
229

7 Network Performance 
Aware Graph 
Partitioning for Large 
Graph Processing 
Systems in the Cloud

Rishan Chen, Xuetian Weng, Bingsheng He, 
Byron Choi, and Mao Yang

CONTENTS

7.1 Introduction ..................................................................................................230
7.2 Applications of Large Graphs ....................................................................... 231

7.2.1 Social Networks ................................................................................ 231
7.2.2 Web Graphs ...................................................................................... 231
7.2.3 Information Networks ....................................................................... 232
7.2.4 Miscellaneous ................................................................................... 232

7.3 Cloud-Based Graph Processing Platforms ................................................... 232
7.3.1 Survey of Existing Systems .............................................................. 233

7.3.1.1 Pregel ................................................................................. 233
7.3.1.2 PEGASUS .......................................................................... 233
7.3.1.3 HADI ................................................................................. 233
7.3.1.4 Surfer.................................................................................. 233
7.3.1.5 Trinity ................................................................................ 233
7.3.1.6 GraphLab ...........................................................................234

7.3.2 Comparison of Existing Systems ......................................................234
7.3.3 Other Graph Processing Platforms/Systems ..................................... 235

7.4 Uneven Bandwidth between the Machines of the Cloud .............................. 236
7.4.1 Factor 1: Network Environment ....................................................... 236

7.4.1.1 Case Study ......................................................................... 237
7.4.2 Factor 2: Virtualization..................................................................... 237

7.5 Network Bandwidth Aware Graph Partitioning Technique for the Cloud ... 237
7.5.1 Machine Graph ................................................................................. 239
7.5.2 Partition Sketch ................................................................................. 241

7.5.2.1 Design Principles of Ideal Partition Sketch ....................... 241



230 Large Scale and Big Data

7.1  INTRODUCTION

A wide variety of recent applications model their data in graphs/networks such as 
social networks, web graphs, and protein–protein interaction networks. Efficient 
processing for large graph data poses new challenges for almost all components of 
state-of-the-art data management systems. To list a few examples: (i) graph data are 
complex structures and cannot be efficiently stored as relational tables; (ii) the access 
patterns of large graph processing are complex, which results in inefficient disk 
accesses or network communications; and (iii) last but not least, to tackle scalability 
issues, graph processing must be efficiently distributed in a networked environment.

Researchers have been actively proposing many innovative solutions to address the 
new challenges of large graph processing. In particular, a notable number of techniques 
have recently been proposed to utilize the cloud. The objectives of this chapter are 
(i) to introduce typical examples of large graph processing, (ii) to give an overview of 
existing cloud-based graph processing platforms, and more importantly, (iii) to empha-
size a network performance aware data partitioning approach, which bridges large 
graph processing and cloud-based platforms. In particular, the network bandwidth may 
not be uniform across the large network in a cloud; a network with higher bandwidth 
between its machines can support more intermachine computation.

The chapter is structured as follows. We survey some typical examples of large graph 
processing in Section 7.2. In Section 7.3, we list some representative cloud-based graph 
processing platforms. Section 7.4 presents the network unevenness in cloud-based sys-
tems and Section 7.5 introduces network performance aware graph partitioning. For the 
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completeness of discussions, Section 7.7 gives an introduction to existing graph partition-
ing approaches, although they may not be related to the cloud technologies. A discussion 
of open problems is provided in Section 7.8. We summarize the chapter in Section 7.9.

7.2  APPLICATIONS OF LARGE GRAPHS

Large graphs have arisen in a wide range of data-intensive applications. To begin our 
discussions, we first describe a small and non-exhaustive set of typical examples of 
large graphs and their applications.

7.2.1  Social NetworkS

In social networks, nodes often represent users and edges may often represent rela-
tionships between users (friendships). Today, there are plenty of large social net-
works. For example, the social network of Facebook consisted of 1 billion nodes 
and more than 100 billion edges in 2012 [70]. The largest publicly available social 
network (contributed by Yahoo!*) consists of more than 1 billion nodes. The social 
network of LinkedIn contained almost 218 million nodes in the first quarter of 2013 [54]. 
The project FlockDB manages social graphs with more than 13 billion edges [40]. 
Moreover, social networks are evolving at an unprecedented rate. For example, it has 
been reported that, between 2004 and 2012, the Facebook network increased from 
roughly 1 million to 1 billion users [70].

Analysis on social networks has become a hot research topic. Work has been con-
ducted identifying and searching user communities from the networks, and studies have 
been carried out to estimate the diameter and the radius of a network (e.g., [42]). These 
studies show how users are connected and indicate which users are outliers of the net-
work. It is reported that the small-world phenomenon has been found in social networks 
[42]. In practice, despite the large number of users on social networks, it is often a user’s 
close friends who often have the most influence on him/her. It is desirable to determine 
two- or three-hop friend lists for a social network user. Another application of the net-
works is to help organizing activities. An organizer can find not only a group of his/her 
close friends, but also groups that contain people who are close friends of each other.

7.2.2  web GraphS

Another example of large graphs is the WWW graph. The nodes represent web 
pages and edges represent hyperlinks. Google estimates that there are over 1 tril-
lion web pages. The indexed web contained at least 4.6 billion web pages as of June 
2013.† Today, the WWW graphs for experimentation contain more than 20 billion 
web pages and 160 billion hyperlinks. The web page hyperlink connectivity graph 
of Yahoo! AltaVista of 2002 is publicly available.‡ The well-known application of 

* Webscope from Yahoo! Labs. Graph, and Social Data. http://webscope.sandbox.yahoo.com/catalog.
php?datatype=g.

† WorldWideWebSize.com: http://www.worldwidewebsize.com/.
‡ Webscope from Yahoo! Labs. Graph and Social Data. http://webscope.sandbox.yahoo.com/catalog.

php?datatype=g.
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the WWW graph is the computation of web pages’ PageRank [63] for web searches. 
Let the engineering details such as damping factor alone, the PageRank algorithm 
iteratively computes the PageRank of each page from the PageRanks of the pages 
that link to it. The algorithm terminates when the PageRanks of the pages converge. 
The PageRank algorithm is often used as an example to illustrate performance char-
acteristics of cloud-based platforms.

7.2.3  iNformatioN NetworkS

Resource Description Framework (RDF) has been an official W3C recommendation for 
the semantic web. The triplets of RDF naturally form a graph. Among others, RDF has 
been applied to knowledge bases, such as DBpedia [6]. The ontology of DBpedia derived 
from Wikipedia contains 3.7 millions of “things” and 400 millions of facts.* Such data 
are particularly useful for users to formulate complex queries about the information rep-
resented in the RDF. Applications of the semantic web continue to emerge each year [1].

Search engine providers are actively engaged in introducing semantics for next 
generation search engines (e.g., Probase [78]).† A recent report of the graph-based 
knowledge base Satori [13] from Microsoft, which enhances the search capabilities 
of Bing, consists of more than 300 million nodes and 800 million edges. Google’s 
knowledge graph has 570 million objects and 18 billion facts about the relationships 
between different objects. The knowledge graphs are expected to enhance the rank-
ing mechanisms of search results.

7.2.4  miScellaNeouS

Other examples of large graphs are the citation relationship of research articles, rela-
tionships between US patents,‡ Wordnet,§ communication networks, transportation 
or road networks, and many others. Some of these graphs can be found in the a nice 
collection of graphs of the Stanford Network Analysis Project (SNAP) [53].

7.3  CLOUD-BASED GRAPH PROCESSING PLATFORMS

As described in the previous section, graph data are ubiquitous and their volume is 
ever increasing. New computationally and data-intensive analysis tasks on graphs 
are continuously being reported. The deployments of applications on such data have 
been moving from a small number of high-performance servers or super computers 
[31,46] toward a cloud with a large number of commodity servers [43,58].

A number of general-purpose development platforms such as MapReduce [23], its 
open-source variant, Hadoop [33], and Dryad [37] have been proposed to help users 
to develop custom applications on the cloud, without worrying about the complexity 
beneath the cloud. For instance, data may be stored in distributed and replicated file 

* DBpedia SPARQL Benchmark: http://aksw.org/Projects/DBPSB.html.
† Probase: http://research.microsoft.com/probase/.
‡ US Patent: http://vlado.fmf.uni-lj.si/pub/networks/data/patents/Patents.htm.
§ Wordnet: http://vlado.fmf.uni-lj.si/pub/networks/data/dic/Wordnet/Wordnet.zip.
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systems such as GFS [30] or BigTable [17]. Such systems are suitable for process-
ing flat data structures, not just graph structured data. In particular, it is known that 
much graph analysis inherently involves random access and direct adoption of the 
technologies for flat files or relations may lead to high (network) communication 
costs in the cloud. It is desirable to have a graph-processing platform that automati-
cally handles optimization details for users.

Graph processing platforms for the cloud have recently been proposed. Most of 
these platforms (e.g., [42,43,81]) are built on top of MapReduce [23]. In this section, 
we give a brief survey of some representative solutions.

7.3.1  Survey of exiStiNG SyStemS

7.3.1.1  Pregel
Pregel [58] is a vertex-oriented graph processing engine that implements a Bulk 
Synchronous Parallel (BSP) model. Pregel passes computational results between 
workers. It provides a user-defined API Compute() executed on vertices. In one itera-
tion of BSP (i.e., superstep in Pregel’s terminology), Pregel executes Compute() on 
all the vertices in parallel. Messages are passed over the network. Vertices vote to 
halt if they have no work to do.

7.3.1.2  PEGASUS
PEGASUS [43] is an open-source Hadoop-based library that supports typical graph 
mining operations including PageRank, spectral clustering, diameter and radius esti-
mations, and connected components. An important observation is that many such 
mining operations can be readily expressed as an iterative matrix-vector multiplica-
tion. PEGASUS therefore proposes a scalable, highly optimized primitive called 
generalized iterated matrix–vector multiplication that includes block multiplication, 
clustered edges, and diagonal block iteration.

7.3.1.3  HADI
HADI [42] is a graph mining implementation (developed on Hadoop) that estimates 
the radii and diameter of a large graph. To tackle the scale of large graphs, HADI 
proposes an approximation algorithm implemented and optimized for the cloud 
framework Hadoop/MapReduce.

7.3.1.4  Surfer
Surfer [18] is a large graph processing engine that provides two primitives for devel-
oping applications on the cloud: MapReduce and propagation. MapReduce is useful 
for applications processing flat data structures. In comparison, the second primi-
tive propagation operation is designed for developing edge-oriented tasks on large 
graphs. A prototype [19] is developed on top of Pregel extended with a network 
performance-aware partitioning framework.

7.3.1.5  Trinity
Trinity [67] is a distributed memory-based general purpose graph engine. An obser-
vation is that MapReduce implementation of graph processing can lead to huge I/O 
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234 Large Scale and Big Data

and communication overhead. Trinity exploits the memory of the machines in the 
cloud forming a “memory cloud,” which enables fast random data access, which is 
particularly useful for computation on graphs. In addition, Trinity consists of a native 
graph storage engine. These techniques significantly speed up large graph process-
ing. Trinity supports both transactional and batched graph processing.

7.3.1.6  GraphLab
GraphLab [56] is specially designed for machine learning and data mining algorithms, 
which are not naturally supported by MapReduce. The GraphLab abstraction enables 
developers to specify asynchronous, dynamic, graph-parallel computation while ensur-
ing data consistency and achieving a high degree of parallel performance in the shared-
memory setting. GraphLab uses an asynchronous parallel model different from the BSP 
model used by Pregel. Additionally, The GraphLab framework has been extended to the 
distributed setting while preserving strong data consistency guarantees [55].

Other cloud-based solutions for graph processing include the following. DisG [81] 
is an ongoing project for web graph reconstruction using Hadoop. Pujol et al. [65] 
studied different replication methods to scale social network analysis. Hama [5] and 
Giraph [4] are two open-source projects targeting large graph processing. They adopt 
Pregel’s programming model and their storage is built on top of the Hadoop Distributed 
File System. While the solutions mentioned above focus on batch processing, there are 
transactional graph processing databases such as Neo4j and InfiniteGraph. Finally, 
recently, a number of cloud-based data management systems have been developed for 
other important workloads such as data warehousing [2,35,77] and on-line transaction 
processing [22], which are beyond the scope of this chapter.

7.3.2  compariSoN of exiStiNG SyStemS

Table 7.1 provides a brief comparison of a number of representative graph processing 
systems with respect to their properties of graph storage, support of online process-
ing, main-memory processing and distributed processing. Neo4j and HyperGraphDB 

TABLE 7.1
Comparison of Representative Systems (An Extended Version Based on 
Table 2 in Previous [68])

Native Graphs
Online Query 

Processing
Memory-Based 

Exploration
Distributed Parallel 

Processing

Neo4j Yes Yes No No

HyperGraphDB No Yes No No

InfiniteGraph Yes Yes No Yes

MapReduce No No No Yes

PEGASUS No No No Yes

Surfer Yes No Yes Yes

Googles Pregel No No No Yes

Microsofts Trinity Yes Yes Yes Yes
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are two centralized graph processing engines that do not partition data graphs to 
multiple machines. Both can support online query processing. However, their scal-
ability is limited, because they cannot handle very large graphs efficiently, due to 
the costly disk accesses. For distributed graph processing systems, many engines 
are disk-based, mainly for reliability, and scalability. In-memory graph explorations 
resolve the random I/O bottleneck of Trinity and Surfer. As for graph partitioning, 
most graph engines (except Surfer) use random hash partitioning by default. Surfer 
adopts the network performance aware graph partitioning, specifically designed for 
cloud environments.

To illustrate the differences between these systems with an example, we briefly 
compare their reported performances of the PageRank computation, which is a typi-
cal algorithm for benchmarking graph processing.

Neo4j and HyperGraphDB are centralized graph processing engines, and hence, the 
graphs that they can process are obviously limited by the centralized server. As graph 
processing often involves random data accesses, graphs that cannot fit into main mem-
ory may incur numerous disk accesses that significantly affects performance.

Pegasus supports iterative matrix–vector multiplications and implemented the 
matrix approach for computing PageRank and its optimizations. Their experiments 
confirmed that performance improves as the number of machines increases and per-
formance scales linearly as graph size increases beyond 1 billion nodes. Pegasus 
finished one PageRank iteration in around 100 seconds on YahooWeb (1.4 billion 
nodes) under the default setting of 9 supercomputers.

Pregel implemented a vertex-oriented PageRank algorithm under the message 
passing paradigm. To handle large graph data, its original implementation uses a 
default random hash function to partition graph data to worker processes. Giraph [4] 
is a publicly available implementation for Pregel. Its performance of PageRank has 
been reported in comparison with Trinity [67]. Trinity also implemented a vertex-
oriented PageRank algorithm and ran it on eight commodity machines. Trinity keeps 
graphs in the main memory, which leads to superior efficiency. In particular, Trinity 
completes one PageRank iteration on a 1 billion node graph in less than 1 minute. 
In comparison, Giraph is at least two orders of magnitude slower and runs out of 
memory processing some large graphs.

Surfer tested the Network Rank algorithm* on a social network that consists of 
more than half a billion nodes and about 30 billion edges. The main focus of Surfer 
is to show the improvement in performance due to its network performance aware 
graph partitioning. The speedup of the response time observed from the MapReduce 
engine built on top of a MapReduce platform ranges from 1.7 to 5.8 times faster than 
the original response times, under different network topology settings.

7.3.3  other Graph proceSSiNG platformS/SyStemS

We have recently seen that cloud computing platforms have been equipped with 
emerging hardware such as multicore CPUs and GPUs (Graphics Processing Units). 

* Network ranking is the generation of a ranking on the vertices in the graph using PageRank or its 
variants.
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236 Large Scale and Big Data

Beyond machine-level parallelism, it is desirable to exploit intra-machine parallelism. 
On multicore CPUs, parallel libraries like MTGL [12] have been developed for par-
allel graph algorithms. MTGL offers a set of data structures and APIs for building 
graph algorithms. The MTGL API is modeled after the Boost Graph Library [69] and 
optimized to leverage shared memory multithreaded machines. The SNAP framework 
[7] provides a set of algorithms and building blocks for graph analysis, especially for 
small-world graphs. On the GPU, a general-purpose programming framework called 
Medusa [80] has been developed. The goal is to hide the details of graph programming 
and GPU runtime from users. In contrast to Pregel, Medusa adopts very fine-grained 
processing on vertices/edges/messages to exploit the massive parallelism of the GPU. 
Additionally, there are specific parallel graph algorithms on the GPU [34,36,48,75].

7.4  UNEVEN BANDWIDTH BETWEEN THE 
MACHINES OF THE CLOUD

The cloud-based solutions discussed in the previous section provide a user-friendly plat-
form for users to develop their custom logic without worrying how the underlying inter-
connected machines operates. However, the unique network environment that consists 
such number of servers does further add fuel to the challenges of large graph processing. 
In this section, we discuss the factors on the cloud (such as hardware and software) that 
reveal the major factors of network bandwidth unevenness in the cloud.

7.4.1  factor 1: Network eNviroNmeNt

Due to the significant scale, the cloud network environment is significantly different 
from those in previous distributed environment [44,46,52], for example, Cray super-
computers or a small-scale cluster. In a small-scale cluster, the network bandwidth is 
often roughly the same for every machine pair. However, the network bandwidth of 
the cloud environment is uneven among different machine pairs.

Current cloud infrastructures often use a switch-based tree structure to intercon-
nect the servers [10,32,41]. Machines are first grouped into pods, and then pods are 
connected to higher-level switches. A natural consequence of such a topology is 
that the network bandwidth of any machine pair is not uniform that is influenced by 
the switches that connect the two machines [37]. The intra-pod bandwidth is much 
higher than the cross-pod bandwidth.

The knowledge of network topology (such as multilevel data reduction along 
the tree topology [23] and partition-based locality optimizations [64]) and schedul-
ing techniques [38] are crucial for advanced optimization in the cloud. However, it 
should also be remarked that the topology information in the cloud is usually not 
available to cloud users due to the virtualization and system management issues.

Finally, a simple reason for network unevenness can be that the commodity com-
puters in the cloud may not have a uniform network configuration (e.g., network 
adaptors). As the cloud evolves, its computers may become heterogeneous from gen-
erations to generations [79]. For example, current mainstream network adaptors pro-
vide 1 Gb/sec, and the adaptors with 10 Gb/sec has been gradually employed. These 
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237Network Performance Aware Graph Partitioning

hardware factors result in the unevenness of the network bandwidth among machines 
in the cloud.

7.4.1.1  Case Study
As discussed, the network bandwidth among different machine pairs can vary 
significantly. Such network bandwidth unevenness has been observed by cloud 
providers [10,41]. He et al. [19] have also observed significant network bandwidth 
unevenness in Amazon EC2. Figure 7.1 shows the network bandwidth of every 
machine pair among 64 and 128 small instances (i.e., virtual machine) on Amazon 
EC2. The network bandwidth varies significantly. The mean (MB/sec) and standard 
deviation are (112.8, 37.5) and (115.0, 40.2) for 64 and 128 small instances, respectively. 
It is observed that some pairwise bandwidth are very high (e.g., more than 500 MB/
sec). The possible reason is that those small instances can be allocated to the same 
physical machine.

He et al. [19] also note that the network bandwidth between two instances in the 
public cloud is temporarily stable, with similar results observed in the another study 
[76]. This allows to develop network performance aware optimizations based on the 
network bandwidths measured at a particular recent time point.

7.4.2  factor 2: virtualizatioN

In addition to hardware factors, software techniques in the cloud can result in net-
work bandwidth unevenness. In particular, virtualization has been a crucial facility 
of the cloud. It hides the network topology or the real configurations of the machines 
underneath a cloud system from users. In fact, in cloud environments, users do 
not have administrator privileges on the hardware under the virtualization layer. 
A popular optimization in virtualization is virtual machine consolidation, for bet-
ter resource utilization of virtualization. However, the consolidation process may 
induce concurrent tasks to compete for the network bandwidth on the same physical 
machine. Different degrees of consolidation cause the network bandwidth uneven-
ness among physical machines.

7.5  NETWORK BANDWIDTH AWARE GRAPH 
PARTITIONING TECHNIQUE FOR THE CLOUD

Due to the massive volume of graph data, even a baseline graph processing engine 
should store a large graph into partitions, as opposed to a single flat storage. However, 
graph partitioning itself should be effectively integrated into the large processing in 
the cloud environment. There are a number of challenging issues in such an integra-
tion. First, graph partitioning itself is a very costly task, which in particular gener-
ates much network traffic. Second, the network bandwidth unevenness described 
in Section 1.3 affects the way of graph partitioning and graph partition storage on 
the machines. Since the number of graph partitions and the number of machines for 
graph processing can be very large, the possible solution space of storing graph parti-
tions to the machines is huge. Consider P partitions to be stored on P machines. The 
space includes P! possible solutions. Another problem is how to make both the graph 
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bandwidth. The y-axis of all figures is capped at 300 for clarity.
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partitioning and graph processing algorithm aware of the bandwidth unevenness for 
networking efficiency.

Foremost, graph partitioning has been a classical combinatorial optimization 
problem, with an input objective function. The input objective function is to mini-
mize the number of cross-partition edges with the constraint of all partitions with 
similar number of edges. This is because the total number of cross-partition edges 
is often a good indicator of the amount of communication between partitions in dis-
tributed computation. It is an NP-complete problem [50].

The network performance aware graph partitioning framework discussed in 
this section improves the network performance of graph partitioning process itself. 
Moreover, the partitions generated from the framework improve the network per-
formance of graph processing tasks. The basic idea of the framework is to partition, 
store, and process the graph partitions according to their numbers of cross-partition 
edges such that the partitions with a large number of cross-partition edges are stored 
in the machines with high network bandwidth between them, as the network traffic 
requirement for those graph partitions is high. To achieve this, the framework parti-
tions both the data graph and a “machine graph” (defined next) simultaneously.

7.5.1  machiNe Graph

To capture the network bandwidth unevenness, a complete weighted undirected 
graph (namely machine graph) models the machines chosen for graph partitioning. 
Each machine is modeled as a vertex; an edge represents the connectivity between 
the two machines, and the bandwidth between any two machines is represented as 
the weight of an edge. For simplicity, assume that each machine has the same con-
figuration in terms of computation power and main memory. In practice, users usu-
ally acquire the virtual machines of the same type for one application, because of 
convenience and management. In addition, an undirected graph is used in the model, 
as the bandwidth can often be similar in both directions.

Machine Graph Building. The machine graph can be built without the knowl-
edge or control of the network physical topology, as follows.

Given a set of machines for partitioning, the machine graph can be constructed 
by calibrating the network bandwidth between any two machines in the set. The 
network bandwidth can be measured by sending a data chunk of 8 MB and using 
the average of twenty measurements as the estimated bandwidth. For N virtual 
machines, only N iterations of calibrations are needed to measure all pairwise per-

formance. In each iteration, 
N

2
 machine pairs are calibrated. The maintenance is 

based on the classic exponential average by getting the bandwidth of data transfer in 
the graph processing.

Example

The left part of Figure 7.2a illustrates the machine graph for four machines in a 
cluster with tree topology. The edge thickness represents the weight: a thicker 
edge means a link with higher bandwidth. The example cluster consists of two 
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FIGURE 7.2 Mapping on the partition sketches between the machine graph and the data graph. (a) Four machines are chosen. (b) Three machines are 
chosen.
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241Network Performance Aware Graph Partitioning

pods, and each pod consists of two machines. Assuming that the intra-pod net-
work bandwidth is higher than the inter-pod one, and the intra-pod bandwidth is 
the same across pods, the machine graph consists of four vertices and six edges. 
The intra-pod connections are represented as thicker edges, indicating that they 
have a higher interconnected bandwidth.

7.5.2  partitioN Sketch

The process of a multilevel graph partitioning algorithm is modeled as a tree struc-
ture (namely partition sketch). Each node in the partition sketch represents the 
graph acting as the input for the partition operation at a level of the entire graph 
partitioning process: the root node representing the input graph; nonleaf nodes at 
level (i + 1) representing the partitions of the ith iteration; the leaf nodes represent-
ing the graph partitions generated by the multilevel graph partitioning algorithm. 
The partition sketch is a k-ary tree for k-section-based graph partitioning algo-
rithm. In practice, graph partitioning is often done using bisections iteratively, and 
hence, the partition sketch is represented as a binary tree. If the number of graph 
partitions is P, the number of levels of the partition sketch is (⌈log2 P⌉ + 1).

Example

Figure 7.3 illustrates the correspondence between partition sketch and the bisec-
tions in the entire graph partitioning process. In the figure, the graph is divided into 
four partitions, and the partition sketch has three levels.

7.5.2.1  Design Principles of Ideal Partition Sketch
Among various partition sketches, an ideal partition sketch describes the partition-
ing process that strikes a balance between partitioning time and partition quality. 

Graph partitioning Partition sketch

G G

G

Level 0

Level 1

Level 2

G

G1

G11 G21

G22 G22
G21

G12 G12
G11

G2 G2

G2

G1

G1

FIGURE 7.3 Correspondence between bisections and the partition sketch for the process of 
partitioning the graph into four partitions.
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242 Large Scale and Big Data

The ideal partition sketch represents the iterative partition process with the optimal 
bisection on each partition. In each bisection, the optimal bisection minimizes the 
number of cross-partition edges between the two generated partitions. This is the best 
case that existing bisection-based algorithms [44,46,47] can achieve. Partitioning with 
optimal bisections does not necessarily result in partitions with the globally minimum 
number of cross-partition edges. However, existing studies [44,46] have demonstrated 
that they can achieve relatively good partitioning quality, approaching the global opti-
mum. Furthermore, the ideal partition sketch exhibits a few interesting properties:

7.5.2.1.1 Local Optimality
Denote C(n1, n2) as the number of cross-partition edges between two nodes n1 and n2 
in the partition sketch. Given any two nodes n1 and n2 with a common parent node p 
in the ideal partition sketch, we have C(n1, n2) is the minimum among all the possible 
bisections on p.

By definition of the ideal partition sketch, the local optimality is achieved on each 
bisection.

7.5.2.1.2 Monotonicity
Suppose the total number of cross-partition edges among any partitions at the same 
level l in the partition sketch to be Tl. The monotonicity of the ideal partition sketch 
is that Ti ≤ Tj, if i ≤ j.

Proof (sketch). According to multilevel graph partitioning, a cross-partition edge 
in level i is still a cross-partition edge in level i + 1. Additionally, more cross-partition 
edges are created during the bi-section at level i. Thus, the set of cross-partition edge 
in level i is a subset of that in level i + 1. Thus, Ti ≤ Ti+1. Therefore, Ti ≤ Tj, if i ≤ j. □

The monotonicity reflects the increase in the number of cross-partition edges in 
the recursive partitioning process.

7.5.2.1.3 Proximity
Given any two nodes n1 and n2 with a common parent node p, any other two nodes 
n3 and n4 with a common parent node p′, and p and p′ are with the same parent, we 
have C(n1, n2) + C(n3, n4) ≥ C(nπ(1), nπ(2)) + C(nπ(3), nπ(4)) where π is any permutation 
on (1, 2, 3, 4).

Proof (sketch). According to local optimality, we know that C(p, p′) = C(n1, n3) + 
C(n1, n4) + C(n2, n3) + C(n2, n4) is the minimum. Thus, we have

 C(n1, n2) + C(n1, n4) + C(n3, n2) + C(n3, n4) ≥ C(p, p′) (7.1)

 C(n1, n2) + C(n1, n3) + C(n4, n2) + C(n4, n3) ≥ C(p, p′) (7.2)

Substituting C(p, p′), we have

 C(n1, n3) + C(n2, n4) ≤ C(n1, n2) + C(n3, n4) (7.3)

 C(n2, n3) + C(n1, n4) ≤ C(n1, n2) + C(n3, n4) (7.4)

D
ow

nl
oa

de
d 

by
 [

N
an

ya
ng

 T
ec

hn
ol

og
ic

al
 U

ni
ve

rs
ity

 (
N

T
U

)]
 a

t 2
1:

11
 1

7 
N

ov
em

be
r 

20
16

 



243Network Performance Aware Graph Partitioning

That means, we have C(n1, n2) + C(n3, n4) ≥ C(nπ(1), nπ(2)) + C(nπ(3), nπ(4)) where π is 
any permutation on (1, 2, 3, 4). □

The intuition of the proximity is, at a certain level of the ideal partition sketch, the 
partitions with a low common ancestor have a larger number of cross-partition edges 
than those with a high common ancestor.

These properties of the partitioning sketch indicate the following design prin-
ciples for graph partitioning and processing, to match the network bandwidth with 
the number of cross-partition edges.

 P1. Graph partitioning and processing should gracefully adapt to the bandwidth 
unevenness in the cloud network. The number of cross-partition edges is a 
good indicator on bandwidth requirements. According to the local optimal-
ity, the two partitions generated in a bisection on a graph should be stored 
on two machine sets such that the total bandwidth between the two machine 
sets is the lowest.

 P2. The partition size should be carefully chosen for the efficiency of process-
ing. The number of partitions should be no smaller than the number of 
machines available for parallelism. According to the monotonicity, a small 
partition size increases the number of levels of the partition sketch, result-
ing in a large number of cross-partition edges. On the other hand, a large 
partition may not fit into main memory of a machine, which results in ran-
dom disk I/O in accessing the graph data.

 P3. According to proximity, the nodes with a low common ancestor should be 
stored together in the machine sets with high interconnected bandwidth 
to reduce the performance impact of the large number of cross-partition 
edges.

7.5.3  baNdwidth aware Graph partitioNiNG

The network bandwidth aware framework for graph partitioning and processing 
in the cloud exploits the ideal partition sketch and the machine graph discussed in 
Sections 7.5.1 and 7.5.2, which enhances a popular multilevel graph partitioning 
algorithm with the network performance awareness. This subsection presents some 
design issues and an overview of such a framework.

7.5.3.1  Background on the Bisection in the Multilevel Graph Partitioning
Since graph bisection has been a key operation in multilevel graph partitioning 
[44,46], we briefly introduce the process of bisection. There are three phases in 
a graph bisection, namely coarsening, partitioning, and uncoarsening, as illus-
trated in Figure 7.4. The coarsening phase consists of multiple iterations. In each 
iteration, multiple adjacent vertices in the graph are coarsened into one according 
to some heuristics, and the graph is condensed into a smaller graph. The coars-
ening phase ends when the graph is small enough, in the scale of thousands of 
vertices. The partitioning phase divides the coarsened graph into two partitions 
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244 Large Scale and Big Data

using a sequential and high-quality partitioning algorithm such as GGGP (Greedy 
Graph Growing Partitioning) [45]. In the uncoarsening phase, the partitions are 
then iteratively projected back toward the original graph, with a local refinement 
on each iteration.

The iterations are highly parallelizable, and their efficiency and scalability has 
been evaluated on shared-memory architectures (such as Cray supercomputers) 
[44,46]. However, in the coarsening and uncoarsening phases, all the edges may be 
accessed, generating a lot of network traffic if the input graph is stored in distributed 
machines.

7.5.3.2  Network Transfer due to Cross Edges
Given a set of machines to partition the graph, the graph is initially stored in those 
machines (usually according to the simple hash function). At each bisection, all 
edges and vertices are accessed multiple times for coarsening and uncoarsening. It 
generates a lot of network traffic. Thus, bisection should be designed to be aware of 
the network bandwidth unevenness.

Assume that the amount of network traffic sent along each cross-partition edge is 
the same (denoted as b). Denote the number of cross-partition edges from partition 
Gi to Gj to be C(Gi, Gj), and the network bandwidth between the machines stored Gi 
and Gj to be Bi,j. Since network bandwidth is a scarce resource in the cloud environ-
ment [23,37], the bandwidth can be considered as the main indicator for network 
performance, and it approximates the network data transfer time from Gi to Gj to 

be 
c G G b

B
i j

i j

( , )

,

×
. This approximation is sufficient for large graph processing in both 

private and public cloud environments. Assuming P graph partitions are stored on P 
different machines, the total network data transfer time incurred in all partition pairs 

is 
C G G b

B
i j

i jj

P

i

P ( , )

,

×
=

−

=

− ∑∑ 0

1

0

1
.

G G1 G2

Coarsen

Uncoarsen
(refinement)

Partitioning

FIGURE 7.4 The three phases in graph bisection: coarsening, partitioning, and 
uncoarsening.
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245Network Performance Aware Graph Partitioning

Clearly, if the network bandwidth among different machine pairs (Bi,j, ∀i, j < P) 
is constant, minimizing the total number of cross-partition edges also minimizes the 
total network data transfer time.

7.5.3.3  Partitioning the Machine Graph
An observation on multilevel graph partitioning algorithms is that due to the divide-
and-conquer nature, there is no data exchange between the two bisection subparti-
tions generated from the same bisection. Suppose a distinct subset of machines is 
responsible for each of the two subpartitions. The network connections between the 
two subsets of machines are no longer involved in the deeper levels of the bisection. 
That means, the partitioning algorithm should pick the high bandwidth connections 
remaining in the subset of machines, and leave the low bandwidth connections as 
those between the two subsets of machines. This is analogous to performing graph 
partitioning on the machine graph with respect to minimizing the total bandwidth 
between two subsets of machines. That results in the correspondence between parti-
tioning the data graph and partitioning the machine graph, and the algorithm gradu-
ally assigns the subset of machines that are suitable to handle graph partitioning at 
a certain level.

7.5.3.4  Network Performance Aware Partitioning
Putting these together, the algorithm traverses the partition sketches of the machine 
graph and the data graph and builds a mapping between the machines and the 
partitions. At each level of graph partitioning, the framework partitions the data 
graph and machine graph simultaneously and matches the network bandwidth in 
the cloud to the number of cross-partition edges according to the partition sketch 
and the machine graph. The mapping guides the machines where the graph par-
tition is further partitioned, and where the graph partition is stored. At the leaf 
level, graph partitions are stored in the machine in the corresponding node in the 
machine graph. Finally, the partition sketches for both machine graph and data 
graph are generated.

Example

Figure 7.2 illustrates the mapping between two machine graphs and a data graph 
for the partitioning framework. Take case (a) where four machines are selected as 
an example. The bisection on the entire graph G is done on all the four machines. 
At the next level, the bisections on G1 and G2 are performed on pods M1 and M2, 
respectively. Finally, the partitions are stored in the machines according to the 
mapping.

Regarding the local graph partitioning algorithm, any classical graph partition-
ing algorithms such as Metis [47] can be used. For example, Metis can be used to 
partition the machine graph, since the machine graph can often fit into the main 
memory of a single machine. On the bisection of the machine graph, the objective 
function is to minimize the weight of the cross-partition edges with the constraint 
of two partitions having around the same number of machines. This objective 
function matches the bandwidth unevenness of the selected machines. The goal 
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246 Large Scale and Big Data

of minimizing the weight of cross-partition edges in the machine graph corre-
sponds to minimizing the number of cross-partition edges in the data graph. This 
is a graceful adaptation on assigning the network bandwidth to partitions with 
different number of cross-partition edges.

7.5.3.5  Partition Numbers
A minor detail is that it is preferable to make partitions with the roughly same 
number of machines is for load-balancing purpose, since partitions in the data 
graph also have similar sizes. On the other hand, the number of partitions returned 
by the algorithm may also be specified by the user. A reasonable choice is to deter-
mine P so that each graph partition can fit into the main memory of a machine. 
This is to avoid the significant performance degradation due to the random disk 
I/O in graph processing.

Finally, the partitioning algorithm discussed in this section satisfies the three 
design principles: (1) the number of cross-partition edges is gradually adapted to 
the network bandwidth. In each bisection of the recursion, the cut with the mini-
mum number of cross-partition edges in the data graph coincides that with minimum 
aggregated bandwidth in the machine graph. (2) The partition size is tuned accord-
ing to the amount of main memory available to reduce the random disk accesses. 
(3) In the iteration, the proximity among partitions in the machine graph matches 
that in the data graph.

7.6  HIERARCHICAL COMBINATION OF EXECUTION

With partitioned graph, the graph execution model may exploit data locality to 
reduce network traffic in data-intensive computing systems [23,37]. The basic idea is 
to apply a Combine() function (i.e., Combiner in Pregel), and perform partial merg-
ing of the intermediate data before they are sent over the network. Combination is 
applicable when the combination function is annotated as an associative and com-
mutative function.

A basic approach is local combination. Current cloud-based graph engines like 
Pregel and Trinity support this basic approach. For all the graph partitions on a 
machine, one may apply the local combination on the boundary vertices belonging 
to the same remote partition and send the combined intermediate results back to the 
local partition for further processing.

Local combination is not aware of the network bandwidth unevenness in the cloud 
network environment. This motivates the approach of hierarchical combination. In 
local combination, it requires network data transfer for the boundary vertices of the 
graph partition. Due to the irregular graph structures, the source vertices are likely 
to be scattered on many different machines. Thus, many data transfers are performed 
on the relatively low-bandwidth machine pairs caused by the network bandwidth 
unevenness. Therefore, instead of direct data transfers after local combination, one 
may exploit the machine graphs for local combination as follows.

The data of the source vertices can be combined among the machines with high 
bandwidth before sending them to the target machine via the connections with low 
bandwidth. Hierarchical combination applies this idea in multiple levels according to 
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247Network Performance Aware Graph Partitioning

the partition sketch of the machine graph. With the hierarchical combination optimi-
zation, the data transfer on the low-bandwidth connection is reduced.

Example

Figure 7.5 illustrates one example of performing hierarchical combination on 
eight machines. Suppose each machine holds one graph partition and machine 
0 needs to read data from other machines. Note that the partition sketch of 
the machine graph has captured the network bandwidth unevenness. After 
local combination on each machine, the first-level combination between two 
machines (for example, between machines 6 and 7) are performed, and the 
result is stored on a representative machine. Let us assume machines 2, 4, and 6 
are the representative machines at the first-level combination. Further combina-
tion is performed on the representative machines. Finally, all the partial results 
are sent to machine 0. On the low-bandwidth connections between machine 0 
and machine i (4 ≤ i ≤ 7), hierarchical combination has only one data transfer 
for the partial results, compared with four in the baseline implementation with 
local combination.

7.7  RELATED WORK ON GRAPH PARTITIONING

In addition to the recent work on network performance aware partitioning, a large 
number of graph partitioning techniques have been proposed. In this section, we 
provide a review of general graph partitioning algorithms and then highlight some 
existing distributed graph partitioning algorithms.

Graph partitioning is important not only in emerging applications like Web and 
social graphs, as discussed in previous sections, but also traditional applications such 
as circuit placement and matrix factorization. The problem is NP-hard for general 
graphs [15,29]. There have been many studies on graph partitioning problems, which 
we can divide into five major categories: geometric methods [11,26,60], spectral 
methods [25,71], multilevel methods [44,46], metaheuristic-based approaches [51], 
and streaming graph partitioning [3,72,74]. We also refer the readers to two compre-
hensive surveys [28,51] for more related work on graph partitioning.

Hierarchical combination

Data transfer to the target
vertex

0 1 2 3 4 5 6 7

FIGURE 7.5 Hierarchical combination according to the partition sketch of the machine 
graph of eight machines.
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248 Large Scale and Big Data

7.7.1  Geometric methodS

In geometric methods, each node of a graph is associated with a geometric loca-
tion (or coordinate). A classic example of a geometric algorithm is recursive coordi-
nate bisection [11]. This can be efficiently implemented with the multidimensional 
binary tree or kD tree data structure. Follow-up research studies (e.g., [26,60]) have 
improved the classic methods with more advanced heuristics or bisection methods.

7.7.2  Spectral methodS

Spectral graph theory studies the relationships of fundamental properties of graphs 
(e.g., algebraic connectivity) and the eigenvectors and eigenvalues of the Laplacian 
matrix associated with the graphs [14,20]. In particular, the eigenvector associated 
with algebraic connectivity (also known as the Fiedler vector) can be used to partition 
graphs. There have many proposals on spectral partitioning and spectral bisection. 
With spectral bisections, one can incorporate them into multilevel graph partition-
ing. It should be remarked that most of the results from spectral graph theory are 
specific to undirected graphs.

An advantage of the spectral techniques is that they are supported by industrial-
strength softwares, not to mention the availability of advanced optimizations.

7.7.3  metaheuriStic-baSed approacheS

In general, it is difficult to produce high-quality solutions with approximation 
algorithms of theoretical bounds. The metaheuristic approaches have mostly con-
centrated on finding high-quality solutions without performance guarantee in a 
reasonable amount of time. Representatives of metaheuristic approaches include 
simulated annealing [39], tabu search [66], ant colony optimization [16], and 
genetic algorithms [57]. More details of these algorithms can be found in the 
survey [51].

7.7.4  StreamiNG Graph partitioNiNG

Instead of optimizing the graph partitioning quality, streaming graph partition-
ing emphasizes the graph partitioning performance while achieving a much better 
graph partitioning quality than random hashing. It usually requires a simple pass (or 
scan) of the graph, and generates the graph partitioning during the scan. Due to the 
streaming nature, this category of graph partitioning algorithm can also be appli-
cable to streaming graphs. For online streaming graphs, Aggarwal et al. [3] proposed 
an algorithm for clustering graph streams. They used a hash-based compression of 
the edges to create microclusters onto a smaller domain space. They showed that 
their method provides bounded accuracy in terms of distance computations. Stanton 
et al. [72] developed simple heuristics for streaming graph and demonstrated their 
effectiveness against simple hashing and Metis schemes. Fennel [74] is a general 
framework for streaming graph partitioning. All these studies have demonstrated 
significant gains in terms of the communication cost and runtime.
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249Network Performance Aware Graph Partitioning

7.7.5  diStributed Graph partitioNiNG alGorithmS

Prior to the network bandwidth aware framework described in the previous sec-
tions, distributed graph partitioning [24,47,52] was the traditional way of reducing 
data shuffling in distributed graph processing. The commonly used distributed graph 
processing algorithms are multilevel algorithms [44,46,73], which are also used in 
the partitioning algorithm described in this chapter. They have been proved efficient 
in many applications.

7.7.6  the metiS framework

A highly popular tool Metis [47] is a multilevel graph partitioning framework whose 
implementation is fast, robust, and easy to use. The multilevel graph partitioning 
framework contains three phases: (1) “coarsening by maximal match until the graph 
is small enough”; (2) partitioning the coarsest graph by any reasonable partition 
algorithm; and (3) refining the partitions by vertex swapping algorithm. ParMetis 
[44,46] is a parallel multilevel graph partitioning algorithm, with a minimum bisec-
tion on each level. It has been demonstrated to perform very well on shared-memory 
architectures [46]. Additionally, various different heuristics have been proposed for 
the quality of coarsening and refinement (e.g., [9,59]).

7.8  OPEN PROBLEMS

Despite recent efforts in large-graph processing in the cloud, many open problems 
remain to be explored in future [68]. As suggested by Shao et al., these open prob-
lems include architectural design, application needs, computation model, and owner-
ship. We briefly elaborate on the problems as follows.

7.8.1  architectural deSiGN

Currently, in-memory processing is the key technique for resolving the random I/O 
in graph processing (besides algorithmic design). However, as the increasing popu-
larity of graph-centric applications (such as the fast growing social graphs and web 
graph), it is yet to confirm whether the in-memory solution is the most favorable 
system design in terms of performance, energy consumption, and total ownership 
cost, among other things. Thus, in addition to main-memory based solutions, one 
may investigate other emerging storages such as solid state drives (SSD), which also 
exhibits much faster random I/O speed than hard disks. A hybrid storage system of 
SSD and main memory may also be possible for increasingly large graphs. More 
research work is required on efficient data structures and algorithms for graphs on 
such a hybrid system.

7.8.2  applicatioN NeedS

Web and social networks have been the two main driving applications for graph 
processing. Their application needs evolve from offline to online processing. Many 

D
ow

nl
oa

de
d 

by
 [

N
an

ya
ng

 T
ec

hn
ol

og
ic

al
 U

ni
ve

rs
ity

 (
N

T
U

)]
 a

t 2
1:

11
 1

7 
N

ov
em

be
r 

20
16

 



250 Large Scale and Big Data

application needs, such as data consistency and transaction management, have 
received relatively little research attention. These needs are already difficult prob-
lems in the context of flat data-like distributed relational databases [8,21], and they 
will be more challenging for graph systems.

7.8.3  computatioN model

“One size does not fit all.” Application needs drive the computation model. Current 
systems are mainly based on MapReduce and the vertex oriented execution model. 
However, it is an open problem to extend these models with indexes and different 
application needs such as consistency and transaction management.

7.8.4  coSt of owNerShip

Ideally, users want to minimize the cost of ownership while satisfying the performance 
requirement and other quality of service attributes. However, the design space is huge 
for various different hardware and software components. As specific to the cloud, dif-
ferent cloud providers offer very different price structures. Even for the same cloud 
provider, the capabilities of virtual machines can be quite different [27]. More research 
has to be conducted on automatic and customizable design for the cost of ownership.

7.9  SUMMARY

In this chapter, we have surveyed a number of applications of large graphs and exist-
ing representative cloud-based large graph processing systems. One of the classic 
techniques for handling large graphs is graph partitioning. The chapter reviewed the 
network unevenness of the cloud, which poses new challenges to graph partitioning 
techniques. In particular, networks with high bandwidth between machines can pro-
cess more tasks on cross-partition edges. This chapter then focused on network per-
formance aware graph partitioning. The techniques include modeling machines and 
the network bandwidth between them as a machine graph, and partitioning the graph 
corresponding to the machine graph. These techniques minimize network traffic in 
both partitioning and processing. The processing on partition graphs may further 
exploit the locality of the partitions to reduce communications. There are many open 
problems that require more research efforts in this field.
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