
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIX ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

gScale: Scaling up GPU Virtualization with
Dynamic Sharing of Graphics Memory Space

Mochi Xue, Shanghai Jiao Tong University and Intel Corporation; Kun Tian, Intel Corporation;
Yaozu Dong, Shanghai Jiao Tong University and Intel Corporation; Jiacheng Ma,
Jiajun Wang, and Zhengwei Qi, Shanghai Jiao Tong University; Bingsheng He,
National University of Singapore; Haibing Guan, Shanghai Jiao Tong University

https://www.usenix.org/conference/atc16/technical-sessions/presentation/xue

USENIX Association 	 2016 USENIX Annual Technical Conference  579

gScale: Scaling up GPU Virtualization with Dynamic Sharing of Graphics

Memory Space

Mochi Xue1,2, Kun Tian2, Yaozu Dong1,2, Jiacheng Ma1, Jiajun Wang1,

Zhengwei Qi1, Bingsheng He3, Haibing Guan1

{xuemochi, mjc0608, jiajunwang, qizhenwei, hbguan}@sjtu.edu.cn

{kevin.tian, eddie.dong}@intel.com he.bingsheng@gmail.com
1Shanghai Jiao Tong University, 2Intel Corporation, 3National University of Singapore

Abstract

With increasing GPU-intensive workloads deployed on

cloud, the cloud service providers are seeking for practi-

cal and efficient GPU virtualization solutions. However,

the cutting-edge GPU virtualization techniques such as

gVirt still suffer from the restriction of scalability, which

constrains the number of guest virtual GPU instances.

This paper introduces gScale, a scalable GPU virtu-

alization solution. By taking advantage of the GPU

programming model, gScale presents a dynamic shar-

ing mechanism which combines partition and sharing to-

gether to break the hardware limitation of global graph-

ics memory space. Particularly, we propose three ap-

proaches for gScale: (1) the private shadow graphics

translation table, which enables global graphics memory

space sharing among virtual GPU instances, (2) ladder

mapping and fence memory space pool, which allows

the CPU to access host physical memory space (serving

the graphics memory) bypassing global graphics mem-

ory space, (3) slot sharing, which improves the perfor-

mance of vGPU under a high density of instances.

The evaluation shows that gScale scales up to 15 guest

virtual GPU instances in Linux or 12 guest virtual GPU

instances in Windows, which is 5x and 4x scalability, re-

spectively, compared to gVirt. At the same time, gScale

incurs a slight runtime overhead on the performance of

gVirt when hosting multiple virtual GPU instances.

1 Introduction

The Graphic Processing Unit (GPU) is playing an indis-

pensable role in cloud computing as GPU efficiently ac-

celerates the computation of certain workloads such as

2D and 3D rendering. With increasing GPU intensive

workloads deployed on cloud, cloud service providers in-

troduce a new computing paradigm called GPU Cloud to

meet the high demands of GPU resources (e.g., Amazon

EC2 GPU instance [2], Aliyun GPU server [1]).

As one of the key enabling technologies of GPU cloud,

GPU virtualization is intended to provide flexible and

scalable GPU resources for multiple instances with high

performance. To achieve such a challenging goal, sev-

eral GPU virtualization solutions were introduced, i.e.,

GPUvm [28] and gVirt [30]. gVirt, also known as GVT-

g, is a full virtualization solution with mediated pass-

through support for Intel Graphics processors. Benefited

by gVirt’s open-source distribution, we are able to in-

vestigate its design and implementation throughly. In

each virtual machine (VM), running with native graphics

driver, a virtual GPU (vGPU) instance is maintained to

provide performance-critical resources directly assigned,

since there is no hypervisor intervention in performance

critical paths. Thus, it optimizes resources among the

performance, feature, and sharing capabilities [5].

For a virtualization solution, scalability is an indis-

pensable feature which ensures high resource utilization

by hosting dense VM instances on cloud servers. Al-

though gVirt successfully puts GPU virtualization into

practice, it suffers from scaling up the number of vGPU

instances. The current release of gVirt only supports 3

guest vGPU instances on one physical Intel GPU1, which

limits the number of guest VM instances down to 3. In

contrast, CPU virtualization techniques (e.g., Xen 4.6

guest VM supports up to 256 vCPUs [11]) are maturely

achieved to exploit their potential. The mismatch be-

tween the scalability of GPU and other resources like

CPU will certainly diminish the number of VM in-

stances. Additionally, high scalability improves the con-

solidation of resources. Recent studies (eg., VGRIS [26])

have observed that GPU workloads can fluctuate sig-

nificantly on GPU utilization. Such low scalability of

gVirt could result in severe GPU resource underutiliza-

tion. If more guest VMs can be consolidated to a sin-

gle host, cloud providers have more chances to multiplex

the GPU power among VMs with different workload pat-

1In this paper, Intel GPU refers to the Intel HD Graphics embedded

in HASWELL CPU.

1

580  2016 USENIX Annual Technical Conference	 USENIX Association

terns (e.g., scheduling VMs with GPU intensive or idle

patterns) so that the physical resource usage of GPU can

be improved.

This paper explores the design of gVirt, and presents

gScale, a practical, efficient and scalable GPU virtualiza-

tion solution. To increase the number of vGPU instances,

gScale targets at the bottleneck design of gVirt and in-

troduces a dynamic sharing scheme for global graphics

memory space. gScale provides each vGPU instance

with a private shadow graphics translation table (GTT)

to break the limitation of global graphics memory space.

gScale copies vGPU’s private shadow GTT to physical

GTT along with the context switch. The private shadow

GTT allows vGPUs to share an overlapped range of

global graphics memory space, which is an essential de-

sign of gScale. However, it is non-trivial to make the

global graphics memory space sharable, because global

graphics memory space is both accessible to CPU and

GPU. gScale implements a novel ladder mapping mech-

anism and a fence memory space pool to let CPU access

host physical memory space serving the graphics mem-

ory, which bypasses the global graphics memory space.

At the same time, gScale proposes slot sharing to im-

prove the performance of vGPUs under a high density of

instances.

This paper implements gScale based on gVirt, which

is comprised of about 1000 LoCs. The source code is

now available on Github2. In summary, this paper over-

comes various challenges, and makes the following con-

tributions:

• A private shadow GTT for each vGPU, which

makes the global graphics memory space sharable.

It keeps a specific copy of the physical GTT for the

vGPU. When the vGPU becomes the render owner,

its private shadow graphics translation table will be

written on the physical graphics translation table by

gScale to provide correct translations.

• The ladder mapping mechanism, which directly

maps guest physical address to host physical ad-

dress serving the guest graphic memory. With

ladder mapping mechanism, the CPU can access

the host physical memory space serving the guest

graphic memory, without referring to the global

graphics memory space.

• Fence memory space pool, a dedicated memory

space reserved in global graphics memory space

with dynamic management. It guarantees that the

fence registers operate correctly when a certain

range of global graphics memory space is unavail-

able for CPU.

2https://github.com/inkpool/XenGT-Preview-kernel/tree/gScale

• Slot sharing, a mechanism to optimize the perfor-

mance of vGPUs, reduces the overhead of private

shadow GTT copying under a high instance density.

• The evaluation shows that gScale can provide 15

guest vGPU instances for Linux VMs or 12 guest

vGPU instances for Windows VMs on one physi-

cal machine, which is 5x and 4x scalability respec-

tively, compared to gVirt. It achieves up to 96% per-

formance of gVirt under a high density of instances.

The rest of paper is organized as follows. Section 2 de-

scribes the background of gScale, and Section 3 reveals

gVirt’s scalability issue and its bottleneck design. The

detailed design and implementation of gScale are pre-

sented in Section 4. We evaluate gScale’s performance in

Section 5 with the overhead analysis. We discuss the ap-

plicability of our work in Section 6 and the related work

is in Section 7. Finally, in Section 8 we conclude our

work with a brief discussion of future work.

2 Background and Preliminary

GPU Programming Model Driven by high level pro-

gramming APIs like OpenGL and DirectX, graphics

driver produces GPU commands into primary buffer and

batch buffer while GPU consumes the commands ac-

cordingly. The primary buffer is designed to deliver the

primary commands with a ring structure, but the size of

primary buffer is limited. To make up for the space short-

age, batch buffer is linked to the primary buffer to deliver

most of the GPU commands.

GPU commands are produced by CPU and transferred

from CPU to GPU in batches. To ensure that GPU con-

sumes the commands after CPU produces them, a notifi-

cation mechanism is implemented in the primary buffer

with two registers. The tail register is updated when CPU

finishes the placement of commands, and it informs GPU

to get commands in the primary buffer. When GPU com-

pletes processing all the commands, it writes the head

register to notify CPU for incoming commands [30].

Graphics Translation Table and Global Graphics

Memory Space Graphics translation table (GTT),

sometimes known as global graphics translation table, is

a memory-resident page table providing the translations

from logical graphics memory address to physical mem-

ory address, as Figure 1 shows. It is worth noting that the

physical memory space served by GTT is also assigned

to be the global graphics memory space, especially for

GPUs without dedicated memory, such as Intel’s GPU.

However, through the Aperture [6], a range defined in the

graphics memory mapping input/output (MMIO), CPU

could also access the global graphics memory space.

2

USENIX Association 	 2016 USENIX Annual Technical Conference  581

Figure 1: Graphics Translation Table

And this CPU’s visible part of global graphics memory is

called low global graphics memory, while the rest part is

called high global graphics memory. To be specific, In-

tel GPU has a 2MB GTT which maps to a 2GB graphics

memory space. The aperture range could maximally be

512KB which maps to 512MB graphics memory space

visible by CPU. Accordingly, the low graphics memory

space is 512MB, while the high graphics memory space

is 1536MB.

gVirt gVirt is the first product-level full GPU virtu-

alization solution with mediated pass-through [30]. So

the VM running native graphics driver is presented with

a full featured virtualized GPU. gVirt emulates virtual

GPU (vGPU) for each VM, and conducts context switch

among vGPUs. vGPUs are scheduled to submit their

commands to the physical GPU continuously, and each

vGPU has a 16ms time slice. When time slice runs

out, gVirt switches the render engine to next scheduled

vGPU. To ensure the correct and safe switch between

vGPUs, gVirt saves and restores vGPU states, including

internal pipeline state and I/O register states.

By passing-through the accesses to the frame buffer

and command buffer, gVirt reduces the overhead of

performance-critical operations from a vGPU. For global

graphics memory space, resource partition is applied by

gVirt. For local graphics memory space, gVirt imple-

ments per-VM local graphics memory [30]. It allows

each VM to use the full local graphics memory space

which is 2GB in total. The local graphics memory space

is only accessible to vGPU, so gVirt can switch the

graphics memory spaces among vGPUs when switching

the render ownership.

3 Scalability Issue

The global graphics memory space can be accessed si-

multaneously by CPU and GPU. gVirt has to present

VMs with their global graphics memory spaces at any

time, leading to the resource partition. As shown in

Figure 2, when a vGPU instance is created with a VM,

gVirt only assigns a part of host’s low global graphics

memory and a part of host’s high global graphics mem-

ory to the vGPU, as its low global graphics memory

and high global graphics memory, respectively. These

two parts together comprise the vGPU’s global graphics

memory space. Moreover, the partitioned graphics mem-

ory spaces are mapped by a shared shadow GTT, which

is maintained by gVirt to translate guest graphics mem-

ory address to host physical memory address.

Figure 2: Global Graphics Memory Space with Partition

To support simultaneous accesses from VMs, the

shared shadow GTT has to carry translations for all the

VMs, which means the guest view of shadow GTT is ex-

actly the same with host’s, as shown in Figure 5. gVirt in-

troduces an address space ballooning mechanism to bal-

loon the space that does not belong to the VM. gVirt ex-

poses the partition information to VM’s graphics driver,

and graphics driver marks the space which does not be-

long to the VM as “ballooned” [30]. Note here, gVirt’s

memory space ballooning mechanism is for resource iso-

lation, which is different from traditional memory bal-

looning technique [31]. Though guests have the same

view of shadow GTT with the host, with ballooning

mechanism, guest VM can only access the global graph-

ics memory space asigned to itself.

Due to the resource partition mechanism for global

graphics memory space, with a fixed size of global

graphics memory, the number of vGPUs hosted by gVirt

is limited. If gVirt wants to host more vGPUs, it has

to configure vGPUs with less global graphics memory.

However, it sacrifices vGPU’s functionality if we in-

crease the number of vGPUs by shrinking the global

graphics memory size of vGPUs. Moreover, the graphics

driver reports errors or even crashes when it cannot al-

locate memory from global graphics memory space [4].

For instance, a vGPU with deficient global graphics

3

582  2016 USENIX Annual Technical Conference	 USENIX Association

memory size may lose functionality under certain work-

loads which need the high requirements of global graph-

ics memory. In fact, more global graphics memory does

not bring performance improvement for vGPUs, because

global graphics memory only serves frame buffer and

ring buffer with limited sizes, while the massive ren-

dering data resides in local graphics data [30]. Specif-

ically, for vGPU in Linux VM, the 64MB low global

graphics memory and 384MB high global graphics mem-

ory are recommended. For vGPU in Windows VM, the

recommend configuration is 128MB low global graphics

memory and 384MB high global graphics memory [12].

In the scalability experiment of gVirt [30], it hosted 7

guest vGPUs in Linux VMs. However, the global graph-

ics memory size of vGPU in that experiment is smaller

than the recommended configuration. Such configura-

tion cannot guarantee the full functionality of vGPU, and

it would incur errors or crashes for vGPU under certain

workloads because of the deficiency of graphics memory

space [4]. In this paper, the vGPUs are configured with

recommended configuration.

Actually, the current source code (2015Q3) of gVirt

sets the maximal vGPU number as 4. For platform with

Intel GPU, there is 512MB low global graphics memory

space and 1536MB high global graphics memory space

in total. While gVirt can only provide 3 guest vGPUs

(64MB low global graphics memory, and 384MB high

global graphics memory) for Linux VMs or 3 guest vG-

PUs (128MB low global graphics memory, and 384MB

high global graphics memory) for Windows VMs, be-

cause the host VM also occupies one vGPU. As a GPU

virtualization solution, gVirt is jeopardized by its scala-

bility issue. The static partition of global graphics mem-

ory space is the root cause of the scalability issue. In

this paper, we attempt to break the limitation of static re-

source partition and sufficiently improve the scalability

for gVirt.

4 Design and Implementation

The architecture of gScale is shown in Figure 3. To break

the limitation of global graphics memory, gScale pro-

poses a dynamic sharing scheme which combines par-

tition and sharing together as Figure 4 illustrates. For

the access of GPU, we introduce private shadow GTT to

make global graphics memory space sharable. For the

access of CPU, we present ladder mapping to allow CPU

to directly access host physical memory space serving

the graphics memory, which bypasses the global graph-

ics memory space. For concurrent accesses of CPU and

GPU, gScale reserves a part of low global graphics mem-

ory as the fence memory space pool to ensure the func-

tionality of fence registers. gScale also divides the high

global graphics memory space into several slots to lever-

Figure 3: Architecture

age the overhead caused by private shadow GTT copy-

ing.

In this section, the design of gScale addresses three

technical challenges: (1) how to make global graph-

ics memory space sharable among vGPUs, (2) how to

let CPU directly access host memory space serving the

graphics memory, which bypasses global graphics mem-

ory space, and (3) how to improve the performance of

vGPUs under a high instance density.

Figure 4: Dynamic Sharing Scheme of gScale

4.1 Private Shadow GTT

It is a non-trivial task to make the global graphics mem-

ory space sharable among vGPUs, for that CPU and GPU

access the low global graphics memory space simulta-

neously, as we mentioned in Section 2. However, high

global graphics memory space is only accessible to GPU,

which makes it possible for vGPUs to share high global

graphic memory space. Taking advantages of GPU pro-

gramming model, vGPUs are scheduled to take turns to

be served by render engine, and gVirt conducts context

switch before it changes the ownership of render engine.

This inspires us to propose the private shadow GTT for

each vGPU.

4

USENIX Association 	 2016 USENIX Annual Technical Conference  583

Figure 5: Private Shadow GTT

Figure 5 shows the gVirt’s shared shadow GTT

and gScale’s private shadow GTT. Specifically, shared

shadow GTT is introduced to apply the resource parti-

tion on global graphics memory space. It provides every

vGPU with a same view of physical GTT, while each

vGPU is assigned with a different part of shadow GTT.

Accordingly, each vGPU occupies the different ranges

of global graphics memory space from others. How-

ever, gScale’s private shadow GTT is specific for each

vGPU, and it provides vGPU with a unique view of

global graphics memory space. Moreover, the transla-

tions that private shadow GTT contains are only valid

for its corresponding vGPU. And gScale copies vGPU’s

private shadow GTT onto the physical GTT along with

the context switch to ensure that translations of physical

GTT are correct for the upcoming vGPU. When vGPU

owns the physical engine, gScale synchronizes the mod-

ifications of physical GTT to vGPU’s private shadow

GTT.

By manipulating the private shadow GTTs, gScale

could allow vGPUs to use an overlapped range of global

graphics memory, which makes the high global graphics

memory space sharable, as shown in Figure 6. However,

low graphics memory space is still partitioned among the

vGPUs, for that it is also visible to CPU. Simply using

private shadow GTT to make low graphics memory space

sharable would provide vCPU with wrong translations.

On-demand Copying Writing private shadow GTT

onto physical GTT incurs the overhead. gScale intro-

duces on-demand copying to reduce unnecessary copy-

ing overhead. Currently, gScale is able to assign the

whole sharable global graphics memory space to a

vGPU. Instead, gScale only configures vGPU with the

sufficient global graphics memory, for that more global

graphics memory does not increase the performance of

vGPU while it could increase the overhead of copying

shadow GTT. Although the size of private GTT is exactly

Figure 6: Sharable Global Graphics Memory Space

the same with physical GTT, vGPU is configured with a

portion of available global graphics memory space (cor-

responding to only part of vGPU’s private shadow GTT).

By taking advantage of this characteristic, gScale only

copies the demanding part of vGPU’s private shadow

GTT to the physical GTT, which mitigates the unnec-

essary overhead.

4.2 Ladder Mapping

It is not enough to only make high global graphics mem-

ory space sharable because the static partition applied

to low global graphics memory space still constrains the

number of vGPUs. Low global graphics memory space

is accessible to both CPU and GPU, while CPU and

GPU are scheduled independently. gScale has to present

VMs with their low global graphics memory spaces at

all time. Intel GPU does not have dedicated graphics

memory, while the graphics memory is actually allocated

from system memory. The graphics memory of VM ac-

tually resides in host physical memory. gScale proposes

the ladder mapping to allow CPU to directly access the

host memory space serving the graphics memory which

bypasses the global graphics memory space.

When a VM is created, gScale maps VM’s guest phys-

ical memory space to host physical memory space by Ex-

tended Page Table (EPT). EPT is a hardware supported

page table for virtualization, which translates guest phys-

ical address to host physical address [23]. Through the

aperture, a range of MMIO space in host physical mem-

ory space, CPU could access the low part of global

graphics memory space. With the translations in GTT,

the global graphics memory address is translated into

host physical address serving the graphics memory. Fi-

nally, CPU could access the graphics data residing in host

physical memory space.

Figure 7 shows the initial mapping we mentioned

above, and through the Step 1, 2 and 3, guest physical ad-

dress is translated into host physical address. When the

process is completed, a translation between guest physi-

cal address and host physical address serving the graph-

5

584  2016 USENIX Annual Technical Conference	 USENIX Association

Figure 7: Ladder Mapping

ics memory is established. After that, gScale modifies

the translation of EPT to directly translate the guest phys-

ical address to host physical address serving the graphics

memory without the reference of global graphics mem-

ory address. We call this mechanism the ladder mapping,

which is constructed when CPU accesses global graphics

memory space by referring to the GTT. gScale monitors

the GTT at all time, and builds ladder mapping as long as

the translation of GTT is modified by CPU. In a nutshell,

the ladder mapping is to allow CPU to access host mem-

ory space bypassing the global graphics memory space.

After that, gScale could make low global graphics mem-

ory space sharable with private shadow GTT.

Fence Memory Space Pool Although we use ladder

mapping to force CPU to bypass the global graphics

memory space, there is one exception that CPU could

still access global graphics memory space through fence

registers. Fence register contains the information about

tiled formats for a specific region of graphics mem-

ory [6]. When CPU accesses this region of global graph-

ics memory recorded in a fence register, it needs the

format information in the fence to operate the graphics

memory. However, after we enable ladder mapping, the

global graphics memory space is no longer available for

CPU. The global graphics memory address in fence reg-

ister is invalid for CPU.

To address the malfunction of fence registers, gScale

reserves a dedicated part of low global graphics memory

to work for fence registers, and enables dynamic man-

agement for it. We call this reserved part of low global

graphics memory, the fence memory space pool. Figure 8

illustrates the workflow of how fence memory space pool

works:

Step 1, when a fence register is written by graphics

driver, gScale acquires the raw data inside of the reg-

Figure 8: Fence Memory Space Pool

ister. By analyzing the raw data, gScale gets the format

information and the global graphics memory space range

served by this fence register.

Step 2, by referring to the initial mapping of EPT,

gScale finds the guest physical memory space range

which corresponds to the global graphics memory space

range in the register. Though the initial mapping of EPT

is replaced by ladder mapping, it is easy to restore the

original mapping with a backup, because the initial map-

ping is continuous with clear offset and range [6]. After

that, this range of guest physical memory space is again

mapped to a range of physical memory space within the

aperture.

Step 3, gScale suspends the ladder mapping for this

range of guest physical memory space, and allocates a

range of memory space in the fence memory space pool

with same size.

Step 4, gScale maps the host physical memory space

in aperture to the memory space newly allocated in fence

memory space pool.

Step 5, gScale copies the entries of GTT serving the

graphics memory space in fence register to the part of

GTT corresponding to the graphics memory space newly

allocated in fence memory space pool.

Step 6, gScale writes the new graphics memory space

range along with untouched format information into the

fence register. To this end, gScale constructs a temporary

mapping for fence register, and CPU could finally use the

information in fence register correctly.

When a fence register is updated, gScale restores the

ladder mapping for the previous range of global graph-

ics memory space that fence register serves, and frees

its corresponding memory space in the fence memory

space pool. After that, gScale repeats the procedure as

we mentioned above to ensure the updated register work

correctly with fence memory space pool.

6

USENIX Association 	 2016 USENIX Annual Technical Conference  585

4.3 Slot Sharing

In real cloud environments, the instances hosted by cloud

may not remain busy at all time, while some instances

become idle after completing their tasks [24]. gScale

implements slot sharing to improve the performance of

vGPU instance under a high instance density. Figure 9

shows the layout of physical global graphics memory

space, gScale divides the high global graphics memory

space into several slots, and each slot could hold one

vGPU’s high graphics memory. gScale could deploy sev-

eral vGPUs in the same slot. As we mentioned in Sec-

tion 2, high global graphics memory space provided by

Intel GPU is 1536MB, while 384MB is sufficient for one

VM. However, gScale only provides slots for VMs in

high graphics memory space, for that the amount of low

global graphics memory space is 512MB which is much

smaller than high global graphics memory space. There

is no free space in low graphics memory space spared for

slots.

Figure 9: Slot Sharing

Optimized Scheduler gScale does not conduct con-

text switch for idle vGPU instances, which saves the cost

of context switch and private shadow GTT copying. For

vGPU instances without workloads, they do not submit

commands to physical engine. gScale skips them, and

focuses on serving the instances with heavy workloads.

At the same time, gScale does not copying entries from

idle vGPU’s private shadow GTT to physical GTT. With

slot sharing, if there is only one active vGPU in a slot,

this vGPU will own the slot. gScale keeps its high global

memory part of private shadow GTT on physical GTT

without entry copying. With optimized scheduler, slot

sharing could effectively reduce the overhead of private

shadow GTT copying, and we have a micro overhead

analysis in Section 5.4.

gScale currently has 4 slots (1536MB/384MB = 4):

one is reserved for host vGPU, while the rest 3 are shared

by guest vGPUs. Slot sharing helps gScale improve

guest vGPU’s performance under a high instance density

while only a few vGPUs are busy. We believe slot shar-

ing could be utilized if the cloud provider deploys the

guest VMs meticulously. For example, cloud providers

let a busy vGPU share one slot with a few idle vGPUs.

5 Evaluation

In this section, we evaluate the scalability of gScale when

it hosts an increasing number of guest vGPUs with GPU

workloads. gScale scales well for GPU intensive work-

loads, which achieves up to 81% performance of gVirt

when it scales to 15 vGPUs. We compare the perfor-

mance of gScale with gVirt, and it turns out gScale brings

negligible performance trend. Also, the performance of

gScale and its basic version (without slot sharing) under

a high density of instances is compared. In our experi-

ments, slot sharing improves the performance of gScale

up to 20%, and mitigates the overhead caused by copying

private shadow GTT entries up to 83.4% under certain

circumstances.

5.1 Experimental Setup

Table 1: Experimental Configuration

Configurations All the VMs in this paper are run on

one server configured as Table 1, and gScale is applied

on gVirt’s 2015Q3 release as a patch. To support higher

resolution, fence registers have to serve larger graphics

memory range. In our test environment, gScale reserves

300MB low global graphics memory size to be the fence

7

586  2016 USENIX Annual Technical Conference	 USENIX Association

memory space pool, and this is enough for 15 VMs under

the 1920*1080 resolution.

Benchmarks We mainly focus on the 3D workloads,

for that in cloud environment graphics processing is still

the typical GPU workload. Some 2D workloads are cov-

ered too. However, we only use 2D workloads to prove

the full functionality of vGPUs hosted by gScale, be-

cause 2D workloads can also be accelerated by CPU. For

Linux 3D performance, we choose the Phoronix Test Suit

3D marks3, including Lightsmark, Nexuiz, Openarena,

Urbanterror, and Warsow. Cairo-perf-trace4 which con-

tains a group of test cases is picked to evaluate Linux 2D

performance. For Windows, we use 3DMark065 to eval-

uate 3D performance. PassMark6 is chosen to evaluate

2D functionality. All the benchmarks are run under the

1920*1080 resolution.

Methodology We implemented a test framework that

dispatches tasks to each VM. When all the tasks are com-

pleted, we collected the test results for analysis. When

gScale hosts a large amount of VMs, I/O could be a

bottleneck. We installed 3 SSD drives in our server

and distributed the virtual disks of VMs in these SSD

drives to meet VM’s I/O requirement. For 3DMark06,

the loading process takes a great amount of time, which

leads to an unacceptable inaccuracy when run in muti-

ple VMs. Moreover, VMs start loading at the same time,

but they cannot process rendering tasks simultaneously

due to the different loading speed. To reduce the inac-

curacy caused by loading, we run the 3DMark06 bench-

mark by splitting it into single units and repeat each unit

for 3 times. The single units in 3DMark06 are GT1-

Return To Proxycon, GT2-Firefly Forest, HDR1-Canyon

Flight and HDR2-Deep Freeze, and they are for SM2.0

and SM3.0/HDR performance.

5.2 Scalability

In this section, we present the experiments of name’s

scalability on Linux and Windows. Figure 10 shows

the 2D and 3D performance of Linux VMs hosted by

gScale, scaling from 1 to 15, and the results of all the

tests are normalized to 1VM. All the 3D performance

in this paper is measured by value of frame per second

(FPS) given by benchmarks. For most of our test cases,

there is a clear performance degradation when the num-

ber of VMs is over 1, due to the overhead from copy-

ing private shadow GTT entries. The maximal degra-

dations of Lightsmark, Nexuiz, Openarena, and Warsow

3Phronix Test Suit, http://www.phoronix-test-suite.com/
4Cairo, http://http://cairographics.org/
5Cario, http://www.futuremark.com
6PassMark, http://www.passmark.com

Figure 10: Scalability of gScale in Linux

are 26.2%, 19.2%, 19.3%, and 18.9%, respectively. For

3D workload Lightsmark, Nexuiz, Openarena, and War-

sow, scaling from 5VM to 15VM, gScale achieves a neg-

ligible performance change. It demonstrates that GPU

resource is efficiently shared among multiple VMs. For

2D workload, firefox-ast and gnome increase their per-

formance from 1VM to 5VM, for that 2D workloads are

also accelerated by CPU.

Figure 11: Scalability of gScale in Windows

The 3D performance of Windows VMs hosted by

gScale scaling from 1 to 12 is in Figure 11, and all the test

results are normalized to 1 VM. Similar with Linux, there

is a visible performance degradation for each case when

the number of VMs is over 1, and the maximal degrada-

tions of GT1, GT2, HDR1, and HDR2 are 23.6%, 14.5%,

15.2%, and 17.5%, respectively. The cause of degrada-

tion is the same with Linux VMs, which will be analyzed

in Section 5.4. The performance scales well from 4VMs

to 12VMs, and it proves that GPU resource is efficiently

8

USENIX Association 	 2016 USENIX Annual Technical Conference  587

utilized when the number of VMs increases.

5.3 Performance

Comparison with gVirt We compare the performance

of gScale with gVirt in Figure 12, and the performance of

gScale is normalized to gVirt. We examine the settings of

1-3 VMs for gScale, since gVirt can only support 3 guest

vGPUs. For Linux, gScale achieves up to 99.89% per-

formance of gVirt, while for Windows, gScale archives

up to 98.58% performance of gVirt. There is a perfor-

mance drop which is less than 5% of normalized per-

formance when the number of instances is over 1. The

performance decrease is due to copying the part of pri-

vate shadow GTT for low graphics memory, and we will

have a micro analysis in Section 5.4. This overhead is in-

evitable, for that global graphics memory space sharing

will incur the overhead of copying private shadow GTT.

Figure 12: Performance Comparison

Performance Impact of Slot Sharing In this experi-

ment, we want to evaluate the slot sharing of gScale un-

der a high instance density. We launch 15 VMs at the

same time. However, we only run GPU intensive work-

loads in some of them, while the rest VMs remain GPU

idle. A GPU idle VM means a launched VM without

GPU workload. We increase the number of GPU busy

VM from 1 to 15, and observe the performance change.

We use gScale-Basic to represent the gScale without slot

sharing.

For 3D performance of gScale in Linux, we pick

Nexuiz as a demonstration, and the case is run in an in-

creasing number of VMs while gScale hosts 15 VMs in

total, as shown in Figure 13. gScale and gScale-Basic has

the same performance when the GPU busy VM is only

one. When the number of GPU busy VMs increases, pri-

vate shadow GTT copying happens. There is a 20% per-

Figure 13: 3D Performance of Linux VMs

formance decrease for gScale-Basic. However, gScale

has little performance degradation when the number of

GPU busy VMs is less than 4, and slot sharing mitigates

the performance degradation when the number of GPU

busy VMs is less than 6. However, when the number of

GPU busy VMs exceed 6, the slot sharing does not help

with the overhead, and the performance is stable around

80% of normalized performance.

For 3D performance of gScale in Windows, GT1 is

chosen to run in the rising number of VMs while gScale

hosts 12 VMs in total. gScale shows the same perfor-

mance with gScale-Basic when there is only 1 GPU busy

VM. However, similar to the results on Linux, when the

number of GPU busy VMs is over 1, there is a 16.5% per-

formance degradation for gScale-Basic. gScale achieves

a flat performance change when the number of GPU busy

VMs is less than 4, and the results show that slot sharing

mitigates the performance degradation before the num-

ber of GPU busy VMs reaches 6. When the number of

GPU busy VMs exceed 6, the performance of gScale and

gScale-Basic is very close.

5.4 Micro Analysis

Overhead of Private Shadow GTT We evaluate that

overhead caused by copying private shadow GTT to

show the performance optimization brought by slot shar-

ing. Lightsmark and HDR2 are chosen to be the work-

loads in Linux and Windows VMs, respectively. We

inspect the difference of overhead between gScale and

gScale-Basic. For Linux, we launch 15 VMs, and run

workloads in 3 of them. For Windows, run workloads in

3 VMs while total 12 VMs are launched. We measure

the time of private shadow GTT copying and the time

vGPU owns the physical engine in each schedule. Then,

we collect the data from about 3000 schedules, and cal-

9

588  2016 USENIX Annual Technical Conference	 USENIX Association

Figure 14: 3D Performance of Windows VMs

culate the percentage of how much time gScale takes to

do the private shadow GTT copying in each schedule.

Figure 15: Overhead of Private Shadow GTT Copying in

Linux

Figure 15 shows the overhead of gScale in Linux, for

gScale-Basic (without slot sharing), the average over-

head is 21.8%, while the average overhead of gScale is

only 3.6%. In this case, slot sharing reduces the overhead

of private shadow GTT copying by 83.4%. The overhead

is dithering around the average value, for that shadow

GTT copying needs memory bandwidth and CPU re-

source, which are also occupied by 3D workload.

Figure 16 shows the overhead of private shadow GTT

copying in Windows, for gScale-Basic, the average over-

head is 15.35%, while the average overhead of gScale is

only 4.16%. In this case, slot sharing reduces the over-

head of private shadow GTT copying by 72.9%. The slot

sharing works better for Linux, because it only optimizes

the overhead from high global graphics memory part of

Figure 16: Overhead of Private Shadow GTT Copying in

Windows

private shadow GTT copying, while we configure vGPU

with twice the amount of low global graphics memory

in Windows of that in Linux. Additionally, the over-

head caused by the low graphics memory part of private

shadow GTT copying is less than 5%, which is accept-

able.

Table 2: Frequency of Ladder Mapping

Frequency of Ladder Mapping Ladder mapping is

constructed by gScale when CPU modifies the entry of

GTT. We try to figure out the frequency of ladder map-

ping when 3D workloads are running. We count the total

times of GTT modifications and the times of ladder map-

ping to calculate the percentage as shown in Table 2. For

Windows workloads, the ladder mapping happens very

rarely, which is less than 1%. For Linux, the percentage

of ladder mapping frequency is higher than Windows,

and we believe the reason is that the total amount of GTT

modifications in Windows is a lot more than in Linux (up

to 8x). At the same time, we observe a phenomenon that

the ladder mapping mostly happens when workloads are

being loaded, and it seldom happens when workloads are

being processed. It explains the flat change of perfor-

mance in our scalability evaluation, though ladder map-

ping could have overhead.

10

USENIX Association 	 2016 USENIX Annual Technical Conference  589

6 Discussion

Currently, gScale only supports Intel Graphics Proces-

sors. However, the principle of our design can be ap-

plied to other architectures. In addition to Intel, ven-

dors like AMD, Qalcomm and Samsung also have inte-

grated CPU/GPU systems and their graphics memory is

also served by system memory [25]. Our ladder mapping

could be applied to their solutions if they have similar re-

quirements. Some GPUs, such as those from NVidia and

AMD, may have dedicated graphics memory, but they

also use graphics translation table to do address transla-

tion. We believe the concept of gScale’s private shadow

GTT could also help them share the graphics memory

space. However, we could not test gScale on those GPUs,

beacuse they are not open-source distributions.

7 Related Work

Using modern GPUs in a shared cloud environment re-

mains challenge with a good balance among perfor-

mance, features and sharing capability [30]. A lot of

research efforts have been made to enable GPUs in vir-

tual machines (i.e., Device emulation, API forwarding,

Device Pass-through, and full GPU virtualization).

Device emulation is considered impractical because

GPU hardware is vendor-specific and modern GPUs are

complicated. Thus, QEMU [14] has emulated a legacy

VGA device with a low performance to support only

some basic functionality.

API forwarding has been widely studied and has been

applied to many virtualization software already. By in-

stalling a graphics library in a guest OS, graphic com-

mands can be then forwarded to the outside host OS.

Host OS can execute those commands directly using the

GPU hardware. WireGL [20] and Chromium [21] in-

tercept OpenGL commands and parallelly render them

on commodity clusters. VMGL [22] makes use of

Chromium to render guest’s OpenGL commands on the

host side. GViM [19], rCUDA [18], and vCUDA [27]

virtualize GPGPU applications by forwarding CUDA

commands in virtual machines. Kernel consolidations

have been studied for efficiency with Kernelet [32].

However, one major limitation of API forwarding is that

the graphic stack on guest and host must match. Other-

wise, host OS is not able to process guest’s commands.

For example, a Linux host cannot execute DirectX com-

mands forwarded by a Windows guest. As a result, a

translation layer must be built for Linux host to execute

DirectX commands: Valve [8] and Wine [10] have built

such translation layers, but only a subset of DirectX com-

mands is supported; VMWare [17] and Virgil [9] imple-

ment a graphic driver to translate guests’ commands to

their own commands.

Device Pass-through achieves high performance in

GPU virtualization. Recently, Amazon [2] and

Aliyun [1] have provided GPU instances to customers

for high performance computing. Graphic cards can be

also passed to a virtual machine exclusively using Intel

VT-d [13, 15]. However, direct pass-through GPU is ded-

icated, and also sacrifices the sharing capability.

Two full GPU virtualization solutions have been pro-

posed, i.e., gVirt [30] and GPUvm [28, 29], respectively.

GPUvm implements GPU virtualization for NVIDIA

cards on Xen, which applies several optimization tech-

niques to reduce overhead. However, full-virtualization

will still cause non-trivial overhead because of MMIO

operations. A para-virtualization is also proposed to im-

prove performance. Furthermore, GPUvm can only sup-

port 8 VMs in their experimental setup. gVirt is the first

open source product level full GPU virtualization solu-

tion in Intel platforms. It provides each VM a virtual full

fledged GPU and can achieve almost native speed. Re-

cently, gHyvi [16] uses a hybrid shadow page table to im-

prove gVirt’s performance for memory-intensive work-

loads. However, gHyvi inherits the resource partition

limitation of gVirt, so it also suffers from the scalabil-

ity issue too.

NVIDIA GRID [7] is a commercial GPU virtualiza-

tion product, which supports up to 16 VMs per GPU card

now. AMD has announced its hardware-based GPU vir-

tualization solution recently. AMD multiuser GPU [3],

which is based on SR-IOV, can support up to 15 VMs

per GPU. However, neither NVIDIA nor AMD provides

public information on technical details.

8 Conclusion and Future Work

gScale addresses the scalability issue of gVirt with a

novel sharing scheme. gScale proposes the private

shadow GTT for each vGPU instance, which allows

vGPU instances to share the part of global graphics

memory space only visible to GPU. A ladder mapping

mechanism is introduced to make CPU directly access

host physical memory space serving the graphics mem-

ory without referring to global graphics memory space.

At the same time, fence memory space pool is reserved

from low graphics memory space to ensure the function-

ality of fence registers. gScale also implements slot shar-

ing to improve the performance of vGPU under a high in-

stance density. Evaluation shows that gScale scales well

up to 15 vGPU instances in Linux or 12 vGPU instances

in Windows, which is 5x and 4x scalability compared to

gVirt. Moreover, gScale archives up to 96% performance

of gVirt under a high density of instances.

As for future work, we will focus on optimizing the

performance of gScale, especially when gScale hosts

large amount of instances with intensive workloads. To

11

590  2016 USENIX Annual Technical Conference	 USENIX Association

exploit the performance improvement of slot sharing, we

will design a dynamic deploy policy based on the work-

load of instances.

9 Acknowledgements

We acknowledge our shepherd Nisha Talagala and the

anonymous reviewers for their insightful comments.

This work was supported by National Infrastructure De-

velopment Program (No. 2013FY111900) NRF Singa-

pore CREATE Program E2S2, STCSM International Co-

operation Program (No. 14510722600), and Shanghai

Key Laboratory of Scalable Computing and Systems.

References

[1] Alihpc. https://hpc.aliyun.com/product/gpu_bare_

metal/.

[2] Amazone high performance computing cloud using gpu. http:

//aws.amazon.com/hpc/.

[3] Amd multiuser gpu. http://www.amd.com/en-us/

solutions/professional/virtualization.

[4] Intel graphics driver. http://www.x.org/wiki/

IntelGraphicsDriver/.

[5] Intel graphics virtualization technology (intel gvt). https://

01.org/zh/igvt-g.

[6] Intel open source hd graphics programmer’s reference manual

(prm). https://01.org/linuxgraphics/documentation/

hardware-specification-prms.

[7] Nvidia grid: Graphics-accelerated virtualization. http://www.

nvidia.com/object/grid-technology.html.

[8] Valve togl. https://github.com/ValveSoftware/ToGL.

[9] Virgil 3d gpu project. https://virgil3d.github.io.

[10] Wine project. http://winehq.org/.

[11] Xen project release features. http://wiki.xenproject.org/

wiki/Xen_Project_Release_Features.

[12] Xengt setup guide. https://github.com/01org/

XenGT-Preview-kernel/blob/master/XenGT_Setup_

Guide.pdf.

[13] ABRAMSON, D. Intel virtualization technology for directed i/o.

Intel technology journal 10, 3 (2006), 179–192.

[14] BELLARD, F. Qemu, a fast and portable dynamic translator. In

USENIX Annual Technical Conference, FREENIX Track (2005),

pp. 41–46.

[15] DONG, Y., DAI, J., HUANG, Z., GUAN, H., TIAN, K., AND

JIANG, Y. Towards high-quality i/o virtualization. In Proceed-

ings of SYSTOR 2009: The Israeli Experimental Systems Confer-

ence (2009), ACM, p. 12.

[16] DONG, Y., XUE, M., ZHENG, X., WANG, J., QI, Z., AND

GUAN, H. Boosting gpu virtualization performance with hybrid

shadow page tables. In 2015 USENIX Annual Technical Confer-

ence (USENIX ATC 15) (2015), pp. 517–528.

[17] DOWTY, M., AND SUGERMAN, J. Gpu virtualization on

vmware’s hosted i/o architecture. ACM SIGOPS Operating Sys-

tems Review 43, 3 (2009), 73–82.

[18] DUATO, J., PENA, A. J., SILLA, F., MAYO, R., AND

QUINTANA-ORTÍ, E. S. rcuda: Reducing the number of gpu-

based accelerators in high performance clusters. In High Perfor-

mance Computing and Simulation (HPCS), 2010 International

Conference on (2010), IEEE, pp. 224–231.

[19] GUPTA, V., GAVRILOVSKA, A., SCHWAN, K., KHARCHE, H.,

TOLIA, N., TALWAR, V., AND RANGANATHAN, P. Gvim: Gpu-

accelerated virtual machines. In Proceedings of the 3rd ACM

Workshop on System-level Virtualization for High Performance

Computing (2009), ACM, pp. 17–24.

[20] HUMPHREYS, G., ELDRIDGE, M., BUCK, I., STOLL, G., EV-

ERETT, M., AND HANRAHAN, P. Wiregl: a scalable graphics

system for clusters. In Proceedings of the 28th annual confer-

ence on Computer graphics and interactive techniques (2001),

ACM, pp. 129–140.

[21] HUMPHREYS, G., HOUSTON, M., NG, R., FRANK, R., AH-

ERN, S., KIRCHNER, P. D., AND KLOSOWSKI, J. T. Chromium:

a stream-processing framework for interactive rendering on clus-

ters. In ACM Transactions on Graphics (TOG) (2002), vol. 21,

ACM, pp. 693–702.

[22] LAGAR-CAVILLA, H. A., TOLIA, N., SATYANARAYANAN, M.,

AND DE LARA, E. Vmm-independent graphics acceleration. In

Proceedings of the 3rd international conference on Virtual exe-

cution environments (2007), ACM, pp. 33–43.

[23] NEIGER, G., SANTONI, A., LEUNG, F., RODGERS, D., AND

UHLIG, R. Intel virtualization technology: Hardware support for

efficient processor virtualization. Intel Technology Journal 10, 3

(2006).

[24] PHULL, R., LI, C.-H., RAO, K., CADAMBI, H., AND

CHAKRADHAR, S. Interference-driven resource management for

gpu-based heterogeneous clusters. In Proceedings of the 21st in-

ternational symposium on High-Performance Parallel and Dis-

tributed Computing (2012), ACM, pp. 109–120.

[25] PICHAI, B., HSU, L., AND BHATTACHARJEE, A. Architectural

support for address translation on gpus: Designing memory man-

agement units for cpu/gpus with unified address spaces. ACM

SIGPLAN Notices 49, 4 (2014), 743–758.

[26] QI, Z., YAO, J., ZHANG, C., YU, M., YANG, Z., AND GUAN,

H. Vgris: Virtualized gpu resource isolation and scheduling in

cloud gaming. ACM Transactions on Architecture and Code Op-

timization (TACO) 11, 2 (2014), 17.

[27] SHI, L., CHEN, H., SUN, J., AND LI, K. vcuda: Gpu-

accelerated high-performance computing in virtual machines.

Computers, IEEE Transactions on 61, 6 (2012), 804–816.

[28] SUZUKI, Y., KATO, S., YAMADA, H., AND KONO, K. Gpuvm:

why not virtualizing gpus at the hypervisor? In Proceedings

of the 2014 USENIX conference on USENIX Annual Technical

Conference (2014), USENIX Association, pp. 109–120.

[29] SUZUKI, Y., KATO, S., YAMADA, H., AND KONO, K. Gpuvm:

Gpu virtualization at the hypervisor. Computers, IEEE Transac-

tions on PP, 99 (2015), 1–1.

[30] TIAN, K., DONG, Y., AND COWPERTHWAITE, D. A full gpu

virtualization solution with mediated pass-through. In Proc.

USENIX ATC (2014).

[31] WALDSPURGER, C. A. Memory resource management in

vmware esx server. ACM SIGOPS Operating Systems Review

36, SI (2002), 181–194.

[32] ZHONG, J., AND HE, B. Kernelet: High-throughput gpu kernel

executions with dynamic slicing and scheduling. IEEE Trans.

Parallel Distrib. Syst. 25, 6 (June 2014), 1522–1532.

12

