

Towards Pay-As-You-Consume Cloud Computing

Shadi Ibrahim, Bingsheng He*, Hai Jin

Cluster and Grid Computing Lab
Services Computing Technology and System Lab
Huazhong University of Science and Technology

Wuhan, 430074, China
{shadi, hjin}@hust.edu.cn

*School of Computer Engineering
Nanyang Technological University

Singapore, 639798
bshe@ntu.edu.sg

Abstract—Cloud computing enables users to perform their
computation tasks in the public virtualized cloud using a pay-
as-you-go style. Current pay-as-you-go pricing schemes
typically charge on the incurred virtual machine hours. Our
case studies demonstrate significant variations in the user
costs, indicating significant unfairness among different users
from the micro-economic perspective. Further studies reveal
the reason for such variations is interference among
concurrent virtual machines. The amount of interference cost
depends on various factors, including workload characteristics,
the number of concurrent VMs, and scheduling in the cloud. In
this paper, we adopt the concept of pricing fairness from micro
economics, and quantitatively analyze the impact of
interference on the pricing fairness. To solve the unfairness
caused by interference, we propose a pay-as-you-consume
pricing scheme, which charges users according to their
effective resource consumption excluding interference. The key
idea behind the pay-as-you-consume pricing scheme is a
machine learning based prediction model of the relative cost of
interference. Our preliminary results with Xen demonstrate
the accuracy of the prediction model, and the fairness of the
pay-as-you-consume pricing scheme.

Keywords- Cloud Computing; Virtualization; Pay-As-You-
Go; Pay-As-You-Consume; Machine Learning.

I. INTRODUCTION
Cloud computing has recently emerged as a popular

paradigm for harnessing a large number of commodity
machines in the cloud. In such a paradigm, users are allowed
to use the computation resources with respect to a pricing
scheme similar to the economic exchanges in the utility
market place. However, unlike the utility market, which
typically has standard fine-grained charging units (such as
kilowatt per hour (kwh) in electricity market), there are no
standard pricing units in a cloud environment1, particularly
for computation as a services cloud. One of the common
schemes used by recent cloud providers is primarily based on
virtual machine (VM) hours on the virtualized cloud
environment (e.g. Amazon charges per small instance hour at
$0.085 [1]). Many existing studies [2, 3, 4] have focused on

1 Infrastructure as a Service cloud can be classified into Storage as a
Service and Computation as a Service. Our focus is on the pricing scheme
in the CaaS, as in the SaaS we already have well defined fine-grained
charging unite, data size/transfer per Gigabyte.

reducing the virtual machine hour usage. In contrast, we
investigate the variance on the virtual machine hour usage in
the cloud.

A cloud is a multi-tenant infrastructure - users may share
the same physical infrastructure. Hence, there are
interferences between VMs, such as interferences in disk and
network I/O, and CPU (since the L2 data cache is shared on
multi-core processors). For example, a user may have multi
VM instances running within shared physical servers, on
which the resource consumption of each VM varies due to
the interference. This sharing leads to several fundamental
observations: interferences may increase the running time of
a certain task on a VM, resulting in unfairness between users
(not only do interferences result in lower performance and
higher cost for user, but the cost of interferences can also
vary with users). Nevertheless, the amount of interference
cost depends on various factors, such as an application’s
type, the number of VMs, and VM scheduling algorithms in
the hypervisor [5, 6, 7, 8].

Since cloud computing is an economically-driven
distributed system paradigm, pricing fairness is an important
economic feature for a good pricing scheme [9, 10]. In
economics, pricing fairness includes personal and social
fairness. Personal fairness is subjective, and typically means
that the pricing should be low enough, while social fairness
mainly investigates whether users have the same financial
cost for the same task. An unfair pricing scheme could foster
dissatisfaction from users, and eventually the provider could
lose customers. A previous study [11] has demonstrated the
cost variance between different runs on Amazon EC2. In this
study, we provide a quantitative study of the pricing fairness
with respect to the virtualization internals, and investigate
how we can remedy the pricing unfairness.

As a start to understanding these two aspects in the
pricing fairness, we define two metrics to quantify these two
kinds of fairness. For the same task, we use the difference in
the cost for the same user when running the VM instance
alone and in the presence of other VM instances to measure
the personal fairness, and we use the difference in the cost
among different users to measure the social fairness. Since in
the cloud users run different tasks, we extend the social
fairness to be the difference in the ratio of the extra cost
caused by interference to the total cost. Accordingly, we
study the performance interference caused by the
abovementioned interference factors in our local Xen

2011 IEEE International Conference on Services Computing

978-0-7695-4462-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SCC.2011.38

370

virtualized cloud with a focus on both the personal and social
fairness of users cost. We quantify the cost interference to be
the difference between the concurrent execution and the
execution without interference. We define the Effective
Virtual Machine Time (EVMTime) to finish a task - the
amount of time when the VM is only running on the physical
machine - as the charging unit. With the two aforementioned
fairness metrics, we observe that the current pricing scheme
based on virtual machine time is neither personally or
socially fair. To remedy the unfairness caused by
interference, we propose a pay-as-you-consume pricing
scheme, which charges users according to their effective
resource consumption excluding interference. Thus, the pay-
as-you-consume scheme reflects the real cost of executing
the task and provides a fair cost to users, by means of the
Effective Virtual Machine Time. Accordingly, our pricing
scheme embraces an intelligent prediction model on the
relative cost of interference.

Unfortunately, the cost estimation of the interference is a
challenging issue, due to the following factors. The
interference is caused by congestion in the shared resources:
CPU, disk I/O and network I/O. Even worse, the fairness in
individual resource does not guarantee global fairness, due to
the misalignment among the scheduling in the individual
resources. Another difficulty is that the hypervisor does not
have full knowledge of the application running in the VMs.
Intuitively; it seems to be very complicated task, even
impossible, to model the interference in virtualized
environments, but motivated by the huge success and
accuracy level of using machine learning techniques for
enhancing the system performance in storage systems [12],
we propose to use machine learning techniques, particularly
Support Vector Machine (SVM) algorithms, to automatically
identify the key parameters affecting the interference. Our
preliminary experimental results with Xen demonstrate the
accuracy of the prediction model, and the fairness of the pay-
as-you-consume pricing scheme. For example, our results of
the data collected from the I/O benchmark, using libsvm [13]
(a popular machine learning toolkit) demonstrate that our
predication model can achieve around 90% accuracy in
predicting the interference score for different I/O workloads.
Thus, our pay-as-you-consume model can offer better
fairness for users in terms of personal and social fairness.

The paper is organized as follows. Section 2 discusses
the interference in Xen, followed by the motivating
performance results in section 3. In section 4, we introduce
the pay-as-you-consume model. We discuss related work in
section 5 and conclude in section 6.

II. INTERFERENCE IN XEN

A. Architecture Overview
The Xen hypervisor is a para-virtualizing virtual machine

monitor (VMM) [14, 15], in which the machine architecture
presented to an operating system is not identical to the
underlying hardware. The Xen hypervisor is responsible for
resource (CPU, memory and I/O device, etc.) allocation for
the various virtual machines running on the same hardware
device. There is an initial domain, called Domain 0, which is

a modified Linux kernel. Dom0 is a unique virtual machine
running on the Xen VMM that has privilege to access
physical I/O devices as well as interact with the other VMs.
Other VMs sharing the same host with Dom0 are called
DomainUs or Guest Os.

Xen Schedulers. Xen is unique among VMM software
because it allows users to choose among different CPU
schedulers and I/O schedulers. From version 3.1.0, Xen has
two different CPU schedulers available, Credit and Simple
Earliest Deadline First (SEDF), both allowing users to
specify CPU allocation via CPU weights. Moreover, there
are currently four available I/O schedulers in the 2.6 Linux
kernels: Noop, Anticipatory, Deadline, and Complete Fair
Queuing scheduler (CFQ). Furthermore, users can select the
I/O schedulers on the fly in both Dom0 and DomUs. For
more details about CPU and I/O schedulers used in Xen,
readers can refer to [5, 6, 7].

B. Intra-machine Interference in Xen
The Xen hypervisor is responsible for providing isolation

among the virtual machines and managing their access to
hardware resources, that is, the Xen hypervisor performs
functions such as scheduling processes and allocating
memory among different guest operating systems. As the
hardware resources are shared by multiple VMs, the current
virtualized system experiences unpredictable and unstable
performance, not to mention the performance degradation in
some scenarios [8, 16, 17]. Different software solutions [18,
19] can be adopted to reduce the interference in the shared
environment. Previous studies have revealed that the reason
of such behavior is due to VMs interference. Interference in
a virtualized environment is caused by two conflated reasons
as explained below:
• Inherited Interference. This is the interference caused

by the underlying technology, hardware and software,
which is still a key problem in traditional (non-
virtualized) systems, such as the shared L2 data cache
on multi-core processors [20] (hardware). There is also
the interference by selecting the right scheduler, CPU
and I/O schedulers, within the operating system
(software) when diverse applications are introduced [5,
7].

• VMM interference. The interference caused by the
architecture of the Xen hypervisor, which is the tradeoff
between risk isolation and fairness. In particular, we
have driver domain interference as it provides access to
the actual hardware I/O devices. Thus I/O resources will
be shared by multiple VMs. In addition to the
interference introduced by the resources contention
between Dom0 and other domains that are running CPU
applications, when I/O applications are performed [6,
21], all the traffic must pass through the driver domain.

Due to the various shared resources, interference does
occur, especially when diverse applications are introduced on
different VMs. This situation is even worse in the cloud, as a
provider who is responsible to maintain and configure the
VMM schedulers has no knowledge about the applications
being run by users.

371

III. EMPIRICAL STUDY ON XEN

A. Micro Benchmarks
Looking at case studies about cloud providers [22, 23],

we identify several popular applications, such as web-related
tasks, storage backup, and high performance computing. As
a start, we use the following micro benchmarks to mimic the
workload in these popular applications. These include
Postmark (I/O-intensive benchmark) [24] and PARSEC (we
chose BlackScholes as an example to study the pricing
fairness for CPU-intensive applications) [25] running on a
single machine. We use the same settings as [11].

B. Experimental Setup
Our experiment is conducted on a physical node,

equipped with two 2-core 2.33GHz Xeon processors, 4GB of
memory and 500GB of disk, running CentOS. All results
described in this section are obtained using Xen version
3.4.2. All the virtual machines used in our experiments are
configured with 1 VCPU pinned to its own core and 768MB
of memory and 60GB of virtual disk. We adopt the pricing
scheme from Amazon: $0.085 for a small virtual machine
instance [1]. We conduct our experiments on our local test
bed so we have full control of the environment to get detail
results of how the system internals affect the cost. We study
the price fairness through evaluating different consolidation
strategies as well as the Xen scheduler.

Metrics. We use the following metrics to evaluate the
price fairness. The personal fairness is based on the extra
cost caused by interference. We use the following formula:

 = Extra Cost By InterferenceInterference Cost
Total Cost

 (1)

In order to find the interference cost fairness (social
fairness), we use Jain’s fairness measure [26] to quantify the
fairness among the VMs when running different applications
within the same physical node:

 ()=

=×
=
∑
∑

2m
ii 1

m 2
ii 1

x

m x
Fairness (2)

where xi denotes the interference cost of VMi, and m is the
number of the VMs within the same physical node.

1) The Impacts of the VM Consolidation on Fairness
In order to elaborate the impacts of VM consolidation on

the fairness of users’ cost, we vary the number of VMs
which are deployed within the host to two and three VMs,
while we run similar applications in the background2.

Personal Fairness. We observe that, in the presences of
VM consolidation, the current pricing scheme is far from
being fair. Moreover, the interference cost is increasing with
the number of VMs that are deployed within the same host
and varies according to the running application.

For instance, the interference cost of VM when running
the I/O intensive application Postmark has dramatically
increased with different consolidation levels. As shown in
Fig.1-a, the interference costs of VMPostmark when it shares the
resources with two VMs and three VMs are nearly 45% and
66%, which indicates that the total VM’ cost is two and three
times higher than when it uniquely runs within the physical
machine. The interference cost can be explained due to I/O
congestion which adversely affects the I/O throughput of
each VM as shown in Fig.1-b. Fig.1-b explains the previous
result as it shows the cumulative distribution function (CDF)
of I/O throughput in the virtual machine for the three
aforementioned scenarios.

Fig.1-a shows that the interference cost of the VM when
running CPU intensive applications has slightly increased
with different consolidations. The interference cost is 5%
and 19% when it shares the resources with two VMs and
three VMs, respectively. This can be explained due to the
cache interference between the different CPUs, which is
relatively small. In our study all the VCPUs are pinned to a
specific CPU core, and obviously the interference is
increasing as the number of VMs increases.

Social Fairness. As shown in Fig.1-c, the social fairness
is nearly optimal for the same applications regardless the
VM consolidation. For example, the proportion of social
fairness is nearly 99.5% when all VMs are running I/O
intensive applications, because the default I/O VMM
scheduler (CFQ) guarantees fairness in sharing the I/O
resources amongst different VMs [7]. Moreover, the social

2 We refer to the applications running on other VMs as background
applications

(a) (b) (c)

Figure 1. VMs consolidation impact on interference for both PostMark (PM) and BlackScholes (BS) benchmarks: (a) the cost of the same VM with
different VM consolidation and application type. (b) CDFs of the I/O size per second in the virtual machine for PostMark benchmark with different VM
consolidation (c) Interference cost for each VM and social fairness among all VMs within the physical host.

372

fairness is nearly 96% when all the VMs are running CPU
intensive applications, which is due to the fairness of the
default CPU scheduler, the credit scheduler [5, 27].

In summary, we observe that for the same application,
due to the resource contention in the presence of VM
consolidation, the current pricing scheme based on a virtual
machine time is not personally fair, while it is socially fair
because the default VMM scheduler (CPU and I/O
schedulers) tends to fairly share the resources among
different VM instances.

2) The Impacts of the Application Types on Fairness
In the cloud users may run different types of applications

simultaneously, where the key difference is that they
consume different types of resources (e.g., CPU, memory,
network or disk). Thus we fix the number of VMs which are
deployed within the physical host to three VMs while
varying the applications which are running on each between
the Postmark and BlackScholes benchmarks.

Personal Fairness. In Fig.2-a we see that the
interference cost in a VM when running I/O intensive
applications in two scenarios varies with the applications’
diversity. When the two background applications are both
CPU applications, the interference cost of VM has increased
slightly which can be explained mainly because of the
priority boost impacts in the Xen credit scheduler [6], that is,
when an I/O event is incurred the credit scheduler will be
invoked and boost the priority of an idle domain receiving an
I/O event. As a result the I/O application will perform very
close to the case where it does not share the physical host
with any VM. However, the I/O application will suffer a
slight degradation due to the CPU interference, that is, the
cache interference between the VCPU in Dom0 and the
VCPUs in others domains running CPU applications,
knowing that CPU overhead in Dom0 is caused by the
memory page exchange by the I/O application [21]. The
interference cost in the VMPostmark is increasing as the number
of the VMs with similar applications is increasing.

On the other hand and for the same reasons, partially due
to L2 cache interference and mainly because of the priority
boost impacts in the Xen credit scheduler [6], the VM with
CPU intensive application suffers from relatively higher
interference when both background applications are I/O
applications. In contrast to the previous results, the
interference cost in the VMBlachSholes is decreasing as the
number of the VMs with same applications is increasing.

The previous discussion leads to a very important

observation: when different applications are running within
the same host, the interference cost is dominated by the
resource contention between these applications and the
VMM (i.e. the interference cost of an application is
contributed to by direct interference with the VMM, for
example, a CPU intensive application’s performance
degrades due to the L2 cache interference with VMM when a
background application outperforms it in I/O operations) and
indirect interference is caused by the VMM, for example an
I/O application’s performance degrades due to interference
between Dom0 and other domains running CPU intensive
applications.

Social Fairness. Fig.2-b shows that when two different
applications are sharing the host resources, the interference
cost of a CPU-heavy application is relatively higher than an
I/O application as explained earlier, and the proportion of
social fairness is 77%. Moreover, when three VMs are
deployed - two of them are running similar applications - the
social fairness is relatively high. For example, it is 88% for
the case of (CPU, CPU, I/O) and 98% for the case (CPU,
I/O, I/O).

In summary, similar to the previous observation, we
observe that social fairness varies according to the resource
contention among the diverse applications running in the
VMs along with the resource contention between VMs and
VMM. In addition, the social interference is inversely
proportional to the diversity of the applications that are
sharing the same physical host, and it increases as more
similar applications are sharing the host.

3) The Impacts of the VMM Schedulers on Fairness
The following experiments evaluate the impacts of the

different VMM schedulers used in Xen, for instance, the I/O
schedulers and the CPU schedulers, for interference when
running CPU and/or I/O intensive applications on two VMs,
and Table I presents the result.

Previous studies have reported on the importance of
selecting the right I/O scheduler or CPU scheduler and
tuning them according to the running applications [6, 7 , 16,
21], however our study tackles a different problem, and use a
different approach. We study the impacts of both VMM
schedulers and CPU schedulers side by side with the disk I/O
schedulers, when diverse applications are running in the
VMs, in terms of personal and social fairness, thus, we are
not trying to detail the reason of the performance as it is well
explained in the aforementioned research papers.
Furthermore, as this paper is intending to identify unfairness
in the cloud and the consequences of a provider’s user-
unaware administration, for the I/O schedulers we study the
impacts of VMM scheduler regardless of the I/O scheduler
running on the VM. As shown in Table I, the performance of
different applications, EVMTime, vary slightly according to
the selected CPU and I/O schedulers in the VMM layer when
one VM is uniquely deployed in the physical host. However,
when consolidation is introduced, the variation of the
applications’ performance and the system throughput
(referred to as Cost1,2 in Table I, where less cost indicates
better system throughput) is increasing according to the
resources’ alignment policy decided by both CPU and I/O
scheduler in the VMM layer.

 (a) (b)

Figure 2. Applications types impacts on interference: (a) Extra cost by
interference, (b) Interference cost for each VM and social fairness.

373

TABLE I. PERSONAL AND SOCIAL FAIRNESS WITH DIFFERENT PAIR SCHEDULER (CPU: CREDIT AND SEDF, DISK I/O: CFQ (CF), ANTICIPATORY (AS),
NOOP (NP), AND DEADLINE (DL)

 BS,BS PM,PM BS,PM
 Credit SEDF Credit SEDF Credit SEDF

 CF AS NP DL CF AS NP DL CF AS NP DL CF AS NP DL CF AS NP DL CF AS NP DL

EVMTime 559 531 532 536 543 557 550 562 405 366 450 405 377 400 460 387 559 531 532 536 543 557 550 562
TimeVM1 587 559 570 567 575 583 558 579 738 724 1112 739 734 646 1061 898 687 586 533 555 585 550 589 558
TimeVM2 584 594 590 584 549 566 542 577 786 787 1422 909 804 780 1424 825 454 418 525 476 458 514 600 437
Cost1,2(10-2$) 3.25 3.2 3.22 3.2 3.12 3.19 3.06 3.21 4.23 4.2 7.04 4.58 4.27 3.96 6.9 4.79 3.17 2.79 2.94 2.86 2.9 2.95 3.3 2.76
I1 0.05 0.05 0.07 0.05 0.06 0.04 0.02 0.03 0.45 0.49 0.6 0.45 0.49 0.38 0.57 0.57 0.19 0.09 0.00 0.03 0.07 -0.01 0.07 -0.01
I2 0.08 0.11 0.1 0.08 0.01 0.02 -0.01 0.03 0.48 0.53 0.68 0.55 0.53 0.49 0.68 0.53 0.06 0.12 0.14 0.15 0.18 0.22 0.23 0.11
Social Fair 95.3 88.6 96.5 96 67.2 83 78.9 99.6 99.9 99.8 99.5 99 99.8 98.5 99.2 99.9 79.5 98.1 50.3 71.3 84.7 55.4 76.6 55.2

Personal Fairness. The interference score varies by

35%, 14%, and 124% with different CPU and I/O
schedulers’ combination in the three scenarios: two CPU
applications, two I/O applications and one CPU application
concurrently running with one I/O application in the same
host, respectively.

However, as shown in Table I, for the same applications,
selecting the pair scheduler (SEDF, Anticipatory) leads to
the lowest interference score in both VMs, hence it achieves
the best system throughput. The interference scores are 0.02
and negative 0.01 for CPU applications and 0.38 and 0.49 for
I/O applications. When different applications are running
concurrently, the choice of the pair of schedulers is only sub-
optimal for one application. Here the pair (SEDF, Deadline
or Anticipatory) is the best for CPU application while
(Credit, CFQ) is the best for the I/O applications.

Social Fairness. As shown in Table I, when both VMs
are running CPU applications the social fairness varies by
12% with different pairs of schedulers, while the best social
fairness is achieved when the pair (SEDF, Deadline) is
selected in the VMM layer. For I/O applications the social
fairness is nearly the same for all pairs schedulers with a
slight advantage to the pairs of schedulers (credit, CFQ) and
(SEDF, Deadline). However, the worst social fairness
scenario occurred when different applications are sharing the
same host, where the pair scheduler (SEDF, Deadline) had a
social fairness score of 55.2%, although this pair scheduler
achieves the best system throughput. These results are
consistent with those in [6] (i.e. SEDF guarantees better
system throughput and worse fairness than Credit in the case
of I/O and CPU applications that are sharing the same host).

In summary, we observe that the choice of an appropriate
pairs of schedulers (CPU, disk) at the VMM layer has a
significant impact on the application performance inside
each VM (personal fairness) and intra-application isolation
among different VMs (social fairness). More importantly, in
the cloud different workloads may be performed on the same
host, and as a result there is no optimal pair of schedulers
when diverse applications are introduced, although some of
them are sub-optimal for different workloads and can
achieve better overall system throughput. However, as this
paper is a call to action, we encourage further study in the
area of VMM schedulers to consider both personal and social
fairness.

IV. PAY-AS-YOU-CONSUME PRICING STYLE
We argue that because the cloud is an economy-driven

distributed system, we should consider the fairness in
monetary costs. Therefore, we propose the new pay-as-you-
consume pricing scheme, which charges users according to
their effective resource consumption. However, due to the
existence of interference, it is very hard to accurately
determine the effective use of resources among different
users. Accordingly, we define the Effective Virtual Machine
Time to finish a task: the amount of time required when the
VM is the only VM running on the physical machine. As for
a VM, we consider the effective virtual machine time to be:
virtual machine time less the interference time. Based on the
effective virtual machine time, we define the pricing
fairness: any user using the same amount of effective virtual
machine time is charged at the same price.

 = ×Cost Instance Per Hour EVMTimeNew Model (3)

Unlike current pricing schemes, our pay-as-you-consume
pricing scheme solves the unfairness by charging the users
according to their effective resources consumption. Since
there are various factors affecting the interference, we
propose to use a machine learning model to predict the
interference based on the resource usage during the running
time and charge users for their effective virtual machine time
as shown in Equation 3. Thus, the same task tends to have
the same cost, resulting in better personal and social fairness.

A. Interference Predication Model
If only one VM runs on the physical machine, the

interference of the VM is zero. If the time for executing a
task on a VM without any concurrent VM is t, and the time
for executing the same task of the VM with other concurrent
VMs is t`, we call the overhead of interference is t`-t.

We define Ii, the interference factor to VMi:

= −i

i

t `I 1i t (4)

The intra-machine fairness means that: given all VMs
{VM1, VM2, ..., VMn}, running on the same physical machine,
we should satisfy the two conditions:

374

 → = = =I 0 and I I ... Ii i1 2 (5)

To predict the interference factor when concurrent VMs
are running within the same host, a VM is represented by a
vector. The problem is transformed to: given multiple
vectors, we estimate the overhead of interference on each
vector. The vector includes the following items:
• CPU: the CPU time, CPI, the number of L1 data cache

misses per instruction, the number of L2 data cache
misses per instruction, the number of DTLB misses per
instruction.

• RAM: the average amount of occupied main memory,
the working set size.

• Disk: the number of I/O operations per second, the
amount of data accessed per second, and the average
length of the I/O queue per second.

We want to develop a prediction model:

 →(V , V , ,V) I n0 1 0 (6)

where V0, V1,.…, and Vn are vectors for VM0, VM1, …, VMn,
respectively. I0 is the interference factor to VM0. The idea is
to estimate the interference factor for V0, with the super
vector composed of (V0, V1… Vn). Naturally, we can see: V0
is different from V1… Vn; (V0, any permutation of V1… Vn)
will get the same results I0. To train our model, we consider
the following definitions:
• (V0, nil, nil… nil) means we schedule the VM alone, and

we can get the measurement t.
• (V0, V1, nil… nil) means we schedule two VMs, and we

can get the measurement t0' and t1'.
• (V0, V1, … Vn) means we schedule n VMs, and we can

get the measurement t0', t1', .. , and tn'.
In machine learning, the accuracy of our model strongly

depends on the training data set, and the correct execution of
the different benchmarks which represent different
workloads with different behaviors. Therefore, we need to
expose the characteristics of interferences in the multiple
shared layers in virtualization.

B. A Case Study on I/O Applications
Since the interference between I/O applications is higher

than the one between CPU applications, in this paper we
illustrate the effectiveness and accuracy of our model with
I/O applications. Testing our prediction model, when diverse
applications are running, is ongoing work in our group.

1) Experimental setup
Our experiment is conducted on a physical node,

equipped with two 4-core 2.33GHz Xeon processors, 8GB of
memory and 1TB of disk, running RHEL5 with kernel
2.6.22, and is connected with 1Gbps Ethernet. All results
described in this section are obtained using Xen version
3.4.2. All the virtual machines used in our experiments are
configured with 1 VCPU pinned to its own core and 1GB of
memory and 60GB of virtual disk. VMM schedulers are set
to the defaults: Credit for the CPU scheduler and CFQ for
the I/O disk scheduler. We perform our experiments by
repeatedly executing the benchmarks. According to previous

studies on analyzing and predicting the performance of
different workloads of I/O intensive applications [12, 28], we
use a set of training workloads, reflecting various types of
real-world I/O workloads including sequential and random
read and write applications as shown in Table II. The
workloads, shown in Table II, are generated using Sysbench
[29]. We gather information about four different resource
metrics related to CPU and disk I/O, which represent the
items of the vector of our prediction system. These statistics
are all gathered using vmstat [30], therefore, minimizing the
effects of the monitoring system on our resource
measurements.

TABLE II. TRAINING AND TESTING WORKLOADS

Workload Description

Tr
ai

ni
ng

Sequential
write/Read

Writing/Reading sequentially different number
of files varies from 1-512 files with differen
size: 128KB-1GB

Random
write/Read

Writing/Reading randomly differen number of
files varies from 1-5 12 files with differen size:
128KB-1GB with different threads number 6-
512 threads

Te
st

in
g

Sequential
write (Seq Wr) Writing sequentially 2 GB of data

PostMark (PM) Write 5 GB (1000 files with 5000 KB each)

FFSB[31]
Multi threaded benchmarks that provide I/O op-
erations, we configured FFSB with 128 threads
and write operation of 5GB of data.

2) Predication Validation

To evaluate the accuracy of our model, we choose three
different widely-used I/O applications in the cloud:
sequential write, Postmark, and Flexible File System
Benchmark (FFSB) [31] (shown in Table II). We use libsvm
[13] to evaluate the feasibility of our model in predicting the
interference. Table III shows the prediction accuracy of our
model, for the three aforementioned test workloads, with
other VMs that are running I/O workloads chosen from our
trained workload.

We observe that, for the case of seq write which is one of
the training model workloads, it is expected to get 97%-
100% accuracy, but surprisingly, the accuracy varies
between 94% and 97%, which can be explained due to the
instability of the VMs performance under Xen [11]. For the
rest of applications our model can achieve a prediction
accuracy of 87% on average, where the best is 93% and the
worst is 82%. As shown in Table III, our prediction model
can achieve better accuracy when the interference score is
relatively high, which can be explained due to the less noise
caused by the interference amongst the different VCPUs of
domains U and domain 0.

TABLE III. PREDICATION VALIDATION

 Real I0 Predicted I0 Accuracy
(Seq Wr, Seq Wr) 1.35 1.27 94%
(FFSB, Seq Wr) 0.24 0.28 83%
(Seq Wr, Seq Wr, Seq Wr) 2.9 2.81 97%
(PM, , Seq Wr, Seq Wr) 0.72 0.67 93%
(FFSB, Ran Wr, Ran Wr) 2.48 2.2 88.7%

375

3) Discussion on Users Cost Fairness
To quantify the effectiveness of our prediction model

under our pay-as-you-consume pricing scheme using
effective resource consumption charging methods, we study
the fairness using an example of two VMs running within the
same host, each of them representing one user and running
two different I/O applications, Postmark and sequential
write. As shown in Fig. 3, our pay-as-you-consume pricing
scheme can achieve a personal fairness of 3% in the case of
the Postmark application and 2% in the case of the sequential
write application which is very small compared to the pay-
as-you-go scheme (28% and 50% for both aforementioned
applications). Moreover, with the social fairness given by the
fairness of the interference cost of the different VMs within
the same physical node, as shown in Fig. 3, we can achieve
98% while the pay-as-you-go model achieves 86%. We
observe that both the personal and social fairness of our
model is strongly proportional to the prediction accuracy.
For example, the best personal fairness (the extra cost caused
by interference) is achieved when the accuracy is 100% and
thus the personal interference is zero.

One may expect that the new proposed model brings
fairness to the cloud users, while it could lead to a loss in
profit for the providers (i.e. the provider may not be able to
recover even the cost of operating). However, previous work
demonstrated that virtualization, featured with server
consolidation, can significantly benefit the system providers,
by achieving reduced server power consumption and close to
optimal system throughput [11]. In summary, cloud
providers, using our pay-as-you-consume model, can provide
users with stable and fair cost, in particularly personal
fairness and social fairness, while gaining considerable
positive profit because they have increased trust from users
by having more consistent charging. In addition, provider
can gain a competitive advantage through pay-as-you-
consume pricing scheme in the market of multiple providers.

V. RELATED WORK

A. User’s Cost in the Cloud
A number of studies [32, 33] have been dedicated to

measure the cost of adopting the pay-as-you-go cloud in
terms of monetary cost, performance, and availability. Some
studies [11, 34] have reported on the cost variations in the
cloud. Our work quantifies the variations with price fairness
and investigates the reason of this variance. Recent studies
[35] have demonstrated a case study of a consumer-centric
resource accounting model to verify any discrepancies in
consumer’s bills. Yao et al. [36] introduced an accountability
service model to unambiguously identify the reason and the
responsible party in case of faulty service. In contrast, this
paper investigates the interplay between micro-economic
issues and the system design and implementation.

B. Interference in Shared Environment
There have been a lot of studies on performance

interference in virtualized or shared servers. Boutcher et al.
[7] and Kesavan et al. [16] have examined the impacts of the
choice of disk I/O scheduler in both VMM and VMs on

application performance. Despite our work being focused on
the monetary cost, a key difference between our work and
their work is that we are studying the impact of a provider’s
administration by selecting the VMM schedulers for I/O and
CPU. Mei et al. [37] have measured the performance
interference among two VMs running network I/O
workloads that are either CPU bound or network bound and
elaborated the impacts of co-locating applications in a
virtualized cloud in terms of throughput and resource sharing
effectiveness. Our work focuses on fairness in the monetary
cost. Koh et al. [8] have elaborated the performance
interference effects between two virtual machines by looking
at the system-level workload characteristics. They identified
clusters of applications that generate certain types of
performance interference and developed mathematical
models to predict the performance of a new application from
its workload characteristics.

VI. CONCLUSION AND FUTURE WORK
With the pay-as-you-go charging, the public cloud has

become an economic market for both cloud users and
providers. However, virtualization with server consolidation
can cause performance interference, leading to non-
guaranteed quality of service. In this study, we investigate
the pricing fairness on the pay-as-you-go charging, and
introduce the pay-as-you-consume model to resolve the
unfairness in the current pay-as-you-go pricing scheme.
While the pay-as-you-consume model seemingly reduces the
cloud providers’ profit, it urges providers to improve their
system design and optimization to provide good services and
to gain competitive advantages. We have demonstrated a
case study on I/O applications for validating the accuracy of
our model; interestingly our predication model can achieve
up to 90% accuracy regardless the VM consolidations or the
I/O workloads. This paper is intended as a call for action,
and its goal is to motivate further research on economic
concepts in the cloud. We hope the findings in this paper will
foster new techniques as well as new pricing schemes in the
cloud to really reflect the spirit of economic markets.

Figure 3. An example of the effectiveness of our prediction model
associated with the Pay-As-You-Consume pricing scheme, when
running two VMs, each represents different users and runs different I/O
applications (Postmark and Sequential write). In this example we
achieved accuracy of 86% and 97% respectively.

376

ACKNOWLEDGMENT
This work is supported by National 973 Key Basic

Research Program under grant No.2007CB310900, the
International Cooperation Program funded by Technology
Bureau of Wuhan under grant No.201171034311, and a
start-up grant No.M58020024 from Nanyang Technological
University. We would also like to thank Lidong Zhou from
MSR Asia for his insightful discussions.

REFERENCES
[1] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/, 2011.
[2] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing

performance interference effects for QoS-aware clouds,” Proc. of the
5th European conference on Computer systems (EuroSys’10), Paris,
France, April 13-16, 2010, pp.237-250.

[3] B. S. He, M. Yang, Z. Y. Guo, R. S. Chen, W. Lin, B. Su, and L. D.
Zhou, “Comet: Batched Stream Processing for Data Intensive
Distributed Computing,” Proc. ACM Symposium on Cloud
Computing (SOCC’10), Indiana, USA, June 10-11, 2010, pp.63-74.

[4] S. Ibrahim, H. Jin, L. Lu, B.S. He, L. Qi, and S. Wu, “LEEN:
Locality/Fairness- aware Key Partitioning for MapReduce in the
Cloud,” Proc. of the 2010 IEEE 2nd International Conference on
Cloud Computing Technology and Science (CloudCom’10), Indiana,
USA, Nov. 30-Dec. 03, 2010, pp.17-24.

[5] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the Three
CPU Schedulers in Xen,” SIGMETRICS Performance Evaluation
Review, Vol.35, Sep. 2007, pp.42-51.

[6] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling I/O in Virtual
Machine Monitors,” Proc. of the 4th International Conference on
Virtual Execution Environments (VEE’08), Washington, USA, Mar.
5-7, 2008, pp.1-10.

[7] D. Boutcher and A. Ch, “Does Virtualization Make Disk Scheduling
Passe?,” ACM SIGOPS Operating Systems Review, Vol.44, Jan. 2010,
pp.20-24.

[8] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu,
“An Analysis of Performance Interference Effects in Virtual
Environments,” Proc. of the IEEE International Symposium on In
Performance Analysis of Systems & Software (ISPASS’07),
California, USA, Apr. 25-27, 2007, pp.200-209.

[9] S. Maxwell, The Price is Wrong: Understanding What Makes a Price
Seem Fair and the True Cost of Unfair Pricing, Wiley, Jan. 2008.

[10] F. Black and M.S. Scholes, “The Pricing of Options and Corporate
Liabilities,” Journal of Political Economy, Vol.81, June 1973,
pp.637-654.

[11] H. Y. Wang, Q. F. Jing, R. S. Chen, B. S. He, Z. P. Qian, and L. D.
Zhou, “Distributed Systems Meet Economics: Pricing in the Cloud,”
Proc. of the 2nd USENIX Workshop on Hot Topics in Cloud
computing (HotCloud’10), Boston, USA, June 22, 2010.

[12] Y. Zhang and B. K. Bhargava, “Self-learning Disk Scheduling,” IEEE
Transactions on Knowledge and Data Engineering, Vol.21, Jan.
2009, pp.50-65.

[13] C. C. Chang and C. J. Lin, “LIBSVM : A Library for Support Vector
Machines,” 2001, Software available at: http://www.csie.ntu.edu.tw/
cjlin/libsvm.

[14] Xen Hypervisor Homepage, http://www.xen.org/
[15] I. Pratt, A. Warfield, P. Barham, and R. Neugebauer, “Xen and the

Art of Virtualization,” Proc. of the 19th ACM Symposium on
Operating Systems Principles (SOSP’03), New York, USA, ACM
Press, Oct. 19-22, 2003, pp. 164-177.

[16] M. Kesavan, A. Gavrilovska, and K. Schwan, “On disk I/O
Scheduling in Virtual Machines,” Proc. of the 2nd Workshop on I/O
Virtualization, Pennsylvania, USA, Mar. 13, 2010, pp.1-6.

[17] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforing
Performance Isolation Across Virtual Machines in Xen,” Proc. of the
ACM/IFIP/USENIX 7th International Middleware Conference

(Middleware’06), Melbourne, Australia, Nov. 27- Dec. 1, 2006,
pp.342-362.

[18] A. Menon, S. Schubert, and W. Zwaenepoel, “TwinDrivers:
semiautomatic derivation of fast and safe hypervisor network drivers
from guest OS drivers,” Proc. Of the 14th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’09), Washington, USA, Mar. 7-11, 2009, pp.301-
312.

[19] B. S. He and Q. Luo, Q, “Cache-oblivious query processing,” Proc. of
the 3rd International Conference on Innovative Data Systems
Research (CIDR’07), California, USA, Jan. 7-10, 2007, pp.44-55.

[20] P. Aparrao, R. Iyer, and D. Newell, “Towards Modeling and Analysis
of Consolidated CMP Servers,” ACM SIGARCH Computer
Architecture News, Vol.36, May 2008, pp.38-45.

[21] L. Cherkasova, R.Gardner, “Measuring CPU overhead for I/O
Processing in the Xen Virtual Machine Monitor,” Proc. of the
USENIX Annual Technical Conference (USENIX’05), California,
USA, April 10-15, 2005, pp.24-24.

[22] Windows Azure Case Studies,
http://www.microsoft.com/azure/casestudies.mspx.

[23] Amazon Case Studies, http://aws.amazon.com/solutions/case-studies/.
[24] J. Katcher, “Postmark: a New File System Benchmark,” Technical

Report, Network Appliance, Aug. 1997.
[25] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The Parsec Benchmark

Suite: Characterization and Architectural Implications,” Proc. of the
17th International Conference on Parallel Architectures and
Compilation Techniques (PACT’08), Ontario, Canada, Oct. 25-29,
2008, pp.72-81.

[26] R. K. Jain, D. W. Chiu, and W. R. Hawe, “A Quantitative Measure of
Fairness and Discrimination for Resource Allocation in Shared
Computer Systems,” Technical Report, Digital Equipment
Corporation, Sept. 1984.

[27] Credit Scheduler - Xen Wiki,
http://wiki.xensource.com/xenwiki/CreditScheduler.

[28] S. L. Pratt and D. A. Heger, “Workload Dependent Performance
Evaluation of the Linux2.6 I/O Schedulers,” Proc. of the Linux
Symposium 2004, Ottawa, Canada, July 21-24, 2004, pp.425-448.

[29] System performance benchmark, http://sysbench.sourceforge.net/
[30] Virtual memory statistic, http://linux.die.net/man/8/vmstat.
[31] Flexible File System Benchmark, http://sourceforge.net/projects/ffsb/.
[32] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel,

“Amazon S3 for Science Grids: a Viable Solution?,” Proc. of the
2008 International Workshop on Data-aware Distributed Computing
(DADC’08), Boston, USA, ACM Press, June 24, 2008, pp.55-64.

[33] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The
Cost of Doing Science on the Cloud: the Montage Example,” Proc. of
the 2008 ACM/IEEE conference on Supercomputing (SC’08), Texas,
USA, Nov. 15-21, 2008, pp.1-12.

[34] S. L. Garfinkel, “An Evaluation of Amazon’s Grid Computing
Services: Ec2, S3 and SQS,” Technical Report TR-08-07, Harvard
University, July 2007.

[35] A. Mihoob, C. MolinaJimenez, and S. Shrivastava, “A Case for
Consumer Centric Resource Accounting Models,” Proc. of the IEEE
2010 International Conference on Cloud Computing (Cloud’10),
Florida, USA, IEEE Press, July 5-10, 2010, pp.506-512.

[36] J. H. Yao, S. P. Chen, C. Wang, D. Levy, and J. Zic, “Accountability
as a Service for the Cloud,” Proc. of the IEEE International
Conference on Services Computing (SCC’10), Florida, USA, July 5-
10, 2010, pp.81-88.

[37] Y. D. Mei, L. Liu, X. Pu, S. Sivathanu, “Performance Measurements
and Analysis of Network I/O Applications in Virtualized Cloud,”
Proc. of the IEEE 2010 International Conference on Cloud
Computing (Cloud’10), Florida, USA, IEEE Press, July 5-10, 2010,
pp.59-66.

377

