
Nanyang Technological University

Singapore

ABSTRACT
The recent scale-up of GPU hardware through the integration of
multiple GPUs into a single machine and the introduction of higher
bandwidth interconnects like NVLink 2.0 have enabled new oppor-
tunities of relational query processing on multiple GPUs. However,
due to the unique characteristics of GPUs and the interconnects, ex-
isting hash join implementations spend up to 66% of their execution
time moving the data between the GPUs and achieve lower than
50% utilization of the newer high bandwidth interconnects. This
leads to extremely poor scalability of hash join performance on
multiple GPUs, which can be slower than the performance on a sin-
gle GPU. In this paper, we propose MG-Join, a scalable partitioned
hash join implementation on multiple GPUs of a single machine.
In order to effectively improve the bandwidth utilization, we de-
velop a novel multi-hop routing for cross-GPU communication that
adaptively chooses the efficient route for each data flow to mini-
mize congestion. Our experiments on the DGX-1 machine show
that MG-Join helps significantly reduce the communication over-
head and achieves up to 97% utilization of the bisection bandwidth
of the interconnects, resulting in significantly better scalability.
Overall, MG-Join outperforms the state-of-the-art hash join im-
plementations by up to 2.5x. MG-Join further helps improve the
overall performance of TPC-H queries by up to 4.5x over multi-GPU
version of an open-source commercial GPU database Omnisci.
ACM Reference Format:
Johns Paul, Shengliang Lu, Bingsheng He, and Chiew Tong Lau. 2021. MG-
Join: A Scalable Join for Massively Parallel Multi-GPU Architectures. In
Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3448016.3457254

1 INTRODUCTION
The use of higher bandwidth global memory and the availability
of larger number of parallel cores have made GPUs the ideal accel-
erator for in-memory relational query processing [31, 32, 38, 43].
Typically, a single GPU offers 10x higher global memory band-
width and 100x more cores than a CPU. However, the limited global

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3457254

memory size of GPUs combined with the low bandwidth of CPU-
GPU and GPU-GPU interconnects has held back their adoptions for
large data sets that do not fit within the global memory of a single
GPU [16]. In recent years, we have witnessed the rise of emerging
multi-GPU architectures in a single machine. In fact, NVIDIA alone
has released five different multi-GPU server configurations. First,
the integration of multiple GPUs (up to 20) into a single machine
means that it is possible to have hundreds of gigabytes of GPU
memory. For example, a machine with 16 GPUs each containing
32 GB of global memory offers a total of 512 GB GPU memory,
which is sufficient for many online analytical workloads. Second,
the introduction of new high-bandwidth and low-latency intercon-
nects such as NVLink 2.0 significantly resolves the communication
overhead among GPUs.

The scale-up multi-GPU architecture has enabled new oppor-
tunities of relational query processing on multiple GPUs. Overall,
the multi-GPU architecture has paved the way for GPUs becoming
primary computing devices for relational query processing on large
data sets. Hence, in this study we focus on scenarios where the
GPU is being used as a primary computing device and the input
data is distributed over the GPUs. In spite of many previous studies
on query processing on a single GPU [9, 13, 22–24, 32, 33, 37, 47],
there has been little work on studying databases, especially hash
joins on these multi-GPU architectures.

To demonstrate this, we study the performance of hash join,
whose input relations are equally distributed to multiple GPUs.
Specifically, we study two hash join designs for multi-GPU archi-
tectures, including UMJ [31] and DPRJ [21]. UMJ makes use of the
NVIDIA unified memory feature to move the data between the
GPUs, and DPRJ is designed based on the current state-of-the-art
join implementation available for distributed GPU architectures.
We present the GPU cycles per tuple along with the breakdown
for computation and data transfer when executing UMJ and DPRJ
on the DGX-1 server from NVIDIA [5]. We use two input relations
(with 8-byte tuples) and a join selectivity of 100% for this test. When
we increase the number of GPUs, we increase the size of both in-
put relations by keeping 512M1 tuples of each relation on each
GPU. We study the cross-GPU communication and computation
time components for DPRJ from NVIDIA GPU profiler (denoted
as “DataTransfer” and “Computation”, respectively), and we were
not able to get such information from the profiler for UMJ. More
experimental details can be found in Section 5.

1M = 1,048,576

https://doi.org/10.1145/3448016.3457254
https://doi.org/10.1145/3448016.3457254

0

100

200

300

400

500

600

G
PU

Cy
cl
es

/T
up

le

DPRJ-DataTransfer DPRJ-Computation UMJ

1 2 4 8
0

100

200

300

400

500

600

Number of GPUs

G
PU

Cy
cl
es

/T
up

le

Figure 1: Join performance and execution time break down
of partitioned hash join on DGX-1 server from NVIDIA.

Figure 2: Architecture design of DGX-1.

The results of this study are shown in Figure 1. Both UMJ and
DRPJ encounter poor scalability when the number of GPUs is in-
creased from one to eight. In fact, the DPRJ implementation only
achieves a 2.13x improvement when the number of GPUs increases
from one to eight. This is due to the severe increase in the com-
munication overhead with the increasing number of GPUs, which
accounts for up to 66% of the total execution time. Our detailed
study further shows that it achieves lower than 50% utilization of
the bisection bandwidth of the interconnects (details in Section 5).
UMJ on eight GPUs is even slower than on a single GPU. Overall,
the results clearly demonstrate that existing partitioned hash join im-
plementations encounter high communication overhead and achieve
poor scalability when executed on modern multi-GPU architectures.

To understand the reason behind this inefficiency, we study the
architecture design of the DGX-1 machine in Figure 2, and make
the following observations. First, GPUs in the DGX-1 machine are
connected over a combination of PCIe 3.0, NVLink 2.0 and QPI inter-
connects, resulting in a highly heterogeneous interconnect network
design. This highly heterogeneous interconnect design leads to the
data movement between certain pairs of GPUs becoming a bottle-
neck when performing operations like hash join on GPUs. Second,
slower PCIe links are shared across multiple GPUs causing severe
congestion when multiple GPUs try to gain simultaneous accesses
to the same PCIe interconnect hardware. For example, when join-
ing the input relations over 8 GPUs the PCIe 3.0 links between the
GPUs with a bandwidth of 16 GB/s becomes the bottleneck.

It is a non-trivial task to reduce the communication cost of hash
joins on such multi-GPU architectures. The communication over-
head encountered by the hash join implementations on modern
multi-GPU architectures depends on many factors like 1) hardware
configuration, 2) input data distribution and 3) the data transfer
characteristics (e.g., size of data flows). Determining the optimal
data transfer schedule and route for each data flow given a set of
constraints can be reduced to the classic multi-commodity flow
problem, which cannot be solved in a reasonable amount of time,
even for eight GPUs [14, 17, 42].

In this study, we propose MG-Join, a scalable partitioned hash
join implementation that is optimized for modern multi-GPU archi-
tectures. To ensure efficient distribution of communication across
the interconnect links, MG-Join adopts a multi-hop routing that is
capable of routing data flows over intermediate GPU nodes. Further,
through the use of an adaptive policy that takes into consideration
the hardware configuration, the input data distribution and the char-
acteristics of different data flows, MG-Join is able to dynamically
re-route data flows to minimize the congestion.

To summarize, the major contributions of this work are:
• We argue that multi-GPU architectures enable new opportu-
nities for scale GPU-based query processing on hundreds of
gigabytes of GPU memory. However, we study the perfor-
mance of partitioned hash joins on multi-GPU architectures,
and demonstrate that the cross-GPU communication over-
head can severely hinder the scalability.

• We develop MG-Join, a scalable partitioned hash join imple-
mentation for modern multi-GPU architectures that makes
use of the proposed adaptive multi-hop routing policy. The
adaptive multi-hop data routing policy helps minimize con-
gestion across shared interconnect links and ensures more
efficient use of GPU hardware and interconnect links.

• We further conduct in-depth experiments to demonstrate the
efficiency of MG-Join in joining large data sets. Our experi-
ments find that 1) MG-Join achieves up to 97% utilization of
the bisection bandwidth of the GPU interconnect links, and
2) MG-Join achieves up to 2.5x performance improvement
over existing multi-GPU hash join implementations [21, 31].
Moreover, MG-Join helps improve the overall performance
of TPC-H queries by up to 4.5x over multi-GPU version of
an open-source commercial GPU database, Omnisci [29].

The rest of this paper is organized as follows. In Section 2, we
present the background on modern multi-GPU architectures. We
then present the design overview of MG-Join in Section 3. We
present the details of the novel data distribution step in MG-Join in
Section 4. We present the experiments in Section 5 and detail the
related work in Section 6. Finally, we conclude in Section 7.

2 MODERN MULTI-GPU ARCHITECTURES
In this section, we present background on the design of GPU and in-
terconnect hardware. In this study, we primarily focus on hardware
from NVIDIA, which is a major GPU vendor for scale-up hardware.

2.1 GPU Hardware
A single GPU consists of multiple streaming multiprocessors (SMs),
each of which consists of multiple cores. All cores in an SM share

resources like the registers and sharedmemory among each other. A
GPUs has an L2 cache and a global memory that are shared among
all the SMs.

A program executing on the GPU is known as a kernel. A ker-
nel is executed as a grid of thread blocks, which can further be
broken down into warps (groups of 32 threads). Each thread block
is assigned to a single SM and the cores inside each SM execute
the threads in a SIMD fashion, at the granularity of a single warp.
Finally, the shared memory is shared within the threads in a thread
block but cannot be shared across different thread blocks..

Modern GPUs support features like unified memory and hard-
ware support for handling page faults at runtime. These features
abstract away the physical location of the data within multiple
GPUs and make the memory buffers available to the kernels execut-
ing on all GPUs. Further, when a piece of data located in one GPU
is accessed by a kernel executing on another GPU, a page fault is
encountered and the data is moved to the GPU that requires the
data. This movement of data is handled by the GPU driver, thus
presenting a simplified unified memory model to GPU program-
mers. However, due to the high overhead of page faults [31] on
GPUs, unified memory buffers can lead to a significant degradation
in the performance of hash joins in multi-GPU architectures, as
demonstrated in our experimental studies. That motivates us to
develop efficient cross-GPU communications for hash joins.

2.2 GPU Interconnects
As demonstrated in the DGX-1 machine in Figure 2, the GPUs in
modern multi-GPU architectures are linked together through a set
of heterogeneous interconnects (links). In the following, we briefly
introduce the interconnects/links that are widely used in modern
multi-GPU architectures.

PCIe: PCIe is a bi-directional serial communication bus and
can be used for connecting GPUs to either CPUs or other GPUs.
A single PCIe bus consists of multiple bi-directional lanes (each
Generation 3 PCIe lane capable of achieving a peak theoretical
unidirectional bandwidth of 1 GB/s). Modern GPUs often have a
single PCIe interface consisting of 16 PCIe lanes, thus achieving
a net unidirectional bandwidth of 16 GB/s. Note, multiple GPUs
could share the same PCIe bus (using a PCIe bridge), in which case
the bandwidth of the bus will be divided among the GPUs during
trying to access the bus simultaneously. For example, the DGX-1
server only has 40 PCIe lanes, which are shared among up to 4
GPUs (64 lanes are required for isolated accesses from 4 GPUs).

NVLink: The NVLink interconnect is based on High-Speed Sig-
naling Interconnect (NVHS) [2] and supports CPU-GPU (e.g., IBM
Power machine [7]) and GPU-GPU communication. Unlike PCIe,
NVLink is an exclusive P2P interconnect and cannot be shared by
multiple GPUs. Similar to PCIe, NVLink is bidirectional and each
link has 2 sub-links (one in each direction). Version 2 of NVLink
interconnect offers bandwidth of up to 25 GB/s per link. Modern
NVIDIA hardware supports 4-8 NVLink links per GPU, allowing
each GPU to be directly connected to up to 8 GPUs/CPUs. Further,
multiple NVLink links can also be used to connect the same CPU-
GPU/GPU-GPU pair. Overall, NVLink offers significantly higher
bandwidth and communication efficiency than PCIe.

QPI: Intel’s Quick Path Interconnect (QPI) is a P2P interconnect
and is widely used for communication between processors in multi-
socket/NUMA hardware. Similar to NVLink and PCIe, QPI is a bi-
directional interconnect with each link supporting up to 25.6 GB/s
bandwidth. Depending on the hardware generation, each processor
could have multiple QPI links connecting it to other processors in
the system. Even though QPI interconnects do not directly connect
two GPUs, they are required for moving data between GPUs that
are connected to different CPU sockets using PCIe/NVLink in a
multi-socket server like DGX-1. Note, when two GPUs connected
to different CPU sockets need to communicate, the data cannot
be transferred directly. Instead, the data is first moved from the
source GPU to the main memory of the associated CPU socket (over
PCIe or NVLink). The data is then moved to the CPU socket of the
destination GPU over QPI and finally moved to the destination
GPU over NVLink/PCIe. This process is referred to as staging. Note,
staged data transfers are tiled and pipelined by the GPU driver
to maximize efficiency. In our experiment, staging fails to achieve
high bandwidth utilization and staged data transfers often achieve
significantly lower bandwidth than the peak bandwidth.

Design implications.To summarize, the GPUs inmodernmulti-
GPU architectures are interconnected to each other by heteroge-
neous links. Each of these links have different access capabilities,
efficiency, bandwidth, and latency characteristics. Direct transfer
(i.e., data transfer in a direct route) between the source and desti-
nation GPUs can be highly inefficient. This is because the lower
bandwidth PCIe buses are involved in most direct routes between
GPU pairs (i.e., in 63% of all direct routes in the DGX-1 machine).
Even worse, severe congestion can happen when there are multiple
data flows trying to access those interfaces simultaneously. With
modern multi-GPU architectures containing up to 16 GPUs capable
of communicating simultaneously, hash joins, especially in the data
shuffling across GPUs, can lead to severe link congestion, resulting
in poor utilization of the interconnect network hardware. Thus,
there is a need to dynamically choose the optimal route for each
data flow taking into consideration the data flows from other GPUs.

This paper focuses on the server with multiple GPUs with the
same configuration. Further, irrespective of the heterogeneity among
GPU cards, cross-GPU communication interface is the major bot-
tleneck. Thus, heterogeneity in GPU compute hardware will have a
secondary impact on the overall performance. Also, when we work
with hardware vendors, they do not recommend a single server
with GPUs in different generations, as servers are usually optimized
for a certain generation of hardware components and also the GPU
compute hardware heterogeneity within a single server could in-
crease the complexity of algorithmic design and load balancing.

3 MG-JOIN: DESIGN OVERVIEW
In this section, we present the design overview of MG-Join, a novel
partitioned hash join implementation designed for modern multi-
GPU architectures. MG-Join is designed for joining large input
relations distributed across multiple GPUs in the same machine.

In this study we specifically focus on equi-joins. However, this
does not limit the use of the multi-hop data transmission or adaptive
routing for other implementations such as the cartesian products.

This is because, these techniques optimizes the data transfer irre-
spective of type of operation that is being performed.

3.1 Design Rationales
We have the following rationales when designing MG-Join for
modern multi-GPU architectures.

Rationale 1: To ensure efficient data transfer between GPUs,
we make use of an adaptive and multi-hop data routing policy that
is capable of dynamically re-routing each data flow over the most
efficient route between each source and destination GPU pair. The
decision is adaptive to each data flow to reduce the congestion that
happens at runtime.

Rationale 2: MG-Join breaks down data flows of cross-GPU
communication into fine-grained packets of a cost-effective size. On
the one hand, a packet can be transmitted as soon as it is generated.
This is to maximize the overlap between computation and data
transfer. On the other hand, the fine-grained packet size can reduce
the pressure of memory usage on the GPU in our proposed multi-
hop data transfer.

Rationale 3:We decide to compute a histogram at the beginning
of the join to gain the data distribution associated with partitioning
information. On the one hand, the histogram computation is rather
lightweight, in comparison with cross-GPU communication. Paul
et al. [31] has demonstrated that the histogram based partitioning
is capable of achieving similar performance to the histogram-free
approach [44] when the data is already available on the GPU. On the
other hand, histograms are useful in the optimization of multiple
phases in our proposed join design.

Rationale 4: Last but not the least, we avoid reinventing the
wheel and reuse/adapt state-of-the-art implementations of GPU ac-
celerations in hash joins whenever appropriate. We carefully select
the right optimization and design for MG-Join, given that a lot of
previous studies have been conducted on GPU-based hash joins [9,
13, 22–24, 33, 37, 47]. For example, we choose the histogram-free
local join [44] on each GPU to maximize the overlap between com-
munication and computation, while we choose to generate the
histogram at the beginning of MG-Join.

In this study, we specifically focus on equi-joins. However, this
does not limit the use of the multi-hop data transmission or adaptive
routing for other implementations such as the cartesian products.
This is because, these techniques optimize the data transfer irre-
spective of type of join operations that are being performed.

3.2 Design Overview
In the MG-Join implementation, joining two large input relations,
R and S , distributed over multiple GPUs involve the following four
phases: Histogram Generation, Global Partitioning Phase, Local Par-
titioning and Probe.

Histogramgeneration: During the histogram generation phase,
each GPU analyzes the input data set that is allocated to it and builds
a histogram based on its data. Each entry in the histogram data
structure represents the number of tuples in a specific partition and
is later used for partitioning the input data among the GPUs.

Although the relations could be partitioned among the GPUs
without generating a histogram [44], we choose to generate a his-
togram according to Rationale 3. Histograms have two major bene-
fits in reducing the communication cost. First, the generation of a
histogram before the actual partitioning makes it possible to over-
lap the compute-intensive partition assignment and the memory-
intensive data partitioning during the global partitioning phase.
Second, the histogram serves as a simplified bloom filter that avoids
unnecessary data transfers during the global partitioning phase.

For generating the histogram, we use the same implementation
as Rui et. al. [38] where the histogram is built using the GPU shared
memory. This is done to ensure that all the threads have fast access
to the histogram in the shared memory. This also means that the
maximum number of partitions (Pmax , also equal to the number
of entries in histogram) is limited by the size of the GPU shared
memory per SM (Ms), the size of each histogram entry (Ĥs) and
the number of thread blocks executing on each SM of the GPU (Tb)
as shown by Equation 1.

Pmax =
Ms

Ĥs ×Tb
(1)

In contrast with the previous studies [13, 23, 24, 37], MG-Join
generates the largest number of partitions that can be generated
based on Equation 1. The adoption of such a histogram based ap-
proach comes with two benefits. First, it helps achieve a more
efficient balancing of workload. The partition distribution phase in
MG-Join takes care of data skew, including heavy hitters. The use
of centralized histogram based approach allows MG-Join to identify
and handle heavy hitters such as single-value skew partitions early
in execution. This helps minimize any inefficiencies associated with
processing data sets with high skew. Second, it helps reduce the
amount of work that needs to be done during the local partitioning
stage. For example, in a V100 GPU equipped with 64 KB shared
memory and requiring at least two thread blocks per SM to ensure
efficient use of GPU resources, the histogram kernel can maintain
4,096 4-byte histogram entries in the GPU shared memory.

Global partitioning phase: The global partitioning phase par-
titions the input relations to ensure that each input tuple is assigned
to one or more GPUs and none of the GPUs requires the access of
tuples from a remote GPU during the local partitioning and probe
phases. This phase involves three steps: 1) the initial partitioning of
the input relations on each GPU, 2) assigning the partitions of each
GPU to one or more GPUs, and 3) the distribution of the partitioned
data based on the partition assignment. In the following, we present
more details for 1) and 2), and leave 3) to Section 4.

In Step 1), for partitioning the input data based on the generated
local histogram, we use the implementation proposed by Rui et
al. [38]. Overall the implementation works as follows. Each thread
executing the partitioning kernel reads a unique input tuple, de-
termines the index for the tuple after partitioning based on the
histogram and then writes the tuple into the local buffer at the
determined index. After partitioning, all the tuples belonging to the
same partition will be co-located in the local GPU global memory.
We refer readers to the original study [38] for a better understanding
of our partitioning implementation.

In Step 2), for the problem of partition assignment, multiple pre-
vious studies have explored the optimal solution for the similar
problem in distributed CPU nodes [34, 39, 40]. In MG-Join, we adopt
the migration and selective broadcast based approach previously
proposed by Polychroniou et al. [34]. For each partition, the imple-
mentation works by first migrating the tuples of one of the input
relations to a subset of the GPUs and then selectively broadcast-
ing the tuples of the other relation to all the nodes containing the
tuples of the other relation. We refer the readers to the original
implementation [34] as well as the proof of cost optimality for the
migration and selective broadcast based system.

Specifically, we have the following three major modifications
over [34]. Overall, the modified design takes advantage of the mas-
sively parallel architecture of GPUs and quickly computes the net-
work optimal partition assignment.

First, we overlap partition assignment of Step 2) with the parti-
tion generation kernel of Step 1) to completely hide its overhead.

Second, in MG-Join, each GPU computes the assignment for
all the partitions in parallel based on the histogram. Within each
GPU, the partition assignment computation is further parallelized
by allowing different warps (groups of 32 threads) to determine
the assignment for different partitions in parallel. The assignment
for each partition is determined by estimating the benefit of all
possible migrations of each relation and then choosing to migrate
the relation that achieves the maximum benefit from migration.

Third, as in the original implementation [34], benefit ofmigrating
tuples of a relation from a source GPU to a destination GPU is
computed as the difference in the cost of broadcasting all the tuples
of the other relation to the source GPU and the cost of migrating the
tuples from the source GPU to the destination GPU [34]. InMG-Join,
the cost of moving a tuple from one GPU to another is computed
as the cost of moving the tuple over the lowest transmission cost
path between the GPUs when there is no congestion.

Local partitioning: In this phase, the partitions generated dur-
ing the global partitioning phase are further partitioned. As detailed
in previous studies [38, 44], joining co-partitions on GPUs achieves
the peak performance when at least one of the co-partitions fit
within the GPU shared memory. Thus, multiple partitioning passes
may be required to generate very fine-grained partitions that can
fit within the GPU shared memory. Specifically, the data on each
GPU received during the data distribution phase is recursively parti-
tioned until the individual partitions are small enough to fit within
the GPU shared memory (unless both relations are heavily skewed).
To leverage the skew handling techniques, we make use of the
partitioning approach proposed by Panagiotis et al. [44].

One remark on choosing the approach by Panagiotis et al. [44] is
that this approach does not require the generation of a histogram
(unlike that we generate a histogram before the global partitioning
phase) and can hence helps achieve more overlap between the data
distribution and the local partitioning phase. This demonstrates
Rationale 4 that we need to carefully revisit existing GPU-based
hash join techniques and choose the suitable ones. Specifically, we
start the execution of the data distribution and local partitioning
phases together. The local partitioning kernel first begins partition-
ing the locally available tuples (i.e., tuples that were assigned to the
same GPU), followed by the packets arriving from remote GPUs.
Since the local partitioning phase does not require a histogram, the

packets from the remote GPUs can be processed as soon as they
arrive at the destination.

Probe: During the probe phase, the local co-partitions with the
same partition id from both R and S relations are joined together.
The co-partitions can be joined using nested loop join or hash
join (where a hash table is built in the shared memory). Existing
literature [44] has demonstrated that both implementations achieve
similar performance for most partition sizes. Hence in MG-Join, we
simply use the nested loop variant.

4 DATA DISTRIBUTION
We present the design and implementation details of the data dis-
tribution mechanism of the global partitioning phase in MG-Join.
In the data distribution step of global partitioning, the cross-GPU
communications generate data shuffling flows among almost all
GPU pairs. The design is rooted at Rationales 1 and 2, presented
in Section 3.1. Each data flow is transferred at the granularity of
packets, whose route will be determined by the proposed multi-hop
adaptive routing policy. We first present the design and implemen-
tation of an efficient multi-hop routing, followed by the adaptive
routing policy for determining the links in the multi-hop routes.

4.1 Multi-Hop Data Transmission
Existing multi-GPU communications (e.g., [12, 45]) adopt single-
hop routing that simply chooses direct route with highest band-
width (a route that does not require data to pass through any inter-
mediate GPU). Note, in this study, we consider data transfers that
are staged in the CPU main memory (when source and destination
GPUs are connected to different CPU sockets) as direct transfers as
there is no intermediate GPU involved in the data transfer.

As shown in Introduction, the single-hop routing strategy adopted
by existing multi-GPU join implementations can often lead to se-
vere congestion in the interconnect links in modern multi-GPU
architectures. Thus, in this paper, we propose to use multi-hop
transmission for multi-GPU architectures, which offer the flexibil-
ity of avoiding congestion and choosing more efficient routes. For
each data flow from the source GPU to the destination GPU, data
are sent in packets. To multi-hop routing, each packet contains a
header with the packet id (4 byte), packet size (4 byte) and a vector
of GPU ids (1 byte per entry) representing the route that needs to
be taken by the packet. In our experiments, we set the packet size
to be 2MB so that it can fully utilize the link bandwidth. The header
only adds a negligible overhead per packet.

Challenges: It is challenging to perform efficient multi-hop data
transmission on multi-GPU architectures due to the lack of ded-
icated routing devices and the limited amount of global memory
available on individual GPUs. Due to these hardware limitations,
each GPU needs to allocate a certain amount of its global memory
for routing data packets. The larger the amount of GPU global
memory allocated for data routing, the smaller the input data set
that can be processed by the GPU. Hence, an efficient multi-hop
implementation that makes use of small re-usable routing memory
buffers should be designed. Further, to minimize the overall over-
head, this re-usable routing buffer based implementation needs to
be designed with 1) minimal synchronization across multiple data
flows and 2) dynamic and efficient memory allocation on GPUs. In

Figure 3: Multi-hop data transmission example in MG-Join.

the remainder of this section, we detail how MG-Join implements
multi-hop routing.

Figure 3 shows example of multi-hop routing in MG-Join when
routing two data flows (F0→2 from GPU 0 to GPU 2 and F0→3 from
GPU 0 to GPU 3) on a machine with four GPUs. Now, F0→2 and
F0→3 takes routes 0 → 1 → 2 and 0 → 1 → 3, respectively. As
shown in the figure, MG-Join adopts a push based routing policy
where a source GPU along the route pushes the packet to next
destination GPU. Each GPU has two separate modules attached to
it as shown in Figure 3: a sender and a receiver. Sender module is
responsible for sending out the data packets stored locally; while
the receiver module is responsible for either unpacking the received
packets destined for that GPU (if it is the final destination of the
route) or forwarding packets destined for other GPUs.

Implementation details: At each GPU, we maintain multiple
outgoing queues (one for each neighbouring GPU) from which
sender module can pick up packets for transmission. Each sender
picks up packets from one of the queues in a weighted round-robin
fashion. The weight of each queue is set as the number of waiting
packets in the queue normalized to the total number of packets
waiting to be sent out at the GPU. Further, once a queue is chosen,
the sender picks up a batch of packets that follow the same route to
the destination and then begins the transmission of these packets.
For a batch, all the packets within the same flow can be transmitted
out and in quick succession at each sender, ensuring a pipelined
transmission of the packets. We experimentally determine the batch
size for balancing the pipelined transmission as well as bandwidth
utilization. We set the batch size to be eight in our implementation.

We tune packet size and batch size to ensure fine-grained over-
lapping of data transfer and computation while ensuring efficient
use of GPU hardware. Very small data transfer sizes lead to very
fine-grained overlapping of data transfer and compute, while it fails
to make efficient use of GPU interconnect links. To demonstrate
this, we present the bandwidth achieved by different data transfer
size on the PCIe and NVLink interconnect in Figure 4, for packet
size from 2 KB to 16 MB. As shown in the figure, both NVLink and
PCIe are highly inefficient for small packet sizes, with up to 20x per-
formance degradation. However, very large packet sizes can result
in in-ability to achieve fine-grained overlapping of data transfer
and computation. Further, the performance of the links saturates
around 12 MB and does not achieve any improvement beyond that.

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
40

5

10

15

20

25

30

Packet Size (KB)

D
at
a
Tr
an
sf
er

Th
ro
ug

hp
ut
(G
B/
s)

PCIe NVLink

Figure 4: Throughput comparison of NVLink and PCIe in-
terconnects for varying packet sizes.

Finally, the transfer of each batch of packets does come with an
associated runtime overhead from the CUDA framework itself.

Taking these factors into account, we use a combination of packet
size and batch size to balance between the factors. Using small
packet size (e.g., 2MB) allows MG-Join to achieve fine-grained over-
lapping when large data transfers are not possible, while batching
together multiple packets (up to 8) allows MG-Join to maximize in-
terconnect hardware utilization. Note, these settings are determined
by profiling interconnects during initialization and then choosing
settings that makes efficient use of interconnect hardware. The ini-
tiation only needs to run once for the same hardware configuration.
In our experiments, we use a packet size of 2MB and the batch size
of 8 based on the profiling on the tested machine.

In addition to pushing the packet to the routing buffer at the next
GPU, the sender module also appends the pointer to each packet
in the incoming queue of the receiver GPU. The receiver module
at the GPU that receives the packets will then pick up the pointer
from the incoming queue and then either unpacks the data and
passes it to the local partitioning phase or appends the pointer to
the corresponding outgoing queue if the packet is not destined for
the same GPU. The queues only contain the pointers to the packet
instead of the actual packet data to avoid redundant copies of the
actual data between the queues in the same GPU.

We develop effective buffer management for packet routing. To
minimize the synchronization cost, the routing buffer at each GPU
is implemented as a collection of buffers, one for each neighboring
GPU. Each buffer is implemented as a circular buffer. For the ex-
ample in Figure 3, the routing buffer at GPU 1 will shared by both
F0→2 and F0→3. Overall, this design allows MG-Join to 1) reduce
the overall size of the routing buffer since the same buffer can be
shared among multiple data flows and 2) minimize the synchro-
nization overhead since a data flow only needs to synchronize its
buffer access with other data flows arising from the same GPU (i.e
no cross GPU synchronizations are required).

To avoid high memory management cost of managing circular
buffers accessible by multiple GPUs (sender and receiver), the status
of circular buffer is synchronized between GPUs only when sender
has no more free slots to push data packets to the receiver. When
this happens, sender checks with receiver to determine the number
of slots that have been freed by the receiver.

4.2 Adaptive Routing
In the previous section, we explored how multi-hop routing can
give more flexible routing choices to the data distribution step of
the global partitioning phase. However, there can be many possible
routes between each pair of GPUs in modern multi-GPU archi-
tectures. For example, there are 64 possible routes without cycles
between every pair of GPUs in the DGX-1 machine used in our ex-
periments (Figure 2). Further, the choice of a specific route between
a pair of GPUs can impact the choice of routes at other GPUs due to
the limited number of DMA engines available per GPU hardware as
well as the current data traffic load of each link, making the solution
space even larger. In fact, for routing K packets the system need
to determine the optimal data transfer schedule from 64K possible
combinations. Hence, designing an efficient routing policy is key to
the performance of the data distribution phase. In the following, we
first study a number of common static routing policies and identify
their inefficiency for the hash join in multi-GPU architectures. This
motivates us to design a fine-grained adaptive routing policy.

4.2.1 Need for adaptive routing. Determining the global optimal
route/schedule for the flows can be reduced to classicmulti-commodity
flow problem [14, 17, 42]. Hence, it cannot be solved in a reasonable
amount of time or scale to more GPUs. This cost can be even more
significant for high-performance hardware like multi-GPU archi-
tectures. Thus, we need light-weight approaches to determine the
route. There have been lightweight static heuristics based on simple
metrics like peak bandwidth, latency or hop count. Routing policy
using the bandwidth metric will always choose the shortest route
with the highest bandwidth to the destination. Further, routing
policies using latency and hop count always chooses the route with
the lowest latency and the smallest number of hops, respectively.

We study those three commonly used routing metrics under
different hardware configurations, data distribution and packet size.
In Figure 5a, we study how the different hardware configurations
impact the cost of the data distribution step of the global partition-
ing phase. Note, the results are based on an equi-join of uniformly
distributed 1B2 tuples (|R | and |S | has 512M tuples each) and we
use a constant packet size of 2 MB for this experiment. The x-axis
lists the identifiers of all the GPUs participating in the MG-Join,
i.e., a different combination of numbers/GPU identifiers represent
a different underlying network design/hardware configuration. In
Figure 5b, we study the impact of different packet sizes and skew
(data distribution) on the choice of the routing metric. Note, for
this test we use the same input data set and the four GPUs ({0, 3, 4,
7}). X (Z) in the x-axis represents XKB packet size and a Zipf factor
of Z for the distribution of the input data.

Overall, those results show that the best static routing policy for
routing the data can vary depending on hardware configurations,
data distribution and packet size. Generally, bandwidth-based policy
performs well for large data flows when executed on a reasonable
number of GPUs (4-6). However, the efficiency of long routes begins
to fall. Hop count based routing policy avoids long routes. However,
the high heterogeneity in the interconnect network design can lead
to the hop count based policy picking highly inefficient routes. In
contrast, the latency based policy is efficient for small packet sizes

2B = 1024M

{0,3,4} {0,3,4,7} {0,1,2,3,4}
0

50

100

150

Hardware Configuration

Ti
m
e(
m
s)

Bandwidth Hop Count Latency

(a) Hardware Configuration.

12
8(
0.
0)

12
8(
0.
5)

12
8(
1.
0)

51
2(
0.
0)

51
2(
0.
5)

51
2(
1.
0)

20
48
(0
.0
)

20
48
(0
.5
)

20
48
(1
.0
)

0

100

200

300

400

500

Ti
m
e(
m
s)

Bandwidth Hop Count Latency

(b) Data distribution & Packet size.

Figure 5: Impact of hardware configuration, data distribu-
tion and packet size on static routing policy (DGX-1).

and tend to achieve the best performance for many reasonable sized
configurations. However, it tends to fall back to highly inefficient
PCIe interconnects for configurations with a large number of GPUs
resulting in high overhead.

In addition to the commonly used static metrics evaluated in this
study, the networking community has also proposed other static
metrics which are derived from a combination of these metrics [3,
20, 35]. However, these still suffer from the inefficiencies associated
with being unable to adapt to network conditions. To summarize,
none of the static policies is a clear winner for different cases. Hence,
an adaptive framework needs to be developed to ensure efficient
use of interconnect hardware in modern multi-GPU architectures.

4.2.2 Adaptive Routing in MG-Join. The key design goals of the
adaptive routing framework in MG-Join is to dynamically route
data flows to avoid the congestion in a subset of interconnect links
and to improve the bandwidth utilization. We develop a lightweight
metric to adaptive routing for transferring each packet in MG-Join.
Specifically, we propose an adaptive routing metric (ARM) for
determining the routes. ARM in MG-Join is computed based on a
combination of dynamic (network delay and packet size) and static
parameters (latency and bandwidth). Further, MG-Join performs the
routing at the granularity of individual packets, making it possible

to dynamically re-route data flows quickly to minimize the effects
of congestion in the network. For routing each packet, the source
node picks up the route with the least congestion (the route with
the lowest dynamic delay).

We define the ARM values for a packet P over route R to be
the total cost of moving the packet over the route. It is computed
as a combination of two components: 1) a dynamic delay (DR)
resulting from congestion at the links and 2) the transmission cost
of a pipelined transfer of data from source to destination (TR), as
shown in Equation 2.

ARM(R, P) = TR + DR (2)
Transmission costTR for a packet P (denoting its size | |P | |) when

transmitted over a route R can be computed based on static fac-
tors (assuming there is no congestion), as shown in Equation 3.
Here, BE (| |P | |) is the maximum effective bandwidth achievable by
a packet of size | |P | | over the route R. In the initialization, we profile
each type of link for different packet sizes and generate a function
of BE for different types of links. As multi-hop routing in MG-Join
is designed to ensure pipelined transmission of packets, the effec-
tive bandwidth of the packet will be determined by the slowest link
along the route which will be the transmission bottleneck for the
entire data flow.

TR =
| |P | |

BE (| |P | |)
(3)

The dynamic delay of route R (DR) is computed as the sum of the
queuing delay (Qi) and the latency (Li) of packet transmission over
every single link constituting the route R, as shown in Equation
4. To enable quick computation of the dynamic delay of any route,
each GPU locally maintains a table containing the Qi and Li val-
ues of every link in the interconnect network. The latency of data
transmission of a link (Li) is a physical characteristic of the link
and does not change dynamically; while the queuing delay of a link
(Qi) changes with the level of congestion in the network. When the
system begins execution, the Qi values of the links are initialized
based on the histogram data, by assuming a uniform arrival rate of
packets to be forwarded. Later, whenever the Qi value is updated
due to the link transmission load, the GPU linked to it would broad-
cast the change in the queuing delay to every other GPU in the
system. From the estimation, we can see that the dynamic delay
value helps indicate congestion. Hence, any significant increase in
the queuing delay serves as an indicator of network congestion.

DR =

|R |−1∑
i=1

Qi + Li (4)

Implementation details. To minimize synchronization costs
across GPUs, the route for each packet of data is determined at
the source node where the packet was generated and will not be
changed at intermediate nodes. This helps avoid the need for ad-
ditional synchronization to ensure in-order packet arrival and to
avoid circular routes. Based on our experiment, data packets on
average require only 2-3 intermediate hops before reaching the
destination.

As mentioned in Section 4.1, to reduce the routing overhead,
packets from the same data flow are sent in a small batch with the

same route. That means, in our implementation, adaptive routing
is implemented at the basis of small batches (up to 8 packets per
batch). For each batch, we calculate the ARM values for all the
possible routes from the source GPU to the destination GPU with
the constraint of at most 3 intermediate hops, and choose the route
with the smallest ARM value as the route for that batch of packets
from the source GPU to the destination GPU. Given the route, the
source GPU generates the header of the packet, especially for the
vector of GPU ids representing the route.

To summarize, while the static policies are unable to update
their routes for each flow depending on the level of congestion
in the network, the adaptive routing policy in MG-Join adapts to
dynamic network conditions. Further, centralized network routing
protocols that support congestion control in traditional packet
networks [10, 25, 48] often require frequent synchronizations across
GPUs, which MG-Join tries to keep this to a minimum (Sections 4.1
and 4.2). Such frequent synchronization leads to very high overhead
for GPU hash join operation.

5 EXPERIMENTS
5.1 Experimental Setup
Hardware. We mainly use the DGX-1 server for our experiments,
unless mentioned otherwise. The machine is equipped with 8 V100
GPUs, each containing 80 SMs operating at a boost clock rate of
1.53 GHz. Each GPU has 32 GB of HBM (High Bandwidth Mem-
ory), operating at a peak bandwidth of 900 GB/s. Its interconnects
are shown in Figure 2. We further use a DGX-Station machine [6]
which is equipped with 4 V100 GPUs to demonstrate the gener-
ality of the techniques proposed in this study. The DGX-station
consists of 4 V100 GPUs interconnected to each other over NVLink
and PCIe interconnects. For comparison against CPU, we use a
dual socket machine with 512 GB of main memory and two Intel
Xeon E5-2698 v4 CPU with 20 physical cores (40 logical cores with
hyperthreading) running at 2.20GHz.

Workload. Following previous studies [37, 38, 41, 44, 46], we use
a synthetic data set consisting of two relations R and S with a tuple
size of 8 bytes (4-byte key and 4-byte id). The integer key values
are generated sequentially and then shuffled randomly. Further, for
all our experiments, we set |R | = |S | and vary the total input size
(|R | + |S |) from 512M to 4,096M tuples. We also evaluate the impact
of data distribution based on a Zipf distribution.

Implementation details. We apply database compression to
reduce the amount of cross-GPU traffic. First, as we use radix-based
data partitioning, we use the first n bits of the keys in the global
partitioning (n is determined by the hash key and the number of
times the data is partitioned recursively during the global partition-
ing phase). Thus, during the global partitioning, we do not need
to transfer the entire key. Instead, the global partitioning phase
partitioned the data into groups based on the first n-bits of each
key (the remainder bits in the key is not transferred in the global
partitioning). Second, the tuple id values are compressed in a block
basis (8KB as a block in our implementation). We first apply a delta
operation on each tuple (based on the min value within a block)
and then perform a null suppression encoding on the column to
remove the zero-bits. Both these data compression approaches help
MG-Join to achieve reasonable compression ratios (1.3x - 2x in

our experiments) and thus reduce the overall overhead of the data
distribution.

Experimental outline. Our experimental evaluation of MG-
Join is organized as follows.

• In Section 5.2, we evaluate the individual impact of multi-
hop data transmission and the adaptive routing policy used
in MG-Join.

• In Section 5.3, we compare the overall performance of MG-
Join against UMJ [31] and DPRJ [21]. For communication
across GPUswithin the same node, DPRJ makes use of CUDA
communication APIs that choose the direct routes between
GPUs for data transfer.

• In Section 5.4 we evaluate the performance benefit of adopt-
ing MG-Join when executing TPC-H queries on large data
sets by comparing its performance gains over Omnisci [29]
running on CPU and GPU. Although there have been other
query processing systems on GPUs such as DogQC [18] and
Ocelot [13], they do not support multi-GPU architectures
and thus cannot support the scale factor tested in our study.
To the best of our knowledge, Omnisci is the state-of-the-
art system capable of executing on both CPUs and modern
multi-GPU systems. We use all the six queries in TPC-H
which do not contain sub-queries (Q3, Q5, Q10, Q12, Q14
and Q19) and have at least one join operation. This is be-
cause, currently we do not have any advanced optimization
on sub-queries, and view a sub-query as a separate query.
The detailed SQL clauses can be found in their benchmark
websites [8].

5.2 Evaluating Data Distribution in Global
Partitioning Phase

In this section, we focus on the data distribution step of the global
partitioning phase of MG-Join. We evaluate the impact of varying
the number of GPUs, while keeping each GPU allocated with 512M
tuples from each input relation.

Impact of multi-hop data routing: Figure 6 shows the total
data transfer throughput achieved during the data distribution step
for the multi-hop routing used in MG-Join and direct route (used in
DRPJ) when the number of GPUs participating in the join operation
is increased from 2 to 8. Note, the total data transfer throughput is
computed based on the total amount of data transferred between
the GPUs and total execution time of the data distribution stage.
Direct routing achieves almost the same bandwidth as MG-Join for
a very small number of GPUs. This is because for a small set of
GPUs, direct routing is already very efficient. However, as we scale
the number of GPUs, the multi-hop routing policy achieves more
efficient higher throughput (by up to 2.35x).

Impact of adaptive routing:We evaluate the efficiency of our
adaptive routing policy as opposed to other static metric based
routing policies. The results of this comparison in Figure 7 clearly
show that for a small set of GPUs, MG-Join achieves the same
performance as other static metrics. This is because due to the
small number of well-connected GPUs, all metrics end up choosing
the same route. However, as the number of GPUs participating in
the join operation increases, the adaptive routing approach begins
to outperform static routing policies based on bandwidth, hop count

2 3 4 5 6 7 8
0

50

100

150

200

250

Number of GPUs

To
ta
lD

at
a
Tr
an
sf
er

Th
ro
ug

hp
ut
(G
B/
s)

DPRJ MG-Join

Figure 6: Data Transfer throughput comparison of multi-
hop routing in MG-Join against direct routing in DPRJ.

2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

Number of GPUs

To
ta
lD

at
a
Tr
an
sf
er

Th
ro
ug

hp
ut
(G
B/
s)

Bandwidth Hop Count Latency MG-Join

Figure 7: Data Transfer throughput comparison of adaptive
routing in MG-Join against static routing policies.

and latency by up to 5.37x, 3.45x and 2.64x respectively. When a
larger number of GPUs are involved, the adaptive routing policy is
able to dynamically re-route the data flows, making more efficient
use of available link bandwidth.

To further demonstrate the efficiency of MG-Join in taking ad-
vantage of the GPU and interconnect hardware, we present the
average utilization of the bisection bandwidth of the interconnect
network hardware achieved by DPRJ and MG-Join in Figure 8 for
configurations with 4, 6 and 8 GPUs. Note, the utilization is com-
puted based on a bisection bandwidth of each configuration. The
results clearly show that interconnect utilization of the DPRJ im-
plementation drops with the number of GPUs to as low as 30%.
As the number of GPUs increases, the network utilization of DPRJ
decreases, because the network congestion becomes more severe.
In contrast, MG-Join ensures high utilization of GPU interconnect
hardware, especially for configurations with a large number of
GPUs. Overall, MG-Join achieves 97% utilization for eight GPUs.
MG-Join achieves relatively low utilization when the number of
GPUs is small. This is because the small number of possible routes
limits MG-Join’s ability to re-route data flows when congestion is
detected in a subset of the links.

4 6 8
0

25

50

75

100

Number of GPUs

N
et
w
or
k
U
til
iz
at
io
n(
%)

DPRJ MG-Join

Figure 8: Interconnect hardware utilization of bisection
bandwidth in MG-Join and DPRJ.

Bandwidth Hop Count Latency MG-Join
0

0.2

0.4

0.6

0.8

1

1.2

N
or
m
al
iz
ed

Pe
rf
or
m
an
ce

0 0.25 0.5 0.75 1

Figure 9: Normalized performance of different routing poli-
cies with data skew.

To demonstrate the ability of MG-Join to adapt to different distri-
butions of the input data, we compare the normalized performance
of the adaptive routing policy against the three static routing poli-
cies (bandwidth, hop count and latency) when input tuples are
distributed based on a Zipf distribution among the 8 GPUs in the
DGX-1 machine. The result is shown in Figure 9 for Z values vary-
ing from 0.0 to 1.0. The adaptive routing policy encounters the
least degradation in performance with increase in the input data
distribution skew, whereas other static routing policies encounter
up to 3x degradation in performance. This demonstrates the ability
of adaptive routing to dynamically re-route data flows and allocate
the most efficient route regardless of data distributions.

To demonstrate the benefit of our adaptive routing policy based
on the ARM metric over centralized congestion control, we com-
pare data transfer cost per tuple of MG-Join against MGJ-Baseline
in Figure 10. MGJ-Baseline is simply an implementation where the
routing decision is made in a centralized manner, i.e., all GPUs
synchronize among every other GPU for the transfer of each batch
of packets and the optimal data routing and scheduling decision
is made by a centralized process and broadcasted to each partic-
ipating GPU. To understand the impact of synchronizations, we
split the communication cost of MGJ-Baseline into two parts: the
actual data transfer cost (MGJ-Baseline (Data Transfer)) and the
synchronization cost (MGJ-Baseline (Sync)). MGJ-Baseline (Data

0

20

40

60

80

100

Co
st
/T

up
le
(p
s)

MGJ-Baseline (Data Transfer) MGJ-Baseline (Sync) MG-Join

2 4 8
0

20

40

60

80

100

Number of GPUs

Co
st
/T

up
le
(p
s)

Figure 10: Data transfer cost comparison of MG-Join and
MGJ-Baseline.

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

7.2x

Number of GPUs

Jo
in

Pe
rf
or
m
an
ce
(B

Tu
pl
es
/s
)

UMJ DPRJ MG-Join

Figure 11: Overall performance comparison of MG-Join
against DPRJ and UMJ.

Transfer) represents the time spent on moving the data and MGJ-
Baseline (Sync) represents the cost of synchronizing across the
GPUs. As demonstrated by the results in Figure 10, MGJ-Baseline
does help improve the performance of the actual data transfer by a
small margin (up to 3%). However, the significant increase in the
synchronization cost leads to MGJ-Baseline performing up to 1.5x
worse than MG-Join.

5.3 Evaluation of Join Performance
In this section, we perform the overall comparison on the entire
join performance of MG-Join against DPRJ and UMJ. Figure 11
presents the overall throughput of MG-Join against UMJ and DPRJ.
The input tuples are distributed randomly across the GPUs with
each GPU allocated with 512M tuples from each input relation.
Following previous studies [27, 31, 43], we define throughput as
the number of input tuples processed per unit time. We now make
the following observations.

First, the UMJ implementation is highly inefficient due to its use
of the unified memory feature, which encounters high overhead
of handling page faults resulting from page tables getting locked
by GPU threads [31]. Further, the effect of the page tables getting
locked gets worse with the increasing number of GPUs, as the

2(
P)

3(
P)

4(
P)

5(
P)

6(
P)

7(
P)

8(
P)

0

25

50

75

100
Data Distribution Computation

2(
M
)

3(
M
)

4(
M
)

5(
M
)

6(
M
)

7(
M
)

8(
M
)0

25

50

75

100

Number of GPUs

Ex
ec
ut
io
n
Ti
m
e
Br
ea
kd

ow
n(
%)

Figure 12: Execution time breakdown forMG-Join and DPRJ
with varying number of GPUs.

larger number of GPU threads attempting to access the page table
simultaneously. As a result, the performance of UMJ on multiple
GPUs (from 5 to 8) is even worse than that of a single GPU.

Second, MG-Join outperforms DPRJ by up to 2.5x due to 1) net-
work optimal partition assignment, 2) efficient adaptive routing
during data distribution and 3) better overlapping of the compute
and data distribution by allowing data routing at the granularity
of individual packets. We will present the study on the impact of
individual techniques later.

Third, while both DPRJ and UMJ achieve poor scaling with the
GPU hardware resources, MG-Join achieves close to linear scaling
with GPU hardware resources, demonstrating very good scalability
on modern multi-GPU architectures.

To further understand the performance comparison, we compare
the execution time breakdown of both DPRJ and MG-Join imple-
mentations with the number of GPUs varied in Figure 12. Note,
in the figure X (P) and X (M) represents the execution on X GPUs
for DPRJ and MG-Join, respectively. Further, the data distribution
overhead for both implementations is computed as the overhead
of the data transfer that cannot be overlapped with any compu-
tation (due to the lack of compute workload as communication is
the bottleneck). Now, as shown in the figure, DPRJ spends up to
72% of its execution time moving the data between the GPU, while
MG-Join only spends up to 35% of its execution time in cross-GPU
data transfers. Further, for larger configurations like the one with 8
GPUs, MG-Join spends less than 20% of its execution time moving
the data between the GPUs.

We present the performance of UMJ, DPRJ and MG-Join when
the total input size of two relations is varied 512M to 4B tuples
on all the 8 GPUs in DGX-1 (Figure 13). Similar to the previous
cases, MG-Join outperforms both UMJ and DPRJ for all input sizes.
Overall, MG-Join achieves 10.2x and 3.6x better performance than
UMJ and DPRJ implementations, respectively.

5.4 TPC-H Query Evaluation
We evaluate impact of MG-Join using six TPC-H queries to demon-
strate its ability in improving the overall performance of query exe-
cution on modern multi-GPU architectures. For this, we implement

512 1024 1536 2048 3072 4096
0

5

10

15

20

25

30

Total Input Size on 8 GPUs (M Tuples)

Jo
in

Pe
rf
or
m
an
ce
(B

Tu
pl
es
/s
ec
)

UMJ DPRJ MG-Join

Figure 13: Performance evaluation of MG-Join, DPRJ and
UMJ for varying input size on DGX-1.

Q3 Q5 Q10 Q12 Q14 Q19
0

2

4

6

8

10
20.9 16.5 62.5 18.6

N
A

N
A

N
A

N
A

Ti
m
e(
s)

Omnisci CPU Omnisci GPU DPRJ MG-Join

Figure 14: TPC-H query evaluation of MG-Join, Omnisci
CPU and Omnisci GPU for a scale factor of 250.

GPU versions of 6 TPC-H queries that make use of MG-Join and
compare them against CPU and GPU versions of Omnisci. When
executing on multiple GPUs, OmniSci adopts a shared-nothing ar-
chitecture between GPUs, i.e., each GPU processes its own local
slice of data. Even though our MG-Join based implementation is
capable of processing data sets with much larger sizes, we use a
scale factor of 250 for this test due to limitations in Omnisci which
prevents it from processing larger data sets on GPUs.

The results of this comparison in Figure 14 show that theMG-Join
implementation still outperforms DPRJ, and also outperforms both
the CPU and GPU versions of Omnisci by 25x and 4.5x, respectively.
Note, we are only able to present the results for Q14 and Q19 for
Omnisci GPU since it fails to execute the other queries on the multi-
GPU system for a scale factor of 250 (missing values denoted by
NA). We make further observations from this result.

First, MG-Join in this study helps GPU database systems to make
efficient use of the GPU and interconnect hardware in modern
multi-GPU systems.

Second, modern multi-GPU systems are able to significantly
outperform the CPU version (with two sockets here) for high per-
formance analytical workloads. Due to the explosive growth in deep
learning workloads, these multi-GPU servers are becoming increas-
ingly popular. NVIDIA alone has released 5 different multi-GPU

server configurations for such workloads. Further, these devices are
also becoming popular as cloud instances, making them even more
accessible and cheaper. At the time of this writing, Amazon ec2
instance with 8 GPUs has an hourly cost of as low as $8.39, while a
CPU instance (in US West) with 48 physical cores cost $7.776 per
hour [1]. We acknowledge that the comparison between CPU and
GPU is not extensive in this study and an interesting future work
can be comparing the CPU systems with more sockets.

6 RELATEDWORK
Joins on single-GPU hardware. Hash join on a single GPU has
been studied exhaustively in the literature [9, 13, 22–24, 33, 37, 47].
Kaldewey et al. [27] designed a system that takes advantage of the
universal virtual addressing feature that allows GPUs and CPUs
to access data directly from each others memory subsystem. Paul
et al. [31] later extended this implementation to take advantage of
the more recent unified memory feature introduced by NVIDIA.
Rui et al. [38] proposed a partitioned hash join implementation
that joins the input relations by first partitioning the input data
based on histogram and then joining the co-partitions. To ensure
efficient execution, this implementation proposed the sharing of
histogram data structure in GPU shared memory as well as the
recursive partition of input data to generate small partition sizes.
More recently, Sioulas et al. [44] proposed an implementation that
partitions the data using bucket chains, thus avoiding the need to
build histograms.

In comparison, this paper is the first of its kind in extensively
studying the communication performance of hash joins on mod-
ern multi-GPU hardware. We have two distinct findings. First, as
shown in our experiments, static routingmetrics (including shortest
weighted path) will be highly inefficient due to their inability to take
into consideration the congestion impacts, which is a fundamental
issue in efficient hash joins on multi-GPU architectures. Second,
any adaptive routing scheme needs to be designed to minimize
the overhead of synchronization across multiple GPUs, due to the
high cost of these synchronizations and lack of dedicated routing
hardware on the GPU.

Distributed joins. Distributed joins on RDMA and Infiniband
networks have been widely studied in the literature. Track Join [34]
and Neo Join [40] are distributed joins that work by first partition-
ing input data among nodes in the cluster and then joining the
co-partitions. These implementations rely on costly determination
of the optimal assignment of partitions to the nodes in the cluster.
Barthels et al. [11] proposed a distributed join implementation for
RDMA based hardware. More recently, Squirrel Join [39] and Flow
Join [36] were proposed for efficiently joining skewed input data
sets on Infiniband clusters. However, these implementations work
on data routing in existing network layer, which is unavailable
for modern multi-GPU architectures. Despite the similarity, multi-
GPU architectures differ from distributed environments: firstly on
a limited number of DMA engines and secondly on heterogenous
links. Guo et al. [21] proposed a join implementation for distributed
RDMA clusters with GPUs. However, the implementation is de-
signed for RDMA clusters and simply relies on CUDA communi-
cation APIs (which makes use of the direct routes between GPUs)
for data transfer between the GPUs within the same node. Further,

while the implementation explores the use of different possible
paths for communication with remote GPUs, it fails to explore
multi-hop data transmission or an adaptive congestion aware rout-
ing policy that can make efficient use of interconnect bandwidth.

Multi-GPU architectures. Recent studies on GPU applications
have focused on making efficient use of multiple GPUs by 1) par-
titioning the data set across GPUs in a way that minimizes com-
munication across GPUs [15] or 2) enabling more efficient com-
munication across GPUs. In this study we focus on improving the
communication across the GPUs during the partitioned hash join
operation. Numerous communication frameworks have already
been proposed in the literature to enable efficient communication
across the GPUs in multi-GPU set-ups. Groute [12], Gluon [19],
DiGraph [49] and Lux [26] were proposed for handling workload
distribution and communication across GPUs within a single ma-
chine for graph applications. There are also many deep learning
systems on multi-GPU architectures (such as [28, 30]). Further,
NCCL [4] is a communication framework from NVIDIA and is
designed to allow efficient communication between GPUs. How-
ever, all these implementations adopt static routing policies which
are highly inefficient on modern multi-GPU hardware, as demon-
strated in the comparison with multi-hop and adaptive routing in
our experimental studies.

7 CONCLUSION
The rise of multi-GPU architectures with faster interconnects of-
fer new opportunities of relational query processing on hundreds
of gigabytes of GPU memory. However, we find that due to the
unique characteristics of GPUs and the interconnect hardware,
existing hash join designs demonstrate very bad scalability on
multi-GPU architectures, which spend up to 66% of its execution
time in cross-GPU communications and achieve lower than 50%
GPU-GPU interconnect bandwidth utilization. To address this, we
propose MG-Join, a scalable partitioned hash join implementation
for modern multi-GPU hardware. MG-Join makes use of an adap-
tive multi-hop data distribution policy that helps ensure efficient
use of GPU hardware and interconnect links and minimizes conges-
tion across interconnect links. Our experiments show that MG-Join
achieves up to 97% utilization of the interconnect bandwidth on
DGX-1 with eight GPUs, and outperforms existing partitioned hash
join implementations by up to 2.5x when joining large input data
sets distributed over multiple GPUs. MG-Join further helps improve
the performance of TPC-H queries by up to 4.5x over OmniSCi.

There are many challenges beyond the scope of this paper but
ideal for exciting future work. First, the cost of current multi-GPU
architecture is relatively high. We wish the hardware community
can further reduce the hardware cost to lower the adoption bar-
rier of multi-GPU architecture. Second, high performance network
interconnects such as RDMA can be an opportunity to further
improve the scale of multi-GPU architectures for huge data sets.

8 ACKNOWLEDGEMENT
This work is in part supported by a MoE AcRF Tier 1 grant (T1
251RES1824) and Tier 2 grant (MOE2017-T2-1-122) in Singapore.

REFERENCES
[1] Amazon ec2. https://aws.amazon.com/ec2/instance-types/p3/.
[2] DGX White Paper: NVIDIA. https://www.nvidia.com/en-us/data-

center/resources/dgx-1-system-architecture-whitepaper/.
[3] Interior gateway routing protocol. https://en.wikipedia.org/wiki/Interior_

Gateway_Routing_Protocol.
[4] Nvidia collective communication library. https://docs.nvidia.com/deeplearning/

sdk/nccl-developer-guide/docs/index.html.
[5] Nvidia dgx-1. https://www.nvidia.com/en-us/data-center/dgx-1/.
[6] Nvidia dgx station. https://www.nvidia.com/en-us/data-center/dgx-station/.
[7] POWER8 with NVIDIA NVLink Technology. https://www-355.ibm.com/systems/

power/openpower/tgcmDocumentRepository.xhtml?aliasId=POWER8_with_
NVIDIA_NVLink.

[8] Tpc-h. http://www.tpc.org/tpch/, 1999.
[9] D. A. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher, J. D. Owens, and

N. Amenta. Building an efficient hash table on the gpu. In GPU Computing Gems
Jade Edition, pages 39–53. Elsevier, 2012.

[10] S. S. Baboo and B. Narasimhan. An energy-efficient congestion-aware routing
protocol for heterogeneous mobile ad hoc networks. In 2009 International Con-
ference on Advances in Computing, Control, and Telecommunication Technologies,
pages 344–350. IEEE, 2009.

[11] C. Barthels, S. Loesing, G. Alonso, and D. Kossmann. Rack-scale in-memory join
processing using rdma. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1463–1475, 2015.

[12] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali. Groute: An Asynchronous Multi-
GPU Programming Model for Irregular Computations. ACM SIGPLAN Notices,
52(8):235–248, 2017.

[13] S. Breß, B. Köcher, M. Heimel, V. Markl, M. Saecker, and G. Saake. Ocelot/hype:
Optimized data processing on heterogeneous hardware. Proceedings of the VLDB
Endowment, 7(13):1609–1612, 2014.

[14] M. Charikar, Y. Naamad, J. Rexford, and X. K. Zou. Multi-commodity flow with
in-network processing. In Y. Disser and V. S. Verykios, editors, Algorithmic
Aspects of Cloud Computing, pages 73–101, Cham, 2019. Springer International
Publishing.

[15] P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, andA. Ailamaki. Hetexchange:
Encapsulating heterogeneous cpu-gpu parallelism in jit compiled engines. Pro-
ceedings of the VLDB Endowment, page 13, 2019.

[16] P. Chrysogelos, P. Sioulas, and A. Ailamaki. Hardware-conscious query pro-
cessing in gpu-accelerated analytical engines. In Proceesings of the 9th Biennial
Conference on Innovative Data Systems Research, number CONF, 2019.

[17] N. Farrugia, J. A. Briffa, and V. Buttigieg. Solving the multi-commodity flow
problem using a multi-objective genetic algorithm. In 2019 IEEE Congress on
Evolutionary Computation (CEC), pages 2816–2823, 2019.

[18] H. Funke and J. Teubner. Data-parallel query processing on non-uniform data.
Proc. VLDB Endow., 13(6):884–897, Feb. 2020.

[19] G. Gill, L. Hoang, R. Dathathri, A. Brooks, K. Pingali, M. Snir, N. Dryden, and
H.-V. Dang. Gluon: a communication-optimizing substrate for distributed het-
erogeneous graph analytics. ACM SIGPLAN Notices, 53(4):752–768, 2018.

[20] M. G. Gouda and M. Schneider. Maximizable routing metrics. IEEE/ACM Trans-
actions on Networking, 11(4):663–675, 2003.

[21] C. Guo, H. Chen, F. Zhang, and C. Li. Distributed join algorithms on multi-cpu
clusters with gpudirect rdma. In Proceedings of the 48th International Conference
on Parallel Processing, pages 1–10, 2019.

[22] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander. Rela-
tional joins on graphics processors. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 511–524. ACM, 2008.

[23] J. He, M. Lu, and B. He. Revisiting co-processing for hash joins on the coupled
cpu-gpu architecture. Proceedings of the VLDB Endowment, 6(10):889–900, 2013.

[24] J. He, S. Zhang, and B. He. In-cache query co-processing on coupled cpu-gpu
architectures. Proceedings of the VLDB Endowment, 8(4):329–340, 2014.

[25] S. N. Hertiana, A. Kurniawan, U. S. Pasaribu, et al. Effective router assisted con-
gestion control for sdn. International Journal of Electrical & Computer Engineering
(2088-8708), 8(6), 2018.

[26] Z. Jia, Y. Kwon, G. Shipman, P. McCormick, M. Erez, and A. Aiken. A distributed
multi-gpu system for fast graph processing. Proceedings of the VLDB Endowment,

11(3):297–310, 2017.
[27] T. Kaldewey. GPU Join Processing Revisited.
[28] A. Koliousis, P. Watcharapichat, M. Weidlich, L. Mai, P. Costa, and P. Pietzuch.

Crossbow: Scaling deep learning with small batch sizes on multi-gpu servers.
Proc. VLDB Endow., 12(11):1399–1412, July 2019.

[29] OmniSci. https://www.omnisci.com/. 2019.
[30] S. Pal, E. Ebrahimi, A. Zulfiqar, Y. Fu, V. Zhang, S. Migacz, D. Nellans, and P. Gupta.

Optimizing multi-gpu parallelization strategies for deep learning training. IEEE
Micro, 39(5):91–101, Sep. 2019.

[31] J. Paul, B. He, S. Lu, and C. T. Lau. Revisiting hash join on graphics processors: a
decade later. Distributed and Parallel Databases, pages 1–23.

[32] J. Paul, B. He, S. Lu, and C. T. Lau. Improving execution efficiency of just-in-time
compilation based query processing on gpus. Proc. VLDB Endow., 14(2):202–214,
Oct. 2020.

[33] H. Pirk, S. Manegold, and M. Kersten. Accelerating foreign-key joins using
asymmetric memory channels. In ADMS, 2011.

[34] O. Polychroniou, R. Sen, and K. A. Ross. Track join: distributed joins with minimal
network traffic. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pages 1483–1494, 2014.

[35] P. Rakheja, P. Kaur, A. Gupta, and A. Sharma. Performance analysis of rip, ospf,
igrp and eigrp routing protocols in a network. International Journal of Computer
Applications, 48:6–11, 2012.

[36] W. Rödiger, S. Idicula, A. Kemper, and T. Neumann. Flow-join: Adaptive skew
handling for distributed joins over high-speed networks. In 2016 IEEE 32nd
International Conference on Data Engineering (ICDE), pages 1194–1205. IEEE,
2016.

[37] R. Rui, H. Li, and Y.-C. Tu. Join algorithms on gpus: A revisit after seven years.
In 2015 IEEE International Conference on Big Data (Big Data), pages 2541–2550.
IEEE, 2015.

[38] R. Rui and Y.-C. Tu. Fast equi-join algorithms on gpus: Design and implementa-
tion. In Proceedings of the 29th International Conference on Scientific and Statistical
Database Management, SSDBM ’17, New York, NY, USA, 2017. Association for
Computing Machinery.

[39] L. Rupprecht, W. Culhane, and P. Pietzuch. Squirreljoin: Network-aware
distributed join processing with lazy partitioning. Proc. VLDB Endow.,
10(11):1250–1261, Aug. 2017.

[40] W. Rödiger, T.Mühlbauer, P. Unterbrunner, A. Reiser, A. Kemper, and T. Neumann.
Locality-sensitive operators for parallel main-memory database clusters. In 2014
IEEE 30th International Conference on Data Engineering, pages 592–603, 2014.

[41] S. Schuh, X. Chen, and J. Dittrich. An experimental comparison of thirteen
relational equi-joins in main memory. In Proceedings of the 2016 International
Conference on Management of Data, pages 1961–1976. ACM, 2016.

[42] M. Seliuchenko, O. Lavriv, O. Panchenko, and V. Pashkevych. Enhanced multi-
commodity flow model for qos-aware routing in sdn. In 2016 International
Conference Radio Electronics Info Communications (UkrMiCo), pages 1–3, 2016.

[43] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and A. Ailamaki.
Hardware-conscious hash-joins on gpus. page 12, 2019.

[44] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and A. Ailamaki.
Hardware-conscious hash-joins on gpus. In 2019 IEEE 35th International Confer-
ence on Data Engineering (ICDE), pages 698–709. IEEE, 2019.

[45] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens. Gunrock: A
High-Performance Graph Processing Library on the GPU. 2015.

[46] M. Yabuta, A. Nguyen, S. Kato, M. Edahiro, and H. Kawashima. Relational joins
on gpus: A closer look. IEEE Transactions on Parallel and Distributed Systems,
28(9):2663–2673, 2017.

[47] Y. Yuan, R. Lee, and X. Zhang. The yin and yang of processing data warehousing
queries on gpu devices. Proceedings of the VLDB Endowment, 6(10):817–828, 2013.

[48] Y. Yukun, L. Jiangbing, X. Dongliang, R. Zhi, and H. Qing. Centralized congestion
control routing protocol based onmulti-metrics for low power and lossy networks.
The Journal of China Universities of Posts and Telecommunications, 24(5):35–43,
2017.

[49] Y. Zhang, X. Liao, H. Jin, B. He, H. Liu, and L. Gu. Digraph: An efficient path-based
iterative directed graph processing system on multiple gpus. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, page 601–614, New York, NY,
USA, 2019. Association for Computing Machinery.

https://en.wikipedia.org/wiki/Interior_Gateway_Routing_Protocol
https://en.wikipedia.org/wiki/Interior_Gateway_Routing_Protocol
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/index.html
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/index.html
https://www-355.ibm.com/systems/power/openpower/tgcmDocumentRepository.xhtml?aliasId=POWER8_with_NVIDIA_NVLink
https://www-355.ibm.com/systems/power/openpower/tgcmDocumentRepository.xhtml?aliasId=POWER8_with_NVIDIA_NVLink
https://www-355.ibm.com/systems/power/openpower/tgcmDocumentRepository.xhtml?aliasId=POWER8_with_NVIDIA_NVLink

	Abstract
	1 Introduction
	2 Modern Multi-GPU Architectures
	2.1 GPU Hardware
	2.2 GPU Interconnects

	3 MG-Join: Design Overview
	3.1 Design Rationales
	3.2 Design Overview

	4 Data Distribution
	4.1 Multi-Hop Data Transmission
	4.2 Adaptive Routing

	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluating Data Distribution in Global Partitioning Phase
	5.3 Evaluation of Join Performance
	5.4 TPC-H Query Evaluation

	6 Related Work
	7 Conclusion
	8 Acknowledgement
	References

