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ABSTRACT
We introduce BriskStream, an in-memory data stream
processing system (DSPSs) specifically designed for modern
shared-memory multicore architectures. BriskStream’s key
contribution is an execution plan optimization paradigm,
namely RLAS, which takes relative-location (i.e., NUMA
distance) of each pair of producer-consumer operators
into consideration. We propose a branch and bound
based approach with three heuristics to resolve the
resulting nontrivial optimization problem. The experimental
evaluations demonstrate that BriskStream yields much
higher throughput and better scalability than existing DSPSs
on multi-core architectures when processing different types
of workloads.

1 INTRODUCTION
Modern multicore processors have demonstrated superior
performance for real-world applications [14] with their
increasing computing capability and larger memory capacity.
For example, recent scale-up servers can accommodate even
hundreds of CPU cores and multi-terabytes of memory [2].
Witnessing the emergence of modern commodity machines
with massively parallel processors, researchers and
practitioners find shared-memory multicore architectures
an attractive platform for streaming applications [35, 42, 54].
However, prior studies [54] have shown that existing
data stream processing system (DSPSs) underutilize the
underlying complex hardware micro-architecture and show
poor scalability due to the unmanaged resource competition
and unawareness of non-uniform memory access (NUMA)
effect.
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Many DSPSs, such as Storm [5], Heron [36], Flink [4] and
Seep [25], share similar architectures including pipelined
processing and operator replication designs. Specifically,
an application is expressed as a DAG (directed acyclic
graph) where vertexes correspond to continuously running
operators, and edges represent data streams flowing between
operators. To sustain high input stream ingress rates, each
operator can be replicated into multiple replicas running
in parallel threads. A streaming execution plan determines
the number of replicas of each operator (i.e., operator
replication), as well as the way of allocating each operator to
the underlying CPU cores (i.e., operator placement). In this
paper, we address the question of how to find a streaming
execution plan that maximizes processing throughput of
DSPS in shared memory multi-core architectures.

NUMA-aware system optimizations have been previously
studied in the context of relational database [27, 39, 48].
However, those works are either 1) focused on different
optimization goals (e.g., better load balancing [48] or
minimizing resource utilization [27]) or 2) based on different
system architectures [39]. They provide highly valuable
techniques, mechanisms and execution models but none of
them uses the knowledge at hand to solve the problem we
address.
The key challenge of finding an optimal streaming

execution plan on multicore architectures is that there is
a varying processing capability and resource demand of
each operator due to varying remote memory access penalty
under different execution plans. Witnessing this problem,
we present a novel NUMA-aware streaming execution
plan optimization paradigm, called Relative-Location Aware
Scheduling (RLAS). RLAS takes the relative location (i.e.,
NUMA distance) of each pair of producer-consumer into
consideration during optimization. In this way, it is able
to determine the correlation between a solution and its
objective value, e.g., predict the throughput of each operator
for a given execution plan. This is different to some related
studies [27, 34, 51], which assume a predefined and fixed
processing capability (or cost) of each operator.
While RLAS provides a more accurate estimation of the

application behavior under the NUMA effect, the resulting
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placement optimization problem is still challenging to solve.
In particular, stochasticity is introduced into the problem
as the objective value (e.g., throughput) or weight (e.g.,
resource demand) of each operator is variable and depends
on all previous decisions. This leads to a huge solution space.
Additionally, the placement decisions may conflict with each
other and order constraints are introduced into the problem.
For instance, scheduling of an operator at one iteration may
prohibit some other operators to be scheduled to the same
socket later.
We propose a branch and bound based approach to

solve the concerned placement optimization problem. In
order to reduce the size of the solution space, we further
introduce three heuristics. The first switches the placement
consideration from vertex to edge, i.e., only consider
placement decision of each pair of directly connected
operators, and avoids many placement decisions that have
little or no impact on the objective value. The second reduces
the size of the problem in special cases by applying best-
fit policy and also avoids identical sub-problems through
redundancy elimination. The third provides a mechanism
to tune the trade-off between optimization granularity and
searching space.
RLAS optimizes both replication and placement at the

same time. The key to optimize replication configuration
of a streaming application is to remove bottlenecks in its
streaming pipeline. As each operator’s throughput and
resource demand may vary in different placement plans
due to the NUMA effect, removing bottlenecks has to be
done together with placement optimization. To achieve this,
RLAS iteratively increases replication level of the bottleneck
operator which is identified during placement optimization.
We implemented RLAS in BriskStream with additional

optimizations on shared memory (details in Section 5), a new
DSPS supporting the same APIs as Storm and Heron. Our
extensive experimental study on two eight-socket modern
multicores servers show that BriskStream achieves much
higher throughput and better scalability than existing DSPSs.

Organization. The remainder of this paper is organized
as follows. Section 2 covers the necessary background
of scale-up servers and an overview of DSPSs. Section 3
discusses the performance model and problem definition of
RLAS, followed by a detailed algorithm design in Section 4.
Section 5 discusses how we optimize BriskStream for shared-
memory architectures. We report extensive experimental
results in Section 6. Section 7 reviews related work and
Section 8 concludes this work.

2 BACKGROUND
In this section, we introduce modern scale-up servers and
give an overview of DSPSs.
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Figure 1: Interconnect topology for our servers.

2.1 Modern Scale-up Servers
Modern machines scale to multiple sockets with non-
uniform-memory-access (NUMA) architecture. Each socket
has its own “local" memory and is connected to other sockets
and, hence to their memory, via one or more links. Therefore,
access latency and bandwidth vary depending on whether a
core is accessing “local" or “remote" memory. Such NUMA
effect requires ones to carefully align the communication
patterns accordingly to get good performance.
Different NUMA configurations exist in today’s market.

Figure 1 illustrates the NUMA topologies of our servers in the
experiments. In the following, we use “Server A” to denote
the first, and “Server B” to denote the second. Server A can
be categorized into the glue-less NUMA server, where CPUs
are connected directly/indirectly through QPI or vendor
custom data interconnects. Server B employs an eXternal
Node Controller (called XNC [6]) that interconnects upper
and lower CPU tray (each tray contains 4 CPU sockets).
The XNC maintains a directory of the contents of each
processors cache and significantly reduces remote memory
access latency. The detailed specifications of our two servers
are shown in our experimental setup (Section 6).

2.2 DSPS Overview
A streaming application is expressed as a DAG (directed
acyclic graph) where vertexes correspond to continuously
running operators, and edges represent data streams flowing
between operators. Figure 2(a) illustrates word count (WC)
as an example application containing five operators as
follows. Spout continuously generates new tuple containing
a sentence with ten random words. Parser drops invalidate
tuples (e.g., containing empty value). In our testing workload,
the selectivity of the parser is one. Splitter processes each
tuple by splitting the sentence into words and emits each
word as a new tuple to Counter. Counter maintains and
updates a hashmap with the key as the word and the value
as the number of occurrences of the corresponding word.
Every time it receives a word from Splitter, it updates the
hashmap and emits a tuple containing the word and its
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Figure 2:Word Count (WC) as an example application.

current occurrence. Sink increments a counter each time
it receives tuple from Counter, which we use to monitor the
performance of the application.
There are two important aspects of runtime designs of

modern DSPSs [54]. First, the common wisdom of designing
the execution runtime of DSPSs is to treat each operator
as a single execution unit (e.g., a Java thread) and runs
multiple operators in a DAG in a pipelining way. Second, for
scalability, each operator may be executed independently
in multiple threads. Such design is adopted by many DSPSs
such as Storm [5], Flink [4], Seep [25], and Heron [36] for its
advantage of low processing latency. Figure 2(b) illustrates
one example execution plan of WC, where parser, splitter
and counter are replicated into 2, 3 and 3 replicas, and they
are placed in three CPU sockets (represented as coloured
rectangles).

3 EXECUTION PLAN OPTIMIZATION
A streaming execution plan concerns how to allocate each
operator to underlying physical resources, as well as the
number of replicas that each operator should have. An
operator experiences additional remote memory access
(RMA) penalty during input data fetch when it is allocated
in different CPU sockets to its producers. A bad execution
plan may introduce unnecessarily high RMA communication
overhead and/or oversubscribe a few CPU sockets that
induces significant resource contention. In this section, we
discuss the performance model that guides optimization
process and the formal definition of our problem.

3.1 The Performance Model
Model guided deployment of query plans has been previously
studied in relational databases on multi-core architectures,
for example [27]. Due to the difference in problem

Table 1: Summary of terminologies

Type Notation Definitions

Machine	
specific.

𝐂 Maximum	attainable	unit	CPU	cycles	per	socket

𝐁 Maximum	attainable	local	DRAM	bandwidth

𝐐𝐢,𝐣 Maximum	attainable	remote	channel	bandwidth	from	
socket	𝑖 to	socket	𝑗

𝐋𝐢,𝐣 Worst	case	memory	access	latency	from	socket	𝑖 to	socket	𝑗

S Cache	line	size

Operator	
specific.

𝐌 Average	memory	bandwidth	consumption	per	tuple

𝑻 Average	time	spent	on	handling	each	tuple

𝑻𝐟 Average	fetching	time	per	tuple

𝑻𝒆 Average	execution	time	per	tuple

𝑵 Average	size	per	tuple

Plan	
inputs

𝐩 Input	execution	plan

𝐈 External	input	stream	ingress	rate	to	source	operator

Model	
outputs

𝐫𝐨 Output	rate	of	an	operator

𝐫𝐨 Expected	output	rate	of	an	operator

𝐫𝐨(𝐬) Output	rate	of	an	operator	specifically	to	producer	``s”

𝐫𝐢 Input	rate	of	an	operator.	𝑟7 of	a	non-source	operator	is	𝑟8of	
its	producer	and	𝑟7of	source	operator	is	external	input	rate	𝐼

𝑹 Application	throughput

assumptions and optimization goals, we adopt a different
approach – the rate-based optimization (RBO) approach [51],
where output rate of each operator is estimated. However,
the original RBO [51] assumes processing capability of an
operator is predefined and independent of execution plans,
which is not suitable under the NUMA effect.

We summarize the main terminologies of our performance
model in Table 1. We group them into the following
four types, including machine specifications, operator
specifications, plan inputs and model outputs. For the sake
of simplicity, we refer a replica of an operator simply as
an “operator”. Machine specifications are the information
of the underlying hardware. Operator specifications are
the information specific to an operator, which need to
be directly profiled (e.g., T e ) or indirectly estimated with
profiled information and model inputs (e.g., T f ). Plan inputs
are the specification of the execution plan including both
placement and replication plans as well as external input rate
to the source operator. Model outputs are the final results
of the performance model. To simplify the presentation,
we omit the selectivity estimation and assume selectivity
is one in the following discussion. In our experiment, the
selectivity statistics of each operator are pre-profiled before
the optimization applies. In practice, they can be periodically
collected during runtime and the optimization needs to be
re-performed accordingly.



Model overview. In the following, we refer to the output
rate of an operator using the symbol ro , while ri refers to its
input rate. The throughput (R) of the application is modelled
as the summation of ro of all sink operators (i.e., operators
with no consumer). That is, R =

∑
sink ro . To estimate R, we

hence need to estimate ro of each sink operator. The output
rate of an operator is not only related to its input rate but
also the execution plan due to NUMA effect, which is quite
different from previous studies [51].
As BriskStream adopted the pass-by-reference message

passing approach (See Appendix A) to utilize shared-memory
environment, the reference passing delay is negligible. Hence,
ri of an operator is simply ro of the corresponding producer
and ri of spout (i.e., source operator) is given as I (i.e., external
input stream ingress rate). Conversely, upon obtaining the
reference, an operator then needs to fetch the actual data
during its processing, where the actual data fetch delay
depends on NUMA distance between it and its producer.
We hence estimate ro of an operator as a function of its input
rate ri and execution plan p.

Estimating ro . Consider a time interval t , denote the
number of tuples to be processed during t as num and actual
time needed to process them as tp . Further, denote T (p) as
the average time spent on handling each tuple for a given
execution planp. Let us first assume input rate to the operator
is sufficiently large and the operator is always busy during
t (i.e., tp > t ), and we discuss the case of tp ≤ t at the end
of this paragraph. Then, the general formula of ro can be
expressed in Formula 1. Specifically, num is the total number
of input tuples from all producers arrived during t , and tp is
the total time spent on processing those input tuples.

ro =
num

tp
,

where num =
∑

producers

ri × t

tp =
∑

producers

ri × t ×T (p). (1)

We breakdown T (p) into the following two non-
overlapping components, T e and T f (i.e., T (p) = T e +T f ).
T e stands for time required in actual function execution

and emitting output tuples per input tuple. For operators
that have a constant workload for each input tuple, we
simply measure its average execution time per tuple with
one execution plan to obtain its T e . Otherwise, we can
use machine learning techniques (e.g., linear regression) to
train a prediction model to predict its T e under varying
execution plans. Prediction of an operator with more
complex behaviour has been studied in previous works [12],
and we leave it as future work to enhance our system.

T f stands for time required to (locally or remotely) fetch
the actual data per input tuple. It is determined by its fetched
tuple size and its relative distance to its producer (determined
by p), which can be represented as follows,

T f =

{
0 if collocated with producer
⌈N /S⌉ × L(i, j) otherwise

where i and j are determined by p. (2)

When the operator is collocated with its producer, the
data fetch cost is already covered by T e and hence T f is 0.
Otherwise, it experiences memory access across CPU sockets
per tuple. It is generally difficult to accurately estimate the
actual data transfer cost as it is affected by multiple factors
such as memory access patterns and hardware prefetcher
units. We use a simple formula based on a prior work [17] as
illustrated in Formula 2. Specifically, we estimate the cross
socket communication cost based on the total size of data
transfer N bytes per input tuple, cache line size S and the
worst case memory access latency (L(i, j)) that operator and
its producer allocated (i , j). Applications in our testing
benchmark roughly follow Formula 2 as we show in our
experiments later.
Finally, let us remove the assumption that input rate

to an operator is larger than its capacity, and denote the
expected output rate as ro . There are two cases that we have
to consider:

Case 1: We have essentially made an assumption that the
operator is in general over-supplied, i.e., tp ≥ t . In
this case, input tuples are accumulated and ro =
ro . As tuples from all producers are processed in a
cooperative manner with equal priority, tuples will
be processed in a first come first serve manner. It
is possible to configure different priorities among
different operators here, which is out of the scope
of this paper. Therefore, ro(s) is determined by the
proportion of the corresponding input (ri (s)), that is,
ro(s) = ro ×

ri (s)
ri

.
Case 2: In contrast, an operator may need less time to finish

processing all tuples arrived during observation time
t , i.e., tp < t . In this case, we can derive that ro ≥∑

producers ri . This effectively means the operator is
under-supplied, and its output rate is limited by its
input rates, i.e., ro = ri , and ro(s) = ri (s) ∀ producer s .

Given an execution plan, we can then identify operators
that are over-supplied by comparing its input rate and
output rate. Those over-supplied operators are essentially
the “bottlenecks” of the corresponding execution plan. Our
scaling algorithm tries to increase the replication level of
those operators to remove bottlenecks. After the scaling, we
need to again look for the optimal placement plan of the



0

0.2

0.4

0.6

0.8

1

0 500 1000 1500

C
um

ul
at

iv
e 

pe
rc

en
t 

CPU_CYCLES (Te)

Sink Spout Parser Counter Splitter

Figure 3: CDF of profiled average execution cycles of
different operators of WC.

new DAG. This iterative optimization process formed our
optimization framework, which will be discussed shortly
later in Section 4.

Model instantiation. Machine specifications of the
model including C , B, Qi, j , Li, j and S are given as statistics
information of the targeting machine (e.g., measured
by Intel Memory Latency Checker [7]). Similar to the
previous work [23], we need to profile the application
to determine operator specifications. To eliminate the
impact of interference, we sequentially profile each operator.
Specifically, we first launch a profiling thread of the operator
to profile on one core. Then, we feed sample input tuples
(stored in local memory) to it. Information including T e

(execution time per tuple),M (average memory bandwidth
consumption per tuple) and N (size of input tuple) is then
gathered during its execution.
The sample input is prepared by pre-executing all

upstream operators. As they are not running during profiling,
they will not interfere with the profiling thread. To speed up
the instantiation process, multiple operators can be profiled
at the same time as long as there is no interference among
the profiling threads (e.g., launch them on different CPU
sockets). The statistics gathered without interference are
used in the model as BriskStream avoids interference (see
Section 3.2). Task oversubscribing has been studied in some
earlier work [31], but it is not the focus of this paper.
We use the overseer library [45] to measure T e , M , and

use classmexer library [1] to measure N . Figure 3 shows
the profiling results of T e of different operators of WC.
The major takeaway from Figure 3 is that operators show
stable behaviour in general, and the statistics can be used
as model input. Selecting a lower (resp. higher) percentile
profiled results essentially corresponds to a more (resp. less)
optimistic performance estimation. Nevertheless, we use the
profiled statistics at the 50th percentile as the input of the
model, which sufficiently guides the optimization process.

3.2 Problem Formulation
The goal of our optimization is to maximize the application
processing throughput under given input stream ingress
rate, where we look for the optimal replication level and
placement of each operator. For one CPU socket, denote
its available CPU cycles as C cycles/sec, the maximum
attainable local DRAM bandwidth as B bytes/sec, and the
maximum attainable remote channel bandwidth from socket
Si to S j as Qi, j bytes/sec. Further, denote average tuple size,
memory bandwidth consumption and processing time spent
per tuple of an operator as N bytes,M bytes/sec andT cycles,
respectively, The problem can be mathematically formulated
as Equation 3–5.
As the formulas show, we consider three categories of

resource constraints that the optimization algorithm needs
to make sure the execution plan satisfies. Constraint in
Eq. 3 enforces that the aggregated demand of CPU resource
requested to anyone CPU socket must be smaller than the
available CPU resource. Constraint in Eq. 4 enforces that the
aggregated amount of bandwidth requested to a CPU socket
must be smaller than the maximum attainable local DRAM
bandwidth. Constraint in Eq. 5 enforces that the aggregated
data transfer from one socket to another per unit of time
must be smaller than the corresponding maximum attainable
remote channel bandwidth. In addition, it is also constrained
that one operator is allocated exactly once. This matters
because an operator may have multiple producers that are
allocated at different places. In this case, the operator can
only be collocated with a subset of its producers.

maximize
∑
sink

ro

s.t., ∀i, j ∈ 1, ..,n,∑
operators at Si

ro ∗T ≤ C, (3)∑
operators at Si

ro ∗M ≤ B, (4)∑
operators at Sj

∑
producers at Si

ro(s) ∗ N ≤ Qi, j , (5)

Assuming each operator (suppose in total |o | operators)
can be replicated at most k replicas, we have to consider
in total k |o | different replication configurations. In addition,
for each replication configuration, there are mn different
placements, wherem is the number of CPU sockets and n
stands for the total number of replicas (n ≥ |o |). Such a large
solution space makes brute-force unpractical.
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4 OPTIMIZATION ALGORITHM DESIGN
We propose a novel optimization paradigm called Relative-
Location Aware Scheduling (RLAS) to optimize replication
level and operator placement at the same time guided by
our performance model. The key to optimize replication
configuration of a stream application is to remove
bottlenecks in its streaming pipeline. As each operator’s
throughput and resource demand may vary in different
placement plans, removing bottlenecks has to be done
together with placement optimization.
The key idea of our optimization process is to iteratively

optimize operator placement under a given replication level
setting and then try to increase replication level of the
bottleneck operator, which is determined during placement
optimization. Specifically, the operator that is overfed is
defined as bottleneck (see Case 1 in Section 3.1). Figure 4
shows an optimization example of a simple application
consisting of two operators. The initial execution plan with
no operator replication is labelled with (0). First, RLAS
optimizes its placement (labelled with (1)) with placement
algorithm, which also identifies bottleneck operators. The
operators’ placement to CPU sockets are indicated by the
dotted arrows in the Figure. Subsequently, it tries to increase
the replication level of the bottleneck operator, i.e., the
hollow circle, with scaling algorithm (labelled with (2)). It
continues to optimize its placement given the new replication
level setting (labelled with (3)). Finally, the application with
an optimized execution plan (labelled with (4)) is submitted
to execute.
The details of scaling and placement optimization

algorithms are presented in Appendix C. In the following,
we discuss how the Branch and Bound (B&B) based
technique [43] is applied to solve our placement optimization
problem assuming operator replication is given as input. We
focus on discussing our bounding function and proposed
heuristics that improve the searching efficiency.

Branch and Bound Overview. B&B systematically
enumerates a tree with nodes representing candidate
solutions, based on a bounding function. There are two types
of nodes in the tree: live nodes and solution nodes. In our
context, a node represents a placement plan and the value
of a node stands for the estimated throughput under the

corresponding placement. A live node contains the placement
plan that violates some constraints and they can be expanded
into other nodes that violate fewer constraints. The value of
a live node is obtained by evaluating the bounding function.
A solution node contains a valid placement plan without
violating any constraint. The value of a solution node comes
directly from the performance model. The algorithm may
reach multiple solution nodes as it explores the solution
space. The solution node with the best value is the output of
the algorithm.

Algorithm complexity: Naively in each iteration, there are(n
1
)
∗
(m
1
)
= n ∗m possible solutions to branch, i.e., schedule

which operator to which socket and an average n depth as
one operator is allocated in each iteration. In other words,
it will still need to examine on average (n ∗m)n candidate
solutions [41]. In order to further reduce the complexity of
the problem, heuristics have to be applied.

The bounding function. Specifically, the bounded value
of every live node is obtained by fixing the placement of valid
operators and let remaining operators to be collocated with
all of its producers, whichmay violate resource constraints as
discussed before, but gives the upper bound of the output rate
that the current node can achieve. If the bounding function
value of an intermediate node is worse than the solution node
obtained so far, we can safely prune it and all of its children
nodes. This does not affect the optimality of the algorithm
because the value of a live node must be better than all its
children node after further exploration. In other words, the
value of a live node is the theoretical upper bound of the
subtree of nodes. The bounded problem that we used in our
optimizer originates from the same optimization problem
with relaxed constraints.

Consider a simple application with operators A, A’ (replica
of A) and B, where A and A’ are producers of B. Assume
at one iteration, A and A’ are scheduled to socket 0 and 1,
respectively (i.e., they become valid). We want to calculate
the bounding function value assuming B is the sink operator,
which remains to be scheduled. In order to calculate the
bounding function value, we simply let B be collocated
with both A and A’ at the same time, which may violate
some constraints. In this way, its output rate is maximized,
which is the bounding value of the live node. The calculating
of our bounding function has the same cost as evaluating
the performance model since we only need to mark T f

(Formula 2) to be 0 for those operators remaining to be
scheduled.

The branching heuristics.We introduce the following
three heuristics that work together to significantly reduce
the solution space.
1) Collocation heuristic: The first heuristic switches

the placement consideration from vertex to edge, i.e.,



only consider placement decision of each pair of directly
connected operators. This avoids many placement decisions
of a single operator that have little or no impact on the output
rate of other operators. Specifically, the algorithm considers
a list of collocation decisions involving a pair of directly
connected producer and consumer. During the searching
process, collocation decisions are gradually removed from
the list once they become no longer relevant. For instance, it
can be safely discarded (i.e., do not need to consider anymore)
if both producer and consumer in the collocation decision
are already allocated.
2) Best-fit & Redundant-elimination heuristic: The second

reduces the size of the problem in special cases by applying
best-fit policy and also avoids identical sub-problems
through redundancy elimination. Consider an operator to
be scheduled, if all predecessors (i.e., upstream operators)
of it are already scheduled, then the output rate of it can be
safely determined without affecting any of its predecessors.
In this case, we select only the best way to schedule it to
maximize its output rate. Furthermore, in case that there
are multiple sockets that it can achieve maximum output
rate, we only consider the socket with the least remaining
resource. If there are multiple equal choices, we only branch
to one of them to reduce problem size.

3) Compress graph: The third provides amechanism to tune
a trade-off between optimization granularity and searching
space. Under a large replication level setting, the execution
graph becomes very large and the searching space is huge.
We compress the execution graph by grouping multiple
replicas of an operator (denoted by compress ratio) into a
single large instance that is scheduled together. Essentially,
the compress ratio represents the tradeoff between the
optimization granularity and searching space. By setting the
ratio to be one, we have the most fine-grained optimization
but it takes more time to solve. In our experiment, we set the
ratio to be 5, which produces a good trade-off.
We use the scheduling of WC as a concrete example

to illustrate the algorithm. For the sake of simplicity, we
consider only an intermediate iteration of scheduling of a
subset ofWC. Specifically, two replicas of the parser (denoted
asA andA′), one replica of the splitter (denoted as B), and one
replica of count (denoted as C) are remaining unscheduled
as shown in the top-left of Figure 5.
In this example, we assume the aggregated resource

demands of any combinations of grouping three operators
together exceed the resource constraint of a socket, and the
only optimal scheduling plan is shown beside the topology.
The bottom left of the Figure shows how our algorithm
explores the searching space by expanding nodes, where
the label on the edge represents the collocation decision
considered in the current iteration. The detailed states of
four nodes are illustrated on the right-hand side of the
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Figure 5: Placement optimization at runtime. Light
colored rectangle represents a live node that still
violates resource constraints. Dark colored rectangle
stands for a solution node contains a valid plan.

figure, where the state of each node is represented by a
two-dimensional matrix. The first (horizontal) dimension
describes a list of collocation decisions, while the second
one represents the operator that interests in this decision.
A value of ‘-’ means that the respective operator is not
interested in this collocation decision. A value of ‘1’ means
that the collocation decision is made in this node, although
it may violate resource constraints. An operator is interested
in the collocation decision involving itself to minimize its
remote memory access penalty. A value of ‘0’ means that
the collocation decision is not satisfied and the involved
producer and consumer are separately located.

At the root node, we consider a list of scheduling decisions
involving each pair of producer and consumer. At Node #1,
the collocation decision of A and B is going to be satisfied,
and assume they are collocated to S0. Note that, S1 is identical
to S0 at this point and does not need to repeatedly consider.
The bounding value of this node is essentially collocating all
operators into the same socket, and it is larger than solution
node hence we need to further explore. At Node #2, we try to
collocate A’ and B, which however cannot be satisfied (due
to the assumed resource constraint). As its bounding value is
worse than the solution (if obtained), it can be pruned safely.
Node #3 will eventually lead to a valid yet bad placement
plan. One of the searching processes that leads to the solution
node is Root→Node #4→Node#5→Solution.

5 BRISKSTREAM SYSTEM
Applying RLAS to existing DSPSs (e.g., Storm, Flink, Heron)
is insufficient to make them scale on shared-memory
multicore architectures. As they are not designed for
multicore environment [54] , much of the overhead come
from the inherent distributed system designs.



We integrate RLAS optimization framework into
BriskStream 1, a new DSPS supporting the same APIs
as Storm and Heron. More implementation details of
BriskStream are given in Appendix A. According to
Equation 1, both T e and T f shall be reduced in order
to improve output rate of an operator and subsequently
improve application throughput. In the following, we discuss
two design aspects of BriskStream that are specifically
optimized for shared-memory architectures that reduce T e

and T f significantly. We also discuss some limitations in
Section 5.3.

5.1 Improving Execution Efficiency
Compared with distributed DSPSs, BrickStream eliminates
many unnecessary components to reduce the instruction
footprint, notably including (de)serialization, cross-process
and network-related communication mechanism, and
condition checking (e.g., exception handling). Those
unnecessary components (although not involved during
execution) bring many conditional branch instructions and
results in large instruction footprint [54]. Furthermore,
we carefully revise the critical execution path to avoid
unnecessary/duplicate temporary object creations. For
example, as an output tuple is exclusively accessible by its
targeted consumer and all operators share the same memory
address, we do not need to create a new instance of the tuple
when the consumer obtains it.

5.2 Improving Communication Efficiency
Most modern DSPSs [4, 5, 54] employ buffering strategy
to accumulate multiple tuples and send them in batches to
improve the application throughput. BriskStream follows
the similar idea of buffering output tuples, but accumulated
tuples are combined into one “jumbo tuple” (see the example
in Appendix A). This approach has several benefits for
scalability. First, since we know tuples in the same jumbo
tuple are targeting at the same consumer from the same
producer in the same process, we can eliminate duplicate
tuple header (e.g., metadata, context information) hence
reduces communication costs. In addition, the insertion of a
jumbo tuple (containing multiple output tuple) requires only
a single insertion to the communication queue and effectively
amortizing the insertion overhead. As a result, both T e and
T f are significantly reduced.

5.3 Discussions
To examine the maximum system capacity, we assume input
stream ingress rate (I ) is sufficiently large and keeps the
system busy. Hence, the model instantiation and subsequent
1The source code of BriskStream will be publicly available at https://github.
com/ShuhaoZhangTony/briskstream.

execution plan optimization are conducted at the same
over-supplied configuration. In practical scenarios, stream
rate as well as its characteristics can vary over time, and
application needs to be re-optimized in response to workload
changes [20, 26, 49]. To adapt our optimizations to dynamic
scenarios, we plan to study simple heuristic algorithms such
as round-robin or traffic-minimization allocation [52, 54].

6 EVALUATION
Our experiments are conducted in following aspects.
First, our proposed performance model accurately predict
the application throughput under different execution
plans (Section 6.2). Second, BriskStream significantly
outperforms existing open-sourced DSPSs on multicores
(Section 6.3). Third, our RLAS optimization approach
performs significantly better than competing techniques
(Section 6.4). We also show in Section 6.5 the relative
importance of BriskStream’s optimization techniques.

6.1 Experimental Setup
We pick four common applications from the previous
study [54] with different characteristics to evaluate
BriskStream. These tasks are word-count (WC), fraud-
detection (FD), spike-detection (SD), and linear-road (LR)
with different topology complexity and varying compute
and memory bandwidth demand. More application settings
can be found in Appendix B.
To examine the maximum system capacity under given

hardware resources, we tune the input stream ingress rate
(I ) to its maximum attainable value (Imax ) to keep the
system busy and report the stable system performance 2.
To minimize interference of operators, we use OpenHFT
Thread Affinity Library [9] with core isolation (i.e., configure
isolcpus to avoid the isolated cores being used by Linux
kernel general scheduler) to bind operators to cores based
on the given execution plan.

Table 2 shows the detailed specification of our two eight-
socket servers. We use Server A in Section 6.2, 6.3 and 6.5. We
study our RLAS optimization algorithms in detail on different
NUMA architectures with both two servers in Section 6.4.
NUMA characteristics, such as local and inter-socket idle
latencies and peak memory bandwidths, are measured with
Intel Memory Latency Checker [7]. These two machines
have different NUMA topologies, which lead to different
access latencies and throughputs across CPU sockets. The
three major takeaways from Table 2 are as follows. First,
due to NUMA, both Servers have significantly high remote
memory access latency, which is up to 10 times higher than
local cache access. Second, different interconnect and NUMA

2Back-pressure mechanism will eventually slow down spout so that the
system is stably running at its best achievable throughput.

https://github.com/ShuhaoZhangTony/briskstream
https://github.com/ShuhaoZhangTony/briskstream


Table 2: Characteristics of the two servers we use

HUAWEI	KunLun
Servers

(Server	A)

HP ProLiant	DL980	
G7	

(Server	B)
Processor	

(HT	disabled)
8x18	Intel	Xeon	E7-
8890	at	1.2	GHz	

8x8	Intel	Xeon	E7-2860
at	2.27	GHz	

Power	governors power save performance

Memory	per	socket 1 TB 256	GB

Local	Latency	(LLC) 50	ns 50	ns

1	hop	latency 307.7	ns 185.2	ns

Max	hops	latency 548.0	ns 349.6	ns

Local	B/W 54.3	GB/s 24.2	GB/s

1	hop	B/W 13.2	GB/s 10.6 GB/s

Max	hops	B/W 5.8	GB/s 10.8	GB/s

Total	local	B/W 434.4	GB/s 193.6	GB/s

Statistic
Machine

topologies lead to quite different bandwidth characteristics
on these two servers. In particular, remote memory access
bandwidth is similar regardless of the NUMA distance in
Server B. In contrast, the bandwidth is significantly lower
across long NUMA distance than smaller distance on Server
A. Third, there is a significant increase in remote memory
access latency from within the same CPU tray (e.g., 1 hop
latency) to between different CPU trays (max hops latency)
on both servers.

In addition to runtime statistics evaluation, we also report
how much time each tuple spends in different components
of the system. We classify these components as follows: 1)
Execute refers to the average time spent in core function
execution. Besides the actual user function execution, it
also includes various processor stalls such as instruction
cache miss stalls. 2) RMA refers to the time spend due to
remote memory access. This is only involved when the
operator is scheduled to different sockets to its producers,
and it varies depending on the relative location between
operators. 3) Others consist of all other time spent in
the critical execution path and considered as overhead.
Examples include temporary object creation, exception
condition checking, communication queue accessing and
context switching overhead.
To measure Execute and Others, we allocate the operator

to be collocated with its producer. The time spend in user
function per tuple is then measured as Execute. We measure
the gap between the subsequent call of the function as round-
trip delay. Others is then derived as the subtraction from
round-trip delay by Execute. Note that, the measurement
only consists of contiguous successful execution and exclude
the time spend in queue blocking (e.g., the queue is empty or
full). Tomeasure RMA cost, we allocate the operator remotely
to its producer and measures the new round-trip delay under
such configuration. The RMA cost is then derived as the

Table 3: Average processing time per tuple (T )
under varying NUMA distance. The unit is
nanoseconds/tuple.

Splitter Counter
From-to Measured Estimated From-to Measured Estimated
S0-S0(local) 1612.8 1612.8 S0-S0(local) 612.3 612.3
S0-S1 1666.5 1991.1 S0-S1 611.4 665.2
S0-S3 1708.2 1994.9 S0-S3 623.1 665.9
S0-S4 2050.6 2923.7 S0-S4 889.9 837.9
S0-S7 2371.3 3196.4 S0-S7 870.2 888.4

subtraction from the new round-trip delay by the original
round-trip delay.

6.2 Performance Model Evaluation
In this section, we evaluate the accuracy of our performance
model. We first evaluate the estimation of the cost of remote
memory access. We take Split and Count operators of WC as
an example. Table 3 compares the measured and estimated
process time per tuple (T ) of each operator. Our estimation
generally captures the correlations between remote memory
access penalty and NUMA distance. The estimation is larger
than measurement, especially for Splitter. When the input
tuple size is large (in case of Splitter), the memory accesses
have better locality and the hardware prefetcher helps in
reducing communication cost [38]. Another observation is
that there is a significant increase of RMA cost from between
sockets from the same CPU tray (e.g., S0 to S1) to between
sockets from different CPU tray (e.g., S0 to S4). Such non-
linear increasing of RMA cost has a major impact on the
system scalability as we need to pay significantly more
communication overhead across different CPU trays.
To validate the overall effectiveness of our performance

model, we show the relative error associated with estimating
the application throughput by our analytical model. The
relative error is defined as relative_error = |Rmeas−Rest |

Rmeas
,

where Rmeas is the measured application throughput
and Rest is the estimated application throughput by our
performance model for the same application.
The model accuracy evaluation of all applications under

the optimal execution plan on eight CPU sockets is shown
in Table 4. Overall, our estimation approximates the
measurement well for the throughput of all four applications.
It is able to produce the optimal execution plan and predict
the relative performance quite accurately.

6.3 Evaluation of Execution Efficiency
This section shows that BriskStream significantly
outperforms existing DSPSs on shared-memory multicores.
We compare BriskStream with two open-sourced DSPSs
including Apache Storm (version 1.1.1) and Flink (version
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Table 5: 99-percentile
end-to-end latency (ms)

Brisk
Stream Storm Flink

WC 21.9 37881.3 5689.2
FD 12.5 14949.8 261.3
SD 13.5 12733.8 350.5
LR 204.8 16747.8 4886.2
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Table 4: Model accuracy evaluation of all applications.
The performance unit is K events/sec

WC FD SD LR
Measured 96390.8 7172.5 12767.6 8738.3
Estimated 104843.3 8193.9 12530.2 9298.7
Relative error 0.08 0.14 0.02 0.06

1.3.2). For a better performance, we disable the fault-
tolerance mechanism in all comparing systems. We use Flink
with NUMA-aware configuration (i.e., one task manager
per CPU socket), and as a sanity check, we have also tested
Flink with a single task manager, which shows even worse
performance. We also compare BriskStream with StreamBox,
a recent single-node DSPS on share-memory multi-core
architectures at the end of this section.

Throughput and latency comparison. Figure 6 shows
the significant throughput speedup of BriskStream compared
to Storm and Flink. Overall, Storm and Flink show
comparable throughput for three applications including WC,
FD and SD. Flink performs poorly for LR compared to Storm.
A potential reason is that Flink requires additional stream
merger operators (implemented as the co-flat map) that
merges multiple input streams before feeding to an operator
with multi-input streams (commonly found in LR). Neither
Storm nor BriskStream has such additional overhead.

Following the previous work [24], we define the end-to-
end latency of a streaming workload as the duration between
the time when an input event enters the system and the time
when the results corresponding to that event is generated.
We compare the end-to-end process latency among different
DSPSs on Server A. Figure 7 shows the detailed CDF of
end-to-end processing latency of WC comparing different
DSPSs and Table 5 shows the overall 99-percentile end-to-end
processing latency comparison of different applications. The
end-to-end latency of BriskStream is significantly smaller
than both Flink and Storm.

Per-tuple execution time breakdown. To better
understand the source of performance improvement, we
show the per-tuple execution time breakdown by comparing
BriskStream and Storm. Figure 8 shows the breakdown of all
non-source operators of WC, which we use as the example
application in this study. We perform analysis in two groups:
local stands for allocating all operators to the same socket,
and remote stands for allocating each operator max-hop away
from its producer to examine the cost of RMA.
In the local group, we compare execution efficiency

between BriskStream and Storm. The “others” overhead of
each operator is commonly reduced to about 10% of that
of Storm. The function execution time is also significantly
reduced to only 5 ∼ 24% of that of Storm. There are two main
reasons for this improvement. First, the instruction cache



locality is significantly improved due to much smaller code
footprint. In particular, our further profiling results reveal
that BriskStream is no longer front-end stalls dominated (less
than 10%), while Storm and Flink are (more than 40%). Second,
our “jumbo tuple” design eliminates duplicate metadata
creation and effectively amortizes the communication queue
access overhead.

In the remote group, we compare the execution of the same
operator in BriskStream with or without remote memory
access overhead. In comparison with the locally allocated
case, the total round trip time of an operator is up to 9.4
times higher when it is remotely allocated to its producer.
In particular, Parser has little in computation but has to
pay a lot for remote memory access overhead (T e << T f ).
The significant varying processing capability of the same
operator when it is under different placement plan reaffirms
the necessity of our RLAS optimization.

Another takeaway is that Execute in Storm is much larger
than RMA, which means T e >> T f and NUMA effect may
have a minor impact in its plan optimization. In contrast,
BriskStream significantly reducesT e (discussed in Section 5)
and the NUMA effect, as a result of improving efficiency of
other components, becomes a critical issue to optimize. In
the future, on one hand, T e may be further reduced with
more optimization techniques deployed. On the other hand,
servers may scale to evenmore CPU sockets (with potentially
larger max-hop remote memory access penalty). We expect
that those two trends make the NUMA effect continues to
play an important role in optimizing streaming computation
on shared-memory multicores.

Evaluation of scalability on varying CPU sockets.
Our next experiment shows that BriskStream scales
effectively as we increase the numbers of sockets. RLAS is
able to optimize the execution plan under a different number
of sockets enabled. Figure 9a shows the better scalability of
BriskStream than existing DSPSs on multi-socket servers by
taking LR as an example. Unmanaged thread interference
and unnecessary remote memory access penalty prevent
existing DSPSs from scaling well on the modern multi-
sockets machine. We show the scalability evaluation of
different applications of BriskStream in Figure 9b. There is an
almost linear scale up from 1 to 4 sockets for all applications.
However, the scalability becomes poor when more than 4
sockets are used. This is because of a significant increase
of RMA penalty between upper and lower CPU tray. In
particular, RMA latency is about two times higher between
sockets from different tray than the other case.
To better understand the effect of RMA overhead during

scaling, we compare the theoretical bounded performance
without RMA (denoted as “W/o rma”) and ideal performance
if the application is linearly scaled up to eight sockets

(denoted as “Ideal”) in Figure 10. The bounded performance
is obtained by evaluating the same execution plan on eight
CPU sockets by substituting RMA cost to be zero. There
are two major insights from Figure 10. First, theoretically
removing RMA cost (i.e., “W/o rma”) achieves 89 ∼ 95% of the
ideal performance, and it hence confirms that the significant
increase of RMA cost is the main reason that BriskStream is
not able to scale linearly on 8 sockets. Second, we still need
to improve the parallelism and scalability of the execution
plan to achieve optimal performance even without RMA.

Comparing with single-node DSPS. Streambox [42]
is a recently proposed DSPS based on a morsel-driven
like execution model – a different processing model to
BriskStream. We compare BriskStream with StreamBox
using WC as an example. Results in Figure 11 demonstrate
that BriskStream outperforms StreamBox significantly
regardless of the number of CPU cores used in the
system. Note that, StreamBox focuses on solving out-of-
order processing problem, which requires more expensive
processing mechanisms such as locks and container design.
Due to a different system design objective, BriskStream
currently does not provide ordered processing guarantee
and consequently does not bear such overhead.

For a better comparison, we modify StreamBox to disable
its order-guaranteeing feature, denoted as StreamBox (out-
of-order), so that tuples are processed out-of-order in both
systems. Despite its efficiency at smaller core counts, it
scales poorly when multiple sockets are used. There are two
main reasons. First, StreamBox relies on a centralized task
scheduling/distribution mechanism with locking primitives,
which brings significant overhead for more CPU cores.
This could be a limitation inherited from adopting morsel-
driven execution model in DSPSs – essentially it trades
off the reduced pipeline parallelism for lower operator
communication overhead, which we defer as a future work
to investigate in more detail. Second, WC needs the same
word being counted by the same counter, which requires a
data shuffling operation in StreamBox. Such data shuffling
operation introduces significant remote memory access
to StreamBox. We compare their NUMA overhead during
execution using Intel Vtune Amplifier [8]. We observe that,
under 8 sockets (144 cores), BriskStream issues in average
0.09 cache misses served remotely per k events (misses/k
events), which StreamBox’s has 6 misses/k events.

6.4 Evaluation of RLAS algorithms
In this section, we study the effectiveness of RLAS
optimization and compare it with competing techniques.

The necessity of considering varying processing
capability. To gain a better understanding of the importance
of relative-location awareness, we consider an alternative
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Table 6: Placement strategies

Name Placement strategy details

OS
the placement is left to the operating 
system (Both our servers use Linux-
based OS)

FF
operators are first topologically sorted 
and then placed in a first-fit manner 
(start placing from Spout)

RR operators are placed in a round-robin 
manner on each CPU socket

0

0.2

0.4

0.6

0.8

1

WC FD SD LR

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

OS
FF
RR

(a) Server A

0

0.2

0.4

0.6

0.8

1

WC FD SD LR

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

OS
FF
RR

(b) Server B

Figure 13: Placement strategy comparison under
the same replication configuration.

algorithm that utilizes the same searching process of RLAS
but assumes each operator has a fixed processing capability.
Such an approach essentially falls back to the original
RBO model [51], and is also similar to some previous
works [27, 34]. In our context, we need to fix T f of each
operator to a constant value. We consider two extreme cases.
First, the lower bound case, namely RLAS_f ix(L), assumes
each operator pessimistically always includes remote access
overhead. That is, T f is calculated by anti-collocating an
operator to all of its producers. Second, the upper bound
case, namely RLAS_f ix(U ), completely ignores RMA, and
T f is set to 0 regardless the relative location of an operator
to its producers.
The comparison results are shown in Figure 12. RLAS

shows a 19% ∼ 39% improvement over RLAS_f ix(L). We
observe that RLAS_f ix(L) often results in smaller replication
configuration of the same application compared to RLAS and
hence underutilizes the underlying resources. This is because
it over-estimates the resource demand of operators that are
collocated with producers. Conversely, RLAS_f ix(U ) under-
estimates the resource demands of operators that are anti-
collocated and misleads the optimization process to involve
severely thread interference. Over the four workloads, RLAS
shows a 119% ∼ 455% improvement over RLAS_f ix(U ).

Comparing different placement strategies. We now
study the effect of different placements under the same
replication configuration. In this experiment, the replication
configuration is fixed to be the same as the optimized plan
generated by RLAS and only the placement is varied under
different techniques. Three alternative placement strategies
are shown in Table 6. Both FF [52] and RR [44] are enforced
to guarantee resource constraints as much as possible. In
case these strategies cannot find any plan satisfying resource
constraints, they will gradually relax constraints until a plan
is obtained. We also configure external input rate (I ) to just
overfeed the system on Server A, and using the same I to test
on Server B. This allows us to examine the system capacity of

different servers. The results are shown in Figure 13. There
are two major takeaways.
First, RLAS generally outperforms other placement

techniques on both two servers. FF can be viewed as a
minimizing traffic heuristic-based approach as it greedily
allocates neighbor operators (i.e., directly connected)
together due to its topologically sorting step. Several related
studies [13, 52] adopt a similar approach of FF in dealing with
operator placement problem in the distributed environment.
However, it performs poorly, because we find that during
its searching for optimal placements, it often falls into “not-
able-to-progress" situation as it cannot allocate the current
operator into any of the sockets because of the violation
of resource constraints. This is due to its greedy nature
that leads to a local optimal state. Then, it has to relax the
resource constraints and repack the whole topology, which
often ends up with oversubscribing of a few CPU sockets.
The major drawback of RR is that it does not take remote
memory communication overhead into consideration, and
the resulting plans often involve unnecessary cross-socket
communication.

Second, RLAS performs generally better on Server B. We
observe that Server B is underutilized for all applications
under the given testing input loads. This indicates that
although the total computing power (aggregated CPU
frequency) of Server A is higher, its maximum attainable
system capacity is actually smaller. As a result, RLAS chooses
to use only a subset of the underlying hardware resource of
Server B to achieve the maximum application throughput.
In contrast, other heuristic based placement strategies
unnecessarily involve more RMA cost by launching
operators to all CPU sockets.

Correctness of heuristics. Due to a very large search
space, it is almost impossible to examine all execution
plans of our test workloads to verify the effectiveness of
our heuristics. Instead, we utilize Monte-Carlo simulations
by generating 1000 random execution plans, and compare
against our optimized execution plan. Specifically, the
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Table 7: Runtime of the
optimization process

r throughput runtime
(sec)

1 10140.2 93.4
3 10079.5 48.3
5 96390.8 23.0
10 84955.9 46.5
15 77773.6 45.3

replication level of each operator is randomly increased until
the total replication level hits the scaling limit. All operators
(incl. replicas) are then randomly placed. Results of Figure 14
show that none of the random plans is better than RLAS. It
demonstrates that random plans hurt the performance in a
high probability due to the huge optimization space.
We further observe two properties of optimized plans of

RLAS, which are also found in randomly generated plans
with relatively good performance. First, operators of FD and
LR are completely avoided being remotely allocated across
different CPU-tray to their producers. This indicates that the
RMA overhead, especially from the costly communications
across CPU trays, should be aggressively avoided in these
two applications. Second, resources are well utilized for high
throughput optimizations in RLAS. Most operators (incl.
replicas) end up with being “just fulfilled”, i.e., ro = ro = ri .
This effectively reveals the shortcoming of existing heuristics
based approach – maximizing an operator’s performance
may be worthless or even harmful to the overall system
performance as it may already overfeed its downstream
operators. Further increasing its performance (e.g., scaling it
up or making it allocated together with its producers) is just
a waste of the precious computing resource.

Communication pattern. In order to understand
the impact of different NUMA architectures on RLAS
optimization, we show communication pattern matrices of
running WC with an optimal execution plan in Figure 15.
The same conclusion applies to other applications and hence
omitted. Each point in the figure indicates the summation of
data fetch cost (i.e.,T f ) of all operators from the x-coordinate
(Si ) to y-coordinate (S j ). The major observation is that the
communication requests are mostly sending from one socket
(S0) to other sockets in Server A, and they are, in contrast,
much more uniformly distributed among different sockets in
Server B. The main reason is that the remote memory access
bandwidth is almost identical to local memory access in
Server B thanks to its glue-assisted component as discussed

in Section 2, and operators are hence more uniformly placed
at different sockets.

Varying the compression ratio (r ). RLAS allows to
compress the execution graph (with a ratio of r ) to tune the
trade-off between optimization granularity and searching
space. We use WC as an example to show its impact as
shown in Table 7. Similar trend is observed in other three
applications. Note that, a compressed graph contains heavy
operators (multiple operators grouped into one), which
may fail to be allocated and requires re-optimization. This
procedure introduces more complexity to the algorithm,
which leads to higher runtime of the optimization process
as shown in Table 7. Due to space limitation, a detailed
discussion is presented in Appendix D.

6.5 Factor Analysis
To understand the details in the overheads and benefits
of various aspects of BriskStream, we show a factor
analysis in Figure 16 that highlights the key factors for
performance. Simple refers to running Storm directly
on shared-memory multicores. -Instr.footprint refers to
BriskStream with much smaller instruction footprint and
avoiding unnecessary/duplicate objects as described in
Section 5.1. +JumboTuple further allows BriskStream to
reduce the cross-operator communication overhead as
described in Section 5.2. In the first three cases, the system is
optimized under RLAS_f ix(L) scheme without considering
varying RMA cost. +RLAS adds our NUMA aware execution
plan optimization as described in Section 3. The major
takeaways from Figure 16 are that jumbo tuple design is
important to optimize existing DSPSs on shared-memory
multicore architecture and our RLAS optimization paradigm
is critical for DSPSs to scale different applications on modern
multicores environment addressing NUMA effect.

7 RELATEDWORK
Database optimizations on scale-up architectures: Scale-up
architectures have brought many research challenges and
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opportunities for in-memory data management, as outlined
in recent surveys [50, 53]. There have been studies on
optimizing the instruction cache performance [28, 55], the
memory and cache performance [11, 15, 16, 29], many-core
parallelism in a single chip [22, 33] and NUMA [27, 39, 40, 46–
48]. Psaroudakis et al. [47, 48] developed an adaptive data
placement algorithm that can track and resolve utilization
imbalance across sockets. However, it does not solve the
problem we address. In particular, the placement strategy
such as RR balances resource utilization among CPU sockets,
but shows suboptimal performance in our experiments. Leis
et al. [39] proposed a novel morsel-driven query execution
model which integrates both NUMA-awareness and fine
grained task-based parallelism. A similar execution model
is adopted in StreamBox [42], which we compared in
our experiments. The results confirm the superiority of
BriskStream in addressing NUMA effect.
Data stream processing systems (DSPSs): DSPSs

have attracted a great amount of research effort. A
number of systems have been developed, for example,
TelegraphCQ [21], Borealis [10], IBM System S [32]
and the more recent ones including Storm [5], Flink [4]
and Heron [36]. However, most of them targeted at the
distributed environment, and little attention has been
paid to the research on DSPSs on the modern multicore
environment. A recent patch on Flink [3] tries to make
Flink a NUMA-aware DSPS. However, its current heuristic
based round-robin allocation strategy is not sufficient to
make it scale on large multicores as our experiment shows.
Previous work [54] gave a detailed study on the insufficiency
of two popular DSPSs (i.e., Storm and Flink) running on
modern multi-core processors. It proposed a heuristic-based
algorithm to deploy stream processing on NUMA-based
machines. However, the heuristic does not take relative-
location awareness into account. It may not always be
efficient for different workloads. In contrast, BriskStream
provides a model-guided approach that automatically
determines the optimal operator parallelism and placement

addressing the NUMA effect. SABER [35] focuses on
efficiently realizing computing power from both CPU and
GPUs. Streambox [42] provides an efficient mechanism to
handle out-of-order arrival event processing in a multi-core
environment. Those solutions are complementary to ours
and can be potentially integrated together to further
improve DSPSs on shared-memory multicore architectures.

Execution plan optimization: Both operator placement and
operator replication are widely investigated in the literature
under different assumptions and optimization goals [37].
In particular, many algorithms and mechanisms [13, 18,
19, 34, 44, 52] are developed to allocate (i.e., schedule)
operators of a job into physical resources (e.g., compute
node) in order to achieve a certain optimization goal, such as
maximizing throughput, minimizing latency or minimizing
resource consumption, etc. Due to space limitation, we
discuss them in Appendix E. Based on similar ideas from
prior works, we implement algorithms including FF that
greedily minimizes communication and RR that tries to
ensure resource balancing among CPU sockets. As our
experiment demonstrates, both algorithms result in poor
performance compared to our RLAS approach in most cases
because they are often trapped in local optima.

8 CONCLUSION
We have introduced BriskStream, a new data stream
processing system with a new streaming execution plan
optimization paradigm, namely Relative-Location Aware
Scheduling (RLAS). BriskStream successfully scales stream
computation towards hundred of cores under NUMA effect.
The experiments on eight-sockets machines confirm that
BriskStream significantly outperforms existing open-sourced
DSPSs up to an order of magnitude.
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A IMPLEMENTATION DETAILS
BriskStream shares many similarities to existing DSPSs
including pipelined processing and operator replication
designs. To avoid reinventing the wheel, we reuse many
components found in existing DSPSs such as Storm, Heron
and Flink, notably including API design, application topology
compiler, pipelined execution engine with communication
queue and back-pressure mechanism. In contrast, BrickStream
embrace various designs that are suitable for shared-memory
multicore architectures. For example, Heron has an operator-
per-process execution environment, where each operator
in an application is launched as a dedicated JVM process.
In contrast, an application in BriskStream is launched in a
JVM process, and operators are launched as Java threads
inside the same JVM process, which avoids cross-process
communication and allows the pass-by-reference message
passing mechanism. Specifically, tuples produced by an
operator are stored locally, and pointers as reference to tuple
are inserted into a communication queue. Together with the
jumbo tuple design, reference passing delay is minimized
and becomes negligible.
Figure 17 presents an example job (WC) of BriskStream.

Each operator (or the replica) of the application is mapped to
one task. The task is the basic processing unit in BrickStream
(i.e., executed by a Java thread), which consists of an executor
and a partition controller. The core logic for each executor is
provided by the corresponding operator of the application.
Executor operates by taking a tuple from the output queues of
its producers and invokes the core logic on the obtained input
tuple. After the function execution finishes, it dispatches zero

or more tuples by sending them to its partition controller.
The partition controller decides in which output queue a
tuple should be enqueued according to application specified
partition strategies such as shuffle partitioning. Furthermore,
each task maintains output buffers for each of its consumers,
where jumbo tuples are formed accordingly.

B APPLICATION SETTINGS
In this section, we discuss more settings of the testing
applications in our experiment. We have shown the topology
of WC in Figure 2. Figure 18 shows the topology of the other
three applications. More details about the specification about
them can be found in the previous paper [54].
The selectivity is affected by both input workloads and

application logic. Parser and Sink have a selectivity of one
in all applications. Splitter has a output selectivity of ten in
WC. That is, each input sentence contains 10 words. Counter
has an output selectivity of one, thus it emits the counting
results of each input word to Sink. Operators have an output
selectivity of one in both FD and SD. That is, we configure
that a signal is passed to Sink in both predictor operator of
FD and Spike detection operator of SD regardless of whether
detection is triggered for an input tuple. Operators may
contain multiple output streams in LR. If an operator has
only one output stream, we denote its stream as the default
stream. We show the selectivity of each output stream of
them of LR in Table 8.

C ALGORITHM DETAILS
In this section, we first present the detailed algorithm
implementations including operator replication optimization
(shown in Algorithm 1) and operator placement (shown
in Algorithm 2). After that, we discuss observations made
in applying algorithms in optimizing our workload and
their runtime (Appendix D). We further elaborate how
our optimization paradigm can be extended with other
optimization techniques (Appendix D).
Algorithm 1 illustrates our scaling algorithm based on

topological sorting. Initially, we set replication level of each
operator to be one (Lines 1∼2). The algorithm proceeds with
this and it optimizes operator placement with Algorithm 2
(Line 6). Then, it stores the current plan if it ends up with
better performance (Lines 7∼8). At Lines 11∼19, we iterate
over all the sorted list from reversely topologically sorting
on the execution graph in parallel (scaling from sink towards
spout). At Line 15, it tries to increase the replication level
of the identified bottleneck operator (i.e., this is identified
during placement optimization). The size of increasing step
depends on the ratio of over-supply, i.e., ⌈ riro ⌉. It starts a
new iteration to look for a better execution plan at Line 17.
The iteration loop ensures that we have gone through all
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Table 8: Operator selectivity of LR

Operator Name Input streams Output streams Selectivity

Dispatcher default position report ≈0.99

balance_stream ≈0.0

daliy_exp_request ≈0.0

Avg_speed position report avg_stream 1.0

Las_avg_speed avg_stream las_stream 1.0

Accident_detect position report detect_stream 0.0

Count_vehicle position report counts_stream 1.0

Accident_notify detect_stream,
position report

notify_stream 0.0

Toll_notify detect_stream toll_nofity_stream 0.0

position report toll_nofity_stream 1.0

counts_stream toll_nofity_stream 1.0

las_stream toll_nofity_stream 1.0

Daily_expen daliy_exp_request default 0.0

Account_balance balance_stream default 0.0

the way of scaling the topology bottlenecks. We can set an
upper limit on the total replication level (e.g., set to the total
number of CPU cores) to terminate the procedure earlier. At
Lines 9&19, either the algorithm fails to find a plan satisfying
resource constraint or hits the scaling upper limit will cause
the searching to terminate.

Algorithm 1: Topologically sorted iterative scaling
Data: Execution Plan: p // the current visiting plan
Data: List of operators: sor tedLists
Result: Execution Plan: opt // the solution plan

1 p .parallel ism← set parallelism of all operators to be 1;
2 p .дraph← creates execution graph according to p .parallel ism;
3 opt .R ← 0;
4 return Searching(p);
5 Function Searching(p):
6 p .placement ← placement optimization of p .дraph;
7 if p .R > opt .R then
8 opt ← p // update the solution plan

9 if failed to find valid placement satisfying resource constraint then
10 return opt;

11 sor tedLists ← reverse TopologicalSort (p .дraph)// scale

start from sink
12 foreach l ist ∈ sor tedLists do
13 foreach Operator o ∈ list do
14 if o is bottleneck then
15 p .parallel ism← try to increase the replication

level of o by ⌈ riro ⌉;
16 if suceessfully increased p .parallel ism then
17 return Searching(p) // start another

iteration
18 else
19 return opt

20 return opt;

Algorithm 2 illustrates our Branch and Bound based
Placement algorithm. Initially, no solution node has been
found so far and we initialize a root node with a plan

collocating all operators (Lines 1∼5). At Lines 7∼14, the
algorithm explores the current node. If it has better bounding
value than the current solution, we update the solution node
(Lines 10∼11) if it is valid (i.e., all operators are allocated), or
we need to further explore it (Line 13). Otherwise, we prune
it at Line 14 (this also effectively prunes all of its children
nodes). The branching function (Lines 15∼32) illustrates how
the searching process branches and generates children nodes
to explore. For each collocation decision in the current node
(Line 16), we apply the best fit heuristic (Lines 17∼23) and
one new node is created. Otherwise, at Lines 25∼27, we have
to create new nodes for each possible way of placing the two
operators (i.e., up to

(m
1
)
∗
(2
1
)
). At Line 28∼ 31, we update

the number of valid operators and bounding value of each
newly created nodes in parallel. Finally, the newly created
children nodes are pushed back to the stack.

D DISCUSSIONS ON OPTIMIZATION
PROCESS

We have made some interesting observations in optimizing
our workload. First, placement algorithm (Algorithm 2) start
with no initial solution (i.e., the solution.value is 0 initially
at Line 9) by default, and we have tried to use a simple
first-fit (FF) placement algorithm to determine an initial
solution node to potentially speed up the searching process.
In some cases, it accelerates the searching process by earlier
pruning and makes the algorithm converges faster, but
in other cases, the overhead of running the FF algorithm
offsets the gain. Second, the placement algorithm may fail
to find any valid plan as it is not able to allocate one or
more operators due to resource constraints, which causes
scaling algorithm to terminate. It is interesting to note
that this may not indicate the saturation of the underlying
resources but the operator itself is too coarse-grained. The
scaling algorithm can, instead of termination (in Line 10



Algorithm 2: B&B based placement optimization
Data: Stack stack // stors all live nodes

Data: Node solution // stores the best plan found so far

Data: Node e// the current visiting node
Result: Placement plan of solution node
// Initilization

1 solution .R ← 0 // No solution yet
2 e .decisions ← a list contains all possible collocation decisions;
3 e .plan← all operators are collocated into the same CPU socket;
4 e .R ← BoundingFunction(e .plan);
5 e .validOperators ← 0;
6 Push(stack ,e );
7 while ¬IsEmpty(stack )// Branch and Bound process
8 do
9 e ← Pop(stack );

10 if e .R > solution .R then
11 if e .validOperators == totalOperators then
12 solution← e ;
13 else
14 Branching(e);

15 else
// the current node has worse bounded value

than solution, and can be safely pruned.

16 Function Branching(e):
Data: Node[] children

17 foreach pair of Os and Oc in e .decisions do
18 if all predecessors of them are already allocated except Os to Oc

then
19 #newAllocate ← 2;
20 if they can be collocated into one socket then
21 create a Node n with a plan collocating them to one

socket;
22 else
23 create a Node n with a plan separately allocating

them to two sockets;

24 add n to children;
25 else
26 #newAllocate ← 1;
27 foreach valid way of placing Os and Oc do
28 create a new Node and add it to children;

29 foreach Node c ∈ children// update in parallel
30 do
31 c .validOperators ← e.validOperators + #newAllocate ;
32 c .R ← BoundingFunction(c .plan);

33 PushAll(stack , children);

Algorithm 1), try to further increase the replication level
of operator that “failed-to-allocate”. After that, workloads
are essentially further partitioned among more replicas and
the placement algorithm may be able to find a valid plan.
This procedure, however, introduces more complexity to the
algorithm.

Optimization runtime. The placement optimization
problem is difficult to solve as the solution space increases
rapidly with increased replication level configurations.
Besides the three proposed heuristics, we also apply a
list of optimization techniques to further increase the
searching efficiency including 1) memorization in evaluating
performance model under a given execution plan (e.g., an

operator should behave the same if its relative placement
with all of its producers are the same in different plans),
2) instead of starting from scaling with replication set
to one for all operators, we can start from a reasonable
large DAG configuration to reduce the number of scaling
iteration and 3) the algorithm is highly optimized for higher
concurrency (e.g., concurrently generate branching children
nodes). Overall, the placement algorithm needs less than
5 seconds to optimize placement for a large DAG, and the
entire optimization usually takes less than 30 seconds, which
is acceptable, given the size of the problem and the fact that
the generated plan can be used for the whole lifetime of the
application. As the streaming application usually runs for a
long time, the overhead of generating a plan is not included
in our measurement.

Extension with other optimization techniques. A
number of optimization techniques are available in the
literature [27, 30]. Many of them can be potentially applied
to further improve the performance of BriskStream. Taking
operator fusion as an example, which trades communication
cost against pipeline parallelism and is in particular helpful
if operators share little in common computing resource. Our
performance model is general enough such that it can be
extended to capture other optimization techniques.

E MORE RELATEDWORK
Aniello et al. [13] propose two schedulers for Storm.
The first scheduler is used in an offline manner prior
to executing the topology and the second scheduler is
used in an online fashion to reschedule after a topology
has been running for a duration. Similarly, T-Storm [52]
dynamically assigns/reassigns operators according to run-
time statistics in order to minimize inter-node and inter-
process traffic while ensuring load balance. R-Storm [44]
focuses on resource awareness operator placement, which
tries to improve the performance of Storm by assigning
operators according to their resource demand and the
resource availability of computing nodes. Cardellini et
al. [18, 19] propose a general mathematical formulation of the
problem of optimizing operator placement for distributed
data stream processing. Those approaches may lead to a
suboptimal performance in the NUMA environment that we
are target at. This is because factors including output rate,
amount of communication as well as resource consumption
of an operator may change in different execution plans
due to the NUMA effect and can therefore mislead existing
approaches that treat them as predefined constants.
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