Efficient Process Mapping in Geo-Distributed Cloud Data

Centers
Amelie Chi Zhou* Yifan Gong
Shenzhen University TuSimple
Bingsheng He Jidong Zhai
National University of Singapore Tsinghua University

ABSTRACT

Recently, various applications including data analytics and machine
learning have been developed for geo-distributed cloud data cen-
ters. For those applications, the ways to map parallel processes
to physical nodes (i.e., “process mapping”) could significantly im-
pact the performance of the applications because of non-uniform
communication cost in such geo-distributed environments. While
process mapping has been widely studied in grid/cluster environ-
ments, few of the existing studies have considered the problem in
geo-distributed cloud environments. In this paper, we propose a
novel model to formulate the geo-distributed process mapping prob-
lem and develop a new method to efficiently find the near optimal
solution. Our algorithm considers both the network communication
performance of geo-distributed data centers as well as the communi-
cation matrix of the target application. Evaluation results with real
experiments on Amazon EC2 and simulations demonstrate that our
proposal achieves significant performance improvement (50% on
average) compared to the state-of-the-art algorithms.

KEYWORDS
Process Mapping; Geo-distributed Data Center; Cloud Computing

1 INTRODUCTION

Many big data analysis applications involve analyzing a large volume
of data generated in a geo-distributed manner. Many data-intensive
applications, such as social networks, involve large sets of data
spread in multiple geographically distributed (geo-distributed) cloud
data centers [32]. For example, Facebook receives terabytes of
text, image and video data everyday from users around the world.
In order to provide reliable and low-latency services to the users,
Facebook has built four geo-distributed DCs to maintain and manage
those data. With increasing data volumes generated and stored
across geo-distributed data centers, how to distribute computation
to take advantage of data locality has become an emerging research
topic, rather than aggregating all data required for computation
to a single data center. Also, many data owners prohibit moving

*This work is partly done while Amelie was a Postdoc in Inria Rennes, France.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SC17, Denver, CO, USA

© 2017 ACM. 978-1-4503-5114-0/17/11...$15.00

DOI: 10.1145/3126908.3126913

(raw) data out of data centers due to various reasons. On the one
hand, the cost of moving data across geographic regions is usually
large due to the huge data volume and the scarcity of cross-data
center network bandwidth. On the other hand, regulations and laws
such as data privacy do not allow raw data to be moved around
geographically [16]. Thus, for those applications, one important
problem is how to effectively and efficiently “move computation to
data” in order to improve the performance of data analysis and better
utilize the network bandwidth resources.

Currently, most cloud providers offer geo-distributed cloud ser-
vices to serve users that need to run their applications in multiple
geographic locations. For example, Amazon EC2 currently has 11
service regions geographically distributed around the world, Win-
dows Azure operates from 20 regions and Google Compute Engine
(GCE) provides services from four geo-distributed regions. Recently,
various applications including data analytics [27, 47], machine learn-
ing [9] and high performance computing [39] have been developed
for geo-distributed cloud data centers. All those applications adopt
a “move computation to data” paradigm to take advantage of data
locality and also satisfy other constraints like data privacy. Among
those geo-distributed applications, the “move computation to data”
problem for parallel and distributed data analysis programs is equiv-
alent to a geo-distributed process mapping problem [25]. A process
mapping problem decides how to map parallel processes to proces-
sors (or nodes) such that the application communication topology
efficiently utilizes the physical links. Different process mapping
decisions could lead to significant difference in the application per-
formances. For example, effective process mapping solutions have
shown significant performance improvement in the grid/cluster en-
vironments [10, 30]. Those algorithms have to be revisited in the
geo-distributed cloud data centers.

The geo-distributed process mapping problem is non-trivial due
to several reasons, which are rooted at the requirements of data-
intensive applications in the geo-distributed environment. First,
the network bandwidth in the geo-distributed cloud environment is
highly heterogeneous. For example, the network bandwidth within a
single geographic region is usually much faster than the bandwidth
across regions (see Table 1). As we observe from real cloud envi-
ronments, the cross-region network performance (including both
bandwidth and latency) is often highly related to the geographic
distance of the regions. Those features are very different from
the grid/cluster environments. Second, the high cross-region data
movement cost and regulations and laws such as data privacy regula-
tions add another dimension of constraints on the process mapping
problem. Various approaches have been proposed to optimize the

SC17, November 12-17, 2017, Denver, CO, USA

process mapping problem for arbitrary process topologies and ar-
bitrary network topologies [25]. Some approaches require users to
provide the topology information of the target machines [35]. How-
ever, few studies have discussed the process mapping problem in
geo-distributed cloud environment with the consideration of unique
network performance features and optimization constraints and new
optimization approaches should be proposed.

In this paper, we study the geo-distributed process mapping prob-
lem, in consideration of the heterogeneous network bandwidths and
data movement constraints. Our goal is to find the optimal map-
ping function in a timely manner so that the performance of the
geo-distributed application can be maximized. Specifically, we build
a model to mathematically formulate the geo-distributed process
mapping problem as a constraint optimization problem. We further
propose an efficient algorithm to guide the design of performance
optimization, which fully considers the special features of the geo-
distributed environment.

We make the following contributions.

e We propose a novel network model and mathematically for-
mulate the geo-distributed process mapping problem with the
awareness of heterogeneous network bandwidth and latency, as
well as data movement constraints. The model can be used as
an essential building block in many geo-distributed applications
(e.g., 9,27, 39, 47]).

e Based on the communication matrix of the application, we pro-
pose a geo-distributed greedy method to efficiently find near
optimal solutions for the problem.

e We implement our optimization method on Amazon EC2 across
four regions. As there are no public benchmarks for geo-distributed
systems, we start with HPC applications and machine learning
algorithms as micro benchmarks. Particularly, we evaluate our
method on a number of HPC applications, including LU, BT and
SP in NPB [5] benchmarks and two machine learning applica-
tions, including K-means clustering [29] and DNN [4]. Experi-
mental results indicate that our proposed method can obtain 50%
of performance improvement on average (up to 90%) compared
to the state-of-the-art algorithms [12, 26].

The rest of this paper is organized as follows. Section 2 gives
the background of process mapping and geo-distributed applica-
tions. We present the problem definition in Section 3 and our geo-
distributed optimization method for the problem in Section 4. We
present our evaluation results in Section 5 and summarize the related
work in Section 6. Finally, we conclude this paper in Section 7.

2 BACKGROUND

In this section, we briefly introduce the preliminary and the related
work on geo-distributed data centers and process mapping problems.

2.1 Geo-distributed Cloud

Many of existing public clouds, such as Amazon EC2, Windows
Azure and Google Cloud Engine, provide multiple geographically-
isolated data centers distributed around the world to guarantee low-
latency and high availability service requirements. Figure 1 shows
the geographic distribution of the 11 cloud data centers provided by
Amazon EC2 (as of Nov 2015 [28]).

Amelie Chi Zhou, Yifan Gong, Bingsheng He, and Jidong Zhai

US West (Oregon) USEast ~ EU (Ireland) Asia Pac@[ﬁc (Beijing)
AWS (Kot Virginia) Asia Pacific (Tokyo)
GovCloud EU (Frankfurt) []
US West .
(Nortriglfornia) Asia Pacific (Singapore)
-
South America
(Sao Paulo)
[]

Asia Pacific (Sydney)
-

Figure 1: Geographic distributions of Amazon EC2 regions.

Instance type | US East | Singapore | Cross-region
m1l.small 15 22 5.4
ml.medium 80 78 6.3
ml.large 84 82 6.3
ml.xlarge 102 103 6.4
c3.8xlarge 148 204 6.6

Table 1: Average network bandwidths (MB/sec) of five instance
types within US East, Singapore, and between the two regions.

US West | Ireland | Singapore
Bandwidth 21 19 6.6
Latency 0.16 0.17 0.35
Distance Short Medium Long

Table 2: Average network bandwidths (MB/sec) and latencies
(ms) of c3.8xlarge instances between US East and three other
Amazon EC2 regions.

East US West Europe | Japan East
Bandwidth 62 2.9 1.3
Latency 0.82 42 77
Distance | Intra-Region Medium Long

Table 3: Average network bandwidths (MB/sec) and latencies
(ms) of Standard D2 instances within East US region and be-
tween East US and two other Window Azure regions.

Since network performance is a key factor to the performance of
process mapping, we have empirically studied the network perfor-
mance features of data centers in the geo-distributed cloud environ-
ment. We have observed two special features across the data centers
(i.e., regions) in Amazon EC2.

Observation 1: the network bandwidth across multiple regions
is much smaller than that inside a single region. Table 1 shows
that the network bandwidth within a single cloud region can be over
ten times higher than that between two geo-distributed regions in
Amazon EC2. This observation holds for different types of instances
(i.e., virtual machines).

Observation 2: the cross-region network performance is highly
related to the geographic distance of the regions. Table 2 shows
that the network bandwidth between two regions with relatively
short distance (i.e., US East and US West) can be three times higher
than that between two regions with longer distance (i.e., US East
and Singapore). We have similar observation on the cross-region
network latency as shown in the table.

To demonstrate the generality of our observations, we also per-
form the measurement on Windows Azure regions and observe
similar results as shown in Table 3.

Efficient Process Mapping in Geo-Distributed Cloud Data Centers

These two observations clearly show the heterogeneity in geo-
distributed cloud network performance. Because of such network
performance heterogeneity, the process mapping problem has to be
carefully revisited for efficiency. In this paper, we mainly focus our
study on Amazon EC2, and leave the study on other cloud providers
such as Windows Azure as future work.

2.2 Process Mapping Problem

Assigning a set of processes to machines such that the process
communication efficiently utilizes the physical links in the network
is called process mapping [25]. In the traditional process mapping
problem, the communication pattern is represented by utilizing a
weighted directed graph G = (Vg, Eg).

e Vi is the set of processes, Vg = {vi|vi € G}, where v; is the
vertex in the graph.

e FEg is the set of edges which represents the communications
between any two vertexes. We further define the weights in
Eg: Wg is the set of communication volumes between v; and
Vj (defined as Wi j, Vi,V € V). Thatis, Wg = {W,’J|V,‘,Vj S VG}.
The weight is zero if no such communication occurs.

Besides the definition of the communication pattern graph, the
(physical) interconnection performance is modeled by a weighted
directed graph T = (M7,Dr).

e Mr is a set of machine nodes or processors, My = {m;|m; € T},
where m; is the vertex in the graph.

e Dr is a set of network performance (e.g., latency or bandwidth)
between any two vertices. Dy = {d; j|m;,m; € Mr}, where d;
is the network performance between m; and m;.

The definition of graph mapping from G to T is denoted as a
mapping graph Hip =< Vi, Eqp >.

° VéT is a set of processes after being mapped to the set of machine
nodes or processors, Vi = {Vi.|vi € Vg,my € My}, where v},
is the vertex of the mapping graph.

o E(; is the set of edges after being mapped. Accordingly, we
define the weights W/, to be the set of communication costs
after mapping. We have W/, = {f(w,-vj,dkﬁl)|v;k7v’ﬂ eVirth
where f(w,d) is the mapping function which calculates the com-
munication cost when the communication pattern graph edge
is mapped to the interconnection network. It can be different
equations for different applications.

The optimization goal of graph mapping is to minimize the real
communication cost via intelligent mapping of the communication
pattern graph to the interconnection network graph.

COST (Hgr) (1)

minimize

where COST(Hgr) =Ycewy, c= = L fwijidi) (2)

J !
ViV €Ver

3 PROBLEM FORMULATION

We study the process mapping problem in geo-distributed cloud
environments. In this section, we first point out the special design
considerations brought by the geo-distributed cloud environment to
the process mapping problem. Second, we mathematically formulate
the problem as a constrained optimization problem. Also note that,
our model is sufficiently general to be used as an essential building

SC17, November 12-17, 2017, Denver, CO, USA

Name size Description
N 1 Number of processes
M 1 Number of sites
Cg N x N | Communication pattern matrix
Ag N x N | Number of messages between different processes

Lt M x M | Inter/intra-site latency

Br M x M | Inter/intra-site bandwidth
PC M x2 | The physical coordinates of each site
7 M x 1 | Number of physical nodes in each site
C N x1 | Constraint vector
P N x 1 | The process mapping result

Table 4: Notations in the paper

block in many emerging geo-distributed applications (e.g., [9, 27,
39, 47]). Table 4 summarizes the key notations in this paper.

3.1 Model Overview

Consider executing an application with N processes in M different
sites (regions), where M is much smaller than N. We assume that
the application is executed on instances of the same type, which is
common in practice.

Compared to the traditional process mapping problem [25], we
consider a more general model for geo-distributed applications. Par-
ticularly, we have three major considerations in our design, including
network performance heterogeneity, data movement constraints and
computation-communication patterns.

Network performance heterogeneity. As observed in real cloud
environments (Section 2), the network performance in geo-distributed
clouds is highly heterogeneous: 1) the intra-site and inter-site net-
work bandwidths and latencies are highly different; 2) the inter-site
network bandwidths and latencies among different pairs of sites are
also highly different. We need to consider the heterogeneity of the
geo-distributed network during our design.

Compared to the traditional process mapping problem, the all-
link interconnection network graph 7' could not be directly obtained
due to the high calibration overhead and network heterogeneity. In
order to efficiently calculate the point to point performance with
low measurement overhead, we propose to utilize the inter/intra-site
performance model to replace interconnection network graph. We
define L7 and By as two M x M matrices representing the latency
and bandwidth between different sites, respectively. The element
Ly (K',1"y and By (K',1') are the latency and bandwidth between site
k' and I'. The elements in the diagonal represent the intra-site latency
and bandwidth, while the other elements are the inter-site latency
and bandwidth. Because of the network heterogeneity, both of
the two matrices are asymmetric. Based on the above definitions
of inter/intra-site latency and bandwidth, we can model the geo-
distributed environment as a heterogeneous network architecture and
reduce the measurement overhead from O(N?) to O(M?).

We further adopt the -8 model [45] to calculate the communi-
cation cost. In the a-f model, network performance is represented
with two parameters: the latency (o) and the bandwidth (). The
transfer time for sending the data of n bytes is estimated to be o + %
This model can be used to estimate the transfer time for a message of
arbitrary sizes. While more sophisticated models such as LogP [17]
and LogGP [2] exist, they involve more parameters and thus have
higher calibration cost.

SC17, November 12-17, 2017, Denver, CO, USA

In order to fit for the o8 model, we define the communication
pattern matrix Cg, where each element C (i, j) indicates the volume
of communication between process i and j. With our calibrated
communication pattern matrix, the @-f3 model is lightweight and is
sufficient for the needs of our problem. We define the count matrix
Ag, where each element Ag (i, j) represents the number of message
sending from process i to process j. Based on these definitions,
when the process i is mapped to site k” and process j is mapped to
site I/, the communication cost can be calculated as

Ay, o)
SWijodp 1) = p; LT(k7l)+W
Ag(i,))
rip K elbd)
= I; LT(k,l)+W
- Agti) < Lr(k 1)+ SO0, ®

where ¢, (i, j) is the volume of communication between process i
and j at the p-th message sending. As Cg(i, j) is the total volume
of communication between process i and j and Ag(i, j) is the to-
tal number of communication between the two processes, we can
Ag(i.j)
indicate that Y, ¢, (i, j) = Cg(i, j).
=1

Data moveglent constraints. In the geo-distributed cloud envi-
ronment, data movements can be constrained for different reasons,
including the prohibitively large data movement cost and regulations
and laws such as data privacy regulations. For example, many Eu-
ropean countries have strict laws around data residency and many
of the U.S. cloud providers start to open data centers in Europe.
Due to such limitations on data movement, some processes may be
constrained to execute on certain data centers and such processes
could not be arbitrarily mapped. This case has not been considered
in traditional process mapping, where all the data are inside the same
region and there is no data movement limitation. We propose to use a
constraint vector and formulate the geo-distributed process mapping
problem as a constraint optimization problem. For simplicity, we
define a constraint vector C with size N x 1. It represents which
process should be mapped to which site. In this paper, we only
consider the data movement constraint on individual sites and leave
the extension to multiple site constraints in our future work.

3.2 Problem Definition

We formulate the geo-distributed process mapping problem as a
constrained optimization problem. Our goal is to minimize the cost
function of applications while meeting data movement constraints.
We utilize 13, which is an N-dimensional vector, to represent the
mapping graph function Hj. The i-th element of P represents
the site number that process i has been mapped to. T is an M-
dimensional vector, where the i-th element represents the number
of physical nodes in site i. C is an N-dimensional vector, where
the i-th element represents the site number that process i should be
mapped to, because of data movement constraints. If the value of G
(i=0,1,...N) is 0, it means that there is no constraint on process i.
We further define a function count (m, #), which counts the number
of elements in 7 with value equaling to m. Based on the above

Amelie Chi Zhou, Yifan Gong, Bingsheng He, and Jidong Zhai
Network Grouping
Calibration Optimization
Application | Cg, Mapping
Profiling Optimization

Figure 2: Overview of the optimization algorithm

Process
mapping
solutiof

definitions, the problem can be formulated as follows:

minimize Cost(P) “)
subject to (P—C)oC=0
and count(j,P) <T; (j=1,2,..M) 5)

The two constraints need to be further discussed. The first one is
the data movement constraint. The component wise multiplication
indicates that for each process i, either f’, = C‘i or 6‘5 =0. The second
one means that the number of processes mapped to site j should be
equal to 7] which represents the number of physical nodes in site j.

4 PROCESS MAPPING ALGORITHM

In this section, we propose an efficient method to solve the geo-
distributed process mapping problem (formulated in Formula 4).

4.1 Algorithm Overview

Figure 2 gives an overview of the proposed optimization method.
The mapping optimization algorithm takes the network calibration
and application profiling results as input. Given the network calibra-
tion, we use grouping optimization to cluster nearby sites into large
sites to reduce the optimization overhead.

The design rationale behind our proposal lies in the following
major aspects. First, with network calibration and application pro-
filing modules, we are able to automate the optimization procedure.
Thus, users do not need to provide any information on the network
or applications. Second, the efficiency and effectiveness are both im-
portant to the mapping optimization component. Since the solution
space of geo-distributed process mapping problem is O(NM), it is
infeasible to find the optimal solution in a timely manner. Our goal
is to find a high-quality solution with a reasonably low overhead.

4.2 Algorithm Details

Application Profiling. The communication pattern matrix C; and
count matrix Ag are key structures for representing the traffic re-
quirement of an application. Our implementation has considered
two major aspects. First, the profiling method should be general for
different types of applications. Second, the profiling method should
be lightweight to avoid excessive runtime overhead.

There have been many different approaches for profiling com-
munication patterns [42, 51]. In our implementation, we estimate
the two matrices of applications using CYPRESS [51]. CYPRESS
combines static program analysis with dynamic runtime trace com-
pression. It extracts program structure at compile time, and obtains
critical loop/branch control structures, which enable the runtime
compression module to easily identify similar communication pat-
terns. We run CYPRESS in an offline manner to obtain the commu-
nication pattern matrices.

CYPRESS well suites our requirement in two respects. First,
the previous study [51] has already demonstrated the accuracy of
CYPRESS. The performance improvement obtained by our proposal

Efficient Process Mapping in Geo-Distributed Cloud Data Centers

also validates that the accuracy of CYPRESS is sufficient for our
application scenario. Second, the offline execution does not impose
runtime overhead.

Network Calibration. In our algorithm, we need to obtain the
parameter Ly and Br. In order to calibrate the network perfor-
mance of a site pair from Site £’ to Site I/, we select one instance in
Site kK’ and one instance in Site I’. We then use the function Ping-
pong_Send_Recv in a benchmark called SKaMPI [41] to send and
receive messages and measure the elapsed time. The latency Lt is
the elapsed time of sending a one-byte message and the bandwidth
Br is calculated from the elapsed time of sending 8 MB data. In
our experiment, when the message size is larger than 8 MB, the
results are stable. Existing study [21] has shown that, using this
pair-wise network calibration between instances can give effective
performance optimizations in the cloud (without the explicit infor-
mation of network topologies).

We keep measuring the inter-site and intra-site latency and band-
width for several days. With those calibrated data, we calculate the
average network latency and bandwidth to obtain the communica-
tion time using Formula 3. We find that the network performance of
inter-site and intra-site is rather stable, generally with small variation
(smaller than 5%). Although the variation of intra-site performance
is relatively larger (as also observed in the previous study [22]), it
only contributes a small fraction to the overall performance since
the intra-site network performance is high.

The calibration overhead of our method is low. For example, we
assume that there are 4 sites and 128 physical nodes per site, and
the calibration overhead for each pair of node is one minute. The
calibration overhead of the traditional approach [21] which measures
the network performance of all node pairs would take over 180 days,
while the overhead of our approach is only 12 minutes.

Mapping Optimization. Process mapping problems for arbi-
trary topologies and arbitrary network have been proved to be NP-
hard [18]. For our problem with N processes and M sites, the
solution space can be up to O(NM), which becomes very huge as N
and M increase. The previous studies [18] have shown that there is
no approximate algorithm that can effectively solve the problem.

We propose a novel approach with full consideration of the geo-
distributed heterogeneous network architecture. The basic idea is as
follows. First, we need to map the processes with data movement
constraints to specified physical nodes. After that, we consider a
mapping graph function for the sites, instead of the processes as in
the previous studies [12, 26]. Given an order of the sites, we utilize
a heuristic approach to generate a good mapping solution. Then we
search for all the possible orders of the sites and generate a good
mapping solution for each order. We select the solution with the best
optimization results as our final mapping solution.

Grouping Optimization. If the number of sites M becomes large,
the optimization overhead can increase dramatically (O(M!)). We
modify our algorithm to improve the optimization efficiency in case
of large number of sites. Motivated by the second observation in
Section 2, we first group the nearby sites according to their physical
distance and then treat those groups as large sites. Second, we
utilize our algorithm on the new groups and recursively apply the
proposed algorithm inside each group. In our algorithm, we group
the sites by utilizing the K-means clustering method [29]. We use
the physical coordinates PC and the Euclidean distance. The i-th

SC17, November 12-17, 2017, Denver, CO, USA

element PC; is a two-dimensional vector, whose first and second
values are the latitude and longitude of the i-th site, respectively. The
physical coordinates PC can be easily obtained from cloud providers’
information. We select Forgy method [24] to determine the x initial
means. Based on our design, we can limit the number of groups in
our approach and largely reduce the optimization overhead.

Algorithm 1 Overview of our process mapping algorithm

Input: L7, Br, Cg, Ag, PC, T and C as defined in Table 1, x
Output: P
1: Utilizing K-means clustering algorithm to divide the M sites into kK
groups;

2: Given an order of all the groups 6 from (1,2,...,x) to (S1,52,...,5x);
3: Set all the processes and sites as unselected;
4: ﬁ,f = C'k and set process k as selected (Vék > 0);
5: Iy =1; — count(j,C) (Vj = 1,2,..M);
6: Set the site j as selected iffj =0(Vj=1,2,..M),
7: for i=1,2,...,x do
8: for j=1,2,...,N; (N; is the number of sites in group S;) do
9: Select the unselected process t(g, ;) with the heaviest communica-
tion quantity;
10: Select the unselected site ms, ;) in group S; with the largest number
of available nodes;
11: /* Map process f(g ;) to site mgs, ;) */
f’,(eo‘j) =myg, ;) and set process /(o ;) as selected,
12: for r=1,2,..., Iﬂm(sl__j)-l do
13: Select the unselected process 1, ;) so that #, ;) has the heaviest
communication quantity with the selected processes in mgs; j);
14: /* Map process £, to site ms, ;) */
f’,?nj) =mys, j) and set process f,, ;) as selected;
15: Set the site ms,.j) as selected,

16: Calculate the cost function COST (P?)
17: Compare all the orders of the groups ® = {60]6 : (1,2,...,k) —
(S1,82,...,8%)} and select the one 6’ with the minimal cost as the fi-

nal result P = pe’;

18: return P;

4.3 Algorithm Design

Algorithm 1 shows the procedure of our geo-distributed process
mapping approach. We first use K-means clustering algorithm to
divide the M sites into x groups (line 1).

For a given order of the groups, we map the processes with
constraints to the required sites (lines 2-6) and then map the rest of
the processes using a heuristic algorithm (lines 7-18). We briefly
explain the heuristic algorithm. The algorithm starts at the unselected
process to with the heaviest communication quantity, and chooses
the site mg with the largest number of physical nodes. Next, the
algorithm maps 7g’s heaviest neighboring process in the same site
until the site is full. The algorithm iteratively repeats the same
step and the mapping process finishes when all processes have their
mappings to the sites. We calculate the cost for each mapping
solution P? (line 19) obtained by the heuristic algorithm and select
the one with the minimum cost as the final solution (line 20).

Complexity analysis. Given an order of the groups 6, in order
to select the k-th process, the communication quantity of the rest
processes needs to be calculated, which requires N — (k— 1) times of
calculations. The total calculation time is thus N+ (N — 1) +...+1 =
w = O(N?). As the number of all possible orders is k!, the

SC17, November 12-17, 2017, Denver, CO, USA

overall complexity of the algorithm is O(x! x N?). When we select
a small value of k (usually less than 5), the complexity of our
algorithm is the same as the greedy algorithm [26] (O(N?)) and
lower than the MPIPP algorithm [12] (O(N?)). The greedy algorithm
and the MPIPP algorithm can be considered as the state-of-the-art
algorithms for process mapping in the grid/cluster environments. In
Section 5, we compare the overhead and performance improvement
of our algorithm with those state-of-the-art approaches and analyze
the scalability of our algorithm.

5 EVALUATIONS

We conduct four major sets of experiments to evaluate the effec-
tiveness and efficiency of our proposed algorithm. Specifically, we
study the optimization overhead of our approach in Section 5.2. We
compare our algorithm with the state-of-the-art approaches on real
cloud environment (Amazon EC2) in Section 5.3 to demonstrate the
effectiveness of our algorithm. Further, we compare the algorithms
using simulations to study the scalability in Section 5.4.

5.1 Experimental Setup

We adopt two complementary experimental settings, namely real
clouds and simulations, to evaluate the compared algorithms. For
real clouds, we perform the experiments on the Amazon EC2 clouds.
For simulations, we use ns-2! to simulate a cluster. The simula-
tions enable us to have full control of the network and to study the
efficiency and effectiveness of our approach in different scales of
geo-distributed environments.

Experiments with Amazon EC2. On Amazon EC2, we deploy
our proposed algorithm across four geographic regions, namely US
east, US west, Singapore and Ireland. We set up a cluster of 16
instances of m4.xlarge type from the same availability zone in each
region. In our experiments, one process is attached to one instance.
That means, the number of processes is 64 in total. We run each of
the applications on Amazon EC2 for 100 times and calculate the
average execution results for evaluations. The error bars represent
the standard error of the results.

Simulations. As for simulations, we use the real traces of network
performance in different regions calibrated in March 2016. We simu-
late the geo-distributed environment in different scales in numbers of
instances, ranging from 64, 128, 256, ..., 4096 to 8192. We fix the
number of regions to be four and the machines are evenly distributed
in each region. With our grouping optimization, when the number
of sites gets large, they are grouped into a reasonably small number
of sites and thus the site dimension does not affect the scalability
significantly. We also utilize the Monte Carlo method [11] to ob-
tain the distribution of the solutions and compare the performance
improvement of our algorithm with the “optimal” solution obtained
using a large number of runs in Monte Carlo simulations.

Applications. Geo-distributed cloud data centers are suitable for
many data analytics, machine learning and HPC applications, where
their data are generated and stored geo-distributedly. As there is no
public benchmark for geo-distributed systems, we start with HPC
applications and machine learning algorithms as micro benchmarks.
They cover different computation-communication behaviors.

'http://www.isi.edu/nsnam/ns/

Amelie Chi Zhou, Yifan Gong, Bingsheng He, and Jidong Zhai

We first apply our model to NAS Parallel Benchmarks (NPB [5])
kernels version 2.4. In order to measure the performance improve-
ment, we select three pseudo applications, including BT (Block Tri-
diagonal solver), SP (Scalar Penta-diagonal solver) and LU (Lower-
upper Gauss-Seidel solver). The default problem size is CLASS C.
We run each of the applications 100 times in a back-to-back manner
to extend them to large scale computing.

To further evaluate the impact of our geo-distributed algorithms,
we have implemented two machine learning applications namely
K-means clustering and deep neutral network (DNN). K-means
clustering [29] is a popular unsupervised learning algorithm, aiming
at partitioning n observations into k clusters, where each observation
belongs to the cluster with the nearest mean. The algorithm is widely
used in various topics, including computer vision, astronomy and
agriculture. We select the parallel K-means clustering algorithm [29]
to evaluate our proposed algorithm. DNN [4] is a commonly used
algorithm for supervised learning, which is utilized to estimate or
approximate functions that can depend on a large number of inputs.
It is an artificial neural network with multiple hidden layers of
units between the input and output layers. We utilize a parallel
stochastic parallel gradient descent algorithm [52] to minimize the
cost function.

Figure 3 shows the communication pattern matrices for the five
applications from application profiling on 64 processes. We have
three major observations. First, LU, BT and SP have near diagonal
matrices. It indicates the existence of communication locality in
these applications. For example, the process 1 only communicates
with processes 2 and 8 for LU. There are only two types of mes-
sage sizes, namely 43KB and 83KB. Second, for DNN, the total
amount of message passing is small. It indicates that DNN is a
computation-intensive application. Third, for K-means clustering,
the communication pattern is complex, which requires careful design
of the mapping function to obtain good performance improvement.

We use constraint ratio to simulate the data movement constraint.
The constraint ratio represents the ratio of processes that have fixed
mapping. When the ratio is 0, it means there is no constraint in
the application. When the ratio is 1, it means the mapping function
has been determined by the application and there is no optimization
space. We set the constraint ratio to 0.2 by default for all the applica-
tions. Given a constraint ratio, we randomly choose the constrained
processes and their mapped sites.

Comparisons. We assess the impact of the performance improve-
ment by comparing the following four approaches.

e Baseline. This approach simulates the scenario of running di-
rectly in the geo-distributed data centers without any optimiza-
tion. We use the random mapping algorithm, which maps each
vertex in the communication pattern graph to a vertex in the
physical node graph randomly.

o Greedy. Hoefler et al. [26] propose a heuristic greedy algorithm
for heterogeneous network architectures. We denote this ap-
proach as Greedy. To the best of our knowledge, this approach
is the state-of-the-art process mapping algorithm.

o MPIPP. Chen et al. [12] propose an iterative algorithm to find
the optimized mapping for arbitrary message passing applica-
tions. They modify the heuristic k-way graph partitioning algo-
rithm [33] and achieve better performance improvement. We
denote their approach as MPIPP.

Efficient Process Mapping in Geo-Distributed Cloud Data Centers

o

o

B

SC17, November 12-17, 2017, Denver, CO, USA

SP +10°

o o
o =]
w oW

o

'S
=]

©

w
=3

Receiver Rank
Receiver Rank

)

-

Sender Rank

Sender Rank

Receiver Rank
~

N
=l

-
o

=)

o

20 40 60
Sender Rank

(a) NPB applications

K-means £ 108

-
=

w
=l

Receiver Rank

9
=l

-
=

20 40 60
Sender Rank

DNN 10°

o
S

w
=]

Receiver Rank

n
=3

-
o

20 40 60
Sender Rank

(b) Machine learning applications

Figure 3: Communication pattern matrices. The color scale indicates communication volume in Bytes (darker means heavier traffic).

1 Greedy
MPIPP

655361 | Geo-distributed

=
o
@
©
I

4096
1024

i
XX

&

X

[-d
&
2

|

2
s
R

.
S o
RRRTT

SRR
CERRRRS
PRRIRSS

o2a2sletole
o
BES

vv
%
%
S
S

Normalized Overhead
N
[
o
>
%%
Satererers

s
2
%
-
o2e2e?

%
B

.,v
RS

N
132 2/64 4/64 41128 4/256
Number of Sites/Processes

-
K2

&

Figure 4: Overhead of compared algorithms under different
scales (normalized to Baseline)

o Geo-distributed. This approach is our proposed algorithm,
which fully considers the network heterogeneity problem and
data movement constraints.

MPIPP and Greedy are chosen as representative methods for
process mapping problem in symmetric and asymmetric environ-
ments, respectively. Benefiting for its large searching space, MPIPP
can outperform Greedy for some applications in the asymmetric
environment.

5.2 Optimization Overhead

Figure 4 shows the optimization overhead of running the compared
algorithms under different scales (in the format of “#sites/#processes”).
All results are normalized to that of Baseline. In our experiment, we
find that the overhead results are quite stable, and thus omit the error
bars in the figure. The absolute overhead of Geo-distributed is less
than 1 minute with four sites and 64 processes, which contributes to
less than 1% of the total elapsed time of all applications.

100 |®=xy Greedy
MPIPP
1 Geo-distributed

©
=3
I

-]
=3
I

IS
o
I

—
BN

%

Improvement (%)

N
=)
I

X%

R

%

3%
.

%

TR

o
¥

Figure 5: Overall performance improvement for the five appli-
cations on Amazon EC2 (normalized to the average of Baseline)

We have four major observations on comparing the optimization
overhead of different approaches. First, the overheads of Greedy
and MPIPP can only be affected by the number of processes. As the
number of processes increases, the overheads of Greedy is almost
linearly increasing compared to Baseline and the overhead of MPIPP
increases much faster than Greedy. Second, the overhead of Geo-
distributed can be impacted by both the number of processes and the
number of sites. Compared with the Baseline, the increasing speed
is linear to the number of processes and is super-linear to the number
of sites. This motivates our grouping algorithm to limit the solution
space in a relatively small scale. Third, the overhead of MPIPP
is much larger than the overhead of Greedy and Geo-distributed.
Lastly, when the number of sites is one, Geo-distributed is actually
equivalent to Greedy and thus has the same overhead as Greedy. As
the number of sites and processes increases, the overhead of Geo-
distributed becomes larger than the overhead of Greedy. But when
the number of sites is small, the overhead of the two approaches are
comparable.

SC17, November 12-17, 2017, Denver, CO, USA

100 |xxx Greedy
MPIPP
1 Geo-distributed

©
=3
!

-]
=3
!

N
o

;
%

=
o
Sy

o

%
X%

o

R
o

&

X%

%

%
3

Improvement (%)

204

s
R
T
2
g

e
R
R

,
B
2o %%

%
%

BT SP LU K-means DNN

Figure 6: Overall communication performance improvement
comparison for the five applications on simulation (normalized
to the average of Baseline)

5.3 Results with Amazon EC2

For a fair comparison, all the results include the optimization over-
head of running each approach. The overhead is generally smaller
than 1% of the total execution time for Greedy and Geo-distributed.

Overall Performance Improvement. Figure 5 shows the overall
performance improvement over Baseline for BT, SP, LU, K-means
and DNN on Amazon EC2. Overall, Geo-distributed consistently
outperforms other comparison approaches for all applications run-
ning on Amazon EC2. By fully considering the network perfor-
mance heterogeneity in geo-distributed data centers, Geo-distributed
effectively improves the communication performance.

We have four major observations on comparing the performance
improvement. First, Greedy outperforms MPIPP with 20-25% per-
formance improvement for BT, SP and LU. The reason is that com-
munication pattern matrices of the three applications are diagonal
and the heuristic greedy approach is very suitable for applications
with good communication locality. Second, for k-means clustering,
compared with Baseline, the performance improvement of Greedy
is very small (less than 5%). It indicates that Greedy is not effi-
cient for applications with complex communication pattern matrices.
Third, MPIPP has similar performance improvement (10-20%) for
all the applications, because MPIPP does not consider the special
communication pattern matrices. Fourth, the performance improve-
ment of DNN is small with all the three approaches due to the ratio
of communication in DNN is small. Still, our approach is able to
outperform other approaches.

5.4 Results with Simulations

Communication performance improvement. In the simulation,
we focus on the communication time of each applications and ignore
the computation and I/O time. This allows us to have a detailed
understanding and a direct illustration of the real contribution of our
proposed network performance aware process mapping approach.
Figure 6 shows the performance improvement of the communi-
cation part for the five applications on simulation (normalized to
that of Baseline). We utilize the same setting as those on Amazon
EC2 and have two major observations. First, Geo-distributed can
outperform Baseline by over 60% for all the applications. MPIPP
can outperform Baseline by 20-30%. Greedy performs well in BT,
SP and LU with more than 40% performance improvement. But the
performance improvements of K-means and DNN are less than 10%.
Second, compared with the performance improvement on Amazon

Amelie Chi Zhou, Yifan Gong, Bingsheng He, and Jidong Zhai

EC2, the performance improvement is larger in simulations. The
results are reasonable because we omit the computation and I/O time
in our simulation, for which parts our algorithm has no contribution
in their performance improvement.

Performance improvement in different scales. We simulate
different scales of geo-distributed clusters from 64 to 8192 machines.
When the number of processes is larger than 1000, MPIPP is very
inefficient for its large runtime overhead and the performance im-
provement could not compensate the large overhead of executing the
algorithm. So we only compare Greedy and Geo-distributed with
Baseline in large scale clusters.

Figure 7 shows the performance improvement of LU, K-means
and DNN in different scales. We obtain similar performance im-
provement of BT and SP with LU. We make the following observa-
tions. First, as the number of processes increases, the performance
improvement starts to decrease for both Greedy and Geo-distributed.
The reason is that the searching space of the optimization problem is
increasing dramatically (O(N!)) and it becomes more and more diffi-
cult to obtain the optimal solution. Second, even when the number
of processes reaches over 8000, Geo-distributed can still outperform
Baseline with more than 50% performance improvement for all the
applications. It indicates that our proposed algorithm can fit well for
the large scale environment. Third, for K-means and DNN, Greedy
has little performance improvement (less than 10%) compared with
Baseline. But for LU, the performance improvement of Greedy is
more than 30%. It shows that Greedy can only work efficiently for
some special applications.

Data movement constraint study. We vary the constraint ratio
of our problem and study the performance improvement.

Figure 8 shows the performance improvement of Geo-distributed
with different ratios of constraints over the Greedy approach. We
have observed similar results of improvement over other approaches.
Thus, our approach achieves better performance compared to the
other approaches for all different ratios. We have two major obser-
vations in this figure. First, the performance improvement functions
of LU and K-means are concave. It indicates that when the ratio
of constraints is small, the performance improvement decreases
slowly with the increase of data movement constraint ratio. Thus,
our algorithm works well for real-world applications with partial
data movement constraints. For example, in case of different privacy
levels, only data from sites with high privacy levels are constrained
to their own sites, while data with low privacy levels are allowed to
be mapped to those highly private sites. Second, for DNN, the per-
formance improvement decreases almost linearly with the increase
of constraint ratio.

Monte Carlo Results. We utilize Monte Carlo method [11] to
obtain the distribution of communication time for different applica-
tions. For each measurement, we randomly map the processes to the
physical nodes and simulate the communication time. We repeat the
experiments for 10 million times so that the best result from Monte
Carlo simulations keeps rather stable. The simulation setting is the
same with that on Amazon EC2.

Figure 9 shows the simulation results for LU, K-means and DNN.
We have two major observations. First, Geo-distributed is near
optimal for all the applications. For LU, when randomly selecting
a mapping function, the probability that the performance of such
mapping is better than Geo-distributed is less than 1%. For K-means

Efficient Process Mapping in Geo-Distributed Cloud Data Centers

1004

=z Greedy
— Geo-distributed

128 256 512 1024 2048 4096 8192
(b) K-means

SC17, November 12-17, 2017, Denver, CO, USA

Improvement (%)

N
=]
n

100+

®
o
!

o
=3
!

IS
[
L

o
I

2%

R

64

&z Greedy
1 Geo-distributed

1024 2048 4096 8192
(c) DNN

512

Figure 7: Performance improvement in different scales (in numbers of machines)

100+
&=z Greedy
~ 80+ — Geo-distributed —~ 80+
X S
< <
- -
c 604 c 60
Q [
£ £
o %
> 404 | B | $ 40
o R B = °
= & e sy &3 & 3 b
s 1| I IEI IR R B S
EoQ B H B B E & B E 204
R R R
ol | B BB IR KA | K|S
64 128 256 512 1024 2048 4096 8192 64
(a) LU
100 T T
L —LU
T - - K-means
< 80 R --DNN
S ~o
- ~
G 60~ AN
£ “~~\ N
[} . < Y
3 40 e &
= S Q
E 2 T
-
~-. - R
<2\
20 40 60 80 100

Constraint Ratio (%)

Figure 8: Performance improvement in different constraint ra-
tios for data movement (over Greedy)

and DNN, the probability is even less than 0.1%. Second, Greedy
outperforms MPIPP in LU, but is worse than MPIPP in the other two
applications. For K-means and DNN, the performance improvement
of Greedy is similar to the random mapping algorithm, which can
be predicted as the performance with 50% probability.

We further utilize Monte Carlo method to randomly map the pro-
cesses to physical nodes for K times and then select the mapping
function with the minimal communication time. We vary the param-
eter K and the evaluation results are shown in Figure 10. We observe
that the decreasing speed of the minimum execution time of theses
applications is nearly log(K). It indicates that the randomly mapping
method is very inefficient for its low decreasing speed. The deep
point of each application is the normalized execution time of Geo-
distributed. Our proposed approach can obtain similar performance
improvement as the best result of Monte Carlo method (the optimal
solution) with much smaller value of K (only about 10%).

6 RELATED WORK

In the following, we briefly review the recent and related work
on geo-distributed cloud systems and the general process mapping
problem. We find that achieving effective and efficient process
mapping in geo-distributed clouds is still an open problem.
Scheduling problems in geo-distributed environments. Over
the last few decades, many scheduling algorithms have been pro-
posed for scientific applications running in the grid environment.
Those studies mainly focused on the dynamicity, unpredictability
and heterogeneity features of the grid, in order to provide either
adaptive task scheduling [10, 43] and data management [13, 31, 40],
or guarantee QoS requirements [1]. Scheduling algorithms such

as Apache Oozie [3] and PIKACHU [20] have also been proposed
for MapReduce-like applications executing in local clusters or a
single data center. Those schedulers mainly focused on the features
of MapReduce model, in order to improve load balancing or data
locality. However, none of those studies has considered the unique
features of network heterogeneities in geo-distributed clouds.

Recently, there are some studies focusing on various optimization
problems in geo-distributed clouds. Kielmann et al. [30] proposed
a library of collective communication operations for wide area sys-
tems, to reduce the traffic on the slow wide area links. Some big data
frameworks are operated on geo-distributed clusters [6, 14] due to
the geo-distribution of their input data. Corbett et al. [15] proposed a
scalable geo-distributed database named Google Spanner. Rabkin et
al. [38] presented JetStream, a stream processing system for OLAP
data cubes, to support geo-distributed data analytics. Pu et al. [37]
proposed a low-latency geo-distributed data analytics system called
Iridium. They also consider the heterogeneous Internet bandwidths
to optimize data and task placement specially for MapReduce and
Spark. However, none of them has considered both the heterogeneity
problem and the data movement constraints in cloud-based machine
learning applications and/or application kernels (K-means, DNN,
and LU for simple regression).

Besides data analytics, there have also been studies on other
data-intensive applications such as scientific workflows [19, 44] and
batch-based big data services [36]. Similar to those studies, this
study also advocates the paradigm of “move computation to data”
to the process mapping problem. Thai et al. [44] presented a frame-
work for optimal deployment of geo-distributed workflow engines
on Amazon EC2. Diaz-Granados et al. [19] proposed a frame-
work to schedule scientific workflows onto federated multi-cloud
environment with customized scheduling policies. The resource
provisioning problem in geo-distributed cloud systems has been
discussed in a number of existing studies [23, 36, 48-50]. Some of
them target at optimizing the energy efficiency of batch jobs [36] and
workflows [49] in geo-distributed data centers, utilizing the electric-
ity price differences in different geographic locations. Cost-aware
scheduling strategies are proposed for the geo-distributed cloud en-
vironments in order to minimize cross-region data transfers [50] and
achieve cost-efficient task placement [23]. However, those related
studies either consider a very different problem to process map-
ping or do not consider the network performance heterogeneity of
geo-distributed data centers.

SC17, November 12-17, 2017, Denver, CO, USA

-

N

Amelie Chi Zhou, Yifan Gong, Bingsheng He, and Jidong Zhai

===Distribution

— Greedy

== MPIPP
——Geo-distributed

o
@

o
o

o o

@ @

o
=

)

IS

o
o

Cumulative Distribution Function
Cumulative Distribution Function

et

)

o

~——Distribution
= Distribution
—= MPIPP

==Distribution

~ Greedy

== MPIPP
—Geo-distributed

o
)

o =4
IS @

Cumulative Distribution Function
°
N

o

0.2 0.4 0.6 0.8 1
Normalized Communication Time

o

0.2 0.4

(a) LU

Normalized Communication Time

(b) K-means

o

0.6 0.8 1

)

0.2 0.4 0.6 0.8 1
Normalized Communication Time

(c) DNN

Figure 9: CDF for the normalized communication time

) o o
IS > @

Normalized Minimal Execution Time
)
e <

o "
10° 10! 10° 10° 10* 10° 10° 107

Figure 10: Normalized Minimal Execution Time

Process mapping problem. Many previous studies have been
proposed to investigate the process mapping problem [25]. Lee et
al. [33] proposed a heuristic k-way graph partitioning algorithm
as the basis to solve the graph mapping problem. Chen et al. [12]
improved those results and further proposed an iterative approach
to obtain the optimal mapping solution. However, their strategies
have low efficiency with prohibitively large calibration overhead.
Bokhari [7] utilized graph isomorphism to solve the process map-
ping problem. But they did not consider the edges that are not
mapped, which can reduce the performance improvement. Lee et
al. [34] further proposed a two-stage optimization algorithm, which
considers all the edges in the graph. Bollinger et al. [8] proposed
an accurate model to solve the process mapping problem with a
simulated annealing method. However, all of those studies focus on
optimizing process mapping with arbitrary topologies on parallel
computers, which fail to utilize the unique network performance
features of geo-distributed data centers.

Triff et al. [46] considered the strictly hierarchical networks and
proposed an implementation for such process mapping problems.
Hoefler et al. [26] proposed a greedy heuristic algorithm for hetero-
geneous network architectures. Basically, the task with the largest
data volume to transfer is mapped to the machines with the highest
total bandwidth of all its associated links. Still, they do not con-
sider the data movement constraints in geo-distributed environments.
Particularly, while the approach proposed by Hoefler et al. [26] is de-
signed for process mapping on general heterogeneous environments,
our study takes advantage of the unique features of geo-distributed
clouds, and develops efficient algorithms for finding good solutions.
Therefore, existing approaches cannot be directly applicable or only
offer an inefficient solution to our problem, as also demonstrated in
the experiments. To the best of our knowledge, this paper is the first

attempt to solve the process mapping problem in the environment of
geo-distributed data centers.

7 CONCLUSIONS

Geo-distributed cloud data centers have become emerging for many
distributed applications such as data analytics, machine learning and
HPC. We believe that this trend will continue as increasing data
volumes with different privacy requirements are being generated
and stored across geo-distributed data centers. The process mapping
problem is very important and challenging for the performance of
applications running on such geo-distributed environments.

In our paper, we observe the unique properties of solving the pro-
cess mapping problem in geo-distributed cloud data centers, includ-
ing network performance heterogeneity, data movement constraints
and computation-communication patterns of applications. Particu-
larly, we formulate the process mapping problem in geo-distributed
data centers as a constraint optimization problem, and develop a
model to guide the design of performance optimization. The model
can be used for current or future geo-distributed applications. We
further propose an efficient greedy method to find near optimal solu-
tions with low overhead. We implement our model on Amazon EC2
and evaluate its efficiency with NPB benchmarks and machine learn-
ing algorithms. Our experimental results show that 1) the process
mapping optimization is critical for the performance of applications
running on geo-distributed environments and 2) our approach can
improve the performance over the state-of-the-art algorithm [26]
by 50% on average (up to 90%). As future work, we plan to first
extend this study onto different clouds such as Windows Azure and
later consider the problem in the more complicated geo-distributed
environment with multiple cloud providers.

ACKNOWLEDGMENTS

We would like to thank Prof. Amy Apon for shepherding the paper
and anonymous reviewers from SC17. This work is supported by
a MoE AcRF Tier 1 grant (T1 251RES1610) in Singapore, a col-
laborative grant from Microsoft Research Asia and NSFC Project
61628204 in China. Jidong Zhai’s research is partly supported
by National Key Research and Development Program of China
2016YFB0200100 and NSFC Project 61472201. Yifan Gong’s re-
search is partly supported by the HPC Group of TuSimple. Amelie
Chi Zhou’s work is partly supported by grant NSFC-Guangdong
U1301252. Amelie Chi Zhou, Bingsheng He and Jidong Zhai are
corresponding authors of the paper.

Efficient Process Mapping in Geo-Distributed Cloud Data Centers

REFERENCES

[1]

2

[3]
[4]

[5]
[6]
[7]
[8]

[9

[10]

(1]
[12]

[13]

[14]

[15]

L1e]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]

[29]

(30]

D. Abramson, J. Giddy, and L. Kotler. 2000. High Performance Parametric
Modeling with Nimrod/G: Killer Application for the Global Grid?. In IPDPS ’00.
520-.

Albert Alexandrov, Mihai F. Tonescu, Klaus E. Schauser, and Chris Scheiman.
1995. LogGP: Incorporating Long Messages into the LogP Model&Mdash;One
Step Closer Towards a Realistic Model for Parallel Computation. In SPAA "95.
95-105.

Apache. 2011. Apache Oozie. http://oozie.apache.org/. (2011).

Ebru Arisoy, Tara N Sainath, Brian Kingsbury, and Bhuvana Ramabhadran. 2012.
Deep neural network language models. In WLM ’12. 20-28.

The NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.html.

Philip A Bernstein, Nathan Goodman, Eugene Wong, Christopher L Reeve, and
James B Rothnie Jr. 1981. Query processing in a system for distributed databases
(SDD-1). ACM TODS (1981).

Shahid H Bokhari. 1981. On the mapping problem. /EEE TOC (1981).

S Wayne Bollinger and Scott F Midkiff. 1991. Heuristic technique for processor
and link assignment in multicomputers. JEEE TOC (1991).

Ignacio Cano, Markus Weimer, Dhruv Mahajan, Carlo Curino, and Giovanni Mat-
teo Fumarola. 2016. Towards Geo-Distributed Machine Learning. CoRR
abs/1603.09035 (2016).

Henri Casanova, Dmitrii Zagorodnov, Francine Berman, and Arnaud Legrand.
2000. Heuristics for Scheduling Parameter Sweep Applications in Grid Environ-
ments. In HCW "00. 349—.

ED Cashwell and CJ Everett. 1959. Monte carlo method. New York (1959).

Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and Harold Kuhn. 2006.
MPIPP: an automatic profile-guided parallel process placement toolset for SMP
clusters and multiclusters. In ICS’06. 353-360.

Ann Chervenak, Robert Schuler, Carl Kesselman, Scott Koranda, and Brian Moe.
2008. Wide Area Data Replication for Scientific Collaborations. Int. J. High
Perform. Comput. Netw. 5, 3 (Oct. 2008), 124—134.

Wesley W. Chu and Paul Hurley. 1982. Optimal query processing for distributed
database systems. IEEE TOC (1982).

James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, and others. 2013. Spanner: Googles globally distributed
database. ACM TOCS (2013).

Court of Justice of the European Union . 2015. The court of justice declares that
the commissions us safe harbour decision is invalid. https://curia.europa.eu/jcms/
upload/docs/application/pdf/2015-10/cp150117en.pdf. (2015).

David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. 1993. LogP:
Towards a Realistic Model of Parallel Computation. In PPOPP ’93. 1-12.

Josep Diaz, Jordi Petit, and Maria Serna. 2002. A survey of graph layout problems.
ACM Computing Surveys (CSUR) (2002).

J. Diaz-Montes, M. Diaz-Granados, M. Zou, S. Tao, and M. Parashar. 2017. Sup-
porting Data-intensive Workflows in Software-defined Federated Multi-Clouds.
IEEE TCC PP, 99 (2017), 1-1.

Rohan Gandhi, Di Xie, and Y. Charlie Hu. 2013. PIKACHU: How to Rebalance
Load in Optimizing Mapreduce on Heterogeneous Clusters. In USENIX ATC’13.
61-66.

Yifan Gong, Bingsheng He, and Dan Li. 2014. Finding constant from change:
Revisiting network performance aware optimizations on iaas clouds. In SC’14.
982-993.

Yifan Gong, Bingsheng He, and Amelie Chi Zhou. 2015. Monetary cost opti-
mizations for mpi-based hpc applications on amazon clouds: Checkpoints and
replicated execution. In SC’15. Article 32, 12 pages.

Lin Gu, Deze Zeng, Peng Li, and Song Guo. 2014. Cost Minimization for
Big Data Processing in Geo-Distributed Data Centers. /[EEE TETC 2, 3 (2014),
314-323.

Greg Hamerly and Charles Elkan. 2002. Alternatives to the k-means algorithm
that find better clusterings. In CIKM "02. 600-607.

Torsten Hoefler, Emmanuel Jeannot, and Guillaume Mercier. 2014. An overview
of topology mapping algorithms and techniques in high-performance computing.
High-Performance Computing on Complex Environments (2014).

Torsten Hoefler and Marc Snir. 2011. Generic topology mapping strategies for
large-scale parallel architectures. In ICS’11.

Chien-Chun Hung, Leana Golubchik, and Minlan Yu. 2015. Scheduling Jobs
Across Geo-distributed Datacenters. In SoCC ’15. 111-124.

AWS Global Infrastructure. https://aws.amazon.com/about-aws/global-
infrastructure/. accessed on Dec 2015.

Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth
Silverman, and Angela Y Wu. 2002. An efficient k-means clustering algorithm:
Analysis and implementation. /JEEE TPAMI 24,7 (2002), 881-892.

Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and Raoul A. F.
Bhoedjang. 1999. MagPle: MPI’s Collective Communication Operations for
Clustered Wide Area Systems. In PPoPP ’99. 131-140.

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[52]

SC17, November 12-17, 2017, Denver, CO, USA

Tevfik Kosar and Miron Livny. 2004. Stork: Making Data Placement a First Class
Citizen in the Grid. In ICDCS ’04. 342-349.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a Social Network or a News Media?. In WWW ’10. 591-600.

Cheol H Lee, Myunghwan Kim, Chan Park, and others. 1990. An efficient k-way
graph partitioning algorithm for task allocation in parallel computing systems. In
ISCI ’90. 748-751.

Soo-Young Lee and JK Aggarwal. 1987. A mapping strategy for parallel process-
ing. IEEE TOC (1987).

Avneesh Pant and Hassan Jafri. 2004. Communicating efficiently on cluster
based grids with MPICH-VML. In Cluster Computing, 2004 IEEE International
Conference on. IEEE, 23-33.

Marco Polverini, Antonio Cianfrani, Shaolei Ren, and Athanasios V. Vasilakos.
2014. Thermal-Aware Scheduling of Batch Jobs in Geographically Distributed
Data Centers. [EEE TCC 2, 1 (2014), 71-84.

Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya
Akella, Paramvir Bahl, and Ion Stoica. 2015. Low latency geo-distributed data
analytics. In SIGCOMM’15. 421-434.

Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S Pai, and Michael J Freedman.
2014. Aggregation and degradation in JetStream: Streaming analytics in the wide
area. In NSDI'14. 275-288.

Aboozar Rajabi, Hamid Reza Faragardi, and Thomas Nolte. 2014. An Efficient
Scheduling of HPC Applications on Geographically Distributed Cloud Data
Centers. 155-167.

Kavitha Ranganathan and Ian Foster. 2002. Decoupling Computation and Data
Scheduling in Distributed Data-Intensive Applications. In HPDC ’02. 352—.
Ralf Reussner, Peter S, Lutz Prechelt, and Matthias Muller. 1998. SKaMPI:
A detailed, accurate MPI benchmark. In Recent advances in Parallel Virtual
Machine and Message Passing Interface. 52-59.

Marcin Skowron, Mathias Theunis, Stefan Rank, and Anna Borowiec. 2011.
Effect of affective profile on communication patterns and affective expressions
in interactions with a dialog system. In Affective Computing and Intelligent
Interaction. 347-356.

N Spring and Rich Wolski. 1998. Application level scheduling: Gene sequence
library comparison. In ICS’98, Vol. 1.

Long Thai, Adam Barker, Blesson Varghese, Ozgur Akgun, and Ian Miguel. 2014.
Optimal deployment of geographically distributed workflow engines on the Cloud.
In CloudCom’14. 811-816.

Rajeev Thakur and Rolf Rabenseifner. 2005. Optimization of Collective commu-
nication operations in MPICH. Int. J. High Perform. Comput. Appl. 19, 1 (Feb.
2005), 49-66.

Jesper Larsson Traff. 2002. Implementing the MPI process topology mechanism.
In SC’02.

Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya Akella. 2016. CLAR-
INET: WAN-Aware Optimization for Analytics Queries. In OSDI’16. 435-450.
Xudong Xiang, Chuang Lin, Fu Chen, and Xin Chen. 2014. Greening Geo-
distributed Data Centers by Joint Optimization of Request Routing and Virtual
Machine Scheduling. In UCC ’14. 1-10.

Xiaolong Xu, Wanchun Dou, Xuyun Zhang, and Jinjun Chen. 2015. EnReal: An
Energy-Aware Resource Allocation Method for Scientific Workflow Executions
in Cloud Environment. /IEEE TCC 1 (2015), 1-1.

Lingyan Yin, Jizhou Sun, Laiping Zhao, Chenzhou Cui, Jian Xiao, and Ce Yu.
2015. Joint Scheduling of Data and Computation in Geo-Distributed Cloud
Systems. In CCGrid ’15. 657-666.

Jidong Zhai, Jianfei Hu, Xiongchao Tang, Xiaosong Ma, and Wenguang Chen.
2014. Cypress: combining static and dynamic analysis for top-down communica-
tion trace compression. In SC’14. 143-153.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J. Smola. 2010. Paral-
lelized stochastic gradient descent. In Advances in Neural Information Processing
Systems 23. Curran Associates, Inc., 2595-2603.

ARTIFACT DESCRIPTION: EFFICIENT
PROCESS MAPPING IN
GEO-DISTRIBUTED CLOUD DATA
CENTERS

A.1 Abstract

This description contains the information needed to launch some ex-
periments of the SC17 paper submission “Efficient Process Mapping
in Geo-Distributed Cloud Data Centers”.

http://oozie.apache.org/
https://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cp150117en.pdf
https://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cp150117en.pdf

SC17, November 12-17, 2017, Denver, CO, USA

A.2 Description
A.2.1 Check-list (artifact meta information).

e Algorithm: A process mapping algorithm including application profil-

ing, network calibration, grouping optimization and mapping optimiza-

tion components.

Program: C++ code.

Compilation: C++ compiler. We used gcc version 5.4.0.

Data sets: Publicly available benchmarks as indicated in the main paper.

Hardware: For running our algorithm and the compared methods, we

used a machine with 24GB DRAM and a 6-core Intel Xeon CPU. How-

ever, we do not have specific requirement on the hardware.

e Output: Process mapping solutions.

e Experiment workflow: Git clone source code, download datasets, and
run scripts.

e Publicly available?: Yes.

A.2.2 How software can be obtained (if available). A URL will
be released.

A.2.3 Hardware dependencies. None.

A.2.4 Software dependencies. Gcec compiler version 5.4.0 and
CYPRESS system.

A.2.5 Datasets. The BT (Block Tri-diagonal solver), SP (Scalar
Penta-diagonal solver) and LU (Lower-upper Gauss-Seidel solver)
applications from the NAS Parallel Benchmark kernels version 2.4
(http://www.nas.nasa.gov/publications/npb.html) are chosen as HPC
applications. The default problem size is CLASS C. We use publicly
available nbody dataset (http://db.cs.washington.edu/projects/nuage/
benchmark/astro-nbody/) for the K-means application. For the DNN
application, we use the CIFAR-10 dataset (https://www.cs.toronto.
edu/~Kkriz/cifar.html) to train Resnet.

A.3 Installation

First, download and install the dependency software. Second, down-
load the source code from the URL and use the makefile to build the
executable.

A.4 Evaluation and expected result

After running an experiment, the results are available in the folder
results. The results contain the process mapping solution to the
tested application. Run the script in scripts/simulate.sh to obtain the
simulated average and standard error of the performance results.

Amelie Chi Zhou, Yifan Gong, Bingsheng He, and Jidong Zhai

http://www.nas.nasa.gov/publications/npb.html
http://db.cs.washington.edu/projects/nuage/benchmark/astro-nbody/
http://db.cs.washington.edu/projects/nuage/benchmark/astro-nbody/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

	Abstract
	1 Introduction
	2 Background
	2.1 Geo-distributed Cloud
	2.2 Process Mapping Problem

	3 Problem Formulation
	3.1 Model Overview
	3.2 Problem Definition

	4 Process Mapping Algorithm
	4.1 Algorithm Overview
	4.2 Algorithm Details
	4.3 Algorithm Design

	5 Evaluations
	5.1 Experimental Setup
	5.2 Optimization Overhead
	5.3 Results with Amazon EC2
	5.4 Results with Simulations

	6 Related Work
	7 Conclusions
	References
	A Artifact Description: Efficient Process Mapping in Geo-Distributed Cloud Data Centers
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Evaluation and expected result

